September 18, 2017

Mr. Craig Dixon, Chairman
New Bedford Conservation Commission
New Bedford City Hall
133 Williams Street
New Bedford, MA 02744

RE: Response Letter Notice of Intent - NWD Trucking (SE49-0751) 100 Duchaine Blvd. - New Bedford, Massachusetts

Dear Mr. Nixon,
We have enclosed a response letter, revised HydroCAD calculations and a revised Site Plan in response to the comment letter prepared by Nitsch Engineering dated July 14, 2017 in regards to their review of the Site Plans and attached documents.

We trust the attachments noted above and included herewith will provide the necessary documentation to address their comments. If you should have any questions, please feel free to contact us.

Very Truly Yours,
FARLAND CORPORATION, INC.

Nitsch Engineering Comments

Comment \#1:

The applicant has revised the design of the underground infiltration facility to provide 2 feet of separation between seasonal high groundwater and the bottom of the system.

Farland Corp. concurs with this statement

Comment \#2:

A CDS water quality unit was added to the plans to treat the water generated by the existing parking lot. The Applicant has not provided sizing information for this unit. Also, the unit was placed outside the existing parking lot adjacent to the wetlands pocket on the south side of the site. The unit is well within 25 feet of the wetlands line. A detail of this unit has been added to the plans. Sizing information should be provided.

Sizing information for this unit has been attached with this response.

Comment \#3:

The proposed discharge from the CDS unit, including rip-rap pads, should be shown on the plans. The current plan does not show a discharge pipe or rip-rap pad. The applicant has indicated that no rip-rap or discharge pipes are proposed.

The CDS unit was to be placed along the existing discharge pipe that connects CB-9 with the existing BVW to treat stormwater prior to discharge to the BVW. The location of the unit has been changed to allow for a more appropriate point of discharge with a rip-rap pad.

Comment \#4:

Revised hydrologic calculations were submitted to include the reaches and ponds. With regards to the calculations we have the following comments:
a.) The existing conditions hydrologic calculations show the pipe flowing from CB-9 surcharged during the 10 -year storm in the existing and proposed condition.
b.) The storm piping from existing CB-8 and CB-9 has been upgraded to 18 -inch pipes on the plans. The calculations still show a surcharge from the pipe discharging from CB-9.
a.) A substitute discharge pipe has been added to CB-9 to allow for the stormwater associated with a 10-yr storm to be handled more adequately.
b.) See response above

Comment \#5:

Pipe sizing calculations were prepared using the Rational Method. However, the results of these calculations show all pipes flowing freely, which is not consistent with the hydrologic calculations submitted.
HydroCAD calculations have been revised to reflect upgraded
conditions for the proposed stormwater treatment, and to allow for
free flowing pipes.

If you have any questions or require any further information please contact this office at (508) 717-3479.

Summary for Subcatchment S-1: Tributary to South Culvert

Runoff $=0.75$ cfs @ 12.14 hrs, Volume $=\quad 0.064$ af, Depth= $1.06{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 2-yr Rainfall=3.40"

Summary for Subcatchment S-10: Tributary toward CB-8

Runoff $=\quad 2.83 \mathrm{cfs} @ 12.08 \mathrm{hrs}$, Volume= $\quad 0.226$ af, Depth= $3.17{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Type III 24-hr 2-yr Rainfall=3.40"

| | Area (sf) | CN |
| :--- | ---: | :--- | Description | * |
| :--- |
| 37,250 |
| 37,250 |\quad| Impervious Area |
| :--- | :--- |

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, Min. Tc |
| :--- |

Summary for Subcatchment S-11: Tributary to Northerly Wetland

Runoff $=1.92$ cfs @ 12.09 hrs, Volume= 0.137 af, Depth= $1.63{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 2-yr Rainfall=3.40"

Summary for Subcatchment S-2: Tributary to North Culvert

Runoff $=0.81$ cfs @ 12.12 hrs, Volume= $\quad 0.065$ af, Depth= $1.11^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Type III 24-hr 2-yr Rainfall=3.40"

Summary for Subcatchment S-3: Tributary to Water Quality Inlet

Runoff $=\quad 2.03$ cfs @ 12.09 hrs, Volume $=0.145$ af, Depth $=2.26{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 2-yr Rainfall=3.40"

Summary for Subcatchment S-3a: Tributary to Southerly Wetland

Runoff $=\quad 1.06$ cfs @ 12.09 hrs, Volume $=0.076$ af, Depth= $1.93^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 2-yr Rainfall=3.40"

	Area (sf)	CN	Description
	9,465	98	Wetland
1,527	98	Roadway	
9,498	70	Woods, Good, HSG C	
	20,490	85	Weighted Average
9,498		Pervious Area	
	10,992		Impervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment S-4: Tributary to CB-1

Runoff $=\quad 0.11$ cfs @ 12.08 hrs, Volume= $\quad 0.009$ af, Depth= 3.17"

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 2-yr Rainfall=3.40"

Area (sf)		CN	Description		
*	1,450	98	oadway		
	1,450		pervious	Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} \text { Length } \\ (\text { feet }) \end{array}$	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description

Summary for Subcatchment S-5: Tributary to CB-2

Runoff $=\quad 0.11$ cfs @ 12.08 hrs, Volume= 0.008 af, Depth= 3.17"

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 2-yr Rainfall=3.40"

Summary for Subcatchment S-6: Tributary Off-Site

Runoff $=1.12$ cfs @ 12.08 hrs, Volume $=0.087$ af, Depth= $3.06{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 2-yr Rainfall=3.40"

| | Area (sf) | CN |
| ---: | ---: | :--- | Description \quad| $*$ | 14,625 | 98 |
| ---: | ---: | :--- |
| Paved Parking | | |
| 335 | 74 | $>75 \%$ Grass cover, Good, HSG C |
| 14,960 | 97 | Weighted Average |
| 335 | | Pervious Area |
| 14,625 | | Impervious Area |

	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity	Description
(\min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	

Summary for Subcatchment S-7: Tributary toward CB-7

Runoff $=1.07$ cfs @ 12.08 hrs, Volume $=0.086$ af, Depth= $3.17^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 2-yr Rainfall=3.40"

Summary for Subcatchment S-8: Tributary to SRS-2

Runoff $=\quad 2.12$ cfs @ 12.08 hrs , Volume $=\quad 0.170 \mathrm{af}$, Depth= $3.17^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 2-yr Rainfall=3.40"

	Area (sf)	CN	Description
28,000	98	Rooftop	
		Impervious Area	

\(\left.$$
\begin{array}{rrrl}\begin{array}{r}\text { Tc } \\
(\mathrm{min})\end{array} & \begin{array}{r}\text { Length } \\
\text { (feet) }\end{array} & \begin{array}{r}\text { Slope } \\
\text { (ft/ft) }\end{array} & \begin{array}{r}\text { Velocity } \\
\text { (ft/sec) }\end{array}\end{array}
$$ \begin{array}{r}Capacity

(cfs)\end{array}\right)\) Description | Direct Entry, Min. Tc |
| :--- |

Summary for Subcatchment S-8a: Tributary toward WQI

Runoff $=0.99$ cfs @ 12.08 hrs, Volume= 0.076 af, Depth= $2.95{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 2-yr Rainfall=3.40"

	Area (sf)	CN D	Description		
*	10,000	98 P	Paved Parking		
	940	$74>$	>75\% Grass cover, Good, HSG C		
*	2,535	98 V	Water Quality Inlet		
	13,475	96	Weighted Average		
	940		Pervious AreaImpervious Area		
	12,535				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment S-9: Tributary toward CB-9

Runoff $=\quad 3.46$ cfs @ 12.08 hrs, Volume $=0.276$ af, Depth= 3.17"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 2-yr Rainfall=3.40"

Area (sf)		CN	Description		
*	45,550	98 P	aved Park		
	45,550		pervious	Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description

Summary for Reach CB-1: Catch Basin

Inflow Area $=0.033 \mathrm{ac}, 100.00 \%$ Impervious, Inflow Depth $=3.17$ " for 2 -yr event
Inflow $=0.11$ cfs @ 12.08 hrs, Volume $=0.009 \mathrm{af}$
Outflow = $0.11 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=0.009 \mathrm{af}$, Atten $=0 \%$, Lag= 0.1 min
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 3
Max. Velocity= 1.52 fps , Min. Travel Time $=0.2 \mathrm{~min}$
Avg. Velocity $=0.51 \mathrm{fps}$, Avg. Travel Time $=0.5 \mathrm{~min}$
Peak Storage= 1 cf @ 12.09 hrs, Average Depth at Peak Storage= 0.14'
Bank-Full Depth=1.25', Capacity at Bank-Full= 4.41 cfs
15.0" Diameter Pipe, $n=0.013$

Length= 15.0' Slope= 0.0047 '/'
Inlet Invert= 76.37', Outlet Invert= 76.30'

Summary for Reach CB-2: Catch Basin

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Max. Velocity $=1.38 \mathrm{fps}$, Min. Travel Time $=0.6 \mathrm{~min}$
Avg. Velocity $=0.45 \mathrm{fps}$, Avg. Travel Time $=1.8 \mathrm{~min}$
Peak Storage $=4$ cf @ 12.09 hrs, Average Depth at Peak Storage $=0.15^{\prime}$
Bank-Full Depth= 1.00', Capacity at Bank-Full= 2.05 cfs
12.0" Diameter Pipe, $n=0.025$ Corrugated metal Length= 48.0' Slope= 0.0123 '/'
Inlet Invert= 76.09', Outlet Invert= 75.50'

Summary for Reach CB-7: Catch Basin

Inflow Area $=0.324 \mathrm{ac}, 100.00 \%$ Impervious, Inflow Depth $=3.17$ " for 2-yr event
Inflow $=1.07$ cfs @ 12.08 hrs, Volume= $\quad 0.086 \mathrm{af}$
Outflow = $1.07 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=0.086 \mathrm{af}$, Atten $=0 \%$, Lag= 0.1 min
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Max. Velocity $=6.43 \mathrm{fps}$, Min. Travel Time $=0.2 \mathrm{~min}$
Avg. Velocity $=2.10 \mathrm{fps}$, Avg. Travel Time $=0.5 \mathrm{~min}$
Peak Storage= 11 cf @ 12.09 hrs, Average Depth at Peak Storage= 0.26'
Bank-Full Depth= 1.00', Capacity at Bank-Full= 6.98 cfs
12.0" Diameter Pipe, $n=0.013$

Length=66.0' Slope= 0.0383 '/'
Inlet Invert= 78.71', Outlet Invert= 76.18'

Summary for Reach CB-8: Catch Basin

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Max. Velocity $=3.84 \mathrm{fps}$, Min. Travel Time $=0.3 \mathrm{~min}$
Avg. Velocity $=1.46 \mathrm{fps}$, Avg. Travel Time $=0.9 \mathrm{~min}$
Peak Storage= 61 cf @ 12.09 hrs, Average Depth at Peak Storage= 0.61'
Bank-Full Depth= 2.00', Capacity at Bank-Full= 15.45 cfs
24.0" Diameter Pipe, n= 0.013

Length= 75.0' Slope= 0.0047 '/'
Inlet Invert= 75.45', Outlet Invert= 75.10'

Summary for Reach CB-9: Catch Basin

Inflow Area $=3.234$ ac, 80.82% Impervious, Inflow Depth $=2.55$ " for 2-yr event
Inflow $=\quad 6.55$ cfs @ 12.09 hrs, Volume $=0.687 \mathrm{af}$
Outflow $=\quad 6.53 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=0.687 \mathrm{af}$, Atten $=0 \%$, Lag $=0.4 \mathrm{~min}$
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 3
Max. Velocity= 3.51 fps , Min. Travel Time $=0.5 \mathrm{~min}$
Avg. Velocity $=1.28 \mathrm{fps}$, Avg. Travel Time $=1.4 \mathrm{~min}$
Peak Storage= 206 cf @ 12.09 hrs, Average Depth at Peak Storage= 1.15'
Bank-Full Depth=2.00', Capacity at Bank-Full= 10.45 cfs
24.0" Diameter Pipe, $n=0.010$

Length=110.9' Slope= 0.0013 '/'
Inlet Invert= 75.29', Outlet Invert= 75.15'

Summary for Reach CDS: CDS 2015-4

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Max. Velocity $=4.92 \mathrm{fps}$, Min. Travel Time $=0.2 \mathrm{~min}$
Avg. Velocity $=1.76 \mathrm{fps}$, Avg. Travel Time $=0.5 \mathrm{~min}$
Peak Storage= 64 cf @ 12.10 hrs , Average Depth at Peak Storage= 0.88^{\prime}
Bank-Full Depth= 2.00', Capacity at Bank-Full= 16.39 cfs
24.0" Diameter Pipe, $n=0.010$ PVC, smooth interior Length= 48.3' Slope= 0.0031 '/'
Inlet Invert= 75.15', Outlet Invert= 75.00'

Summary for Reach P-1: 18" Culvert

Inflow Area $=$	0.725 ac,	7.28%	Impervious, Inflow Depth $=1.06 " \mathrm{for} 2-\mathrm{yr}$ event	
Inflow	$=$	$0.75 \mathrm{cfs} @$	12.14 hrs, Volume $=$	0.064 af
Outflow	$=$	$0.75 \mathrm{cfs} @$	12.14 hrs , Volume=	0.064 af , Atten= 0%, Lag= 0.2 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 3
Max. Velocity $=1.89 \mathrm{fps}$, Min. Travel Time $=0.3 \mathrm{~min}$
Avg. Velocity $=0.76 \mathrm{fps}$, Avg. Travel Time $=0.8 \mathrm{~min}$
Peak Storage= 15 cf @ 12.14 hrs, Average Depth at Peak Storage= 0.42'
Bank-Full Depth= 1.50', Capacity at Bank-Full= 4.49 cfs
18.0" Diameter Pipe, $n=0.025$ Corrugated metal

Length=37.0' Slope= 0.0068 '/'
Inlet Invert= 84.57', Outlet Invert= 84.32'

Summary for Reach P-2: 12" Culvert

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Max. Velocity $=3.62 \mathrm{fps}$, Min. Travel Time $=0.2 \mathrm{~min}$
Avg. Velocity $=1.44 \mathrm{fps}$, Avg. Travel Time $=0.5 \mathrm{~min}$
Peak Storage= 9 cf @ 12.12 hrs, Average Depth at Peak Storage= 0.33'
Bank-Full Depth= 1.00', Capacity at Bank-Full= 3.49 cfs
12.0" Diameter Pipe, $\mathrm{n}=0.025$ Corrugated metal Length= 42.0' Slope= 0.0355 '/'
Inlet Invert= 84.18', Outlet Invert= 82.69'

Summary for Pond SRS-2: Subsurface Recharge System

Inflow Area =	$0.643 \mathrm{ac}, 100.00 \%$ Impervious, Inflow Depth = 3.17" for 2-yr event			
Inflow	2.12 cfs @	12.08 hrs , Volume=	0.170 af	
Outflow	1.58 cfs @	12.15 hrs , Volume=	0.170 af,	Atten= 25\%, Lag= 4.2 min
Discarded	0.02 cfs @	6.40 hrs , Volume=	0.041 af	
Primary	1.57 cfs @	12.15 hrs , Volume=	0.129 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev= 80.92' @ 12.15 hrs Surf.Area= 3,162 sf Storage= 956 cf
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time= 49.1 $\min (804.2-755.1)$

Volume	Invert	Avail.Storage	Storage Description
\#1	80.30'	1,887 cf	$17.00{ }^{\prime} \mathrm{W} \times 186.00{ }^{\prime} \mathrm{L} \times 2.00^{\prime} \mathrm{H}$ Prismatoid
			6,324 cf Overall - 1,606 cf Embedded $=4,718$ cf $\times 40.0 \%$ Voids
\#2	80.80'	1,606 cf	32.1"W x 12.0"H x 7.50'L Cultec C-100 115 Inside \#1
3,493 cf Total Available Storage			
Device	Routing	Invert Out	t Devices
\#1	Discarded	$\begin{array}{ll}80.30 ' & \mathbf{0 . 2 7} \\ 80.50\end{array}$	in/hr Exfiltration over Surface area
\#2	Primary		x 6.0' long Culvert X 5.00
		80.50'	, square edge headwall, $\mathrm{Ke}=0.500$
			t Invert= 80.44' S=0.0100 $/ / \mathrm{l}$ ' $\mathrm{Cc}=0.900 \quad \mathrm{n}=0.013$

Discarded OutFlow Max=0.02 cfs @ 6.40 hrs HW=80.32' (Free Discharge)
$\boldsymbol{L}_{1=E x f i l t r a t i o n ~(E x f i l t r a t i o n ~ C o n t r o l s ~}^{0.02}$ cfs)
Primary OutFlow Max=1.56 cfs @ 12.15 hrs HW=80.92' (Free Discharge)
—2=Culvert (Barrel Controls 1.56 cfs @ 2.37 fps)

Summary for Pond WET-1: Sortherly Wetland

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
74.00	3,200	0	0
76.00	8,300	11,500	11,500
78.00	13,300	21,600	33,100
78.50	2,760	4,015	37,115

Device	Routing	Invert	Outlet Devices
\#1	Discarded	74.00'	$0.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary	74.57'	24.0" x 60.0' long Culvert CMP, projecting, no headwall, $\mathrm{Ke}=0.900$

Discarded OutFlow Max=0.05 cfs @ 12.30 hrs HW=75.76' (Free Discharge)
_1=Exfiltration (Exfiltration Controls 0.05 cfs)
Primary OutFlow Max=3.82 cfs @ 12.30 hrs HW=75.76' (Free Discharge)
②=Culvert (Barrel Controls 3.82 cfs @ 2.82 fps)

Summary for Pond WET-2: Northerly Wetland

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=76.31' @ 12.43 hrs Surf.Area= 9,080 sf Storage= $2,713 \mathrm{cf}$
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time $=28.3 \min (833.7-805.4)$

Discarded OutFlow Max=0.06 cfs @ 12.43 hrs HW=76.31' (Free Discharge)
L2=Exfiltration (Exfiltration Controls 0.06 cfs)
Primary OutFlow Max=0.87 cfs @ $12.50 \mathrm{hrs} \mathrm{HW}=76.31^{\prime}$ TW=75.87' (Dynamic Tailwater)
L-1=Culvert (Outlet Controls 0.87 cfs @ 1.98 fps)

Summary for Pond WQI-1: Water Quality Inlet

Inflow Area =	$2.199 \mathrm{ac}, 28.11 \%$ Impervious, Inflow Depth = 1.50" for 2-yr event			
Inflow	3.47 cfs @	12.10 hrs , Volume=	0.274 af	
Outflow	0.35 cfs @	13.22 hrs , Volume=	0.158 af,	Atten $=90 \%$ Lag $=67.0 \mathrm{~min}$
Discarded	0.04 cfs @	13.22 hrs , Volume=	0.072 af	
Primary	0.31 cfs @	13.22 hrs , Volume=	0.086 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=79.05' @ 13.22 hrs Surf.Area=6,786 sf Storage= 6,252 cf
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time $=206.3 \min (1,041.9-835.6)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	78.00^{\prime}	9,440 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area $($ sq-ft $)$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
78.00	5,080	0	0
79.00	6,700	5,890	5,890
79.50	7,500	3,550	9,440

Device	Routing	Invert	Outlet Devices
\#1	Discarded	$78.00{ }^{\prime}$	0.270 in/hr Exfiltration over Surface area
\#2	Primary	$79.00{ }^{\prime}$	10.0' long x 10.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.492 .562 .702 .692 .682 .692 .672 .64

Discarded OutFlow Max=0.04 cfs @ 13.22 hrs HW=79.05' (Free Discharge)
L1=Exfiltration (Exfiltration Controls 0.04 cfs) $^{\text {(}}$
Primary OutFlow Max=0.31 cfs @ $13.22 \mathrm{hrs} \mathrm{HW}=79.05^{\prime}$ TW=75.40' (Dynamic Tailwater)
L-2=Broad-Crested Rectangular Weir (Weir Controls 0.31 cfs @ 0.58 fps)

Summary for Pond WQI-2: Water Quality Inlet

Inflow Area =	0.309 ac , 93.02\% Impervious, Inflow Depth $=2.95$ " for 2-yr event			
Inflow	0.99 cfs @	12.08 hrs, Volume=	0.076 af	
Outflow	0.07 cfs @	13.23 hrs , Volume=	0.040 af,	Atten $=93 \%$, Lag=
Discarded	0.02 cfs @	13.23 hrs , Volume=	0.030 af	
Primary	0.06 cfs @	13.23 hrs , Volume=	0.010 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs $/ 3$
Peak Elev=77.91' @ 13.23 hrs Surf.Area= 2,478 sf Storage= $1,990 \mathrm{cf}$
Plug-Flow detention time $=371.9 \mathrm{~min}$ calculated for 0.040 af (52% of inflow)
Center-of-Mass det. time= $257.2 \mathrm{~min}(1,029.6-772.3$)

Discarded OutFlow Max=0.02 cfs @ 13.23 hrs HW=77.91' (Free Discharge)
——1=Exfiltration (Exfiltration Controls 0.02 cfs)
Primary OutFlow Max=0.06 cfs @ 13.23 hrs HW=77.91' TW=75.40' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir (Weir Controls 0.06 cfs @ 0.26 fps)

Summary for Subcatchment S-1: Tributary to South Culvert

Runoff $=\quad 1.54$ cfs @ 12.13 hrs, Volume $=\quad 0.124$ af, Depth= 2.05"

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 10-yr Rainfall=4.80"

	Area (sf)	CN D	Description			
	25,975	7074	Woods, Good, HSG C			
	3,300		>75\% Grass cover, Good, HSG C			
*	2,300	98 R	Roadway			
	31,575	72 V	Weighted Average Pervious Area			
	29,275					
	2,300		Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
5.6	50	0.1360	0.15		Sheet Flow,	
					Woods: Light underbrush n=0.400	$\mathrm{P} 2=3.40{ }^{\prime \prime}$
3.5	220	0.0430	- 1.04		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	
9.1	270	Total				

Summary for Subcatchment S-10: Tributary toward CB-8

Runoff $=\quad 4.01 \mathrm{cfs} @ 12.08 \mathrm{hrs}$, Volume $=\quad 0.325 \mathrm{af}$, Depth $=4.56{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Type III 24-hr 10-yr Rainfall=4.80"

	Area (sf)	CN	Description
*	37,250	98	Paved Parking
37,250		Impervious Area	

| Tc
 (min) | Length
 (feet) |
| ---: | ---: | | Slope |
| ---: |
| $(\mathrm{ft} / \mathrm{ft})$ | | Velocity |
| ---: |
| $(\mathrm{ft} / \mathrm{sec})$ | | Capacity |
| ---: |
| (cfs) |\quad Description | Direct Entry, Min. Tc |
| :--- |

Summary for Subcatchment S-11: Tributary to Northerly Wetland

Runoff $=\quad 3.32$ cfs @ 12.09 hrs, Volume $=\quad 0.236$ af, Depth= $2.81{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 10-yr Rainfall=4.80"

Summary for Subcatchment S-2: Tributary to North Culvert

Runoff $=1.62$ cfs @ 12.12 hrs, Volume= $\quad 0.125$ af, Depth= $2.12{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Type III 24-hr 10-yr Rainfall=4.80"

Summary for Subcatchment S-3: Tributary to Water Quality Inlet

Runoff $=3.15$ cfs @ 12.09 hrs, Volume $=\quad 0.230$ af, Depth $=3.58{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 10-yr Rainfall=4.80"

Summary for Subcatchment S-3a: Tributary to Southerly Wetland

Runoff $=\quad 1.74$ cfs @ 12.09 hrs, Volume $=\quad 0.125$ af, Depth= $3.18^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 10-yr Rainfall=4.80"

	Area (sf)	CN	Description
$*$	9,465	98	Wetland
$*$	1,527	98	Roadway
9,498	70	Woods, Good, HSG C	
	20,490	85	Weighted Average
9,498		Pervious Area	
	10,992		Impervious Area

Tc (min)	Length $($ feet $)$	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment S-4: Tributary to CB-1

Runoff $=0.16$ cfs @ 12.08 hrs, Volume $=\quad 0.013$ af, Depth $=4.56{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 10-yr Rainfall=4.80"

Summary for Subcatchment S-5: Tributary to CB-2

Runoff $=\quad 0.15 \mathrm{cfs} @ 12.08 \mathrm{hrs}$, Volume $=\quad 0.012$ af, Depth= 4.56"

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 10-yr Rainfall=4.80"

Area (sf)	CN	Description	
1,400	98	Paved parking \& roofs	
1,400		Impervious Area	
Tc Length (min) Slope (feet) Velocity (ft/ft) (ft/sec)	Capacity (cfs)	Description	

Summary for Subcatchment S-6: Tributary Off-Site

Runoff $=1.60$ cfs @ 12.08 hrs, Volume $=\quad 0.127$ af, Depth $=4.45{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 10-yr Rainfall=4.80"

	Area (sf)	CN	Description
*	14,625	98	Paved Parking
	335	74	>75\% Grass cover, Good, HSG C
	14,960	97	Weighted Average
	335		Pervious Area
	14,625		Impervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, Min. Tc |
| :--- |

Summary for Subcatchment S-7: Tributary toward CB-7

Runoff $=1.52$ cfs @ 12.08 hrs , Volume $=0.123 \mathrm{af}$, Depth= $4.56^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 10-yr Rainfall=4.80"

Summary for Subcatchment S-8: Tributary to SRS-2

Runoff $=\quad 3.02$ cfs @ 12.08 hrs, Volume $=\quad 0.244$ af, Depth= 4.56"

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 10-yr Rainfall=4.80"

	Area (sf)	CN	Description
28,000	98	Rooftop	
		Impervious Area	

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, Min. Tc |
| :--- |

Summary for Subcatchment S-8a: Tributary toward WQI

Runoff $=1.43$ cfs @ 12.08 hrs, Volume $=0.112$ af, Depth= 4.33"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 10-yr Rainfall=4.80"

	Area (sf)	CN D	Description		
*	10,000	98 P	Paved Parking		
	940	$74>$	>75\% Grass cover, Good, HSG C		
*	2,535	98 V	Water Quality Inlet		
	13,475	96	Weighted Average		
	940		Pervious AreaImpervious Area		
	12,535				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment S-9: Tributary toward CB-9

Runoff $=\quad 4.91$ cfs @ 12.08 hrs, Volume $=\quad 0.398$ af, Depth $=4.56{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 10-yr Rainfall=4.80"

Area (sf)		CN	Description		
*	45,550	98 P	aved Park		
	45,550		mpervious	Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description

Summary for Reach CB-1: Catch Basin

| Inflow Area $=$ | $0.033 \mathrm{ac}, 100.00 \%$ Impervious, Inflow Depth $=4.56 \mathrm{l}$ for $10-\mathrm{yr}$ event | | |
| :--- | :--- | :--- | :--- | :--- |
| Inflow | $=$ | $0.16 \mathrm{cfs} @ 12.08 \mathrm{hrs}$, Volume $=$ | 0.013 af |
| Outflow | $=$ | $0.16 \mathrm{cfs} @ 12.08 \mathrm{hrs}$, Volume $=$ | 0.013 af , Atten= 0%, Lag= 0.1 min |

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 3
Max. Velocity $=1.69 \mathrm{fps}$, Min. Travel Time $=0.1 \mathrm{~min}$
Avg. Velocity $=0.56 \mathrm{fps}$, Avg. Travel Time $=0.4 \mathrm{~min}$
Peak Storage= 1 cf @ 12.08 hrs, Average Depth at Peak Storage= 0.16'
Bank-Full Depth=1.25', Capacity at Bank-Full= 4.41 cfs
15.0" Diameter Pipe, $n=0.013$

Length=15.0' Slope= 0.0047 '/'
Inlet Invert= 76.37', Outlet Invert= 76.30'

Summary for Reach CB-2: Catch Basin

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Max. Velocity $=1.53 \mathrm{fps}$, Min. Travel Time $=0.5 \mathrm{~min}$
Avg. Velocity $=0.50 \mathrm{fps}$, Avg. Travel Time $=1.6 \mathrm{~min}$
Peak Storage $=5$ cf @ 12.09 hrs, Average Depth at Peak Storage= 0.18'
Bank-Full Depth= 1.00', Capacity at Bank-Full= 2.05 cfs
12.0" Diameter Pipe, $\mathrm{n}=0.025$ Corrugated metal Length=48.0' Slope= 0.0123 '/'
Inlet Invert= 76.09', Outlet Invert= 75.50'

Summary for Reach CB-7: Catch Basin

Inflow Area $=\quad 0.324 \mathrm{ac}, 100.00 \%$ Impervious, Inflow Depth $=4.56$ " for 10-yr event
Inflow $=\quad 1.52$ cfs @ 12.08 hrs , Volume= $\quad 0.123 \mathrm{af}$
Outflow = 1.52 cfs @ 12.09 hrs , Volume $=0.123 \mathrm{af}$, Atten $=0 \%$, Lag= 0.1 min
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Max. Velocity $=7.10 \mathrm{fps}$, Min. Travel Time $=0.2 \mathrm{~min}$
Avg. Velocity $=2.34 \mathrm{fps}$, Avg. Travel Time $=0.5 \mathrm{~min}$
Peak Storage= 14 cf @ 12.09 hrs, Average Depth at Peak Storage= 0.32'
Bank-Full Depth= 1.00', Capacity at Bank-Full= 6.98 cfs
12.0" Diameter Pipe, $n=0.013$

Length=66.0' Slope= 0.0383 '/'
Inlet Invert= 78.71', Outlet Invert= 76.18'

Summary for Reach CB-8: Catch Basin

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Max. Velocity $=4.29 \mathrm{fps}$, Min. Travel Time $=0.3 \mathrm{~min}$
Avg. Velocity $=1.65 \mathrm{fps}$, Avg. Travel Time $=0.8 \mathrm{~min}$
Peak Storage= 80 cf @ 12.10 hrs, Average Depth at Peak Storage= 0.75'
Bank-Full Depth= 2.00', Capacity at Bank-Full= 15.45 cfs
24.0" Diameter Pipe, n= 0.013

Length= 75.0' Slope= 0.0047 '/'
Inlet Invert= 75.45', Outlet Invert= 75.10'

Summary for Reach CB-9: Catch Basin

Inflow Area $=\quad 3.234$ ac, 80.82% Impervious, Inflow Depth $=3.83$ " for 10-yr event
Inflow $=9.46$ cfs @ 12.09 hrs , Volume= $\quad 1.033$ af
Outflow = $9.43 \mathrm{cfs} @ 12.10 \mathrm{hrs}$, Volume $=1.033 \mathrm{af}$, Atten $=0 \%$, Lag $=0.4 \mathrm{~min}$
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 3
Max. Velocity $=3.76 \mathrm{fps}$, Min. Travel Time $=0.5 \mathrm{~min}$
Avg. Velocity $=1.44 \mathrm{fps}$, Avg. Travel Time $=1.3 \mathrm{~min}$
Peak Storage $=278$ cf @ 12.10 hrs, Average Depth at Peak Storage= 1.49'
Bank-Full Depth=2.00', Capacity at Bank-Full= 10.45 cfs
24.0" Diameter Pipe, $n=0.010$

Length= 110.9' Slope= 0.0013 '/'
Inlet Invert= 75.29', Outlet Invert= 75.15'

Summary for Reach CDS: CDS 2015-4

Inflow Area $=$	$3.234 \mathrm{ac}, 80.82 \%$ Impervious, Inflow Depth $=3.83 \mathrm{ln}$ for $10-\mathrm{yr}$ event	
Inflow	$=$	9.43 cfs @ 12.10 hrs , Volume $=$
Outflow	$=$	$9.43 \mathrm{cfs} @ 12.10 \mathrm{hrs}$, Volume $=$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Max. Velocity= 5.40 fps , Min. Travel Time $=0.1 \mathrm{~min}$
Avg. Velocity $=1.98 \mathrm{fps}$, Avg. Travel Time $=0.4 \mathrm{~min}$
Peak Storage= 84 cf @ 12.10 hrs, Average Depth at Peak Storage= 1.09'
Bank-Full Depth= 2.00', Capacity at Bank-Full= 16.39 cfs
24.0" Diameter Pipe, $n=0.010$ PVC, smooth interior Length= 48.3' Slope= 0.0031 '/'
Inlet Invert= 75.15', Outlet Invert= 75.00'

Summary for Reach P-1: 18" Culvert

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 3
Max. Velocity $=2.30 \mathrm{fps}$, Min. Travel Time $=0.3 \mathrm{~min}$
Avg. Velocity $=0.88 \mathrm{fps}$, Avg. Travel Time $=0.7 \mathrm{~min}$
Peak Storage= 25 cf @ 12.14 hrs, Average Depth at Peak Storage= 0.61^{\prime}
Bank-Full Depth= 1.50', Capacity at Bank-Full= 4.49 cfs
18.0" Diameter Pipe, $n=0.025$ Corrugated metal

Length=37.0' Slope= 0.0068 '/'
Inlet Invert= 84.57', Outlet Invert= 84.32'

Summary for Reach P-2: 12" Culvert

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Max. Velocity $=4.36 \mathrm{fps}$, Min. Travel Time $=0.2 \mathrm{~min}$
Avg. Velocity $=1.66 \mathrm{fps}$, Avg. Travel Time $=0.4 \mathrm{~min}$
Peak Storage= 16 cf @ 12.12 hrs, Average Depth at Peak Storage= 0.48^{\prime}
Bank-Full Depth= 1.00', Capacity at Bank-Full= 3.49 cfs
12.0" Diameter Pipe, $\mathrm{n}=0.025$ Corrugated metal

Length= 42.0' Slope= 0.0355 '/'
Inlet Invert= 84.18', Outlet Invert= 82.69'

Summary for Pond SRS-2: Subsurface Recharge System

Inflow Area =	$0.643 \mathrm{ac}, 100.00 \%$ Impervious, Inflow Depth $=4.56$ " for 10-yr event			
Inflow	3.02 cfs @	12.08 hrs , Volume=	0.244 af	
Outflow	2.23 cfs @	12.15 hrs , Volume=	0.244 af,	Atten $=26 \%, L a g=4.2 \mathrm{~min}$
Discarded	0.02 cfs @	4.36 hrs, Volume=	0.043 af	
Primary	2.21 cfs @	12.15 hrs , Volume=	0.202 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev= 81.04' @ 12.15 hrs Surf.Area= 3,162 sf Storage= $1,250 \mathrm{cf}$
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time= $40.4 \min (789.1-748.7)$

Volume	Invert	Avail.Storage	Storage Description
\#1	80.30'	1,887 cf	$17.00{ }^{\prime} \mathrm{W} \times 186.00{ }^{\prime} \mathrm{L} \times 2.00$ 'H Prismatoid
			6,324 cf Overall - 1,606 cf Embedded $=4,718$ cf $\times 40.0 \%$ Voids
\#2	80.80'	1,606 cf	32.1"W x 12.0"H x 7.50'L Cultec C-100x 115 Inside \#1
3,493 cf Total Available Storage			
Device	Routing	Invert Ou	t Devices
\#1	Discarded	80.3080.50	$0 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary		x 6.0' long Culvert X 5.00
		80.50'	, square edge headwall, $\mathrm{Ke}=0.500$
			tinvert= 80.44' S=0.0100 $/ / \mathrm{l}$ ' $\mathrm{Cc}=0.900 \quad \mathrm{n}=0.013$

Discarded OutFlow Max=0.02 cfs @ 4.36 hrs HW=80.32' (Free Discharge)
$\boldsymbol{L}_{1=E x f i l t r a t i o n ~(E x f i l t r a t i o n ~ C o n t r o l s ~}^{0.02}$ cfs)
Primary OutFlow Max=2.21 cfs @ 12.15 hrs HW=81.04' (Free Discharge)
—2=Culvert (Barrel Controls 2.21 cfs @ 2.60 fps)

Summary for Pond WET-1: Sortherly Wetland

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
74.00	3,200	0	0
76.00	8,300	11,500	11,500
78.00	13,300	21,600	33,100
78.50	2,760	4,015	37,115

Device	Routing	Invert	Outlet Devices
\#1	Discarded	74.00'	$0.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary	74.57'	24.0" x 60.0' long Culvert CMP, projecting, no headwall, $\mathrm{Ke}=0.900$

Discarded OutFlow Max=0.06 cfs @ 12.44 hrs HW=76.31' (Free Discharge)
—1=Exfiltration (Exfiltration Controls 0.06 cfs)
Primary OutFlow Max=7.55 cfs @ 12.44 hrs HW=76.31' (Free Discharge)
—2=Culvert (Barrel Controls 7.55 cfs @ 3.48 fps)

Summary for Pond WET-2: Northerly Wetland

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 3
Peak Elev=76.51' @ 12.37 hrs Surf.Area= 9,566 sf Storage= 4,524 cf
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time $=31.9 \min (828.1-796.2)$

Discarded OutFlow Max=0.06 cfs @ 12.37 hrs HW=76.51' (Free Discharge)
L2=Exfiltration (Exfiltration Controls 0.06 cfs)
Primary OutFlow Max=1.64 cfs @ 12.43 hrs HW=76.50' TW=76.02' (Dynamic Tailwater)
L-1=Culvert (Outlet Controls 1.64 cfs @ 2.38 fps)

Summary for Pond WQI-1: Water Quality Inlet

Inflow Area =	2.199 ac, 28.11% Impervious, Inflow Depth = 2.61" for 10-yr event			
Inflow	6.13 cfs @	12.10 hrs , Volume=	0.478 af	
Outflow	2.96 cfs @	12.32 hrs , Volume=	0.361 af,	Atten $=52 \%$, Lag $=12.9 \mathrm{~min}$
Discarded	0.04 cfs @	12.32 hrs , Volume=	0.077 af	
Primary	2.91 cfs @	12.32 hrs , Volume=	0.284 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev= 79.24' @ 12.32 hrs Surf.Area= 7,081 sf Storage $=7,532 \mathrm{cf}$
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time $=101.4 \min (923.3-821.9)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	78.00	$9,440 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area $($ sq-ft $)$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
78.00	5,080	0	0
79.00	6,700	5,890	5,890
79.50	7,500	3,550	9,440

Device	Routing	Invert	Outlet Devices
\#1	Discarded	$78.00{ }^{\prime}$	0.270 in/hr Exfiltration over Surface area
\#2	Primary	$79.00{ }^{\prime}$	10.0' long x 10.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.492 .562 .702 .692 .682 .692 .672 .64

Discarded OutFlow Max=0.04 cfs @ 12.32 hrs HW=79.24' (Free Discharge)
L1=Exfiltration (Exfiltration Controls 0.04 cfs) $^{\text {(}}$
Primary OutFlow Max=2.91 cfs @ $12.32 \mathrm{hrs} \mathrm{HW}=79.24^{\prime}$ TW=76.26' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir (Weir Controls 2.91 cfs @ 1.22 fps)

Summary for Pond WQI-2: Water Quality Inlet

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev= 77.96' @ 12.20 hrs Surf.Area= 2,510 sf Storage $=2,117 \mathrm{cf}$
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time $=147.4 \min (910.7-763.4)$

Discarded OutFlow Max=0.02 cfs @ 12.20 hrs HW=77.96' (Free Discharge)
—1=Exfiltration (Exfiltration Controls 0.02 cfs)
Primary OutFlow Max=0.76 cfs @ 12.20 hrs HW=77.96' TW=76.11' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir (Weir Controls 0.76 cfs @ 0.62 fps)

Purpose: To calculate the water quality flow rate (WQF) over a given site area. In this situation the WQF is derived from the first $1 / 2$ " of runoff from the contributing impervious surface.

Reference: Massachusetts Dept. of Environmental Protection Wetlands Program / United States Department of Agriculture Natural Resources Conservation Service TR-55 Manual

Procedure: Determine unit peak discharge using Figure 1 or 2 . Figure 2 is in tabular form so is preferred. Using the tc, read the unit peak discharge (qu) from Figure 1 or Table in Figure 2. qu is expressed in the following units: $\mathrm{cfs} / \mathrm{mi}^{2} /$ watershed inches (csm/in).

Compute Q Rate using the following equation:

$$
Q=(q u)(A)(W Q V)
$$

where:
$Q=$ flow rate associated with first $1 / 2^{\prime \prime}$ of runoff
qu = the unit peak discharge, in csm/in.
A = impervious surface drainage area (in square miles)
WQV = water quality volume in watershed inches (1/2" in this case)

Structure Name	Impv. (acres)	\mathbf{A} $\left(\right.$ miles $\left.^{2}\right)$	$\mathbf{t}_{\mathbf{c}}$ $(\mathbf{m i n})$	$\mathbf{t}_{\mathbf{c}}$ $\mathbf{(h r})$	WQV (in)	qu (csm/in.)	Q (cfs)
CDS	1.90	0.0029697	6.0	0.100	0.50	752.00	1.12

CDS ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION BASED ON THE RATIONAL RAINFALL METHOD

100 DUCHAINE BOULEVARD
 NEW BEDFORD, MA

Area Weighted C CDS Model	$\begin{gathered} 1.90 \text { ac } \\ 0.9 \\ 6 \text { min } \\ 2015-4 \end{gathered}$		CDS	Unit Site Designation Rainfall Station \# Treatment Capacity	$\begin{gathered} \text { CDS } \\ 69 \\ 1.4 \mathrm{cfs} \end{gathered}$
$\begin{gathered} \frac{\text { Rainfall }}{\text { Intensity }} \\ \frac{\text { (in/hr) }}{} \end{gathered}$	$\frac{\text { Percent Rainfall }}{\text { Volume }^{1}}$	Cumulative Rainfall Volume	$\frac{\text { Total Flowrate }}{\text { (cfs) }}$	$\frac{\text { Treated Flowrate }}{\text { (cfs) }}$	$\begin{aligned} & \text { Incremental } \\ & \text { Removal (\%) } \end{aligned}$
0.02	10.2\%	10.2\%	0.03	0.03	10.2
0.04	9.6\%	19.8\%	0.07	0.07	9.6
0.06	9.4\%	29.3\%	0.10	0.10	9.2
0.08	7.7\%	37.0\%	0.14	0.14	7.5
0.10	8.6\%	45.6\%	0.17	0.17	8.2
0.12	6.3\%	51.9\%	0.21	0.21	5.9
0.14	4.7\%	56.5\%	0.24	0.24	4.3
0.16	4.6\%	61.2\%	0.27	0.27	4.3
0.18	3.5\%	64.7\%	0.31	0.31	3.2
0.20	4.3\%	69.1\%	0.34	0.34	3.9
0.25	8.0\%	77.1\%	0.43	0.43	6.9
0.30	5.6\%	82.7\%	0.51	0.51	4.7
0.35	4.4\%	87.0\%	0.60	0.60	3.5
0.40	2.5\%	89.5\%	0.68	0.68	2.0
0.45	2.5\%	92.1\%	0.77	0.77	1.9
0.50	1.4\%	93.5\%	0.86	0.86	1.0
0.75	5.0\%	98.5\%	1.28	1.28	2.9
1.00	1.0\%	99.5\%	1.71	1.40	0.4
1.50	0.0\%	99.5\%	2.57	1.40	0.0
2.00	0.0\%	99.5\%	3.42	1.40	0.0
3.00	0.5\%	100.0\%	5.13	1.40	0.1
Removal Efficiency Adjustment ${ }^{2}=$ Predicted \% Annual Rainfall Treated = Predicted Net Annual Load Removal Efficiency =					89.8
					6.5\%
					93.0\%
					83.4\%
1 - Based on 10 years of hourly precipitation data from NCDC Station 770, Boston WSFO AP, Suffolk County, MA 2 - Reduction due to use of 60 -minute data for a site that has a time of concentration less than 30 -minutes.					

GENERAL CONSTRUCTION NOTES

7. REELULOONS

13. Ietin 15. chasiriven

CONSTRUCTION SEQUENCING NOTES

To

SITE PREPARATION NOTES

UTLLITY AND GRADING NOTES

LAYOUT AND MATERIAL NOTES

GENERAL PLANTING NOTES

SOIL EROSION AND SEDIMENT CONTROL NOTES

