June 2, 2017

Mr. Craig Dixon

Chairman
New Bedford Conservation Commission
New Bedford City Hall
133 Williams Street
New Bedford, MA 02744

RE: Response Letter
 NWD Trucking - 100 Duchaine Blvd.
 New Bedford, Massachusetts

Dear Mr. Nixon,
We have enclosed a response letter, revised HydroCAD calculations, revised Site Plan sheets and accompanying documentation in response to the comment letter prepared by Nitsch Engineering dated April 28, 2017 in regards to their review of the Site Plans and attached documents.

We trust the attachments noted above and included herewith will provide the necessary documentation to address their comments. If you should have any questions, please feel free to contact us.

Very Truly Yours,
FARLAND CORPORATION, INC.

Chistian A. Farland

Christian A. Farland , P.E., LEED AP Principal Engineer and President

Nitsch Engineering Comments

Comment \#1:

Test holes were provided at the locations of the infiltration facilities. The test hole performed in the vicinity of the underground infiltration facility indicates seasonal high groundwater at approximately elevation 78.3. This elevation seems consistent with the surrounding wetlands elevations. The calculations and detail show the bottom of the system at elevation 78.5. Per the Standards, 2 feet of separation between the bottom of the infiltration facility and seasonal high groundwater is required.

```
Farland Corp. has designed this system to meet the maximum extent
practical for this project.
```


Comment \#2:

A CDS water quality unit was added to the plans to treat the water generated by the existing parking lot. The Applicant has not provided sizing information for this unit. Also, the unit was placed outside the existing parking lot adjacent to the wetlands pocket on the south side of the site. The unit is well within 25 feet of the wetlands line. A detail of this unit should be added to the plans.

A detail of the CDS water quality unit has been added to the Details Sheet 8 along with a cut sheet of the specific model.

Comment \#3:

The proposed discharge from the CDS unit, including rip-rap pads, should be shown on the plans. The current plan does not show a discharge pipe or rip-rap pad.

The CDS unit will be placed along an existing drain line with the slope and inverts of the pipe to remain the same.

Comment \#4:

Revised hydrologic calculations were submitted to include the reaches and ponds. With regards to the calculations we have the following comments:
a.) Reach P-1 is modeled as a 20-inch pipe. The pipe is shown as an 18-inch pipe on the existing conditions plans and is full during all existing storms. The pipe should not be improved. However, this restriction will impact the modeling of the system downstream and should be modeled correctly.
b.) Reach P-2 is modeled as a 12-inch culvert although the existing conditions plans show it as an 18-inch culvert.
c.) The existing conditions hydrologic calculations show the pipe flowing from CB-9 surcharged during the 10-year storm in the existing and proposed condition.
d.) In the proposed condition plans, stormwater from drainage areas S-1 and S-2 are directed towards the proposed detention basin on the west side of the parking lot. The calculations should be revised to direct that flow through the detention basin.
e.) It is unclear whether water collected by CB-2 in the calculations (CB-3 in the plans) is routed properly. The calculations show this catch basin being discharged to the southerly wetland, but the culvert that this catch basin is connected to in the existing condition has been removed.
f.) The proposed conditions hydrologic calculations show the pipes in the parking area discharging from catch basins 8 and 9 to be surcharged during the 2-year storm.
g.) There are errors in the hydrologic model associated with the southerly and northerly wetlands, apparently because of the surcharged piping upstream.
a.) Reach P-1 is in fact an $18^{\prime \prime}$ corrugated steel pipe and the HydroCAD calculations have been revised to reflect this.
b.) Reach P-2 exists as a 12° pipe and has been revised in the existing conditions plan to reflect this.
c.) The pipe flowing from CB-9 will be upgraded to a size that can handle the expected flow of a 10-yr storm.
d.) Calculations for drainage areas S-1 and S-2 have been re-directed to the correct detention basin.
e.) The catch basin has been re-titied CB-2 in the plans to remain consistent with the calculations. CB-2 connects to an existing 120 corrugated steel pipe that directs the flow to the southerly wetland as described, and will remain as it exists.
f.) The pipes within the parking lot which collect and discharge flow from CB-8 and CB-9 will be upgraded to a size that is appropriate for the post-development conditions.
g.) The surcharged piping upstream has been upgraded and will help clear up any errors found within the modeling.

Comment \#5:

It is unclear where the water from CB-3 will be directed under the proposed condition. The existing condition plan shows it connecting to a culvert that appears to be removed. The Applicant should clarify where water captured by this catch basin will be discharged.

> CB-2 (formally CB-3 in the plans) currently connects to a $12^{\prime \prime}$ steel pipe which will remain, and directs stormwater to water quality basin \#2, which then outlets to the southerly wetland as described.

Comment \#6:

We recommend that the seasonal high groundwater elevation be added to the infiltration field detail

Seasonal high groundwater has been added to the infiltration field detail.

Comment \#7:

We recommend a stone overflow be added from the forebay of water quality basin 1 .

A stone overflow has been added as recommended.

Comment \#8:

Consistent with the Standards, we recommend that a foot of freeboard be provided between the 100-year storm peak elevation and/or overflow from the basins and the top of berm elevation in the basins.

> Farland Corp. has designed the top of berm elevations to meet the maximum extent practical for this project.

Comment \#9:

Pipe sizing calculations were prepared using the Rational Method. However, the results of these calculations show all pipes flowing freely, which is not consistent with the hydrologic calculations submitted.
HydrocAD calculations have been revised to reflect suitable
conditions for stormwater treatment.

If you have any questions or require any further information please contact this office at (508) 717-3479.

Summary for Subcatchment S-1: Tributary to South Culvert

Runoff $=\quad 0.75 \mathrm{cfs} @ 12.14 \mathrm{hrs}$, Volume $=\quad 0.064$ af, Depth= $1.06{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 2-yr Rainfall=3.40"

Summary for Subcatchment S-10: Tributary toward CB-8

Runoff $=\quad 2.83 \mathrm{cfs} @ 12.08 \mathrm{hrs}$, Volume= $\quad 0.226$ af, Depth= 3.17"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Type III 24-hr 2-yr Rainfall=3.40"

| | Area (sf) | CN |
| :--- | ---: | :--- | Description | * |
| :--- |
| 37,250 |
| 37,250 |\quad Impervious Area \quad Paved Paring

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, Min. Tc |
| :--- |

Summary for Subcatchment S-11: Tributary to Northerly Wetland

Runoff $=1.92$ cfs @ 12.09 hrs, Volume= 0.137 af, Depth= $1.63{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 2-yr Rainfall=3.40"

Summary for Subcatchment S-2: Tributary to North Culvert

Runoff $=0.81$ cfs @ 12.12 hrs, Volume= $\quad 0.065$ af, Depth= $1.11^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Type III 24-hr 2-yr Rainfall=3.40"

Summary for Subcatchment S-3: Tributary to Water Quality Inlet

Runoff $=\quad 2.03$ cfs @ 12.09 hrs, Volume $=0.145$ af, Depth $=2.26{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 2-yr Rainfall=3.40"

	Area (sf)	CN	Description		
*	7,500	98	Water Quality Inlet		
*	14,700	98	Roadway		
	11,350	70	Woods, Good, HSG C		
	33,550	89	Weighted Average		
	11,350		Pervious Area Impervious Area		
	22,200				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{aligned} & \text { Capacity } \\ & \text { (cfs) } \end{aligned}$	Description
6.0					Direct Entry

Summary for Subcatchment S-3a: Tributary to Southerly Wetland

Runoff $=\quad 1.06$ cfs @ 12.09 hrs, Volume $=0.076$ af, Depth= $1.93^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 2-yr Rainfall=3.40"

	Area (sf)	CN	Description
$*$	9,465	98	Wetland
$*$	1,527	98	Roadway
9,498	70	Woods, Good, HSG C	
20,490	85	Weighted Average	
9,498		Pervious Area	
	10,992		Impervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment S-4: Tributary to CB-1

Runoff $=\quad 0.11$ cfs @ 12.08 hrs, Volume= $\quad 0.009$ af, Depth= 3.17"

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 2-yr Rainfall=3.40"

Summary for Subcatchment S-5: Tributary to CB-2

Runoff $=\quad 0.11$ cfs @ 12.08 hrs, Volume $=\quad 0.008$ af, Depth= 3.17"

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 2-yr Rainfall=3.40"

Summary for Subcatchment S-6: Tributary Off-Site

Runoff $=1.12$ cfs @ 12.08 hrs, Volume $=\quad 0.087$ af, Depth= $3.06{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 2-yr Rainfall=3.40"

| | Area (sf) | CN |
| ---: | ---: | :--- | Description \quad| $*$ | 14,625 | 98 |
| ---: | ---: | :--- |
| Paved Parking | | |
| 335 | 74 | $>75 \%$ Grass cover, Good, HSG C |
| 14,960 | 97 | Weighted Average |
| 335 | | Pervious Area |
| 14,625 | | Impervious Area |

	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
(\min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	

Direct Entry, Min. Tc

Summary for Subcatchment S-7: Tributary toward CB-7

Runoff $=\quad 1.07$ cfs @ 12.08 hrs , Volume $=0.086 \mathrm{af}$, Depth= $3.17^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 2-yr Rainfall=3.40"

Summary for Subcatchment S-8: Tributary to SRS-2

Runoff $=\quad 2.12$ cfs @ 12.08 hrs, Volume $=\quad 0.170$ af, Depth= $3.17^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 2-yr Rainfall=3.40"

	Area (sf)	CN	Description
28,000	98	Rooftop	
		Impervious Area	

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, Min. Tc |
| :--- |

Summary for Subcatchment S-8a: Tributary toward WQI

Runoff $=0.99$ cfs @ 12.08 hrs, Volume= 0.076 af, Depth= $2.95{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 2-yr Rainfall=3.40"
$\left.\begin{array}{lrrll} & \text { Area (sf) } & \text { CN } & \text { Description } \\ * & 10,000 & 98 & \text { Paved Parking } \\ * & 940 & 74 & >75 \% \text { Grass cover, Good, HSG C } \\ 2,535 & 98 & \text { Water Quality Inlet }\end{array}\right]$

Summary for Subcatchment S-9: Tributary toward CB-9

Runoff $=3.46$ cfs @ 12.08 hrs , Volume $=\quad 0.276$ af, Depth= $3.17^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 2-yr Rainfall=3.40"

Area (sf)		CN	Description		
*	45,550	98 P	aved Park		
	45,550		pervious	Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description

Summary for Reach CB-1: Catch Basin

[52] Hint: Inlet/Outlet conditions not evaluated

Inflow Area $=$	$0.033 \mathrm{ac}, 100.00 \%$ Impervious, Inflow Depth $=3.17 "$ for $2-\mathrm{yr}$ event	
Inflow	$=$	0.11 cfs @ 12.08 hrs, Volume $=$
Outflow	$=$	$0.11 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Max. Velocity $=1.52 \mathrm{fps}$, Min. Travel Time $=0.2 \mathrm{~min}$
Avg. Velocity $=0.51 \mathrm{fps}$, Avg. Travel Time $=0.5 \mathrm{~min}$
Peak Storage= 1 cf @ 12.09 hrs, Average Depth at Peak Storage= 0.14 '
Bank-Full Depth=1.25', Capacity at Bank-Full= 4.41 cfs
15.0" Diameter Pipe, n= 0.013

Length= 15.0' Slope= 0.0047 '/'
Inlet Invert= 76.37', Outlet Invert= 76.30'

Summary for Reach CB-2: Catch Basin

[52] Hint: Inlet/Outlet conditions not evaluated

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Max. Velocity $=1.38 \mathrm{fps}$, Min. Travel Time $=0.6 \mathrm{~min}$
Avg. Velocity $=0.45 \mathrm{fps}$, Avg. Travel Time $=1.8 \mathrm{~min}$
Peak Storage $=4$ cf @ 12.09 hrs, Average Depth at Peak Storage $=0.15^{\prime}$
Bank-Full Depth= 1.00', Capacity at Bank-Full= 2.05 cfs
12.0" Diameter Pipe, $n=0.025$ Corrugated metal Length=48.0' Slope= 0.0123 '/'
Inlet Invert= 76.09', Outlet Invert= 75.50'

Summary for Reach CB-7: Catch Basin

[52] Hint: Inlet/Outlet conditions not evaluated

Inflow Area =	$0.324 \mathrm{ac}, 100.00 \%$ Impervious,	pth $=3.17$ " for $2-y r$ event
Inflow	1.07 cfs @ 12.08 hrs, Volume=	0.086 af
Outflow	1.07 cfs @ 12.09 hrs , Volume=	0.086 af, Atten $=0 \%$, Lag $=0.1 \mathrm{~min}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Max. Velocity $=6.43 \mathrm{fps}$, Min. Travel Time $=0.2 \mathrm{~min}$
Avg. Velocity $=2.10 \mathrm{fps}$, Avg. Travel Time $=0.5 \mathrm{~min}$
Peak Storage= 11 cf @ 12.09 hrs, Average Depth at Peak Storage= 0.26^{\prime}
Bank-Full Depth= 1.00', Capacity at Bank-Full= 6.98 cfs
12.0" Diameter Pipe, n= 0.013

Length=66.0' Slope= 0.0383 '/'
Inlet Invert= 78.71', Outlet Invert= 76.18'

Summary for Reach CB-8: Catch Basin

[52] Hint: Inlet/Outlet conditions not evaluated

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 3
Max. Velocity $=3.89 \mathrm{fps}$, Min. Travel Time $=0.3 \mathrm{~min}$
Avg. Velocity $=1.51 \mathrm{fps}$, Avg. Travel Time $=0.8 \mathrm{~min}$
Peak Storage= 58 cf @ 12.09 hrs, Average Depth at Peak Storage= 0.68'
Bank-Full Depth= 1.50', Capacity at Bank-Full= 7.18 cfs
18.0" Diameter Pipe, n= 0.013

Length=75.0' Slope= 0.0047 '/'
Inlet Invert= 75.45', Outlet Invert= 75.10'

Summary for Reach CB-9: Catch Basin

[52] Hint: Inlet/Outlet conditions not evaluated
[63] Warning: Exceeded Reach CB-8 INLET depth by 0.25 ' @ 12.09 hrs

Inflow Area $=$	$3.234 \mathrm{ac}, 80.82 \%$	Impervious, Inflow Depth $=2.55^{\prime \prime}$	for 2 -yr event
Inflow	$=$	$6.47 \mathrm{cfs} @$	12.09 hrs, Volume $=$
Outflow	$=$	$6.46 \mathrm{cfs} @$	12.09 hrs , Volume $=$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Max. Velocity $=4.71 \mathrm{fps}, \mathrm{Min}$. Travel Time $=0.3 \mathrm{~min}$
Avg. Velocity $=1.79 \mathrm{fps}$, Avg. Travel Time $=0.7 \mathrm{~min}$
Peak Storage= 103 cf @ 12.09 hrs, Average Depth at Peak Storage= 1.09'
Bank-Full Depth= 1.50', Capacity at Bank-Full= 7.38 cfs
18.0" Diameter Pipe, n= 0.013

Length= 75.0 ' Slope $=0.0049$ '/'
Inlet Invert= 75.29', Outlet Invert= 74.92'

Summary for Reach P-1: 18" Culvert

[52] Hint: Inlet/Outlet conditions not evaluated

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 3
Max. Velocity= 1.89 fps , Min. Travel Time $=0.3 \mathrm{~min}$
Avg. Velocity $=0.76 \mathrm{fps}$, Avg. Travel Time $=0.8 \mathrm{~min}$
Peak Storage= 15 cf @ 12.14 hrs, Average Depth at Peak Storage= 0.42'
Bank-Full Depth= 1.50', Capacity at Bank-Full= 4.49 cfs
18.0" Diameter Pipe, $n=0.025$ Corrugated metal

Length= 37.0' Slope= 0.0068 '/'
Inlet Invert= 84.57', Outlet Invert= 84.32'

Summary for Reach P-2: 12" Culvert

[52] Hint: Inlet/Outlet conditions not evaluated

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Max. Velocity $=3.62 \mathrm{fps}$, Min. Travel Time $=0.2 \mathrm{~min}$
Avg. Velocity $=1.44 \mathrm{fps}$, Avg. Travel Time $=0.5 \mathrm{~min}$
Peak Storage $=9$ cf @ 12.12 hrs, Average Depth at Peak Storage $=0.33^{\prime}$
Bank-Full Depth= 1.00', Capacity at Bank-Full= 3.49 cfs
12.0" Diameter Pipe, $\mathrm{n}=0.025$ Corrugated metal

Length=42.0' Slope= 0.0355 '/'
Inlet Invert= 84.18', Outlet Invert= 82.69'

Summary for Pond SRS-2: Subsurface Recharge System

Inflow Area	$0.643 \mathrm{ac}, 100.00 \%$ Impervious, Inflow Depth = 3.17" for 2-yr event			
Inflow	2.12 cfs @	12.08 hrs , Volume=	0.170 af	
Outflow	1.01 cfs @	12.24 hrs , Volume=	0.108 af , A	Atten= 52\%, Lag= 9.2 min
Discarded	0.01 cfs @	5.30 hrs , Volume=	0.030 af	
Primary	1.00 cfs @	12.24 hrs , Volume=	0.078 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs $/ 3$
Peak Elev= 80.82' @ 12.24 hrs Surf.Area= 2,074 sf Storage= 3,437 cf
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time $=127.7$ min (882.8-755.1)

Discarded OutFlow Max=0.01 cfs @ 5.30 hrs HW=78.54' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.01 cfs)
Primary OutFlow Max=1.00 cfs @ 12.24 hrs HW=80.82' (Free Discharge)
—2=Culvert (Barrel Controls 1.00 cfs @ 2.13 fps)

Summary for Pond WET-1: Sortherly Wetland

[62] Warning: Exceeded Reach CB-2 OUTLET depth by 0.29 @ 12.35 hrs
[62] Warning: Exceeded Reach CB-9 OUTLET depth by 0.35 @ 12.56 hrs

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 3
Peak Elev= 75.88' @ 12.31 hrs Surf.Area= 8,003 sf Storage= 10,551 cf
Plug-Flow detention time $=108.1 \mathrm{~min}$ calculated for 0.867 af (94% of inflow)
Center-of-Mass det. time= $77.1 \mathrm{~min}(870.4-793.3)$

Discarded OutFlow Max=0.05 cfs @ 12.31 hrs HW=75.88' (Free Discharge)
—1=Exfiltration (Exfiltration Controls 0.05 cfs)
Primary OutFlow Max=4.60 cfs @ 12.31 hrs HW=75.88' (Free Discharge)
—2=Culvert (Barrel Controls 4.60 cfs @ 2.99 fps)

Summary for Pond WET-2: Northerly Wetland

[87] Warning: Oscillations may require Finer Routing or smaller dt
[62] Warning: Exceeded Reach CB-7 OUTLET depth by 0.02' @ 12.59 hrs

Inflow Area	$1.333 \mathrm{ac}, 53.47 \%$ Impervious, Inflow Depth = 2.00" for 2-yr event			
Inflow	2.99 cfs @	12.09 hrs , Volume=	0.222 af	
Outflow	0.93 cfs @	12.51 hrs , Volume=	0.222 af,	Atten $=69 \%$, Lag $=25.5 \mathrm{~min}$
Discarded	0.06 cfs @	12.43 hrs , Volume=	0.037 af	
Primary	0.87 cfs @	12.51 hrs, Volume=	0.185 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev= 76.32' @ 12.43 hrs Surf.Area= 9,103 sf Storage $=2,793$ cf
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time $=29.7 \min (835.0-805.4)$

Discarded OutFlow Max=0.06 cfs @ 12.43 hrs HW=76.32' (Free Discharge)
—2=Exfiltration (Exfiltration Controls 0.06 cfs)
Primary OutFlow Max=0.87 cfs @ 12.51 hrs HW=76.32' TW=75.90' (Dynamic Tailwater)

- $_{1=\text { Culvert }}$ (Outlet Controls 0.87 cfs @ 1.93 fps)

Summary for Pond WQI-1: Water Quality Inlet

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
78.00	5,080	0	0
79.00	6,700	5,890	5,890
79.50	7,500	3,550	9,440

Device	Routing	Invert	Outlet Devices
\#1	Discarded	$78.00{ }^{\prime}$	$0.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary	79.00'	10.0' long x 10.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.492 .562 .702 .692 .682 .692 .672 .64

Discarded OutFlow Max=0.04 cfs @ 18.00 hrs HW=78.77' (Free Discharge)
_1=Exfiltration (Exfiltration Controls 0.04 cfs)
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=78.00' TW=74.00' (Dynamic Tailwater)
L-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond WQI-2: Water Quality Inlet

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=77.91' @ 13.23 hrs Surf.Area= 2,478 sf Storage $=1,990 \mathrm{cf}$
Plug-Flow detention time $=371.9$ min calculated for 0.040 af (52% of inflow)
Center-of-Mass det. time $=257.2 \min (1,029.6-772.3)$

Discarded OutFlow Max=0.02 cfs @ 13.23 hrs HW=77.91' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.02 cfs)
Primary OutFlow Max=0.06 cfs @ 13.23 hrs HW=77.91' TW=75.42' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir (Weir Controls 0.06 cfs @ 0.26 fps)

Summary for Subcatchment S-1: Tributary to South Culvert

Runoff $=\quad 1.54$ cfs @ 12.13 hrs, Volume $=0.124$ af, Depth= $2.05^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 10-yr Rainfall=4.80"

	Area (sf)	CN	Description			
	25,975	70	Woods, Good, HSG C			
	3,300	$74>$	>75\% Grass cover, Good, HSG C			
*	2,300	98	Roadway			
	31,575	72	Weighted Average			
	29,275		Pervious Area			
	2,300		Impervious Area			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description	
5.6	50	0.1360	0.15		Sheet Flow,	
					Woods: Light underbrush $\mathrm{n}=0.400$	$\mathrm{P} 2=3.40$
3.5	220	0.0430	1.04		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	
9.1	270	Total				

Summary for Subcatchment S-10: Tributary toward CB-8

Runoff $=\quad 4.01 \mathrm{cfs} @ 12.08 \mathrm{hrs}$, Volume $=\quad 0.325 \mathrm{af}$, Depth $=4.56{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Type III 24-hr 10-yr Rainfall=4.80"

	Area (sf)	CN	Description
37,250 98 Paved Parking 37,250 Impervious Area			

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, Min. Tc |
| :--- |

Summary for Subcatchment S-11: Tributary to Northerly Wetland

Runoff $=\quad 3.32$ cfs @ 12.09 hrs, Volume $=\quad 0.236$ af, Depth= $2.81{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 10-yr Rainfall=4.80"

	Area (sf)	CN D	Description	
	1,175	98 R	Roadway	
	15,750	98 W	Wetland	
	27,025	70 W	Woods, Good, HSG C	
	43,950	81 W	Weighted Average Pervious Area	
	27,025			
	16,925		Impervious Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec) $\begin{array}{r}\text { Capacity } \\ \text { (cfs) }\end{array}$	Description
0.2	14	0.0200	0.96	Sheet Flow,
				Smooth surfaces $\mathrm{n}=0.011 \mathrm{P} 2=3.40$ '
4.7	36	0.1100	0.13	Sheet Flow, Woods: Light underbrush $n=0.400 \quad \mathrm{P} 2=3.40 "$
1.1	70	0.0420	- 1.02	Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$
6.0	120	Total		

Summary for Subcatchment S-2: Tributary to North Culvert

Runoff $=\quad 1.62$ cfs @ 12.12 hrs, Volume= $\quad 0.125$ af, Depth= $2.12^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Type III 24-hr 10-yr Rainfall=4.80"

Summary for Subcatchment S-3: Tributary to Water Quality Inlet

Runoff $=3.15$ cfs @ 12.09 hrs, Volume= $\quad 0.230$ af, Depth= $3.58{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 10-yr Rainfall=4.80"

Summary for Subcatchment S-3a: Tributary to Southerly Wetland

Runoff $=\quad 1.74$ cfs @ 12.09 hrs, Volume $=\quad 0.125$ af, Depth= $3.18^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 10-yr Rainfall=4.80"

	Area (sf)	CN	Description
$*$	9,465	98	Wetland
$*$	1,527	98	Roadway
9,498	70	Woods, Good, HSG C	
	20,490	85	Weighted Average
9,498		Pervious Area	
	10,992		Impervious Area

Summary for Subcatchment S-4: Tributary to CB-1

Runoff $=0.16$ cfs @ 12.08 hrs, Volume $=\quad 0.013$ af, Depth $=4.56{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 10-yr Rainfall=4.80"

Summary for Subcatchment S-5: Tributary to CB-2

Runoff $=0.15 \mathrm{cfs} @ 12.08 \mathrm{hrs}$, Volume $=\quad 0.012 \mathrm{af}$, Depth $=4.56{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 10-yr Rainfall=4.80"

Area (sf)	CN	Description	
1,400	98	Paved parking \& roofs	
1,400		Impervious Area	
Tc Length (min) Slope (feet) Velocity (ft/ft) (ft/sec)	Capacity (cfs)	Description	

Summary for Subcatchment S-6: Tributary Off-Site

Runoff $=1.60$ cfs @ 12.08 hrs, Volume $=\quad 0.127$ af, Depth $=4.45{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 10-yr Rainfall=4.80"

	Area (sf)	CN	Description
*	14,625	98	Paved Parking
	335	74	>75\% Grass cover, Good, HSG C
	14,960	97	Weighted Average
	335		Pervious Area
	14,625		Impervious Area

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, Min. Tc |
| :--- |

Summary for Subcatchment S-7: Tributary toward CB-7

Runoff $=1.52$ cfs @ 12.08 hrs , Volume $=0.123 \mathrm{af}$, Depth= $4.56^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 10-yr Rainfall=4.80"

Area (sf) CN Description					
*	14,125	88 Paved Parking			
	14,125	Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description

Summary for Subcatchment S-8: Tributary to SRS-2

Runoff $=\quad 3.02$ cfs @ 12.08 hrs, Volume $=\quad 0.244$ af, Depth= 4.56"

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 10-yr Rainfall=4.80"

	Area (sf)	CN	Description
28,000	98	Rooftop	
		Impervious Area	

| Tc
 (min) | Length
 (feet) | Slope
 (ft/ft) | Velocity
 (ft/sec) | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, Min. Tc |
| :--- |

Summary for Subcatchment S-8a: Tributary toward WQI

Runoff $=1.43$ cfs @ 12.08 hrs, Volume $=0.112$ af, Depth= 4.33"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 10-yr Rainfall=4.80"

	Area (sf)	CN D	Description		
*	10,000	98 P	Paved Parking		
	940	$74>$	>75\% Grass cover, Good, HSG C		
*	2,535	98 V	Water Quality Inlet		
	13,475	96	Weighted Average		
	940		Pervious AreaImpervious Area		
	12,535				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment S-9: Tributary toward CB-9

Runoff $=\quad 4.91$ cfs @ 12.08 hrs, Volume= 0.398 af, Depth= 4.56"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 10-yr Rainfall=4.80"

Area (sf)		CN	Description		
*	45,550	98 P	aved Park		
	45,550		pervious	Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description

Summary for Reach CB-1: Catch Basin

[52] Hint: Inlet/Outlet conditions not evaluated

Inflow Area $=$	$0.033 \mathrm{ac}, 100.00 \%$ Impervious, Inflow Depth $=4.56 \mathrm{ln}$ for $10-\mathrm{yr}$ event		
Inflow	$=$	$0.16 \mathrm{cfs} @$	12.08 hrs, Volume $=$
Outflow	$=$	$0.16 \mathrm{cfs} @$	12.08 hrs , Volume $=$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 3
Max. Velocity $=1.69 \mathrm{fps}$, Min. Travel Time $=0.1 \mathrm{~min}$
Avg. Velocity $=0.56 \mathrm{fps}$, Avg. Travel Time $=0.4 \mathrm{~min}$
Peak Storage $=1$ cf @ 12.08 hrs, Average Depth at Peak Storage $=0.16$ '
Bank-Full Depth=1.25', Capacity at Bank-Full= 4.41 cfs
15.0" Diameter Pipe, n= 0.013

Length= 15.0' Slope= 0.0047 '/'
Inlet Invert= 76.37', Outlet Invert= 76.30'

Summary for Reach CB-2: Catch Basin

[52] Hint: Inlet/Outlet conditions not evaluated

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 3
Max. Velocity $=1.53 \mathrm{fps}$, Min. Travel Time $=0.5 \mathrm{~min}$
Avg. Velocity $=0.50 \mathrm{fps}$, Avg. Travel Time $=1.6 \mathrm{~min}$
Peak Storage $=5$ cf @ 12.09 hrs, Average Depth at Peak Storage $=0.18^{\prime}$
Bank-Full Depth= 1.00', Capacity at Bank-Full= 2.05 cfs
12.0" Diameter Pipe, $n=0.025$ Corrugated metal Length=48.0' Slope= 0.0123 '/'
Inlet Invert= 76.09', Outlet Invert= 75.50'

Summary for Reach CB-7: Catch Basin

[52] Hint: Inlet/Outlet conditions not evaluated

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 3
Max. Velocity= 7.10 fps , Min. Travel Time $=0.2 \mathrm{~min}$
Avg. Velocity $=2.34 \mathrm{fps}$, Avg. Travel Time $=0.5 \mathrm{~min}$
Peak Storage= 14 cf @ 12.09 hrs, Average Depth at Peak Storage= 0.32'
Bank-Full Depth= 1.00', Capacity at Bank-Full= 6.98 cfs
12.0" Diameter Pipe, n= 0.013

Length=66.0' Slope= 0.0383 '/'
Inlet Invert= 78.71', Outlet Invert= 76.18'

Summary for Reach CB-8: Catch Basin

[52] Hint: Inlet/Outlet conditions not evaluated

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 3
Max. Velocity $=4.26 \mathrm{fps}$, Min. Travel Time $=0.3 \mathrm{~min}$
Avg. Velocity $=1.71 \mathrm{fps}$, Avg. Travel Time $=0.7 \mathrm{~min}$
Peak Storage= 77 cf @ 12.10 hrs, Average Depth at Peak Storage= 0.85^{\prime}
Bank-Full Depth= 1.50', Capacity at Bank-Full= 7.18 cfs
18.0" Diameter Pipe, n= 0.013

Length= 75.0^{\prime} Slope $=0.0047$ '/'
Inlet Invert= 75.45', Outlet Invert= 75.10'

Summary for Reach CB-9: Catch Basin

[52] Hint: Inlet/Outlet conditions not evaluated
[55] Hint: Peak inflow is 126% of Manning's capacity
[76] Warning: Detained 0.012 af (Pond w/culvert advised)
[63] Warning: Exceeded Reach CB-8 INLET depth by 0.64' @ 12.26 hrs

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Max. Velocity $=4.76 \mathrm{fps}$, Min. Travel Time $=0.3 \mathrm{~min}$
Avg. Velocity $=2.01 \mathrm{fps}$, Avg. Travel Time $=0.6 \mathrm{~min}$
Peak Storage= 133 cf @ 12.05 hrs, Average Depth at Peak Storage= 1.50'
Bank-Full Depth= 1.50', Capacity at Bank-Full= 7.38 cfs
18.0" Diameter Pipe, n= 0.013

Length= 75.0' Slope= 0.0049 '/'
Inlet Invert= 75.29', Outlet Invert= 74.92'

Summary for Reach P-1: 18" Culvert

[52] Hint: Inlet/Outlet conditions not evaluated

Inflow Area $=$	0.725 ac,	7.28%	Impervious, Inflow Depth $=2.05 "$ for $10-\mathrm{yr}$ event	
Inflow	$=$	$1.54 \mathrm{cfs} @$	12.13 hrs, Volume $=$	0.124 af
Outflow	$=$	$1.54 \mathrm{cfs} @$	12.14 hrs, Volume $=$	0.124 af , Atten $=0 \%$, Lag= 0.2 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 3
Max. Velocity $=2.30 \mathrm{fps}$, Min. Travel Time $=0.3 \mathrm{~min}$
Avg. Velocity $=0.88 \mathrm{fps}$, Avg. Travel Time $=0.7 \mathrm{~min}$
Peak Storage= 25 cf @ 12.14 hrs, Average Depth at Peak Storage= 0.61^{\prime}
Bank-Full Depth=1.50', Capacity at Bank-Full= 4.49 cfs
18.0" Diameter Pipe, $\mathrm{n}=0.025$ Corrugated metal

Length= 37.0' Slope= 0.0068 '/'
Inlet Invert= 84.57', Outlet Invert= 84.32'

Summary for Reach P-2: 12" Culvert

[52] Hint: Inlet/Outlet conditions not evaluated

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Max. Velocity $=4.36 \mathrm{fps}$, Min. Travel Time $=0.2 \mathrm{~min}$
Avg. Velocity $=1.66 \mathrm{fps}$, Avg. Travel Time $=0.4 \mathrm{~min}$
Peak Storage= 16 cf @ 12.12 hrs, Average Depth at Peak Storage= 0.48'
Bank-Full Depth= 1.00', Capacity at Bank-Full= 3.49 cfs
12.0" Diameter Pipe, $n=0.025$ Corrugated metal Length=42.0' Slope= 0.0355 '/'
Inlet Invert= 84.18', Outlet Invert= 82.69'

Summary for Pond SRS-2: Subsurface Recharge System

Inflow Area =	$0.643 \mathrm{ac}, 100.00 \%$ Impervious, Inflow Depth $=4.56$ " for 10-yr event			
Inflow	3.02 cfs @	12.08 hrs , Volume=	0.244 af	
Outflow	2.47 cfs @	12.14 hrs , Volume=	0.182 af,	Atten $=18 \%$, Lag $=3.3 \mathrm{~min}$
Discarded	0.01 cfs @	3.66 hrs, Volume=	0.031 af	
Primary	2.46 cfs @	12.14 hrs , Volume=	0.152 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$ Peak Elev= 81.09' @ 12.14 hrs Surf.Area= $2,074 \mathrm{sf}$ Storage= $3,834 \mathrm{cf}$

Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time= $98.2 \mathrm{~min}(846.9-748.7)$

Volume	Invert	Avail.Storage	Storage Description
\#1	78.50'	1,825 cf	17.00 'W x 122.00'L x 3.75'H Prismatoid
			7,778 cf Overall - 3,215 cf Embedded $=4,562 \mathrm{cf} \times 40.0 \%$ Voids
\#2	79.00'	3,215 cf	52.6"W x 34.0"H x 7.50'L Cultec R-V8x 48 Inside \#1
5,040 cf Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Discarded	78.50 ' 0.27	0.270 in/hr Exfiltration over Surface area
\#2	Primary	80.50'	$6.0 "$ x 6.0' long Culvert X 5.00
			, square edge headwall, $\mathrm{Ke}=0.500$
			thvert= 80.44' S=0.0100 '/' Cc= $0.900 \quad \mathrm{n}=0.013$

Discarded OutFlow Max=0.01 cfs @ 3.66 hrs HW=78.54' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.01 cfs)
Primary OutFlow Max=2.46 cfs @ 12.14 hrs HW=81.09' (Free Discharge)
—2=Culvert (Barrel Controls 2.46 cfs @ 2.67 fps)

Summary for Pond WET-1: Sortherly Wetland

[61] Hint: Exceeded Reach CB-1 outlet invert by 0.06' @ 12.32 hrs
[63] Warning: Exceeded Reach CB-2 INLET depth by 0.16' @ 12.34 hrs
[63] Warning: Exceeded Reach CB-9 INLET depth by 0.27 @ 12.55 hrs

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev= 76.36' @ 12.32 hrs Surf.Area= 9,211 sf Storage= 14,690 cf
Plug-Flow detention time $=82.1 \mathrm{~min}$ calculated for 1.461 af (97% of inflow)
Center-of-Mass det. time $=61.9$ min (853.8-791.9)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	74.00	$37,115 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
74.00	3,200	0	0
76.00	8,300	11,500	11,500
78.00	13,300	21,600	33,100
78.50	2,760	4,015	37,115

Device	Routing	Invert	Outlet Devices
\#1	Discarded	$74.00{ }^{\prime}$	$0.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary	$74.57{ }^{\prime}$	24.0" \times 60.0' long Culvert CMP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Outlet Invert= 74.53' S=0.0007 $/ / \mathrm{lc} \mathrm{l}^{\prime} \mathrm{Cc}=0.900 \mathrm{n}=0.013$

Discarded OutFlow Max=0.06 cfs @ 12.32 hrs HW=76.36' (Free Discharge)
1-1=Exfiltration (Exfiltration Controls 0.06 cfs)
Primary OutFlow Max=7.96 cfs @ 12.32 hrs HW=76.36' (Free Discharge)
${ }^{4}-\mathbf{2}=$ Culvert (Barrel Controls 7.96 cfs @ 3.54 fps)

Summary for Pond WET-2: Northerly Wetland

[87] Warning: Oscillations may require Finer Routing or smaller dt
[62] Warning: Exceeded Reach CB-7 OUTLET depth by 0.19' @ 12.55 hrs

Inflow Area =	$1.333 \mathrm{ac}, 53.47 \%$ Impervious, Inflow Depth $=3.24$ " for 10-yr event			
Inflow	4.84 cfs @	12.09 hrs , Volume=	0.360 af	
Outflow	1.69 cfs @	12.46 hrs , Volume=	0.360 af, A	Atten= 65\%, Lag= 22.3 min
Discarded	0.06 cfs @	12.38 hrs , Volume=	0.049 af	
Primary	1.63 cfs @	12.46 hrs , Volume=	0.310 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev= 76.52' @ 12.38 hrs Surf.Area= 9,612 sf Storage= 4,699 cf
Plug-Flow detention time $=$ (not calculated: outflow precedes inflow)
Center-of-Mass det. time $=33.6 \min (829.8-796.2)$

Discarded OutFlow Max=0.06 cfs @ 12.38 hrs HW=76.52' (Free Discharge)
L2=Exfiltration (Exfiltration Controls 0.06 cfs)
Primary OutFlow Max=1.63 cfs @ 12.46 hrs HW=76.52' TW=76.08' (Dynamic Tailwater)
—1=Culvert (Outlet Controls 1.63 cfs @ 2.29 fps)

Inflow Area =	0.770 ac, 66.17% Impervious, Inflow Depth $=3.58$ " for 10-yr event			
Inflow	3.15 cfs @	12.09 hrs, Volume=	0.230 af	
Outflow	0.21 cfs @	13.63 hrs , Volume=	0.116 af,	Atten $=93 \%, L a g=92.6 \mathrm{~min}$
Discarded	0.04 cfs @	13.63 hrs , Volume=	0.076 af	
Primary	0.17 cfs @	13.63 hrs , Volume=	0.040 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev= 79.04' @ 13.63 hrs Surf.Area= 6,757 sf Storage $=6,129$ cf
Plug-Flow detention time $=$ (not calculated: outflow precedes inflow)
Center-of-Mass det. time $=256.9 \min (1,052.7-795.8)$

Discarded OutFlow Max=0.04 cfs @ 13.63 hrs HW=79.04' (Free Discharge)
—1=Exfiltration (Exfiltration Controls 0.04 cfs)
Primary OutFlow Max=0.17 cfs @ 13.63 hrs HW=79.04' TW=75.51' (Dynamic Tailwater)
—2=Broad-Crested Rectangular Weir (Weir Controls 0.17 cfs @ 0.47 fps)

Summary for Pond WQI-2: Water Quality Inlet

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev= 77.96' @ 12.20 hrs Surf.Area= $2,510 \mathrm{sf}$ Storage= $2,117 \mathrm{cf}$
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time $=147.4 \min (910.7-763.4)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	77.00	$3,564 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
77.00	1,892	0	0
78.00	2,535	2,214	2,214
78.50	2,866	1,350	3,564

Device	Routing	Invert	Outlet Devices
\#1	Discarded	77.00'	$0.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary	77.90'	20.0' long x 10.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) 2.492 .562 .702 .692 .682 .692 .672 .64

Discarded OutFlow Max=0.02 cfs @ 12.20 hrs HW=77.96' (Free Discharge)
L-1=Exfiltration (Exfiltration Controls 0.02 cfs)
Primary OutFlow Max=0.76 cfs @ 12.20 hrs HW=77.96' TW=76.25' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir (Weir Controls 0.76 cfs @ 0.62 fps)

Summary for Subcatchment S-1: Tributary to South Culvert

Runoff $=\quad 2.93$ cfs @ 12.13 hrs, Volume $=0.231$ af, Depth= $3.83^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-yr Rainfall=7.00"

Summary for Subcatchment S-10: Tributary toward CB-8

Runoff $=\quad 5.87$ cfs @ 12.08 hrs, Volume $=\quad 0.482$ af, Depth= 6.76"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Type III 24-hr 100-yr Rainfall=7.00"

Summary for Subcatchment S-11: Tributary to Northerly Wetland

Runoff $=\quad 5.61$ cfs @ 12.09 hrs, Volume $=\quad 0.404$ af, Depth= 4.81"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-yr Rainfall=7.00"

Summary for Subcatchment S-2: Tributary to North Culvert

Runoff $=3.04$ cfs @ 12.11 hrs, Volume= $\quad 0.231$ af, Depth= 3.94"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-yr Rainfall=7.00"

Summary for Subcatchment S-3: Tributary to Water Quality Inlet

Runoff $=\quad 4.90$ cfs @ 12.08 hrs, Volume= $\quad 0.366$ af, Depth= $5.71^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span $=0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-yr Rainfall=7.00"

	Area (sf)	CN	Description		
*	7,500	98	Water Quality Inlet		
*	14,700	98	Roadway		
	11,350	70	Woods, Good, HSG C		
	33,550	89	Weighted Average		
	11,350		Pervious Area Impervious Area		
	22,200				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{aligned} & \text { Capacity } \\ & \text { (cfs) } \end{aligned}$	Description
6.0					Direct Entry

Summary for Subcatchment S-3a: Tributary to Southerly Wetland

Runoff $=\quad 2.82$ cfs @ 12.09 hrs, Volume $=0.206$ af, Depth= $5.25^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 100-yr Rainfall=7.00"

	Area (sf)	CN	Description
$*$	9,465	98	Wetland
$*$	1,527	98	Roadway
9,498	70	Woods, Good, HSG C	
20,490	85	Weighted Average	
9,498		Pervious Area	
	10,992		Impervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Summary for Subcatchment S-4: Tributary to CB-1
Runoff $=\quad 0.23$ cfs @ 12.08 hrs , Volume $=\quad 0.019$ af, Depth $=6.76{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs
Type III 24-hr 100-yr Rainfall=7.00"

Summary for Subcatchment S-5: Tributary to CB-2

Runoff $=\quad 0.22$ cfs @ 12.08 hrs, Volume $=\quad 0.018$ af, Depth $=6.76{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-yr Rainfall=7.00"

Summary for Subcatchment S-6: Tributary Off-Site

Runoff $=\quad 2.35$ cfs @ 12.08 hrs, Volume= 0.190 af, Depth= $6.64{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-yr Rainfall=7.00"

	Area (sf)	CN	Description
*	14,625	98	Paved Parking
	335	74	>75\% Grass cover, Good, HSG C
	14,960	97	Weighted Average
	335		Pervious Area
	14,625		Impervious Area

Tc	Length (min)	Slope (feet)	Velocity $(\mathrm{ft} / \mathrm{ft})$

Summary for Subcatchment S-7: Tributary toward CB-7

Runoff $=\quad 2.23 \mathrm{cfs} @ 12.08 \mathrm{hrs}$, Volume $=\quad 0.183 \mathrm{af}$, Depth= $6.76^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-yr Rainfall=7.00"

Summary for Subcatchment S-8: Tributary to SRS-2

Runoff $=\quad 4.41 \mathrm{cfs} @ 12.08 \mathrm{hrs}$, Volume $=\quad 0.362 \mathrm{af}$, Depth= $6.76^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-yr Rainfall=7.00"

Summary for Subcatchment S-8a: Tributary toward WQI

Runoff $=\quad 2.11$ cfs @ 12.08 hrs, Volume= 0.168 af, Depth= 6.52"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-yr Rainfall=7.00"

	Area (sf)	CN D	Description		
*	10,000	98 P	Paved Parking		
	940	$74>$	>75\% Grass cover, Good, HSG C		
*	2,535	98 W	Water Quality Inlet		
	13,475	96 W	Weighted Average		
	940		Pervious Area		
	12,535		Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Summary for Subcatchment S-9: Tributary toward CB-9

Runoff $=\quad 7.18$ cfs @ 12.08 hrs , Volume $=\quad 0.589$ af, Depth $=6.76{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-30.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-yr Rainfall=7.00"

Area (sf)		CN	Description		
*	45,550	98 P	aved Park		
	45,550		pervious	Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description

[^0]
Summary for Reach CB-1: Catch Basin

[52] Hint: Inlet/Outlet conditions not evaluated

Inflow Area $=$	$0.033 \mathrm{ac}, 100.00 \%$ Impervious, Inflow Depth $=6.76 \mathrm{l}$ for $100-\mathrm{yr}$ event		
Inflow	$=$	$0.23 \mathrm{cfs} @ 12.08 \mathrm{hrs}$, Volume $=$	0.019 af
Outflow	$=$	$0.23 \mathrm{cfs} @ 12.08 \mathrm{hrs}$, Volume $=$	0.019 af , Atten $=0 \%$, Lag= 0.1 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Max. Velocity $=1.89 \mathrm{fps}$, Min. Travel Time $=0.1 \mathrm{~min}$
Avg. Velocity $=0.62 \mathrm{fps}$, Avg. Travel Time $=0.4 \mathrm{~min}$
Peak Storage $=2$ cf @ 12.08 hrs, Average Depth at Peak Storage $=0.19^{\prime}$
Bank-Full Depth=1.25', Capacity at Bank-Full= 4.41 cfs
15.0" Diameter Pipe, n= 0.013

Length= 15.0' Slope= 0.0047 '/'
Inlet Invert= 76.37', Outlet Invert= 76.30'

Summary for Reach CB-2: Catch Basin

[52] Hint: Inlet/Outlet conditions not evaluated

Inflow Area $=$	$0.032 \mathrm{ac}, 100.00 \%$ Impervious, Inflow Depth $=6.76 \mathrm{l}$ for $100-\mathrm{yr}$ event		
Inflow	$=$	$0.22 \mathrm{cfs} @ 12.08 \mathrm{hrs}$, Volume $=$	0.018 af
Outflow	$=$	$0.22 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=$	0.018 af , Atten $=0 \%$, Lag $=0.3 \mathrm{~min}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 3
Max. Velocity $=1.71 \mathrm{fps}$, Min. Travel Time $=0.5 \mathrm{~min}$
Avg. Velocity $=0.56 \mathrm{fps}$, Avg. Travel Time $=1.4 \mathrm{~min}$
Peak Storage $=6$ cf @ 12.09 hrs, Average Depth at Peak Storage $=0.22^{\prime}$
Bank-Full Depth= 1.00', Capacity at Bank-Full= 2.05 cfs
12.0" Diameter Pipe, $n=0.025$ Corrugated metal Length=48.0' Slope= 0.0123 '/'
Inlet Invert= 76.09', Outlet Invert= 75.50'

Summary for Reach CB-7: Catch Basin

[52] Hint: Inlet/Outlet conditions not evaluated

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 3
Max. Velocity $=7.89 \mathrm{fps}$, Min. Travel Time $=0.1 \mathrm{~min}$
Avg. Velocity $=2.64 \mathrm{fps}$, Avg. Travel Time $=0.4 \mathrm{~min}$
Peak Storage= 19 cf @ 12.08 hrs, Average Depth at Peak Storage= 0.39'
Bank-Full Depth= 1.00', Capacity at Bank-Full= 6.98 cfs
12.0" Diameter Pipe, n= 0.013

Length=66.0' Slope= 0.0383 '/'
Inlet Invert= 78.71', Outlet Invert= 76.18'

Summary for Reach CB-8: Catch Basin

[52] Hint: Inlet/Outlet conditions not evaluated

Inflow Area $=$	$2.188 \mathrm{ac}, 71.65 \%$ Impervious, Inflow Depth $=5.51 " \mathrm{for} 100-\mathrm{yr}$ event	
Inflow	$=$	6.60 cfs @ 12.10 hrs, Volume $=$
Outflow	$=$	$6.60 \mathrm{cfs} @ 12.11 \mathrm{hrs}$, Volume $=$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 3
Max. Velocity= 4.61 fps , Min. Travel Time $=0.3 \mathrm{~min}$
Avg. Velocity $=1.94 \mathrm{fps}$, Avg. Travel Time $=0.6 \mathrm{~min}$
Peak Storage= 107 cf @ 12.11 hrs, Average Depth at Peak Storage= 1.13'
Bank-Full Depth= 1.50', Capacity at Bank-Full= 7.18 cfs
18.0" Diameter Pipe, n= 0.013

Length= 75.0^{\prime} Slope $=0.0047$ '/'
Inlet Invert= 75.45', Outlet Invert= 75.10'

Summary for Reach CB-9: Catch Basin

[52] Hint: Inlet/Outlet conditions not evaluated
[55] Hint: Peak inflow is 186% of Manning's capacity
[76] Warning: Detained 0.088 af (Pond w/culvert advised)
[63] Warning: Exceeded Reach CB-8 INLET depth by 0.69 @ 12.80 hrs
Inflow Area $=3.234$ ac, 80.82% Impervious, Inflow Depth $=5.91$ " for $100-$ yr event
Inflow $=\quad 13.69 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=1.594 \mathrm{af}$
Outflow = $7.89 \mathrm{cfs} @ 11.99 \mathrm{hrs}$, Volume $=1.594 \mathrm{af}$, Atten $=42 \%$, Lag= 0.0 min
Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Max. Velocity $=4.76 \mathrm{fps}$, Min. Travel Time $=0.3 \mathrm{~min}$
Avg. Velocity $=2.26 \mathrm{fps}$, Avg. Travel Time $=0.6 \mathrm{~min}$
Peak Storage= 133 cf @ 12.00 hrs, Average Depth at Peak Storage= 1.50'
Bank-Full Depth= 1.50', Capacity at Bank-Full= 7.38 cfs
18.0" Diameter Pipe, n= 0.013

Length= 75.0' Slope= 0.0049 '/'
Inlet Invert= 75.29', Outlet Invert= 74.92'

Summary for Reach P-1: 18" Culvert

[52] Hint: Inlet/Outlet conditions not evaluated

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Max. Velocity $=2.71 \mathrm{fps}$, Min. Travel Time $=0.2 \mathrm{~min}$
Avg. Velocity $=1.02 \mathrm{fps}$, Avg. Travel Time $=0.6 \mathrm{~min}$
Peak Storage= 40 cf @ 12.13 hrs , Average Depth at Peak Storage= 0.88^{\prime}
Bank-Full Depth= 1.50', Capacity at Bank-Full= 4.49 cfs
18.0" Diameter Pipe, $\mathrm{n}=0.025$ Corrugated metal

Length= 37.0' Slope= 0.0068 '/'
Inlet Invert= 84.57', Outlet Invert= 84.32'

Summary for Reach P-2: 12" Culvert

[52] Hint: Inlet/Outlet conditions not evaluated

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Max. Velocity $=5.00 \mathrm{fps}$, Min. Travel Time $=0.1 \mathrm{~min}$
Avg. Velocity $=1.91 \mathrm{fps}$, Avg. Travel Time $=0.4 \mathrm{~min}$
Peak Storage= 26 cf @ 12.12 hrs, Average Depth at Peak Storage= 0.72'
Bank-Full Depth= 1.00', Capacity at Bank-Full= 3.49 cfs
12.0" Diameter Pipe, $n=0.025$ Corrugated metal Length=42.0' Slope= 0.0355 '/'
Inlet Invert= 84.18', Outlet Invert= 82.69'

Summary for Pond SRS-2: Subsurface Recharge System

Inflow Area $=\quad 0.643 \mathrm{ac}, 100.00 \%$ Impervious, Inflow Depth $=6.76$ " for 100-yr event
Inflow = 4.41 cfs @ 12.08 hrs , Volume=
0.362 af

Outflow =
Discarded = Primary =
3.63 cfs @ 12.14 hrs, Volume=
0.01 cfs @ 2.31 hrs, Volume=
3.62 cfs @ 12.14 hrs, Volume=
0.300 af, Atten $=18 \%$, Lag $=3.3 \mathrm{~min}$
0.031 af
0.269 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$ Peak Elev= 81.36' @ 12.14 hrs Surf.Area= 2,074 sf Storage $=4,195 \mathrm{cf}$

Plug-Flow detention time $=152.6 \mathrm{~min}$ calculated for 0.300 af (83% of inflow)
Center-of-Mass det. time= $81.6 \mathrm{~min}(824.6-743.0)$

Volume	Invert	Avail.Storage	Storage Description
\#1	78.50'	1,825 cf	17.00 'W x 122.00'L x 3.75'H Prismatoid
			7,778 cf Overall - 3,215 cf Embedded $=4,562 \mathrm{cf} \times 40.0 \%$ Voids
\#2	79.00'	3,215 cf	52.6"W x 34.0"H x 7.50'L Cultec R-V8x 48 Inside \#1
5,040 cf Total Available Storage			
Device	Routing	Invert Outlet Devices	
\#1	Discarded	78.50 ' 0.27	0.270 in/hr Exfiltration over Surface area
\#2	Primary	80.50'	$6.0 "$ x 6.0' long Culvert X 5.00
			, square edge headwall, $\mathrm{Ke}=0.500$
			thvert= 80.44' S=0.0100 '/' Cc= $0.900 \quad \mathrm{n}=0.013$

Discarded OutFlow Max=0.01 cfs @ 2.31 hrs HW=78.54' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.01 cfs)
Primary OutFlow Max=3.61 cfs @ 12.14 hrs HW=81.36' (Free Discharge)
—2=Culvert (Barrel Controls 3.61 cfs @ 3.68 fps)

Summary for Pond WET-1: Sortherly Wetland

[63] Warning: Exceeded Reach CB-1 INLET depth by 0.52 ' @ 12.51 hrs
[63] Warning: Exceeded Reach CB-2 INLET depth by 0.79 @ 12.52 hrs
[63] Warning: Exceeded Reach CB-9 INLET depth by 0.79 @ 12.83 hrs

Inflow Area =	6.278 ac, 61.12\% Impervious, Inflow Depth = 4.90" for 100-yr event			
Inflow	18.59 cfs @	12.12 hrs , Volume=	2.565 af	
Outflow	12.26 cfs @	12.47 hrs, Volume=	2.512 af,	Atten $=34 \%, L a g=20.9 \mathrm{~min}$
Discarded $=$	0.07 cfs @	12.47 hrs , Volume=	0.084 af	
Primary	12.19 cfs @	12.47 hrs, Volume=	2.428 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev= 76.98' @ 12.47 hrs Surf.Area= 10,761 sf Storage $=20,884 \mathrm{cf}$
Plug-Flow detention time $=62.6$ min calculated for 2.512 af (98% of inflow)
Center-of-Mass det. time $=49.9 \mathrm{~min}(837.9-788.0)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	74.00^{\prime}	37,115 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum. Store (cubic-feet)
74.00	3,200	0	0
76.00	8,300	11,500	11,500
78.00	13,300	21,600	33,100
78.50	2,760	4,015	37,115
Device	Routing	Invert	Outlet Devices

Discarded OutFlow Max=0.07 cfs @ 12.47 hrs HW=76.98' (Free Discharge)
L1=Exfiltration (Exfiltration Controls 0.07 cfs)
Primary OutFlow Max=12.19 cfs @ 12.47 hrs HW=76.98' (Free Discharge)
L2=Culvert (Barrel Controls 12.19 cfs @ 4.08 fps)

Summary for Pond WET-2: Northerly Wetland

[87] Warning: Oscillations may require Finer Routing or smaller dt
[62] Warning: Exceeded Reach CB-7 OUTLET depth by 0.44' @ 12.44 hrs

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 3
Peak Elev= 76.83' @ 12.32 hrs Surf.Area= 10,382 sf Storage= $7,781 \mathrm{cf}$
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time $=36.4 \mathrm{~min}$ (822.5-786.1)

Discarded OutFlow Max=0.06 cfs @ 12.32 hrs HW=76.83' (Free Discharge)
②=Exfiltration (Exfiltration Controls 0.06 cfs)
Primary OutFlow Max=3.06 cfs @ 12.41 hrs HW=76.82' TW=76.35' (Dynamic Tailwater)
L-1=Culvert (Outlet Controls 3.06 cfs @ 2.70 fps)

Inflow Area =	0.770 ac, 66.17% Impervious, Inflow Depth = 5.71" for 100-yr event			
Inflow	4.90 cfs @	12.08 hrs, Volume=	0.366 af	
Outflow	1.96 cfs @	12.30 hrs , Volume=	0.251 af,	Atten $=60 \%$, Lag $=13.1 \mathrm{~min}$
Discarded	0.04 cfs @	12.30 hrs , Volume=	0.081 af	
Primary	1.91 cfs @	12.30 hrs , Volume=	0.169 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev=79.18' @ 12.30 hrs Surf.Area= 6,989 sf Storage $=7,127 \mathrm{cf}$
Plug-Flow detention time $=$ (not calculated: outflow precedes inflow)
Center-of-Mass det. time $=135.8 \mathrm{~min}$ (919.0-783.2)

Discarded OutFlow Max=0.04 cfs @ 12.30 hrs HW=79.18' (Free Discharge)
L1=Exfiltration (Exfiltration Controls 0.04 cfs)
Primary OutFlow Max=1.91 cfs @ 12.30 hrs HW=79.18' TW=76.91' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir (Weir Controls 1.91 cfs @ 1.06 fps)

Summary for Pond WQI-2: Water Quality Inlet

Inflow Area =	$0.309 \mathrm{ac}, 93.02 \%$ Impervious, Inflow Depth = 6.52" for 100-yr event			
Inflow	2.11 cfs @	12.08 hrs, Volume=	0.168 af	
Outflow	2.00 cfs @	12.11 hrs, Volume=	0.130 af,	Atten= 5\%, Lag= 1.6 min
Discarded	0.02 cfs @	12.11 hrs , Volume=	0.033 af	
Primary	1.99 cfs @	12.11 hrs, Volume=	0.097 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= $0.01 \mathrm{hrs} / 3$
Peak Elev= 78.02' @ 12.11 hrs Surf.Area= 2,546 sf Storage $=2,256$ cf
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time $=101.6 \mathrm{~min}$ (856.5-755.0)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	77.00	$3,564 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
77.00	1,892	0	0
78.00	2,535	2,214	2,214
78.50	2,866	1,350	3,564

Device	Routing	Invert	Outlet Devices
\#1	Discarded	77.00'	$0.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary	$77.90{ }^{\prime}$	20.0' long x 10.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
			Coef. (English) $2.492 .562 .702 .692 .682 .692 .67 \quad 2.64$

Discarded OutFlow Max=0.02 cfs @ 12.11 hrs HW=78.02' (Free Discharge)
L-1=Exfiltration (Exfiltration Controls 0.02 cfs)
Primary OutFlow Max=1.99 cfs @ 12.11 hrs HW=78.02' TW=76.48' (Dynamic Tailwater)
L2=Broad-Crested Rectangular Weir (Weir Controls $1.99 \mathrm{cfs} @ 0.85 \mathrm{fps}$)

[^0]: 6.0

 Direct Entry, Min. Tc

