No.

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC105

IMMEDIATE RESPONSE ACTION (IRA) TRANSMITTAL

Release Tracking Number
4 _ 21407

FORM Pursuant to 310 CMR 40.0424 - 40.0427 (Subpart D)

A. RELEASE OR THREAT OF RELEASE LOCATION:
1. Release Name/Location Aid: Walsh Field
Parker and Hunter Streets 2. Street Address:
3. City/Town: New Bedford 4. ZIP Code: 02740
5. UTM Coordinates: a. UTM N: <u>4611870</u> b. UTM E: <u>337959</u>
6. Check here if a Tier Classification Submittal has been provided to DEP for this disposal site. a. Tier IA b. Tier IB c. Tier IC d. Tier II
7. Check here if this location is Adequately Regulated, pursuant to 310 CMR 40.0110-0114. Specify Program (check one):
a. CERCLA b. HSWA Corrective Action c. Solid Waste Management
d. RCRA State Program (21C Facilities)
B. THIS FORM IS BEING USED TO: (check all that apply)
1. List Submittal Date of Initial IRA Written Plan (if previously submitted):
(mm/dd/yyyy) 2. Submit an Initial IRA Plan.
3. Submit a Modified IRA Plan of a previously submitted written IRA Plan.
4. Submit an Imminent Hazard Evaluation. (check one)
a. An Imminent Hazard exists in connection with this Release or Threat of Release.
b. An Imminent Hazard does not exist in connection with this Release or Threat of Release.
c. It is unknown whether an Imminent Hazard exists in connection with this Release or Threat of Release, and further assessment activities will be undertaken.
d. It is unknown whether an Imminent Hazard exists in connection with this Release or Threat of Release. However, response actions will address those conditions that could pose an Imminent Hazard.
5. Submit a request to Terminate an Active Remedial System or Response Action(s) Taken to Address an Imminent Hazard.
6. Submit an IRA Status Report.
7. Submit a Remedial Monitoring Report. (This report can only be submitted through eDEP.)
a. Type of Report: (check one)
b. Frequency of Submittal: (check all that apply)
i. A Remedial Monitoring Report(s) submitted monthly to address an Imminent Hazard.
ii. A Remedial Monitoring Report(s) submitted monthly to address a Condition of Substantial Release Migration.
iii. A Remedial Monitoring Report(s) submitted concurrent with a IRA Status Report.
c. Number of Remedial Systems and/or Monitoring Programs:
A separate BWSC105A, IRA Remedial Monitoring Report, must be filled out for each Remedial System and/or Monitoring Program addressed by this transmittal form.

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

IMMEDIATE RESPONSE ACTION (IRA) TRANSMITTAL

FORM Pursuant to 310 CMR 40.0424 - 40.0427 (Subpart D)

BV	٧S	C1	05
----	----	----	----

Release Tracking Number

4	_	21407	
---	---	-------	--

B. THIS FORM IS BEING USED TO (cont.): (check all that apply)	
8. Submit an IRA Completion Statement.	
a. Check here if future response actions addressing this Release conducted as part of the Response Actions planned or ongoing a different Release Tracking Number (RTN). When linking RTNs, reasonable likelihood that the addition of the new RTN(s) would be	t a Site that has already been Tier Classified under a rescoring via the NRS is required if there is a
b. Provide Release Tracking Number of Tier Classified Site (Prin	nary RTN):
These additional response actions must occur according to the dead RTN when making all future submittals for the site unless specifically	
9. Submit a Revised IRA Completion Statement.	
(All sections of this transmittal form must be filled o	out unless otherwise noted above)
C. RELEASE OR THREAT OF RELEASE CONDITIONS THAT WARRANT IRA: 1. Identify Media Impacted and Receptors Affected: (check all that apply) a. Air b. Basement c. Critical Exposure Pathway f. Paved Surface g. Private Well h. Public Water Sup X k. Soil l. Storm Drain m. Surface Water n. X q. Others Specify: playground/recreational area 2. Identify Oils and Hazardous Materials Released: (check all that apply) a. Oils b. Chlorinated Solvents X c. Heavy Metals d. Others Specify:	d. Groundwater e. Residence ply i. School j. Sediments
D. DESCRIPTION OF RESPONSE ACTIONS: (check all that apply, for vol	umes list cumulative amounts)
1. Assessment and/or Monitoring Only 3. Deployment of Absorbent or Containment Materials 5. Structure Venting System 7. Product or NAPL Recovery 9. Groundwater Treatment Systems 11. Bioremediation	 Temporary Covers or Caps Temporary Water Supplies Temporary Evacuation or Relocation of Residents Fencing and Sign Posting Soil Vapor Extraction Air Sparging

Revised: 2/9/2005 L2008-532

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC105

IMMEDIATE RESPONSE ACTION (IRA) TRANSMITTAL

FORM Pursuant to 310 CMR 40.0424 - 40.0427 (Subpart D)

Release Tracking Number 4 _ 21407				
	4	1-	21407	

	1 30				
		RIPTION OF RESPONSE ACTIONS (cont.):	(check all that ap	oply, for volumes list cumulative amounts)	
X	13.	Excavation of Contaminated Soils	_		
		a. Re-use, Recycling or Treatment	i. On Site	Estimated volume in cubic yards	
			ii. Off Site	Estimated volume in cubic yards	
		iia. Receiving Facility:		Town:	State:
		iib. Receiving Facility:		Town:	State:
		iii. Describe:			
		b. Store	i. On Site	Estimated volume in cubic yards	
			ii. Off Site	Estimated volume in cubic yards	
		iia. Receiving Facility:		Town:	
				_Town:	3
	X	c. Landfill			
	_		i. Cover	Estimated volume in cubic yards	
		Receiving Facility:		Town:	State:
			X ii. Disposal	Estimated volume in cubic yards 300	_
		Receiving Facility:To Be Determined		Town:	State:
	14.	Removal of Drums, Tanks or Containers:			
_					
			-		
	b.	Receiving Facility:			- State:
	c. I	Receiving Facility:		_ Town:	_State:
	15.	Removal of Other Contaminated Media:			
_	a. S	Specify Type and Volume:			
	b. F	Receiving Facility:		Town:	_State:
	c. F	Receiving Facility:		_Town:	_State:
X	16.	Other Response Actions:			
	De	scribe: Suspended Varsity field athletic	recreational ac	tivity until permanent/temporary remedy	
		in place.			
	17.	Use of Innovative Technologies:			
	De	scribe:			
		0/0/2005			

源

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

IMMEDIATE RESPONSE ACTION (IRA) TRANSMITTAL

FORM Pursuant to 310 CMR 40.0424 - 40.0427 (Subpart D)

В	V	IS	SC	:1	0	5
---	---	----	----	----	---	---

Release Tracking Number

4

_ 21407

E. LSP SIGNATURE AND STAMP:

I attest under the pains and penalties of perjury that I have personally examined and am familiar with this transmittal form, including any and all documents accompanying this submittal. In my professional opinion and judgment based upon application of (i) the standard of care in 309 CMR 4.02(1), (ii) the applicable provisions of 309 CMR 4.02(2) and (3), and 309 CMR 4.03(2), and (iii) the provisions of 309 CMR 4.03(3), to the best of my knowledge, information and belief,

- > if Section B of this form indicates that an **Immediate Response Action Plan** is being submitted, the response action(s) that is(are) the subject of this submittal (i) has (have) been developed in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is(are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000 and (iii) complies(y) with the identified provisions of all orders, permits, and approvals identified in this submittal;
- > if Section B of this form indicates that an **Imminent Hazard Evaluation** is being submitted, this Imminent Hazard Evaluation was developed in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and the assessment activity(ies) undertaken to support this Imminent Hazard Evaluation comply(ies) with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000;
- > if Section B of this form indicates that an Immediate Response Action Status Report and/or a Remedial Monitoring Report is(are) being submitted, the response action(s) that is (are) the subject of this submittal (i) is (are) being implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000 and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal;
- > if Section B of this form indicates that an Immediate Response Action Completion Statement or a request to Terminate an Active Remedial System or Response Action(s) Taken to Address an Imminent Hazard is being submitted, the response action(s) that is(are) the subject of this submittal (i) has (have) been developed and implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is(are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000 and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal.

I am aware that significant penalties may result, including, but not limited to, possible fines and imprisonment, if I submit information which I know to be false, inaccurate or materially incomplete.

1. LSP#: <u>1488</u>	
2. First Name:	3. Last Name: Sullivan
4. Telephone: (978) 656-3565 5. Ext.: _	6. FAX: (978) 453-1995
7. Signature: 2008 8. Date: (mm/dd/yyyy)	9. LSP Stamp: BAVID M. SULLIVAN No. 1438 FGISTERES STE PROFE STE PROFE

Revised: 2/9/2005 1 2008-532

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC105

IMMEDIATE RESPONSE ACTION (IRA) TRANSMITTAL

FORM Pursuant to 310 CMR 40.0424 - 40.0427 (Subpart D)

Release Tracking Number 21407

16.29.7/ N.2.7.2.7 N
I. CERTIFICATION OF PERSON UNDERTAKING IRA:
1. I, Scott Alfonse , attest under the pains and penalties of perjury (i) that I have personally examined and am familiar with the information contained in this submittal, including any and all documents accompanying this transmittal form, (ii) that, based on my inquiry of those individuals immediately responsible for obtaining the information, the material information contained in this submittal is, to the best of my knowledge and belief, true, accurate and complete, and (iii) that I am fully authorized to make this attestation on behalf of the entity legally responsible for this submittal. I/the person or entity on whose behalf this submittal is made am/is aware that there are significant penalties, including, but not limited to, possible fines and imprisonment, for willfully submitting false, inaccurate, or incomplete information.
2. By: Signature 3. Title: DIRECTOR, ENV. DEPT.
4. For: CITY OF NEW BEDFORD (Name of person or entity recorded in Section F) 5. Date: 10 28 2008 (mm/dd/yyyy)
(Name of person or entity recorded in Section F) (mm/dd/yyyy)
6. Check here if the address of the person providing certification is different from address recorded in Section F.
7. Street:
8. City/Town: 9. State: 10. ZIP Code:
11. Telephone: 12. Ext.: 13. FAX:
YOU ARE SUBJECT TO AN ANNUAL COMPLIANCE ASSURANCE FEE OF UP TO \$10,000 PER BILLABLE YEAR FOR THIS DISPOSAL SITE. YOU MUST LEGIBLY COMPLETE ALL, RELEVANT SECTIONS OF THIS FORM OR DEP MAY RETURN THE DOCUMENT AS INCOMPLETE. IF YOU SUBMIT AN INCOMPLETE FORM, YOU MAY BE PENALIZED FOR MISSING A REQUIRED DEADLINE.
Date Stamp (DEP USE ONLY:)

Revised: 2/9/2005

IMMEDIATE RESPONSE ACTION PLAN

Walsh Field – Varsity Baseball Diamond Soil Removal Parker and Hunter Streets, New Bedford, Massachusetts Release Tracking Number 4-21407

Prepared for:

City of New Bedford 133 William Street New Bedford, Massachusetts 02740

Prepared by:

TRC Environmental Corporation Wannalancit Mills 650 Suffolk Street Lowell, Massachusetts 01854 (978) 970-5600

November 2008

IMMEDIATE RESPONSE ACTION PLAN

Walsh Field – Varsity Baseball Diamond Soil Removal Parker and Hunter Streets, New Bedford, Massachusetts Release Tracking Number 4-21407

Prepared for:

City of New Bedford

133 William Street New Bedford, Massachusetts 02740

Prepared by:

TRC Environmental Corporation

Wannalancit Mills 650 Suffolk Street Lowell, Massachusetts 01854 (978) 970-5600

November 2008

TABLE OF CONTENTS

1.0	INTRODUCTION	1-1
2.0	PERSON ASSUMING RESPONSIBILITY FOR THE IRA	2-1
3.0	RELEASE DESCRIPTION, SITE CONDITIONS & SURROUNDING RECEPTORS	3-1
	Site Description Surrounding Receptors Release Description	3-1 3-1 3-1
4.0	IMMEDIATE RESPONSE ACTIOSN UNDERTAKEN TO DATE	
4.1 4.2 4.3 4.4	Release Reporting Immediate Response Action Imminent Hazard Analysis Immediate Response Action Completion Report	4-1 4-1 4-1
5.0	WHY AN IMMEDIATE RESPONSE ACTION IS REQUIRED	5-1
6.0	OBJECTIVE, PLAN & IMPLEMENTATION SCHEDULE	6-1
_	Objective	6-1 6-1 6-1
7.0	REMEDIATION WASTE MANAGEMENT STATEMENT	
7.1 7.2	On-Site Soil ManagementOff-Site Disposal	7-1
8.0	ENVIRONMENTAL MONITORING PLAN	
8 8.2	Field Screening and Post-Excavation Sampling Associated with Soil Removal 1.1 Post-Excavation Sampling of Soils	8-1 8-1 8-1
8 8.3	8.2.1.2 Contingent Integrated Arsenic Air Samples .2.2 VOC Air Monitoring	8-2 8-2
9.0	FEDERAL, STATE & LOCAL PERMITS	9-1
9.1 9.2	Federal Permit RequirementsState Permit Requirements	

i

9.3 Local Permit Requirements	9-1
10.0 CEAL O CICNATUDE OF LICENICED CIDE DEOCEONIAL	
10.0 SEAL & SIGNATURE OF LICENSED SITE PROFESSIONAL	10-1
11.0 OTHER RELEVANT INFORMATION	11-1
11.1 Public Involvement	
12.0 REFERENCES	12-1
TABLES	
Table 1: Summary of Analytical Results for Soil – Junior Varsity Baseball Diar Table 2: Summary of Analytical Results for Soil – Varsity Baseball Diamond	nond
Table 3: Summary of Analytical Results for TCLP Analysis - 2008	
FIGURES	
Figure 1: Site Aerial Photograph	
Figure 2: Analytical Results Summary Map – Junior Varsity Baseball Diamond	
Figure 3: Analytical Results Summary Map – Varsity Baseball Diamond Excavation Plan	
APPENDICES	
Appendix A: Imminent Hazard Evaluation Summary	
 Appendix B: Summary of TRC Analytical Data for Walsh Field Appendix C: Copies of Notification Letters to City of New Bedford Mayor and Boa Health 	rd of
Appendix D: Dust Exposure Calculation Worksheet	

1.0 INTRODUCTION

On behalf of the City of New Bedford, Massachusetts (the "City"), TRC Environmental Corporation (TRC) has prepared this Immediate Response Action (IRA) Plan in accordance with 310 CMR 40.0424 of the Massachusetts Contingency Plan (MCP). The purpose of this IRA Plan is to outline the risk reduction measures that will be undertaken by the City at the Walsh Field property located adjacent to the intersection of Parker and Hunter Streets in New Bedford, Massachusetts, specifically at the Varsity Baseball Diamond (the "Site"). The Massachusetts Department of Environmental Protection (MassDEP) has assigned Release Tracking Number (RTN) 4-21407 to the site.

Work to be performed under this IRA includes:

- Removing the surface soil (approximate depth of 6 inches) within the Varsity Baseball
 Diamond that contains elevated concentrations of arsenic; and
- Replacing the removed surface soil with appropriately documented contaminant-free soil.

The remaining sections of this document include information pertaining to the party assuming responsibility for the IRA (Section 2), release description, site conditions and surrounding receptors (Section 3), description of IRA activities to date (Section 4), the reason the IRA is required (Section 5) and the objective, plan and implementation schedule of the IRA (Section 6). In addition, information pertaining to remediation waste management (Section 7), environmental monitoring (Section 8), and Federal, State, and Local permits (Section 9) is included. This document also includes the seal and signature of the Licensed Site Professional (Section 10), other relevant information (Section 11) and references cited in preparing this document (Section 12).

2.0 PERSON ASSUMING RESPONSIBILITY FOR THE IRA

The party undertaking this IRA is:

The City of New Bedford, Massachusetts 133 William Street New Bedford, MA 02740 Contact: Mr. Scott Alfonse (508) 979-1487

Relationship to Site: Responsible Party (RP)

3.0 RELEASE DESCRIPTION, SITE CONDITIONS & SURROUNDING RECEPTORS

3.1 Site Description

The Varsity Baseball Diamond, located in the northwestern corner of Walsh Field, is located to the southeast of the intersection of Parker and Hunter Streets in New Bedford, Massachusetts (see Figure 1). The Site and the surrounding areas are flat.

3.2 Surrounding Receptors

Walsh Field lies within 500 feet of residential dwellings and a school. The Varsity Baseball Diamond is used for practices and games during the spring and summer baseball season (i.e., high school, local leagues, and Cape Cod League).

Groundwater categories at Walsh Field include actual or potential GW-2, depending upon proximity to occupied structures (groundwater is expected to be less than 15 feet below ground surface based on data from nearby locations), and GW-3, which applies to all groundwater throughout the Commonwealth. However, groundwater impacts from contaminants associated with Walsh Field are not expected. For example, recent groundwater monitoring conducted at the Keith Middle School (KMS) in May 2008 (TRC, 2008) in three monitoring wells did not detect site contaminants above groundwater standards or MCP Reportable Concentrations (RCs).

Based on review of on-line MassDEP Priority Resource Map data available from Massachusetts Geographic Information System (MassGIS), the Site is not located within a Current or Potential Drinking Water Source Area (MassGIS, 2008).

Walsh Field is not located in a wetland resource area. No other documented sensitive ecological receptor areas (e.g., Areas of Critical Environmental Concern [ACECs]) are known to be located at or near the site.

3.3 Release Description

The contaminated soil within the Varsity Baseball Diamond was encountered during a site investigation of the Walsh Field. The City of New Bedford believes the contamination is associated with soil imported to refurbish the Varsity Baseball Diamond in the recent past; however, investigations in this regard are on-going and no definitive conclusion has been reached.

3.3.1 Investigation History

In July and August 2008, TRC conducted soil sampling at Walsh Field. The work initially performed was conducted in accordance with a TRC-prepared scope of work, approved by the City, for addressing data gaps identified in the delineation of the disposal area impacting the New Bedford High School (NBHS) property and, potentially, other neighboring properties.

TRC's overall field data collection work at Walsh Field was conducted in three general phases.

- The first phase was a soil boring program conducted to support remedial planning and to address potential data gaps in work previously performed by others across Walsh field (included, but not limited to, the baseball diamonds). This category of work was performed by TRC on July 9th through the 15th, and August 12th, 2008. During this phase of work, soil samples were found to contain concentrations of arsenic in excess of the potential IH threshold in two general locations, the Varsity and Junior Varsity Baseball Diamonds.
- The second phase of work was conducted as a follow-up to the potential IH condition detected at the Varsity and Junior Varsity Baseball Diamonds. This category of work, concluded on July 31, 2008 focused principally on surficial soil sampling at the Varsity and Junior Varsity Baseball Diamonds conducted as part of MassDEP orally-approved IRA Assessment Activities. Table 1 presents a summary of analytical results for the Junior Varsity Baseball Diamond and Table 2 presents a summary of analytical results for the Varsity Baseball Diamond. Figure 2 presents the sampling locations for the Junior Varsity Baseball Diamond and Figure 3 presents the sampling locations for the Varsity Baseball Diamond.
- The third phase, conducted on September 30, 2008, involved collecting eighteen (18) additional surficial soil samples at the Varsity Baseball Diamond in order to determine the lateral extent of arsenic-contaminated surface soil. The additional analytical data for arsenic was gathered on September 30, 2008 to improve delineation for remedial planning. Table 2 presents these additional analytical results and Figure 3 also presents these sampling locations. Table 3 summarizes analytical results for Toxicity Characteristic Leaching Procedure (TCLP) arsenic analysis for select samples from the Varsity Baseball Diamond.

As noted in the Imminent Hazard (IH) evaluation for the Junior Varsity Baseball Diamond in Appendix A, the estimated cancer risk and noncarcinogenic hazard for the young child recreational user do not exceed the MCP risk limits for an IH of an excess lifetime cancer risk (ELCR) of 1E-05 and a hazard index (HI) of 10. At the Varsity Baseball Diamond, the estimated cancer risk (3E-05) exceeds the MCP IH criterion, even though the HI of 7 does not exceed the MCP IH limit of 10. The IH is identified at the Varsity Baseball Diamond primarily due to the exposure pathway of the ingestion of arsenic-containing surface soil. See Appendix A for additional information on the IH condition. As a result, this IRA plan focuses exclusively on the Varsity Baseball Diamond.

3.3.2 Arsenic Concentrations at the Varsity Field

The tabulated results of laboratory analysis of soil samples collected from Walsh Field in July, August and September 2008 are summarized in Appendix B. Three soil samples collected during TRC's first phase of work (SB-234, SB-252, and SB-253) indicated concentrations in excess of the MassDEP potential IH threshold of 40 mg/kg in the top six inches of soil (310 CMR 40.0321[2][b]). Eight additional samples collected during TRC's second phase contained

arsenic above the potential IH threshold: SB-252A (0-0.5 feet), SB252B (0-0.5 feet), SB-252C (0-0.5 feet), SB252D (0-0.5 feet), SB-253A (0-0.5 feet), SB-253B (0-0.5 feet), SB-253C (0-0.5 feet), and SB-253D (0-0.5 feet). All of the IH exceedances were found to be in the top 6 inches of base path/infield soil at the Varsity Baseball Diamond. The additional samples collected within grassed areas of the Varsity field, WF-1 through WF-18, all contained concentrations of arsenic below the 40 mg/kg IH threshold.

Note that TRC also collected samples from stockpiled soil thought to have been used to create the Varsity and Junior Varsity Baseball Diamonds and the chalk used to define the base paths in an attempt to diagnose the source of the arsenic contamination. These results are also summarized in Appendix B.

4.0 IMMEDIATE RESPONSE ACTIONS UNDERTAKEN TO DATE

4.1 Release Reporting

The MCP RTN associated with the Site is RTN 4-21407 and is related to a potential IH condition associated with the Varsity and Junior Varsity Baseball Diamonds that triggered a 2-hour regulatory reporting obligation to the MassDEP in accordance with 310 CMR 40.0321(2) and 310 CMR 40.0311(7). The potential IH condition was reported to the MassDEP by TRC via telephone in conjunction with the City of New Bedford on July 30, 2008. MassDEP orally approved Immediate Response Action (IRA) assessment activities and assigned RTN 4-21407.

4.2 Immediate Response Action

At the time of oral notification, MassDEP approved the following response action as an IRA:

Assessment and monitoring only

4.3 Imminent Hazard Analysis

An IH evaluation, which is provided in Appendix A, was initiated within 14 days of obtaining knowledge of the potential IH condition. For each Baseball Diamond, TRC's risk assessment specialist conducted the IH calculations using an Upper Confidence Limit (UCL) on the arithmetic mean as the Exposure Point Concentration (EPC) for arsenic, but maximum detected concentrations as EPCs for other contaminants of concern such as polychlorinated biphenyl (PCBs), lead, silver, and zinc. TRC also used site-specific exposure assumptions that were more health-protective than used by MassDEP for a park visitor scenario, and default MassDEP toxicity criteria. TRC performed the IH analysis on August 8, 2008, satisfying the IH evaluation initiation timeline under the MCP. The risk assessment calculations indicate an IH exists at the Varsity Baseball Diamond, but not at the Junior Varsity Baseball Diamond.

4.4 Immediate Response Action Completion Report

TRC submitted an IRA Completion Report to MassDEP on September 26, 2008. The City of New Bedford locked the fence around the periphery Varsity Baseball Field and posted "No Trespassing" signs as a precaution, thus controlling potential exposures and mitigating the potential IH condition that gave rise to the IRA. Nonetheless, MassDEP has advised that response actions conducted to further address the IH condition at this Site would preferably be conducted as an IRA.

5.0 WHY AN IMMEDIATE RESPONSE ACTION IS REQUIRED

This IRA is required to address the detection of arsenic in surface soil at the Varsity Baseball Diamond in excess of a concentration indicating an IH. The IH condition is associated with the concentration, depth below surface, and proximity to a school or residential dwelling of the soil samples containing arsenic above the potential IH evaluation threshold. Although the soils are no longer freely accessible due to a locked perimeter fence, representatives of MassDEP recommended conducting further response actions as an IRA, rather than an other MCP remedial vehicle, such as a Release Abatement Measure (RAM). Consistent with that advice, TRC prepared an IRA Plan to describe the proposed risk reduction measures for this Site.

6.0 OBJECTIVE, PLAN & IMPLEMENTATION SCHEDULE

6.1 Objective

The objectives of this IRA are:

- 1. To remove the top 6 inches of base path, mound, and infield soil within the Varsity Baseball Diamond that contain elevated concentrations of arsenic;
- 2. To remove additional soil around the outer perimeter of the infield extending 5 feet into the outfield and foul territory to a depth of 6-inches; and
- 3. To replace the removed surface soil with appropriately documented, contaminant-free soil.

The City of New Bedford is anticipating that this work will begin on or about the week ending November 7, 2008 and will be finished by December 20, 2008. A collateral objective is to restore the Varsity Baseball Diamond to working order for the 2009 baseball season.

6.2 Plan

6.2.1 Soil Removal

TRC anticipates that approximately 300 cubic yards of infield base path soil contaminated with arsenic will be excavated as part of this IRA. The locations of the planned arsenic removal activities are shown on Figure 4. Excavation of arsenic-impacted soil will extend to a depth of 6 inches over the area shown in Figure 4 to address the IH condition.

Arsenic-impacted soil will be excavated and stockpiled as needed on or adjacent to the Varsity Baseball Diamond until properly characterized for off-site disposal. The stockpile will be managed as discussed in Section 5.1.

Note that if currently available in-situ characterization data satisfy off-Site facility acceptance criteria, and facility acceptance is granted prior to the start of work, soil will be "live loaded" onto trucks for immediate off-site disposal. Otherwise, soil will be managed in a stockpile until shipped off-Site.

6.2.2 Varsity Field Reconstruction

Prior to backfilling, a minimum of 5 confirmatory soil samples will be collected from the excavated area and will be analyzed for arsenic. These data will be collected to document conditions remaining at the Site and will not be used to direct activities being conducted under this IRA.

Backfill will be considered contaminant-free soil if the source has documentation that the following analyses were performed and any detections encountered were below the current MCP Method 1, S-1 standards:

- Volatile Organic Compounds via SW-846 Method 8260B
- Semivolatile Organic Compounds via SW-846 Method 8270C
- Volatile Petroleum Hydrocarbons/Extractable Petroleum Hydrocarbons via MassDEP methodologies
- Polychlorinated Biphenyls via SW-846 Method 8082
- RCRA-8 Metals (via SW-846 Methods 6010B/7471A)
- Pesticides/Herbicides via SW-846 Methods 8081^a/8151A

Lacking such documentation, the City of New Bedford may undertake appropriate sampling and analysis to guard against importation of contaminated soil and evaluate the suitability of the soil for its intended use.

6.3 Implementation Schedule

The IRA activities associated with the excavation and removal of arsenic contaminated soil are scheduled to begin on or about the week ending October 31, 2008 and will be finished by December 20, 2008.

7.0 REMEDIATION WASTE MANAGEMENT STATEMENT

This section describes procedures for the on-site management and off-site disposal of remediation waste generated during this IRA. Remediation waste management will be conducted in accordance with the applicable sections of the MCP, MassDEP *Interim Remediation Waste Management Policy for Petroleum Contaminated Soils*, WSC-94-400, MassDEP Policy COMM#97-001 *Reuse and Disposal of Contaminated Soils and Sediments at Massachusetts Landfills*.

The soil excavated from the localized area containing elevated arsenic at the Varsity Baseball Diamond as described in Section 4.0 of this IRA Plan will be transported off-site for disposal. The total volume of excavated soil to be transported from the Site as part of this IRA is approximately 300 cubic yards.

7.1 On-Site Soil Management

Excavated soils associated with the IRA will be temporarily stored as needed on or adjacent to the Varsity Baseball Field, or potentially at another secure City property. The soil will be stockpiled on a minimum of 6-mil-thick polyethylene. Stockpiled materials will also be securely covered at the end of each work day or during periods of prolonged inactivity with a minimum of 6-mil-thick polyethylene overlapped and weighted to form a continuous waterproof barrier over the material. The cover will be maintained throughout the stockpile period to control water entering the stockpiled materials and to limit dust generation.

Walsh Field is secured by a fence around the perimeter that limits unauthorized entry and contact with stored materials by trespassers. However, since portions of Walsh Field are still used for athletic events (e.g., team practices, games), temporary controls such as fencing will also be erected around the soil stockpile as needed for the duration of on-site soil management. Temporary fencing would also be used if stockpiled at another City property.

Dust generation is not expected to be an issue since soil conditions are expected to be moist during the period of time planned for the work. However, as noted in Section 8.2.1.2, the Contractor will have the ability to implement dust control measures, such as water sprays, if warranted based on field observations.

7.2 Off-Site Disposal

Excavated soil that will be transported from the Site will be characterized as appropriate for off-site disposal at a suitable facility. Several suitable off-site facilities are being considered, including Crapo Hill Landfill in Dartmouth, Massachusetts, but the final facility location has not been finalized. Existing soil sample results (see Tables 1 through 3) will be used for off-site disposal characterization to the extent possible. The existing Site data will be supplemented as necessary to satisfy facility-specific acceptance criteria.

Once suitably characterized, the soil will be transported from the site for off-site disposal. Transportation of all materials from the site will be performed using a MassDEP Bill of Lading

(BOL), Material Shipping Record (MSR) or Hazardous Waste Manifest, as appropriate, and will be performed within 120 days of stockpiling in accordance with 310 CMR 40.0030 of the MCP.

The transport of contaminated materials from the site to the disposal facility will be in accordance with all United States Department of Transportation (DOT), United States Environmental Protection Agency (EPA), and MassDEP regulations, as appropriate. The hauler(s) will be licensed in all states affected by the transport of Site soil.

8.0 ENVIRONMENTAL MONITORING PLAN

TRC personnel will be onsite during the excavation and off-site transport for disposal of arsenic-contaminated soil and will conduct environmental monitoring as described herein.

8.1 Field Screening and Post-Excavation Sampling Associated with Soil Removal

Field screening of soil and post-excavation sampling will be conducted as part of the IRA to monitor soil conditions and excavation progress.

8.1.1 Post-Excavation Sampling of Soils

Up to five post-excavation soil samples will be collected from the sidewalls and base of the excavations and submitted to an environmental analytical laboratory for arsenic analysis to evaluate the outcome of the IRA and/or document what remains in-situ to support potential future remedial planning.

8.1.2 Jar-Headspace Field Screening of Soils

Volatile Organic Compounds (VOCs) are not a contaminant of concern at Walsh Field or at the Varsity Baseball Diamond. As a precaution, soil samples will be periodically screened via the MassDEP jar-headspace method for the potential presence of VOCs based on professional judgment.

8.2 Air Monitoring

On-site air monitoring will be conducted to evaluate Site working conditions to minimize exposures to workers and nearby residents.

8.2.1 Arsenic Air Monitoring

Air monitoring for arsenic will be performed using a combination of real-time dust monitoring and contingent integrated samples near the work area and downwind of the work area near potential human receptor locations.

8.2.1.1 Real-Time Dust Monitoring

When potentially contaminated soils are encountered during IRA-related contaminated soil excavation and management activities, real-time field screening of breathing zone dust levels will be conducted using direct reading instruments that are designed to monitor air quality on a real-time basis. A dust monitoring instrument will be used to monitor community dust levels downwind of the excavation. The dust monitoring units will be TSI DustrakTM units, or equivalent, equipment with size-selective inlet for particles of 10 micrometers in diameter or less (PM₁₀). Background samples will be collected for at least 15 minutes at each location prior to the start of site activities. The continuous dust monitor uses a light scattering photometer to quantify particles and converts the counts to a concentration in units of milligrams per cubic

meter (mg/m³). This instrumentation has an accuracy of 0.001 mg/m³. The dust monitoring instruments will be zeroed daily before use and at the end of the day. Data will be logged at 60-second intervals and will be monitored periodically by field personnel during IRA-related excavation activities. Data will be downloaded daily.

8.2.1.2 Contingent Integrated Arsenic Air Samples

Integrated low-volume air samples will be collected in the immediate downwind residential area as a contingency using battery powered pumps. Samples will be submitted for arsenic analysis at an American Industrial Hygiene Association (AIHA) certified laboratory if sustained ambient dust levels exceed the EPA National Ambient Air Quality Standard (NAAQS) of $150 \text{ } ug/m^3$ at the downwind sampling locations. A sustained reading would consist of a reading lasting 15 minutes or longer.

8.2.2 VOC Air Monitoring

VOC air monitoring will be performed using a photo-ionization detector (PID) to monitor for the presence of VOCs within the work area breathing zone. Based on previously existing site data, significant VOC emissions are not expected during construction, but field monitoring of the breathing zone for VOCs will be conducted as a precaution.

8.3 Action Levels

Instrument readings from breathing zones within the work zone will be used to help evaluate the need for instituting additional safety measures such as dust control (e.g., water sprays) or upgrading personal protective equipment (PPE) levels.

The work area Action Level for dust is 5 mg/m³ above background. This value is based on the maximum soil concentrations for metals collected to date with a 50-percent safety margin. This conservative model assumes that the airborne dust is representative of the contaminants identified in Site soil (see Appendix D for supporting calculations).

The ambient Action Level is based on the EPA 24 hour NAAQS for PM_{10} particulate of 150 ug/m³. If necessary, the integrated low-volume air samples will be submitted for laboratory analysis of arsenic. TRC anticipates achieving a laboratory reporting limit of $0.0058 \,\mu\text{g/m}^3$ for arsenic, which would allow evaluation of the results relative to a cancer risk of 1 x 10^{-5} and a HI of 1.

9.0 FEDERAL, STATE & LOCAL PERMITS

9.1 Federal Permit Requirements

There are no known Federal permit requirements.

9.2 State Permit Requirements

There are no known State permit requirements.

9.3 Local Permit Requirements

There are no known Local permit requirements.

9.4 Miscellaneous Fees, Notices, and Transportation Documentation

Massachusetts Dig-Safe must be notified at least 72 hours prior to commencing the excavation activities described in this IRA Plan.

All soil material that is transported from the site must be transported under a MassDEP BOL that contains the signature and seal of the LSP of record for the site, or under a MSR or hazardous waste manifest as appropriate.

Disposal of the soil at Crapo Hill Landfill in Dartmouth, Massachusetts, if allowed, will require the submittal and MassDEP approval of a BWP SW 14 Special Waste Determination (Major).

10.0 SEAL & SIGNATURE OF LICENSED SITE PROFESSIONAL

The Licensed Site Professional (LSP) overseeing this IRA is:

Mr. David M. Sullivan, LSP, CHMM LSP License Number: 1488 TRC Environmental Corporation Wannalancit Mills 650 Suffolk Street Lowell, Massachusetts 01854 (978) 656-3565

This IRA Plan has been prepared in accordance with 310 CMR 40.0424 as set forth in the MCP.

David M. Sullivan, LSP, CHMM

TRC Environmental Corporation

Licensed Site Professional No. 1488

u/3/2008

Date

Stamp

11.0 OTHER RELEVANT INFORMATION

11.1 Public Involvement

As required by 310 CMR 40.1403(3)(b), the Mayor and the Board of Health for the City of New Bedford were notified in writing of the proposed IRA activities. Copies of the notification letters that were sent to the Mayor and Board of Health are provided in Appendix C.

11.2 Special Waste Determination

As noted in Section 7.4, disposal of the soil at Crapo Hill Landfill in Dartmouth, Massachusetts, if allowed, will require the submittal and approval of a BWP SW 14 Special Waste Determination (Major).

12.0 REFERENCES

MassGIS, 2008 Massachusetts Geographic Information System (MassGIS), On-line MassDEP

Priority Resource Map. Accessed July 28, 2008. http://maps.massgis.state.ma.us/21e/viewer.htm

TRC, 2008 Letter to David Fredette, PE, City of New Bedford Department of

Environmental Stewardship from David M. Sullivan, LSP, CHMM, TRC Environmental Corporation, Lowell, Massachusetts. Re: Groundwater

Monitoring Results, Keith Middle School, New Bedford, Massachusetts. June

11, 2008.

TABLES

Table 1
Summary of Analytical Results for Soil Samples - 2008
Junior Varsity Baseball Diamond
New Bedford, Massachusetts

					March Control of the	Sam	nple Location:	SB	-234	SB-234-A	SB-234-B	SB-234-C	SB-234-D	SB-	-235	SB-235-A	SB-235-B	SB-	-236	SB-236-A	SB	-237	SB-237-A
Analysis	Analyte					Samp!	ole Depth (ft.):	0.5	2	0-0.5	0-0.5	0-0.5	0-0.5	0.5	2	0-0.5	0-0.5	0.5	2	0-0.5	0.5	2	0-0.5
							Sample Date:	7/10/2008	7/10/2008	7/31/2008	7/31/2008	7/31/2008	7/31/2008	7/10/2008	7/10/2008	7/31/2008	7/31/2008	7/10/2008	7/10/2008	7/31/2008	7/10/2008	7/10/2008	7/31/2008
<u></u>		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1	TSCA	 '		L											<u> </u>		
PAHs					J			1		'	(1
(mg/kg)	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	0.192 U	0.203 U	NA	NA NA	NA	NA NA	0.176 U	0.170 U	NA	NA.	0.174 U	0.169 U	NA	0.177 U	0.172 U	NA
	Acenaphthylene	600	10	600	10	1	N/A	0.192 U	0.203 U	NA	NA	NA	NA	0.176 U	0.170 U	NA	NA	0.174 U	0.169 U	NA	0.177 U	0.172 U	NA
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	0.192 U	0.203 U	NA	NA	ÑΑ	NA	0.176 U	0.170 U	NA	NA	0.174 U	0.169 U	NA	0.177 U	0.172 U	NA
	Benzo(a)anthracene	7	7	40	40	7	N/A	0.192 U	0.203 U	NA NA	NA	NA	NA	0.176 U	0.170 U	NA	NA	0.448	0.169 U	NA	0.177 U	0.172 U	NA
II .	Benzo(a)pyrene	2	2	4	4	2	N/A	0.192 U	0.203 U	NA	NA	NA	NA	0.176 U	0.170 U	NA	NA	0.402	0.169 U	NA	0.177 U	0.172 U	NA
11	Benzo(b)fluoranthene	7	7	40	40	7	N/A	0.192 U	0.203 U	NA	NA	NA.	NA	0.176 U	0.170 U	NA	NA	0.504	0.169 U	NA	0.177 U	0.172 U	NA
EI .	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	0.192 U	0.203 U	NA	NA	NA	NA	0.176 U	0.170 U	NA	NA	0.282	0.169 U	ÑΑ	0.177 U	0.172 U	NA
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	0.192 U	0.203 U	NA	NA NA	NA	NA	0.176 U	0.170 U	NA	NA	0.174 U	0.169 U	NA	0.177 U	0.172 U	NA
	Chrysene	70	70	400	400	70	N/A	0.192 U	0.215	NA	NA	NA	NA NA	0.176 U	0.170 U	NA	NA	0.482	0.169 U	NA	0.177 U	0.172 U	NA
	Dibenz(a,h)anthracene	0.7	0.7	4	4	0.7	N/A	0.192 U	0.203 U	NA	NA	NA	NA NA	0.176 U	0.170 U	NA	NA	0.174 U	0.169 U	NA	0.177 U	0.172 U	NA
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	0.192 U	0.294	NA	NA	NA	NA	0.176 U	0.170 U	NA	NA	0.787	0.169 U	NA	0.177 U	0.172 U	NA
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	0.192 U	0.203 U	NA	NA	NA.	NA	0.176 U	0.170 U	NA	NA	0.174 U	0.169 U	NA	0.177 U	0.172 U	NA
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	0.192 U	0.203 U	NA	NA	NA	NA	0.176 U	0.170 U	NA	NA	0.317	0.169 U	NA	0.177 U	0.172 U	NA
	2-Methylnaphthalene	80	300	80	500	0.7	N/A	0.192 U	0.203 U	NA	NA	NA.	NA	0.176 U	0.170 U	NA	NA	0.174 U	0.169 U	NA	0.177 U	0.172 U	NA
	Naphthalene	40	500	40	1,000	4	N/A	0.192 U	0.203 U	NA	NA	NA	NA	0.176 U	0.170 U	NA	NA	0.174 U	0.169 U	NA	0.177 U	0.172 U	NA
	Phenanthrene	500	500	1,000	1,000	10	N/A	0.192 U	0.203 U	NA	NA NA	NA	NA NA	0.176 U	0.170 U	NA	NA	1.10	0.169 U	NA	0.177 U	0.172 U	NA
	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	0.216	0.429	NA	NA	NA	NA	0.176 U	0.170 U	NA NA	NA	1.05	0.169 U	NA	0.177 U	0.172 U	NA
PCBs			1 .	'		1		l		'	!										1 '	, ,	
(mg/kg)	Aroclor 1016	2	2	3	3	2	1	0.0570 U	0.0578 U	ŇΑ	NA	NA	NA	0.0515 U	0.0500 U	NA	NA	0.0514 U	0.0500 U	NA	0.0522 U	0.0501 U	NA
İ	Aroclor 1221	2	2	3	3	2	1	0.0570 U	0.0578 U	NA	NA	NA	NA	0.0515 U	0.0500 U	NA	NA	0.0514 U	0.0500 U	NA	0.0522 U	0.0501 U	NA
	Aroclor 1232	2	2	3	3	2		0.0570 U	0.0578 U	NA	NA	NA	NA NA	0.0515 U	0.0500 U	NA	NA	0.0514 U	0.0500 U	NA	0.0522 U	0.0501 U	NA
	Aroclor 1242	2	2	3	3	2	1	0.0570 U	0.0578 U	NA	NA NA	NA	NA	0.0515 U	0.0500 U	NA	NA	0.0514 U	0.0500 U	NA	0.0522 U	0.0501 U	NA
	Aroclor 1248	2 1	2	3	3	2		0.0570 U	0.0578 U	NA	NA	NA	NA NA	0.0515 U	0.0500 U	NA	NA	0.0514 U	0.0500 U	NA	0.0522 U	0.0501 U	NA
	Aroclor 1254	2 1	2	3	3	2 1	l l	0.0570 U	0.0578 U	NA	NA	NA	NA	0.0515 U	0.0500 U	NA	NA	0.0514 U	0.0500 U	NA	0.0522 U	0.0501 U	NA
	Aroclor 1260	2 2	2 2	3	3 3	2	1	0.108 J	0.0578 U	NA	NA NA	NA NA	NA NA	0.0515 U	0.0500 U	NA	NA	0.0555 J	0.0500 U	NA	0.0522 U	0.0501 U	ΝA
	Total PCBs			3	3	Z		0.108 J	0.0578 U	NA	NA	NA	NA	0.0515 U	0.0500 U	NA	NA	0.0555 J	0.0500 U	NA	0.0522 U	0.0501 U	NA.
Metals	1		1 00	'		1 00				'		1 !											1
(mg/kg)	Antimony	20	20	30	30	20	N/A	4.60 U	4.85 U	NA 11.0	NA NA	NA TOO	NA NA	4.22 U	4.06 U	NA	NA	4.16 U	4.05 U	NA	4.24 U	4.11 U	NA
	Arsenic	20	20	20	20	20	N/A	42.1 32.5	11.9	11.2	3.88	7.86	9.32	7.07	3.08	9.20	12.3	7.24	2.54 U	39.8	2.75	2.93	30.1
	Barium Beryllium	1,000 100	1,000	3,000 200	3,000 200	1,000	N/A	0.29 U	221 0.70	NA NA	NA NA	NA NA	NA NA	26.7	16.0	NA	NA	31.8	14.2	NA	50.0	19.2	NA
	Cadmium	2	2	30	30	100	N/A N/A	0.29 0	0.70 0.31 U	NA NA	NA NA	NA NA	NA NA	0.27 U 0.34	0.32	NA	NA	0.26 U	0.35	NA	0.27 U	0.42	NA
	Chromium	30	30	200	200	30	N/A N/A	19.9	9.69	NA NA	NA NA	NA NA	NA NA	13.9	0.26 U	NA NA	NA NA	0.38	0.26 U	NA	0.56	0.26 U	NA
	Lead	300	300	300	300	300	N/A N/A	19.9 56.9	152	NA NA	NA NA	NA NA	NA NA	47.5	5.71 6.65	NA NA	NA NA	22.5	6.13	NA	27.6	7.88	NA
	Nickel	20	20	700	700	20	N/A N/A	8.10	12.4	NA NA	NA NA	NA NA	NA NA	5.89	3.43	NA NA	NA NA	44.6	3.92	NA	269	3.74	NA
H	Selenium	400	400	800	800	400	N/A N/A	5.75 U	6.07 U	NA NA	NA NA	NA NA	NA NA	5.89 5.27 U	1			6.73	4.36	NA	6.03	4.33	NA NA
Ħ	Silver	100	100	200	200	100	N/A N/A	3.16	1.15	NA NA	NA NA	NA NA	NA NA	2.48	5.08 U 0.69	NA NA	NA NA	5.20 U	5.07 U	NA NA	5.30 U	5.14 U	NA NA
	Thallium	8	8	60	60	100	N/A N/A	3.45 U	3.64 U	NA NA	NA NA	NA NA	NA NA	2.48 3.17 U	3.05 U	NA NA	NA NA	2.82	0.71	NA NA	4.68	0.87	NA NA
	Vanadium	600	600	1,000	1,000	600	N/A N/A	25,3	22.4	NA NA	NA NA	NA NA	1 1	20.3	3.05 U 8.82		NA NA	3.12 U	3.04 U	NA NA	3.18 U	3.09 U	NA NA
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A N/A	33.7	63.0	NA NA	NA NA	NA NA	NA NA	20.3 34.6	14.7	. NA	NA NA	20.7	8.12	NA NA	11.4	11.2	NA NA
	Mercury	2,300	2,300	3,000	3,000	2,500	N/A N/A	0.199	0.065	NA NA	1 }	NA NA		0.166	0.032	NA NA	NA NA	31.7	18.4	NA	118	16.1	NA NA
[Imacury			<u> </u>	1 30		L IN/A	U.139	0.005	NA	NA	NA	NA NA	0.100	0.032	NA	NA	0.189	0.027	NA J	0.217	0.019	NA

Motos

All units in mg/kg unless otherwise specified.

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

J - Estimated value.

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method I standards.

PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria.

Table 2
Summary of Analytical Results for Soil Samples - 2008
Varsity Baseball Diamond
New Bedford, Massachusetts

						Sam	ple Location:	SB-	252	SB-252-A	SB-252-B	SB-252-C	SB-252-D	SB-	253	SB-253-A	SB-253-B	SB-253-C	SB-2	53-D	SB-253-E
Analysis	Analyte						le Depth (ft.):	0.5	2	0-0.5	0-0.5	0-0.5	0-0.5	0.5	2	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
Í							Sample Date:	7/15/2008	7/15/2008	7/31/2008	7/31/2008	7/31/2008	7/31/2008	7/15/2008	7/15/2008	7/31/2008	7/31/2008	7/31/2008	7/31/2008	7/31/2008	7/31/2008
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1*	TSCA													Field Dup	
PAHs		:		-	1	1	1														
(mg/kg)	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	0.216 U	0.191 U	NA	NA	NA	NA	0.179 U	0.193 U	NA	NA	NA	NA .	NA	NA
-	Acenaphthylene	600	10	600	10	1	N/A	0.216 U	0.191 U	NA	NA	NA	NA	0.179 U	0.193 U	NA	NA	NA	NA	NA	NA
1	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	0.216 U	0.191 U	NA	NA	NA	NA	0.179 U	0.193 U	NA	NA	NA	NA	NA	NA
	Benzo(a)anthracene	7	7	40	40	7	N/A	0.216 U	0.191 U	NA	NA	NA	NA	0.179 U	0.232	NA	NA	NA	NA	NA	NA NA
	Benzo(a)pyrene	2	2	4	4	2	N/A	0.216 U	0.191 U	NA	NA.	NA	NA	0.179 U	0.242	NA	NA	NA	NA.	NA	NA
	Benzo(b)fluoranthene	7	7	40	40	,	N/A	0.216 U	0.191 U	NA	NA	NA	NA	0.179 U	0.261	NA	NA	NA	NA	NA	NA
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	0.432 U	0.191 U	NA	NA	NA	NA NA	0.358 U	0.217	NA	NA	NA	NA	NA	NA
	Benzo(k)fluoranthene	70 70	70	400	400	70	N/A	0.216 U	0.191 U	NA	NA NA	NA	NA NA	0.179 U	0.193 U	NA	NA	NA	NA .	NA	NA
	Chrysene	70 0.7	70 0.7	400 4	400 4	70 0.7	N/A	0.216 U	0.191 U	NA	NA	NA	NA NA	0.179 U	0.228	NA NA	NA	NA NA	NA NA	NA.	NA NA
	Dibenz(a,h)anthracene Fluoranthene	1,000	1.000	3,000	3,000	1.000	N/A N/A	0.432 U	0.191 U 0.191 U	NA NA	NA NA	NA NA	NA NA	0.358 U 0.179 U	0.193 U 0.403	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Fluoraninene	1,000	1,000	3,000	3,000	1,000	N/A N/A	0.216 U 0.216 U	0.191 U	NA NA	NA NA	NA NA	NA NA	0.179 U	0.403 0.193 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	0.432 U	0.191 U	NA NA	NA NA	NA NA	NA NA	0.179 U	0.193	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	2-Methylnaphthalene	80	300	80	500	0.7	N/A	0.432 U	0.191 U	NA NA	NA	NA	NA NA	0.330 U	0.193 U	NA	NA NA	NA NA	NA NA	NA NA	NA.
	Naphthalene	40	500	40	1,000	4	N/A	0.216 U	0.191 U	NA	NA.	NA	NA NA	0.179 U	0.193 U	NA	NA	NA NA	NA NA	NA.	NA NA
	Phenanthrene	500	500	1.000	1,000	10	N/A	0.216 U	0.191 U	NA	NA	NA	NA.	0.179 U	0.234	NA	NA	NA	NA	NA	NA
	Pyrene	1.000	1.000	3,000	3,000	1,000	N/A	0.216 U	0.191 U	NA.	NA	NA NA	NA	0.179 U	0.480	NA	NA	NA.	NA NA	NA NA	NA
PCBs																					
(mg/kg)	Aroclor 1016	2	2	3	3	2	ſ	0.0507 U	0.0556 ป	NA	NA	NA	NA	0.0512 U	0.0538 U	NA	NA	NA	NA	NA	NA
	Aroclor 1221	2	2	3	3	2	1	0.0507 U	0.0556 U	NA	NA	NA	NA	0.0512 U	0.0538 U	NA	ÑΑ	NA	NA.	NA	NA
1	Aroclor 1232	2	2	3	3	2	ĺ	0.0507 U	0.0556 U	NA	NA	NA	NA	0.0512 U	0.0538 U	NA	NA	NA	NA	NA	NA
	Aroclor 1242	2	2	3	3	2	ī	0.0507 U	0.0556 U	NA	NA	NA	NA	0.0512 U	0.0538 U	NA	NA	NA	NA	NA	NA
1	Aroclor 1248	2	2	3	3	2	1	0.0507 U	0.0556 U	NA	NA	NA	NA	0.0512 U	0.0538 U	NA	NA	NA	NA	NA	NA
	Aroclor 1254	2	2	3	3	2	1	0.0507 U	0.0556 U	NA	NA	NA	NA	0.0512 U	0.0538 U	NA	NA	NA	NA	NA	NA
1	Aroclor 1260	2	2	3	3	2	Ī	0.0507 U	0.0556 U	NA	NA	NA	NA .	0.0512 U	0.0538 U	NA	NA	NA	NA	NA	NA
	Total PCBs	2	2	3	3	2	1	0.0507 U	0.0556 U	NA	NA	NA	NA	0.0512 U	0.0538 U	NA	NA	NA	NA	NA	NA
Metals																					
(mg/kg)	Antimony	20	20	30	30	20	N/A	R	4.57 U	NA	NA	NA	NA	R	4.62 U	NA	NA	NA	NA.	NA	NA
	Arsenic	20	20	20	20	20	N/A	58.5	7.82	274	69.9	116	157	59.3	14.0	142	66.5	48.8	103	140	18.9
1	Barium	1,000	1,000	3,000	3,000	1,000	N/A	34.3	24.3	NA	NA	NA	NA	31.8	26.3	NA	NA	NA	NA	NA	NA
	Beryllium	100	100	200	200	100	N/A	0.27 U	0.47	NA	NA	NA	NA	0.27 U	0.39	NA	NA	NA	NA	NA	NA
	Cadmium	2	2	30	30	2	N/A	0.27 U	0.29 U	NA	NA	NA	NA NA	0.27 U	0.29 U	NA	NA	NA.	NA	NA	NA
	Chromium	30	30	200	200	30	N/A	16.9	8.18	NA	NA	NA	NA	12.1	9.72	NA	NA	NA	NA	NA	NA
	Lead	300	300	300	300	300	N/A	28.5	23.5	NA	NA	NA	NA	30.5	41.0	NA	NA	NA	NA	NA	NA
	Nickel	20	20	700	700	20	N/A	10.4	3.76	NA	NA	NA	NA	7.93	3.95	NA	NA	NA	NA	NA	NA
	Selenium	400	400	800	800	400	N/A	5.40 U	5.71 U	NA	NA	NA	NA NA	5.36 U	5.78 U	NA	NA	NA	NA	NA	NA
	Silver	100	100	200	200	100	N/A	5.06	1.15	NA	NA	NA	NA	5.15	1.45	NA	NA	NA	NA	NA	NA
	Thallium	8 600	8 600	60	60	8	N/A	3.24 U	3.43 U	NA	NA	NA	NA NA	3.22 U	3.47 U	NA	NA	NA	NA	NA	NA
	Vanadium	2,500		1,000	1,000	600	N/A	19.0	14.6	NA	NA NA	NA	NA NA	18.9	16.5	NA	NA	NA	NA	NA	NA
	Zinc Mercury	2,500	2,500 20	3,000 30	3,000 30	2,500 20	N/A N/A	33.3 0.052	20.4	NA NA	NA NA	NA	NA NA	24.7	22.1	NA	NA	NA	NA	NA	NA
L	ivicioniy	20	20	30	1 30	20	IN/A	0.052	0.117	NA	NA .	NA	NA	0.066	0.354	NA	NA	NA	NA	NA	NA

Notes:

All units in mg/kg unless otherwise specified.

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

J - Estimated value.

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

R - Rejected data point due to matrix spike recovery <30%.

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method 1 standards.

PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria.

* - For reference purpose only.

Table 2
Summary of Analytical Results for Soil Samples - 2008
Varsity Baseball Diamond
New Bedford, Massachusetts

			·····			Sam	ple Location:	SB-	254	SB-	-255	WC-1	WF-1	WF-2	WF-3	W	F-4	WF-5	WF-6	WF-7
Analysis	Analyte					Sampl	e Depth (ft.):	0.5	2	0.5	2	N/A	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1*	Sample Date: TSCA	7/15/2008	7/15/2008	7/15/2008	7/15/2008	8/7/2008	9/30/2008	9/30/2008	9/30/2008	9/30/2008	9/30/2008 Field dup	9/30/2008	9/30/2008	9/30/2008
~		5-1/GW-2	3-1/UW-3	3-2/OW-2	3-2/UW-3	KC 2-1*	ISCA						-				rieid dup			
PAHs	A Labour	1,000	1,000	3,000	3,000	4	N/A	0.180 U	0.259	0.183 U	0.177 U	NA	NA	NA.	NA NA	NA	NA	NA	NA NA	NA NA
(mg/kg)	Acenaphthene	600	1,000	600	3,000	1	N/A N/A	0.180 U	0.259	0.183 U	0.177 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Accnaphthylene	1,000	1,000	3,000	3,000	1,000	N/A N/A	0.180 U	0.510	0.183 U	0.177 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Anthracene	7	7	3,000	3,000	7	N/A N/A	0.180 0	3.30	0.325	0.177	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Benzo(a)anthracene	2	2	40 .	40	2	N/A	0.667	2,98	0.349	0.510	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA
	Benzo(a)pyrene Benzo(b)fluoranthene	7	7	40	40	7	N/A	0.870	3,48	0.411	0.540	NA.	NA.	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA
	1 ' '	1,000	1,000	3,000	3,000	1,000	N/A	0.778	2.76	0.294	0.409	NA.	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
	Benzo(g,h,i)perylene Benzo(k)fluoranthene	70	70	400	400	70	N/A	0.770	1.29	0.183 U	0.197	NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Chrysene	70 70	70	400	400	70 70	N/A	0.738	3.56	0.165	0.504	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Dibenz(a,h)anthracene	0.7	0.7	400	400	0.7	N/A N/A	0.360 U	0.711	0.366 U	0.304 0.177 U	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Fluoranthene	1,000	1,000	3,000	3.000	1.000	N/A N/A	1.08	4.37	0.599	0.714	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	0.180 U	0.395	0.183 U	0.177 U	NA.	NA	NA NA	NA.	NA.	NA.	NA.	NA NA	NA NA
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	0.762	3.12	0.312	0.469	NA.	NA.	NA	NA	NA	NA NA	NA.	NA NA	NA NA
	2-Methylnaphthalene	80	300	80	500	0.7	N/A	0.180 U	0.175 U	0.183 U	0.177 U	NA	NA	NA.	NA.	NA	NA	NA	NA NA	NA.
	Naphthalene	40	500	40	1.000	4	N/A	0.180 U	0.246	0.183 U	0.177 U	NA	NA	NA	NA NA	NA	NA.	NA.	NA.	NA
	Phenanthrene	500	500	1,000	1,000	10	N/A	0.820	3.77	0.344	0.453	NA	NA	NA	NA	NA.	NA	NA	NA	NA
	Pyrene	1.000	1.000	3,000	3,000	1,000	N/A	1.63	5.07	0.608	0.990	NA	NA	NA.	NA.	NA	NA NA	NA	NA NA	NA
PCBs	i jiene	1,000	1,000	5,000	5,000	1,000		2102	2.07	0.000	0.570		1 1			1717				
(mg/kg)	Aroclor 1016	2	2	3	3	2	1	0.0524 U	0.0501 U	0.0506 U	0.0523 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
(mg/kg)	Aroclor 1221	2	2	3	3	2	1	0.0524 U	0.0501 U	0.0506 U	0.0523 U	NA NA	NA.	NA NA	NA	NA NA	NA.	NA.	NA NA	NA NA
	Aroclor 1232	2	2	3	3	2	1	0.0524 U	0.0501 U	0.0506 U	0.0523 U	NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Aroclor 1242	2	2	3	3	2	1	0.0524 U	0.0501 U	0.0506 U	0.0523 U	NA NA	NA.	NA NA	NA NA	NA.	NA NA	NA	NA NA	NA NA
	Aroclor 1248	2	2	3	3	2	1	0.0524 U	0.0501 U	0.0506 U	0.0523 U	NA.	NA	NA	NA	NA	NA NA	NA.	NA NA	NA NA
· ·	Aroclor 1254	2	2	3	3	2	1	0.0524 U	0.0501 U	0.0506 U	0.126 J	NA	NA	NA.	NA	NA.	NA NA	NA.	NA NA	NA.
	Aroclor 1260	2	2	3	3	2	í	0.0524 U	0.0501 U	0.0506 U	0.0523 U	NA	NA	NA.	NA	NA	NA NA	NA	NA NA	NA NA
	Total PCBs	2	2	3	3	2	î	0.0524 U	0.0501 U	0.0506 U	0.126 J	NA	NA	NA	NA	NA	NA.	NA	NA	NA
Metals																				
(mg/kg)	Antimony	20	20	30	30	20	N/A	R	4.20 U	R	4.24 U	4.01 U	NA	NA	NA	NA	NA NA	NA	NA	NA NA
(***&/ **&/	Arsenic	20	20	20	20	20	N/A	11.0	8.98	7.41	5.41	12.9	7.84	14.4	12.0	24.2	25.8	9.89	5.82	7.86
	Barium	1,000	1,000	3,000	3.000	1,000	N/A	34.3	98.9	40.3	366	9.25	NA	NA	NA	NA	NA	NA	NA	NA
	Beryllium	100	100	200	200	100	N/A	0.27 U	0.27 U	0.28 U	0.42	0.26 U	NA	NA	NA	NA	NA NA	NA	NA	NA
	Cadmium	2	2	30	30	2	N/A	0.27 U	0.27 U	0.40	0.51	0.26 U	NA	NA	NA	NA	NA NA	NA	NA.	NA
	Chromium	30	30	200	200	30	N/A	8.70	14.0	10.4	7.60	0.79	NA	NA	NA	NA	NA	NA	NA	NA
	Lead	300	300	300	300	300	N/A	109	532	79.6	131	22.1	NA	NA	NA	NA	NA	NA	NA	NA
	Nickel	20	20	700	700	20	N/A	5.29	6.37	5.08	5.27	2.08	NA	NA	NA	NA	NA	NA	NA	NA
	Selenium	400	400	800	800	400	N/A	5.39 U	5.25 U	5.48 U	5.30 U	5.01 U	NA	NA	NA	NA	NA	NA	NA	NA.
	Silver	100	100	200	200	100	N/A	2.89	4.31	2.70	1.31	0.51 U	NA	NA	NA	NA	NA	NA	NA	NA
	Thallium	8	8	60	60	8	N/A	3.24 U	3.15 U	3.29 U	3.18 U	3.01 U	NA	NA	NA	NA	NA	NA	NA	NA
	Vanadium	600	600	1,000	1,000	600	N/A	17.6	13.0	16.8	14.8	5.01 U	NA	NA	NA	ŇΑ	NA	NA	NA NA	NA.
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	33.6	24.7	52.2	118	7.75	NA	NA	NA	NA	NA	NA	NA	NA
	Mercury	20	20	30	30	20	N/A	0.295	0.730	0.238	0.198	0.018 U	NA	NA	NA	NA	NA	NA	NA NA	NA

Notes

All units in mg/kg unless otherwise specified.

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

J - Estimated value.

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

R - Rejected data point due to matrix spike recovery <30%.

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method I standards.

PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria.

* - For reference purpose only.

Table 2
Summary of Analytical Results for Soil Samples - 2008
Varsity Baseball Diamond
New Bedford, Massachusetts

											r - x = 11	T 1775 10	11277 10	1775 4 4	T		T 1375.45	T
							ple Location:	WF-8	WF-9	WF-10	WF-11	WF-12	WF-13	WF-14	WF-15	WF-16	WF-17	WF-18
Analysis	Analyte	l					le Depth (ft.):	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
		0.110331.0	L 0 1 (C) 1 2	S O (CIVI O	0.046333.0		Sample Date:	9/30/2008	9/30/2008	9/30/2008	9/30/2008	9/30/2008	9/30/2008	9/30/2008	9/30/2008	9/30/2008	9/30/2008	9/30/2008
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1*	TSCA			<u> </u>								<u> </u>
PAHs				2.000		_							27.					
(mg/kg)	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA
	Acenaphthylene	600	10	600	10	1	N/A	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.
	Benzo(a)anthracene	7	7	40	40	7	N/A	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Benzo(a)pyrene	2	2	4	4	2	N/A	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	NA	NA	NA	ÑΑ	NA.	NA	NA	NA	NA	NA	NA
	Chrysene	70	70	400	400	70	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Dibenz(a,h)anthracene	0.7	0.7	3 000	2,000	0.7	N/A	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA
	Fluorene	1,000 7	1,000	3,000	3,000	1,000	N/A	NA NA	NA NA	NA	NA	1		NA	NA	NA.	NA	NA
	Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene	80	300	40 80	40 500	7 0.7	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA.
	Naphthalene	40	500	40	1,000	0.7 4	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
	Phenanthrene	500	500	1.000	1,000	10	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Pyrene	1.000	1,000	3.000	3,000	1.000	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PCBs	rytene	1,000	1,000	3,000	3,000	1,000	N/A	INA	IVA	. 1973	IVA	IVA	INA	NA.	INA	INA	INA	INA INA
	Aroclor 1016	2	2	3	3	_		N/A		N7.4	NTA	37.4	NT A		3.7.4	.,,		,,
(mg/kg)	Aroclor 1016 Aroclor 1221	2	2	3	3	2 2	1	NA.	NA	NA NA	NA	NA NA	NA	NA	NA	NA	ŇΑ	NA
	Aroclor 1232	2 2	2	3	3	2 2	1	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA	NA	NA NA
	Aroclor 1242	2 2	2	3	3	2	1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	ŇA	NA	NA NA	NA NA
	Aroclor 1242 Aroclor 1248	2	2	3	3	2	1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Aroclor 1254	2	2	3	3	2	1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Aroclor 1260	2	2	3	3	2	1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Total PCBs	1	2	3	3	2	1	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Metals	10,421 020	 	 		<u> </u>		,	IVA	IVA	110	NA.	103	INA	1474	, MA	1477	INA	INA I
(mg/kg)	Antimony	20	20	30	30	20	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NT A]
(mg/kg)	Arsenic	20	20	20	20	20	N/A	6.50	10.7	6.96	7.86	6.53	7.25	9.51	6.27	5.46	NA 5.75	NA NA
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.75 NA	6.05 NA
	Beryllium	100	100	200	200	100	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Cadmium	2	2	30	30	2	N/A	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Chromium	30	30	200	200	30	N/A	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Lead	300	300	300	300	300	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Nickel	20	20	700	700	20	N/A	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Selenium	400	400	800	800	400	N/A	NA	NA NA	NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Silver	100	100	200	200	100	N/A	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Thallium	8	8	60	60	8	N/A	NA	NA NA	NA	NA	NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA
	Vanadium	600	600	1,000	1,000	600	N/A	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	NA	NA NA	NA	NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA
	Mercury	20	20	30	30	20	N/A	NA	NA NA	NA NA	NA.	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	11:512 77.3						14/A	14/7	11/3	11//	T 14/2	11/4	INV	INA	INA	L. INA	INA	NA

Nintors

All units in mg/kg unless otherwise specified.

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

J - Estimated value.

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

R - Rejected data point due to matrix spike recovery <30%.

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method 1 standards.

PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls. RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria.

* - For reference purpose only.

Table 3 Summary of Analytical Results for TCLP Analysis - 2008 Walsh Field New Bedford, Massachusetts

Analysis	Analyte	Sample Location: Sample Depth (ft.): Sample Date: Toxicity Characteristic*	0-0.5	SB-252-C 0-0.5 7/31/2008	SB-252-D 0-0.5 7/31/2008	SB-253-A 0-0.5 7/31/2008	SB-253-D 0-0.5 7/31/2008
TCLP M	etals						
(mg/L)							
	Arsenic (as leachate)	5.0	0.211	0.053	0.151	0.144	0.042

Notes:

All units in mg/L unless otherwise specified.

mg/L - milligrams per Liter.

Values in Bold indicate the compound was detected.

TCLP - Toxicity Characteristic Leaching Procedure

115058_New Bedford_New Bedford, MA

^{* -} Maximum Concentration of Contaminants for Toxicity Characteristic 310 CMR 30.125 (as leachate)

FIGURES

Summary of Regulatory Comparison Criteria for Soil (mg/kg)												
Contaminant	S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RCS-1	TSCA						
Names												
Benzo(a)pyrene (BAP)	2	2	4	4	2	N/A						
Total PCBs	2	2	3	3	2	1						
Arsenic	20	20	20	20	20	N/A						
Cadmium	2	2	30	30	2	N/A						
Chromium	30	30	200	200	30	N/A						
Lead	300	300	300	300	300	N/A						
Nickel	20	20	700	700	20	N/A						

NOTES:
ALL UNITS IN MG/KG UNLESS OTHERWISE SPECIFIED.
MG/KG - MILLIGRAMS PER KILOGRAM (DRY WEIGHT).
NA - SAMPLE NOT ANALYZED FOR THE LISTED ANALYTE.
N/A - NOT APPLICABLE.
PCBS - POLYCHLORINATED BIPHENYLS.
RCS - REPORTABLE CONCENTRATIONS.
TSCA - TOXIC SUBSTANCES CONTROL ACT.
U - COMPOUND WAS NOT DETECTED AT SPECIFIED QUANTITATION LIMIT.

VALUES SHOWN IN PEACH BACKGROUND EXCEED ONE OR MORE OF THE LISTED MASSDEP METHOD 1 STANDARDS.

SOIL BORING SOIL BORING THAT HAS CONCENTRATION WITH EXCEEDANCE

SAMPLE LOCATION SAMPLE DATE	SB-236A 07/31/08 Constituent	0-0.50	SAMPLE DEPTH (DEPTH RANGE) IN FEET
	BAP	NA	
	Total PCBs	NA	
CONTAMINANT NAME	Arsenic	39.8	
/ABBREVIATION	Cadmium	NA	
	Chromium	NA	
	Lead	NA	
	Nickel	NA	

WALSH FIELD JUNIOR VARSITY DIAMOND NEW BEDFORD, MASSACHUSETTS ANALYTICAL RESULTS SUMMARY MAP

APPROXIMATE GRAPHIC SCALE

Wannalancit Mills 650 Suffolk Street Lowell, MA 01854 (978) 970-5600

FIGURE 2

FILE: Q:\GEOSCI\GISKEYProjects\NewBedford\WALSH DIA

Summary of Regulatory Comparison Criteria for Soil (mg/kg)											
Contaminant	S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RCS-1	TSCA					
Names											
Benzo(a)pyrene (BAP)	2	2	4	4	2	N/A					
Total PCBs	2	2	3	3	2	1					
Arsenic	20	20	20	20	20	N/A					
Cadmium	2	2	30	30	2	N/A					
Chromium	30	30	200	200	30	N/A					
Lead	300	300	300	300	300	N/A					
Nickel	20	20	700	700	20	N/A					

NOTES:
ALL UNITS IN MG/KG UNLESS OTHERWISE SPECIFIED.
MG/KG - MILLIGRAMS PER KILOGRAM (DRY WEIGHT).
NA - SAMPLE NOT ANALYZED FOR THE LISTED ANALYTE.
N/A - NOT APPLICABLE.
PCBS - POLYCHLORINATED BIPHENYLS.
RCS - REPORTABLE CONCENTRATIONS.
TSCA - TOXIC SUBSTANCES CONTROL ACT.
U - COMPOUND WAS NOT DETECTED AT SPECIFIED QUANTITATION LIMIT.

VALUES SHOWN IN PEACH BACKGROUND EXCEED ONE OR MORE OF THE LISTED MASSDEP METHOD 1 STANDARDS.

SOIL BORING SOIL BORING THAT HAS CONCENTRATION WITH EXCEEDANCE

SAMPLE LOCATION SAMPLE DATE	SB-255 07/15/08 Constituent	0.50	2.00	
	BAP	0.349	0.510	
	Total PCBs	0.0506 U	0.126	
CONTAMINANT NAME	Arsenic	7.41	5.41	
/ABBREVIATION	Cadmium	0.40	0.51	
	Chromium	10.4	7.60	
	Lead	79.6	131	
	Nickel	5.08	5.27	

SAMPLE DEPTH (DEPTH RANGE) IN FEET

APPROXIMATE GRAPHIC SCALE

30'

ANALYTICAL RESULTS
SUMMARY MAP

WALSH FIELD - VARSITY DIAMOND

NEW BEDFORD, MASSACHUSETTS

120'

Wannalancit Mills 650 Suffolk Street Lowell, MA 01854 (978) 970-5600

DRAWN BY: HWB DATE:
CHECKED BY: RSN OCT 2008

FIGURE 3

LEGEND:

SOIL TO BE REMOVED AND REPLACED

- EXTENT OF EXCAVATION LINE EDGE OF BALLFIELD

× FENCE

FIGURE IS APPROXIMATE AND IS CONCEPTUAL.

APPROXIMATE GRAPHIC SCALE

WALSH FIELD - VARSITY DIAMOND NEW BEDFORD, MASSACHUSETTS

EXCAVATION PLAN

Wannalancit Mills 650 Suffolk Street Lowell, MA 01854 (978) 970-5600

FIGURE 4

DRAWN BY: HWB CHECKED BY: ACH

DATE: OCT 2008

APPENDIX A IMMINENT HAZARD EVALUATION SUMMARY

IMMINENT HAZARD EVALUATION SUMMARY BASEBALL DIAMOND SURFACE SOIL WALSH FIELD NEW BEDFORD, MASSACHUSETTS

August 8, 2008

Due to the potential Imminent Hazard (IH) condition that was triggered at the Site on July 30, 2008 for the detection of arsenic in surface soil (0 to 0.5 feet in depth) at the Junior Varsity and Varsity baseball diamonds at Walsh Field of New Bedford High School (NBHS), an IH evaluation has been performed. At the time that the potential IH condition was triggered, four surface soil samples were available for each baseball diamond: SB-234 through SB-237 for the Junior Varsity field and SB-252 through SB-255 for the Varsity field. Samples SB-234 through SB-237 were collected on July 10, 2008, and samples SB-252 through SB-255 were collected on July 15, 2008. Further delineation of the areas of arsenic-impacted surface soil was performed on July 31, 2008, resulting in the collection of eight additional samples from the Junior Varsity Field (SB-234A through SB-234D, SB-235A, SB-235B, SB-236A, and SB-237A) and nine additional samples from the Varsity field (SB-252A through SB-252D and SB-253A through SB-253E). This IH evaluation reflects surface soil sampling conducted to date for the Junior Varsity and Varsity baseball diamonds.

Surface soil contaminants of potential concern were selected for each diamond by comparing maximum detected concentrations of polycyclic aromatic hydrocarbons (PAHs), total polychlorinated biphenyls (PCB), and metals to Massachusetts Department of Environmental Protection (MassDEP) background concentrations for natural soils. Total PCBs, arsenic, lead, silver and zinc were selected as COPCs for the Junior Varsity diamond; arsenic, lead and silver were selected as COPCs for the Varsity diamond.

The 95 percent upper confidence limit (95% UCL) on the arithmetic mean concentration has been used as the exposure point concentration (EPC) for arsenic for the IH calculation. However, maximum detected concentrations have been used as EPCs for remaining COPCs (PCBs, lead, silver, and zinc) due to small sample size.

The areas of concern are the Junior Varsity and Varsity diamonds, used for practices and games during the spring baseball season. During the summer months, the areas are used, with the permission of the city, for other sporting events on a sporadic basis. The diamond areas may also be used by other teams as practice areas during the fall sport season (e.g., for field hockey practice). Walsh Field, which houses the baseball diamonds and other athletic fields, is secured by a fence, limiting access only to those with permission to use the fields. For the purposes of this IH evaluation, exposures are assumed to occur during the sport season which consists of 3 weeks of pre-season practice, the 12-week season, and a 3-week post-season playoff time period. During this 18-week period, exposures are assumed to occur 5 days per week (4 practice days and one game day) for 4 hours per day. These values are conservative because their use assumes that: (1) no time is spent at a different field; (2) no cancellation of practice due to inclement

weather; and (3) children are at the diamond for 4 hours per day which is likely to only occur on game days since practices are for less than 4 hours each day.

To estimate exposures, a young child (age 1 to 6) was selected for evaluation because this age group may be present at the field, accompanying parents who are spectators at the practices and games. Incidental ingestion of and dermal contact with arsenic-impacted soils are assumed to occur while the young child plays at the perimeter of each diamond. The inhalation of fugitive dust generated while the older children practice or play the sport is also considered a complete exposure pathway. Older children engaging in the sport are also exposed, but a young child is evaluated as the most sensitive receptor due to their higher soil intake rate, lower body weights, and sensitive developmental stage.

Exposure assumptions applicable to the young child are consistent with those used by MassDEP in the park visitor IH short-form, adjusted to be applicable to the 18-week exposure period of concern. For the fugitive dust pathway, methods and assumptions consistent with the MassDEP Technical Update "Characterization of Risks Due to Inhalation of Particulates by Construction Workers" (July 2008) were used including a PM₁₀ of 60 ug/m³. Inhalation rates used agespecific values provided by the Environmental Protection Agency's draft document entitled, "Metabolically-Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates" (October 2006). These values represent state-of-the-art knowledge and are more conservative than values provided by MassDEP in the 1995 risk assessment guidance document.

The estimated risks and hazards for each exposure area are described below:

Junior Varsity Diamond. For the Junior Varsity diamond, the estimated cancer risk and noncarcinogenic hazard for the young child recreational user do not exceed the MCP risk limits for an IH of an excess lifetime cancer risk (ELCR) of 1E-05 and a hazard index (HI) of 10.

Varsity Diamond. At the Varsity diamond, the estimated cancer risk (3E-05) exceeds the MCP IH criterion, even though the HI of 7 does not exceed the MCP IH limit of 10. The IH is identified at the Varsity diamond primarily due to the ingestion of arsenic-containing surface soil

Please see Tables 1 and 2 and Figures 1 and 2 for Junior Varsity and Varsity Diamond data summaries, respectively.

Table 1 Summary of Analytical Results for Soil Samples - July 2008 Walsh Field - Junior Varsity Diamond New Bedford, Massachusetts

					, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Sam	ple Location:	SB-234	SB-234-A	SB-234-B	SB-234-C	SB-234-D	SB-235	SB-235-A	SB-235-B	SB-236	SB-236-A	SB-237	SB-237-A
Analysis	Analyte						le Depth (ft.):	0.5	0-0.5	0-0.5	0-0.5	0-0.5	0.5	0-0.5	0-0.5	0.5	0-0.5	0.5	0-0.5
	, , ,					· ·	Sample Date:	7/10/2008	7/31/2008	7/31/2008	7/31/2008	7/31/2008	7/10/2008	7/31/2008	7/31/2008	7/10/2008	7/31/2008	7/10/2008	7/31/2008
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1	TSCA												l
PAHs																			
(mg/kg)	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	0.192 U	NA	NA	NA	NA	0.176 U	NA	NA	0.174 U	NA	0.177 U	NA
(88)	Acenaphthylene	600	10	600	10	1	N/A	0.192 U	NA	NA	NA	NA	0.176 U	NA	NA	0.174 U	NA	0.177 U	NA
,	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	0.192 U	NA	NΛ	NA	NA	0.176 U	NA	NA	0.174 U	NA	0.177 U	NA
	Benzo(a)anthracene	7	7	40	40	7	N/A	0.192 U	NA	NA	NA	NA	0.176 U	NA	NA	0.448	NA	0.177 U	NA
	Венго(а)ругене	2	2	4	4	2	N/A	0.192 U	NA	NA	NA	NA	0.176 U	NΛ	NA	0.402	NA	0.177 U	NΛ
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	0.192 U	NΑ	NA	NA	NA	0.176 U	NA	NA	0.504	NA	0.177 U	NA
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	0.192 U	NA	NA	NA	NA	0.176 U	NA	NA	0.282	NA	0.177 U	NA
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	0.192 U	NA	NA	NA	NA	0.176 U	NA	NA	0.174 U	NA	0.177 U	NA
	Chrysene	70	70	400	400	70	N/A	0.192 U	NA	NA	NΑ	NA	0.176 U	NA	NA	0.482	NA	0.177 U	NA
	Dibenz(a,h)anthracene	0.7	0.7	4	4	0.7	N/A	0.192 U	NA	NA	NΑ	NA	0.176 U	NA	NA	0.174 U	NA	0.177 U	NA
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	0.192 U	NА	NA	NA	NA	0.176 U	NA	NA	0.787	NA	0.177 U	NA
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	0.192 U	NA	NΛ	NA	NA	0.176 U	NA	NA	0.174 U	NA	0.177 U	NA
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	0.192 U	NA	NA	NA	NA	0.176 U	NA	NA	0.317	NΛ	0.177 U	NA
	2-Methylnaphthalene	80	300	80	500	0.7	N/A	0.192 U	NA	NA	NA	NA	0.176 U	NΛ	NA	0.174 U	NΑ	0.177 U	NA
	Naphthalene	40	500	40	1,000	4	N/A	0.192 U	NA	NΛ	NA	NA	0.176 U	NA	NA	0.174 U	NA	0.177 U	NA
	Phenanthrene	500	500	1,000	1,000	10	N/A	0.192 U	NA	NA	NA	NA	0.176 U	NA	NA	1.10	NA	0.177 U	NA
	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	0.216	NA	NA	NA	NA	0.176 U	NA	NA	1.05	NA	0.177 U	NA
PCBs																			
(mg/kg)	Aroclor 1016	2	2	3	3	2	1	0.0570 U	NA	NA	NA .	NA	0.0515 U	NA	NA	0.0514 U	NA	0.0522 U	NA
	Aroclor 1221	2	2	3	3	2	ì	0.0570 U	NΛ	NΛ	NA :	NA	0.0515 U	NA	NA	0.0514 U	NA	0.0522 U	NA
Ì	Aroclor 1232	2	2	3	3	2	1	0.0570 U	NA	NA	NA	NA	0.0515 U	NA	NΛ	0.0514 U	NA	0.0522 U	NA
l i	Aroclor 1242	2	2	3	3	2	1	0.0570 U	NA	NA	NA	NA	0.0515 U	NA	NA	0.0514 U	NA	0.0522 U	NA
	Aroclor 1248	2	2	3	3	2	1	0.0570 U	ΝΛ	NA .	NA	NA	0.0515 U	NA	NΛ	0.0514 U	NA	0.0522 U	NA
	Aroclor 1254	2	2	3	3	2	1	0.0570 U	NΛ	NA	NA	NA	0.0515 U	NА	NA	0.0514 U	NA	0.0522 U	NA NA
	Aroclor 1260	2	2	3	3	2	1	0.108 *	NA	NΛ	NA	NA	0.0515 U	NA NA	NA	0.0555 *	NA	0.0522 U	NA
	Total PCBs	2	2	3	3	2	1	0.108	NA	NA	NA	NA .	0.0515 U	NA	NA	0.0555	NA	0.0522 U	NA
Metals									_										
(mg/kg)	Antimony	20	20	30	30	20	N/A	4.60 U	NA	NA	NA	NA	4.22 U	NA	NA	4.16 U	NΛ	4.24 U	NA
	Arsenic	20	20	20	20	20	N/A	42.1	11.2	3.88	7.86	9.32	7.07	9.20	12.3	7.24	39.8	2.75	30.1
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	32.5	NA	NA	NA	NA	26.7	NA .	NA	31.8	NA	50.0	NA
	Beryllium	100	100	200	200	100	N/A	0.29 U	NA	NA	NA	NA	0.27 U	NA	NA	0.26 U	NA	0.27 U	NA NA
	Cadmium	2	2	30	30	2	N/A	0.82	NA	NA	NA	NA	0.34	NA	NA	0.38	NA	0.56	NA NA
	Chromium	30	30	200	200	30	N/A	19.9	NA	NA	NA	NA NA	13.9	NA	NA	22.5	NA	27.6	NA NA
	Lcad	300	300	300	300	300	N/A	56.9	NA	NA	NA	NA	47.5	NΛ	NA	44.6	NA	269	NA
	Nickel	20	20	700	700	20	N/A	8.10	NA	NA	NA	NA	5.89	NA	NA	6.73	NA	6.03	NA
	Selenium	400	400	800	800	400	N/A	5.75 U	NA	NA	NA	NA	5.27 U	NA	NA	5.20 U	NΛ	5.30 U	NA
	Silver	100	100	200	200	100	N/A	3.16	NΛ	NA	NA	NA	2.48	NA	NA	2.82	NA	4.68	NA NA
	Thallium	8	8	60	60	8	N/A	3.45 U	NA	NA	NA	NA	3.17 U	NA	NA	3.12 U	NA	3.18 U	NA
	Vanadium	600	600	1,000	1,000	600	N/A	25.3	NA	NA	NA	NA	20.3	NA NA	NA	20.7	NA	11.4	NA
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	33.7	NΛ	NA	NA	NA	34.6	NA	NΛ	31.7	NA .	118	NΛ
	Mercury	20	20	30	30	20	N/A	0.199	NA	NA	NA	NA	0.166	NA	NA	0.189	NA	0.217	NA

Notes:

All units in mg/kg unless otherwise specified.

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method 1 standards.

PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria.

* - The sample exhibits altered PCB pattern; best possible Aroclor match reported.

Table 2
Summary of Analytical Results for Soil Samples - July 2008
Walsh Field - Varsity Diamond
New Bedford, Massachusetts

Analysis	Analyte					Samp	ple Location: le Depth (ft.): Sample Date:	SB-252 0.5 7/15/2008	SB-252-A 0-0.5 7/31/2008	SB-252-B 0-0.5 7/31/2008	SB-252-C 0-0.5 7/31/2008	SB-252-D 0-0.5 7/31/2008	SB-253 0.5 7/15/2008	SB-253-A 0-0.5 7/31/2008	SB-253-B 0-0.5 7/31/2008
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1	TSCA	111312008	1/31/2008	7/31/2000	7/31/2000	773172008	771372000	7/31/2000	1/31/2008
DATE		3-1/GW-2	3-1/G W-3	3-2/UW-2	3-2/GW-3	IC 0-1	IBCA								
PAHs	A14h	1.000	1,000	3,000	3,000	4	N/A	0.216 U	NA	NA	NA	NA	0.179 U	NA	NA
(mg/kg)	Acenaphthene	1,000 600	1,000	600	3,000	4	N/A N/A	0.216 U	NA NA	NA NA	NA NA	NA NA	0.179 U	NA NA	NA NA
	Acenaphthylene	1,000	1,000	3,000	3,000	1,000	N/A N/A	0.216 U	NA NA	NA NA	NA NA	NA NA	0.179 U	NA NA	NA NA
	Anthracene	7	7	3,000	3,000	7	N/A N/A	0.216 U	NA NA	NA NA	NA NA	NA NA	0.179 U	NA NA	NA NA
	Benzo(a)anthracene	2	2	40	40	2	N/A	0.216 U	NA NA	NA NA	NA	NA NA	0.179 U	NA NA	NA NA
	Benzo(a)pyrene Benzo(b)fluoranthene	7	7	40	40	7	N/A N/A	0.216 U	NA NA	NA NA	NA NA	NA NA	0.179 U	NA NA	NA NA
	1 ' 1	1,000	1,000	3,000	3,000	1,000	N/A	0.210 U 0.432 U	NA NA	NA NA	NA NA	NA NA	0.179 U 0.358 U	NA NA	NA
	Benzo(g,h,i)perylene	70	70	400	400	70	N/A	0.432 U 0.216 U	NA NA	NA	NA NA	NA NA	0.338 U	NA NA	NA
	Benzo(k)fluoranthene	70 70	70	400	400	70	N/A	0.216 U	NA NA	NA NA	NA	NA NA	0.179 U	NA NA	NA NA
	Chrysene	0.7	0.7	400	400	0.7	N/A N/A	0.432 U	NA NA	NA NA	NA NA	NA NA	0.179 U	NA NA	NA NA
	Dibenz(a,h)anthracene		1	·	' '		N/A N/A	0.432 U 0.216 U	NA NA	NA NA	NA NA	NA NA	0.338 U 0.179 U	NA NA	NA NA
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	1	1	NA NA	NA NA	NA NA	NA NA	0.179 U	NA NA	NA NA
	Fluorene	1,000	1,000 7	3,000	3,000	1,000 7	N/A	0.216 U		NA NA	NA NA	NA NA	0.179 U 0.358 U	NA NA	NA NA
	Indeno(1,2,3-cd)pyrene	7	,	40	40	,	N/A	0.432 U 0.216 U	NA NA	NA NA	NA NA	NA NA	0.338 U 0.179 U	NA NA	NA NA
	2-Methylnaphthalene	80	300	80	500	0.7	N/A		I	NA NA	NA NA	1	0.179 U 0.179 U	NA NA	NA NA
	Naphthalene	40	500	40	1,000	4	N/A	0.216 U	NA NA	i l		NA		1	
	Phenanthrene	500	500	1,000	1,000	10	N/A	0.216 U	NA	NA	NA	NA	0.179 U	NA	NA
	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	0.216 U	ŇΑ	NA	NA	NA	0.179 U	NA	NA
PCBs		_			_	_									
(mg/kg)	Aroclor 1016	2	2	3	3	2	1	0.0507 U	NA	NA	NA	NA	0.0512 U	NA	NA
	Aroclor 1221	2	2	3	3	2	1	0.0507 U	NA	NA	NA	NA	0.0512 U	NA	NA
	Aroclor 1232	2	2	3	3	2	1	0.0507 U	NA	NA	NA	NA	0.0512 U	NA	NA
	Aroclor 1242	2	2	3	3	2	1	0.0507 U	NA	NA	NA	NA	0.0512 U	NA	NA
	Aroclor 1248	2	2	3	3	2	1	0.0507 U	NA	NA	NA	NA	0.0512 U	NA	NA
	Aroclor 1254	2	2	3	3	2	Į	0.0507 U	NA	NA	NA	NA	0.0512 U	NA	NA
	Aroclor 1260	2	2	3	3	2	1	0.0507 U	NA	NA	NA	NA	0.0512 U	NA	NA
	Total PCBs	2	2	3	3	2	1	0.0507 U	NA	NA	NA	NA	0.0512 U	NA	NA
Metals															
(mg/kg)	Antimony	20	20	30	30	20	N/A	4.32 U	NA	NA	NA	NA .	4.29 U	NA	NA
	Arsenic	20	20	20	20	20	N/A	58.5	274	69.9	116	157	59.3	142	66.5
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	34.3	NA	NA	NA	NA	31.8	NA	NA
	Beryllium	100	100	200	200	100	N/A	0.27 U	NA	NA	NA	NA	0.27 U	NA	NA
	Cadmium	2	2	30	30	2	N/A	0.27 U	NA	NA	NA	NA	0.27 U	NA	NA
	Chromium	30	30	200	200	30	N/A	16.9	NA	NA	NA	NA	12.1	NA	NA
	Lead	300	300	300	300	300	N/A	28.5	ÑΑ	NA	NA	NA	30.5	NA	NA
	Nickel	20	20	700	700	20	N/A	10.4	NA	NA	NA	NA	7.93	NA	NA
	Selenium	400	400	800	800	400	N/A	5.40 U	NA	NA	NA	NA	5.36 U	NA	NA
	Silver	100	100	200	200	100	N/A	5.06	NA	NA	NA	NA	5.15	NA	NA
	Thallium	8	8	60	60	8	N/A	3.24 U	NA	NA	NA	NA	3.22 U	NA	NA
	Vanadium	600	600	1,000	1,000	600	N/A	19.0	NA	NA	NA	NA	18.9	NA	NA
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	33.3	NA	NA	NA	NA	24.7	NA	NA
	Mercury	20	20	30	30	20	N/A	0.052	NA	NA	NA	NA	0.066	NA	NA

Table 2
Summary of Analytical Results for Soil Samples - July 2008
Walsh Field - Varsity Diamond
New Bedford, Massachusetts

						Sarr	ple Location:	SB-253-C		53-D	SB-253-E	SB-254	SB-255
Analysis	Analyte					-	le Depth (ft.):	0-0.5	0-0.5	0-0.5	0-0.5	0.5	0.5
							Sample Date:	7/31/2008	7/31/2008	7/31/2008	7/31/2008	7/15/2008	7/15/2008
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1	TSCA			Field Dup			
PAHs													
(mg/kg)	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	NA	NA	NA	NA	0.180 U	0.183 U
	Acenaphthylene	600	10	600	10	1	N/A	NA	NA	NA	NA	0.180 U	0.183 U
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	0.180 U	0.183 U
	Benzo(a)anthracene	7	7	40	40	7	N/A	NA	NA	NA	NA	0.654	0.325
	Benzo(a)pyrene	2	2	4	4	2	N/A	NA	NA	NA	NA	0.667	0.349
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	NA	NA	NA	NA	0.870	0.411
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	0.778	0.294
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	NA	NA	NA	NA	0.270	0.183 U
	Chrysene	70	70	400	400	70	N/A	NA	NA	NA	NA	0.738	0.355
	Dibenz(a,h)anthracene	0.7	0.7	4	4	0.7	N/A	NA	NA	NA	NA	0.360 U	0.366 U
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	1.08	0.599
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	0.180 U	0.183 U
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	NA	NA	NA	NA	0.762	0.312
	2-Methylnaphthalene	80	300	80	500	0.7	N/A	NA	NA	NA	NA	0.180 U	0.183 U
	Naphthalene	40	500	40	1,000	4	N/A	NA	NA	NA	NA	0.180 U	0.183 U
	Phenanthrene	500	500	1,000	1,000	10	N/A	NA	NΛ	NA	NA	0.820	0.344
	Pyrene	000,1	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	1.63	0.608
PCBs	<u> </u>		· · ·					· · · · · · · · · · · · · · · · · · ·					
(mg/kg)	Aroclor 1016	2	2	3	3	2	1	NA	NA	NA	NA	0.0524 U	0.0506 U
(85/	Aroclor 1221	2	2	3	3	2	1	NA	NA	NA	NA	0.0524 U	0.0506 U
	Aroclor 1232	2	2	3	3	2		NA	NA	NA	NA	0.0524 U	0.0506 U
	Aroclor 1242	2	2	3	3	2	1	NA	NA	NA	NA	0.0524 U	0.0506 U
	Aroclor 1248	2	2	3	3	2	1	NA	NA	NA.	NA	0.0524 U	0.0506 U
	Aroclor 1254	2	2	3	3	2	1	NA	NA	NA	NA	0.0524 U	0.0506 U
	Aroclor 1260	2	2	3	3	2	1	NA	NA	NA	NA	0.0524 U	0.0506 U
	Total PCBs	2	2	3	3	2	1	NA	NA	NA	NA	0.0524 U	0.0506 U
Metals													-
(mg/kg)	Antimony	20	20	30	30	20	N/A	NA	NA	NA	NA	4.32 U	4.39 U
(116,16)	Arsenic	20	20	20	20	20	N/A	48.8	103	140	18.9	11.0	7.41
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	Ν̈́Α	NA	NA	NA	34.3	40.3
11	Beryllium	100	100	200	200	100	N/A	NA	NA	NA	NA	0.27 U	0.28 U
	Cadmium	2	2	30	30	2	N/A	NA	NA	NA	NA	0.27 U	0.40
	Chromium	30	30	200	200	30	N/A	NA	NA	NA	NA	8.70	10.4
•	Lead	300	300	300	300	300	N/A	NA	NA	NA	NA	109	79.6
	Nickel	20	20	700	700	20	N/A	NA	NA	NA	NA	5.29	5.08
	Selenium	400	400	800	800	400	N/A	NA NA	NA NA	NA NA	NA NA	5.39 U	5.48 U
	Silver	100	100	200	200	100	N/A	NA NA	NA NA	NA	NA	2.89	2.70
	Thallium	8	8	60	60	8	N/A N/A	NA NA	NA NA	NA NA	NA NA	3.24 U	3.29 U
	Vanadium	600	600	1,000	1,000	600	N/A N/A	NA NA	NA NA	1	NA NA	17.6	i
	Vanadium Zinc	ş			3,000	2,500			NA NA	NA NA	NA NA	!	16.8
-	Mercury	2,500 20	2,500	3,000	3,000	2,300	N/A	NA NA	NA NA	NA NA	NA NA	33.6 0.295	52.2
	IIVICICER Y	20	20	30	20	ZV.	N/A	NA	INA	NA	11/4	0.295	0.238

Summary of Regu	latory Con	parison C	riteria for	Soil (mg/kg	2)	
Contaminant Names	S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1	TSCA
Benzo(a)pyrene (BAP)	2	2	4	4	2	N/A
Total PCBs	2	2	3	3	2	1
Arsenie	20	20	20	20	20	N/A
Cadmium	2	2	30	30	2	N/A
Chromium	30	30	200	200	30	N/A
Lead .	300	3(x)	3(X)	3(X)	300	N/A
Nickel	20	20	700	700	20	N/A

NOTES: ALL UNITS IN MG/KG UNLESS OTHERWISE SPECIFIED. MG/KG - MILLIGRAMS PER KILOGRAM (DRY WEIGHT). NA - SAMPLE NOT ANALYZED FOR THE LISTED ANALYTE. N/A - NOT APPLICABLE. PCBS - POLYCHLORINATED BIPHENYLS.
RCS - REPORTABLE CONCENTRATIONS. TSCA - TOXIC SUBSTANCES CONTROL ACT. U - COMPOUND WAS NOT DETECTED AT SPECIFIED QUANTITATION LIMIT.

VALUES SHOWN IN PEACH BACKGROUND EXCEED ONE OR MORE OF THE LISTED MASSDEP METHOD 1 STANDARDS.

SAMPLE LOCATION SAMPLE DATE

BAP NA Total PCBs NA CONTAMINANT NAME Arsenic 7.86
/ABBREVIATION Chromium NA
Lead NA
Nickel NA

SB-234C 07/31/08 Constituent 0-0.50 SAMPLE DEPTH (DEPTH RANGE) IN FEET

APPROXIMATE GRAPHIC SCALE

WALSH FIELD -JUNIOR VARSITY DIAMOND NEW BEDFORD, MASSACHUSETTS ANALYTICAL RESULTS **SUMMARY MAP**

Wannalancit Mills 650 Suffolk Street Lowell, MA 01854 (978) 970—5600

FIGURE

DRAWN BY: PZ CHECKED BY: DMS

DATE: AUGUST 2008

Summary o	f Regulatory Com	parison Ci	riteria for	Soit (mg/kg	()	
Contaminant				S-2/GW-3		TSCA
Names						
Benzo(a)pyrene (BAP)	2	2	4	4	2	N/A
Total PCBs	2	2	3	3	2	I
Arsenic	20	20	20	20	20	N/A
Cadmium	2	2	30	30	2	N/A
Chromium	30	30	200	200	30	N/A
Lead .	300	300	300	300	3(X)	N/A
Nickel	20	20	700	7(X)	20	N/A

ALL UNITS IN MG/KG UNLESS OTHERWISE SPECIFIED. ALL UNITS IN MARKS UNLESS OF HERWINSE SPECIFIED.
MG/KG - MILLIGRAMS PER KILOGRAM (DRY WEIGHT).
NA - SAMPLE NOT ANALYZED FOR THE LISTED ANALYTE.
N/A - NOT APPLICABLE.
PCBS - POLYCHLORINATED BIPHENYLS.
RCS - REPORTABLE CONCENTRATIONS. TSCA - TOXIC SUBSTANCES CONTROL ACT.
U - COMPOUND WAS NOT DETECTED AT SPECIFIED QUANTITATION LIMIT.

VALUES SHOWN IN PEACH BACKGROUND EXCEED ONE OR MORE OF THE LISTED MASSDEP METHOD 1 STANDARDS.

SAMPLE LOCATION SAMPLE DATE S8-253E 07/31/08 Constituent 0-0.50 SAMPLE DEPTH (DEPTH RANGE) IN FEET

CONTAMINANT NAME Arsenic 18.9

(ABBREVIATION Cadmium NA Chromtum NA Lead NA Nickel NA

APPROXIMATE GRAPHIC SCALE

SUMMARY MAP

Wannalancit Mills 650 Suffolk Street Lowell, MA 01854 (978) 970-5600

WALSH FIELD - VARSITY DIAMOND

NEW BEDFORD, MASSACHUSETTS

ANALYTICAL RESULTS

DRAWN BY: PZ CHECKED BY: DMS

DATE: AUGUST 2008 **FIGURE** 2

APPENDIX B

SUMMARY OF TRC ANALYTICAL DATA FOR WALSH FIELD

<u> </u>		Ι	····		,	Sarr	ple Location:		SB-222		T	SB-223		1	SB-	-224	***************************************
Analysis	Analyte		,				le Depth (ft.):	1	3.5	6	1	4	7.5	1	4	4	7.5
Tillalysis	Milalyte					-	Sample Date:	7/9/2008	7/9/2008	7/9/2008	7/9/2008	7/9/2008	7/9/2008	7/9/2008	7/9/2008	7/9/2008	7/9/2008
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1**	TSCA	,.2000	71312000	","2000				1		Field Dup	
PAHs				1													
(mg/kg)	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	0.256 U	0.196 U	0.195 U	0.172 U	0.234 U	0.193 U	0.178 U	1.06	0.193 U	0.196 U
(116/16)	Acenaphthylene	600	10	600	10	i	N/A	0.256 U	0.196 U	0.195 U	0.172 U	0.234 U	0.193 U	0.178 U	0.954 U	0.193 U	0.196 U
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	0.256 U	0.196 U	0.195 U	0.172 U	0.234 U	0.193 U	0.334	2.64	0.712	0.196 U
	Benzo(a)anthracene	7	7	40	40	7	N/A	0.256 U	0.196 U	0.195 U	0.403	0.234 U	0.193 U	0.899	13.8	3.68	0.196 U
	Вепло(а)рутепе	2	2	4	4	2	N/A	0.256 U	0.196 U	0.195 U	0.389	0.234 U	0.193 U	0.738	21.1	7.33	0.196 U
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	0.256 U	0.196	0.195 U	0.537	0.234 U	0.193 U	1.02	22.8	7.58	0.196 U
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	0.256 U	0.196 U	0.195 U	0.257	0.234 U	0.193 U	0.504	22.7	7.68	0.196 U
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	0.256 U	0.196 U	0.195 U	0.192	0.234 U	0.193 U	0.387	8.91	1.83	0.196 U
	Chrysene	70	70	400	400	70	N/A	0.256 U	0.196 U	0.195 U	0.487	0.234 U	0.193 U	1.01	12.8	3.59	0.196 U
	Dibenz(a,h)anthracene	0.7	0.7	4	4	0.7	N/A	0.256 U	0.196 U	0.195 U	0.172 U	0.234 U	0.193 U	0.178 U	5.57	1.51	0.196 U
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	0.256 U	0.222	0.195 U	0.812	0.234 U	0.193 U	1.85	12.1	3.48	0.196 U
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	0.256 U	0.196 U	0.195 U	0.172 U	0.234 U	0.193 U	0.178 U	0.954 U	0.193 U	0.196 U
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	0.256 U	0.196 U	0.195 U	0.281	0.234 U	0.193 U	0.590	22.3	9.04	0.196 U
	2-Methylnaphthalene	80	300	80	500	0.7	N/A	0.256 U	0.196 U	0.195 U	0.172 U	0.234 U	0.193 U	0.178 U	0.954 U	0.193 U	0.196 U
	Naphthalene	40	500	40	1,000	4	N/A	0.256 U	0.196 U	0.195 U	0.172 U	0.234 U	0.193 U	0.178 U	0.954 U	0.193 U	0.196 U
	Phenanthrene	500	500	1,000	1,000	10	N/A	0.256 U	0.201	0.195 U	0.780	0.234 U	0.193 U	1.47	9.74	2.79	0.196 U
	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	0.256 U	0.283	0.195 U	0.899	0.234 U	0.193 U	1.48	15.2	4.30	0.196 U
PCBs															•		
(mg/kg)	Aroclor 1016	2	2	3	3	2	1	0.0500 U	0.0541 U	0.0572 U	0.0522 U	0.0682 U	0.0585 U	0.0517 U	0.0552 U	0.0536 U	0.0580 U
(11.61.67	Aroclor 1221	2	2	3	3	2	1	0.0500 U	0.0541 U	0.0572 U	0.0522 U	0.0682 U	0.0585 U	0.0517 U	0.0552 U	0.0536 U	0.0580 U
	Aroclor 1232	2	2	3	3	2	Î	0.0500 U	0.0541 U	0.0572 U	0.0522 U	0.0682 U	0.0585 U	0.0517 U	0.0552 U	0.0536 U	0.0580 U
	Aroclor 1242	2	2	3	3	2	1	0.0500 U	0.0541 U	0.0572 U	0.0522 U	0.0682 U	0.0585 U	0.0517 U	0.0552 U	0.0536 U	0.0580 U
	Aroclor 1248	2	2	3	3	2	1	0.0500 U	0.0541 U	0.0572 U	0.0522 U	0.0682 U	0.0585 U	0.0517 U	0.0552 U	0.0536 U	0.0580 U
	Aroclor 1254	2	2	3	3	2	1	0.0500 U	0.0541 U	0.0572 U	0.0522 U	0.0682 U	0.0585 U	0.0517 U	0.0552 U	0.0536 U	0.0580 U
	Aroclor 1260	2	2	3	3	2	1	0.0500 U	0.0541 U	0.0572 U	0.0522 U	0.0682 U	0.0585 U	0.0517 U	0.0552 U	0.0536 U	0.0580 U
	Total PCBs	2	2	3	3	2	1	0.0500 U	0.0541 U	0.0572 U	0.0522 U	0.0682 U	0.0585 U	0.0517 U	0.0552 U	0.0536 U	0.0580 U
PCB Hon	nologs																,
II:	Monochlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	0.017 U	NA	NA	NA	NA	NA
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Dichlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA.	NA	NΛ	0.017 U	NA	NA	NA	NA	NA
	Trichlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA NA	NA	0.017 U	NA	NA	NΛ	NA	NA
	Tetrachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	0.035 U	NA	NA	NΛ	NA	NA
	Pentachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	0.035 U	NA	NΛ	NA	NA	NA
	Hexachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA .	NA	NA	0.035 U	NA	NA	NA	NA	NA
	Heptachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA .	0.052 U	NA	NA	NA	NA	NA
	Octachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	0.052 U	NA	NA .	NA	NA	NA
	Nonachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NΑ	0.086 U	NA	NA	NA	NA	NA
	Decachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	0.086 U	NA	NA	NΛ	NA	NA
	Total PCBs	2	2	3	3	2	1 .	NA	NΛ	NA	NA	0.086 U	NΑ	NA	NA	NA	NA
Metals												-					·
(mg/kg)	Antimony	20	20	30	30	20	N/A	R	R	R	R	R	R	R	R	R	R
	Arsenic	20	20	20	20	20	N/A	18.0	4.03	2.93 U	5.01	15.1	2.91 U	2.68 U	10.0	11.5	2.95 U
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	23.8	94.3	5.85 U	31.2	257	6.86	18.2	38.6	64.2	9.93
	Beryllium	100	100	200	200	100	N/A	0.55	0.30 U	0.30 U	0.26 U	0.80	0.30 U	0.27 U	0.29 U	0.29 U	0.30 U
	Cadmium	2	2	30	30	2	N/A	0.35	0.54	0.30 U	0.31	0.79	0.30 U	0.27 U	0.37	0.42	0.30 U
	Chromium	30	30	200	200	30	N/A	6.84	8.87	2.60	8.94	10.9	3.15	5.61	12.3	13.8	5.49
	Lead	300	300	300	300	300	N/A	33.3	494	2.38	65.6	549	3.09	29.7	107	119	3.78
	Nickel ·	20	20	700	700	20	N/A	5.29	9.91	1.61	4.93	14.8	2.58	3.34	8.84	9.24	2.77
	Selenium	400	400	800	800	400	N/A	5.11 U	5.87 U	5.85 U	5.18 U	7.02 U	5.81 U	5.35 U	5.71 U	5.79 U	5.89 U
II .	Silver	100	100	200	200	100	N/A	2.37	2.32	0.71	3.16	2.88	0.90	2.11	3.94	4.21	1.32
	Thallium	8	8	60	60	8	N/A	3.07 U	3.52 U	3.51 U	3.11 U	4.21 U	3.49 U	3.21 U	3.43 U	3.47 U	3.54 U
	Vanadium	600	600	1,000	1,000	600	N/A	15.7	13.3	5.85 U	18.9	40.1	5.81 U	11.0	16.0	18.0	9.84
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	23.6	118	7.13	37.1	350	8.25	32.9	60.3	64.7	32.8
il	Mercury	20	20	30	30	20	N/A	0.176	0.258	0.011 U	0.190	0.196	0.022 U	0.085	0.321	0.219	0.019 U

	I	T				Cam	ple Location:		SB-225		<u> </u>	SB-226		<u> </u>	SB-227			SB-228	
. , .	A .1 45	1					le Depth (ft.)::	1	4	8	1	A	8	1	4.5	8.5	1	4	8.5
Analysis	Analyte	1						7/9/2008	7/9/2008	7/9/2008	7/9/2008	7/9/2008	7/9/2008	7/10/2008	7/10/2008	7/10/2008	7/10/2008	7/10/2008	7/10/2008
		0.1/031/.2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1**	Sample Date: TSCA		11912000	11912000	17972006	11912008	11912000	7/10/2008	//10/2008	771072.000	771072008	7/10/2008	771072006
		S-1/GW-2	2-1/GW-3	5-2/GW-2	3-2/GW-3	KC 3-1	13CA	(a)							l		 	 	
PAHs							,,,,		0.100 11	0.102.11	1	0.100 11	0.101 11	0.176 U	0.207 II.	0.200 U	0.176 U	2.96	0.182 U
(mg/kg)	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	0.222	0.199 U	0.193 U	1.73	0.189 U	0.191 U	{	1 0.20.			1	
	Acenaphthylene	600	10	600	10]	N/A	0.175 U	0.199 U	0.193 U	0.868 U	0.189 U	0.191 U	0.176 U	0.207 U	0.200 U	0.176 U	1.10 U	0.182 U
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	0.413	0.412	0.193 U	3.54	0.189 U	0.191 U	0.176 U	0.207 U	0.200 U	0.176 U	6.35	0.182 U
	Benzo(a)anthracene	7	7	40	40	7	N/A	1.15	1.67	0.193 U	6.42	0.195	0.191 U	0.327	0.596	0.200 U	0.176 U	15.2	0.182 U
	Benzo(a)pyrene	2	2	4	4	2	N/A	0.968	1.59	0.193 U	4.80	0.215	0.191 U	0.294	0.590	0.200 U	0.176 U	12.8	0.182 U
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	1.33	1.82	0.193 U	6.09	0.238	0.191 U	0.335	0.698	0.200 U	0.176 U	15.4	0.182 U
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	0.630	1.08	0.193 U	2.80	0.189 U	0.191 U	0.226	0.335	0.200 U	0.176 U	8.69	0.182 U
ļ	Benzo(k)fluoranthene	70	70	400	400	70	N/A	0.499	0.701	0.193 U	2.43	0.189 U	0.191 U	0.176 U	0.256	0.200 U	0.176 U	5.37	0.182 U
	Chrysene	70	70	400	400	70	N/A	1.23	1.55	0.193 U	6.52	0.194	0.191 U	0.346	0.705	0.200 U	0.176 U	14.2	0.182 U
	Dibenz(a,h)anthracene	0.7	0.7	4	4	0.7	N/A	0.175 U	0.254	0.193 U	0.883	0.189 U	0.191 U	0.176 U	0.207 U	0.200 U	0.176 U	2.52	0.182 U
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	1.93	2.54	0.193 U	10.6	0.378	0.191 U	0.641	0.962	0.200 U	0.176 U	24.4	0.182 U
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	0.183	0.199 U	0.193 U	1.53	0.189 U	0.191 U	0.176 U	0.207 U	0.200 U	0.176 U	3.37	0.182 U
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	0.744	1.29	0.193 U	3.66	0.189 U	0.191 U	0.251	0.389	0.200 U	0.176 U	10.0	0.182 U
	2-Methylnaphthalene	80	300	80	500	0.7	N/A	0.175 U	0.199 U	0.193 U	0.868 U	0.189 U	0.191 U	0.176 U	0.207 U	0.200 U	0.176 U	1.84	0.182 U
	Naphthalene	40	500	40	1,000	4	N/A	0.175 U	0.199 U	0.193 U	0.868 U	0.189 U	0.191 U	0.176 U	0.207 U	0.200 U	0.176 U	4.24	0.182 U
	Phenanthrene	500	500	1,000	1,000	10	N/A	1.77	1.66	0.193 U	11.6	0.197	0.191 U	0.592	1.25	0.200 U	0.176 U	20.9	0.182 U
	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	2.36	3.37	0.193 U	10.7	0.447	0.191 U	0.642	1.28	0.200 U	0.176 U	22.9	0.182 U
PCBs		1																	
(mg/kg)	Aroclor 1016	2	2	3	3	2	1	0.0512 U	0.0556 U	0.0577 U	0.0500 U	0.0558 U	0.0550 U	0.0500 U	0.0616 U	0.0579 U	0.0500 U	0.0518 U	0.0516 U
(Aroclor 1221	2	2	3	3	2	1	0.0512 U	0.0556 U	0.0577 U	0.0500 U	0.0558 U	0.0550 U	0.0500 U	0.0616 U	0.0579 U	0.0500 U	0.0518 U	0.0516 U
	Aroclor 1232	2	2	3	3	2	1	0.0512 U	0.0556 U	0.0577 U	0.0500 U	0.0558 U	0.0550 U	0.0500 U	0.0616 U	0.0579 U	0.0500 U	0.0518 U	0.0516 U
	Aroclor 1242	2	2	3	3	2	1	0.0512 U	0.0556 U	0.0577 U	0.0500 U	0.0558 U	0.0550 U	0.0500 U	0.0616 U	0.0579 U	0.0500 U	0.0518 U	0.0516 U
	Aroclor 1248	2	2	3	3	2	1	0.0512 U	0.0556 U	0.0577 U	0.0500 U	0.0558 U	0.0550 U	0.0500 U	0.0616 U	0.0579 U	0.0500 U	0.0518 U	0.0516 U
	Aroclor 1254	2	2	3	3	2	1	0.0512 U	0.0556 U	0.0577 U	0.0500 U	0.0558 U	0.0550 U	0.0500 U	0.0616 U	0.0579 U	0.0500 U	0.0518 U	0.0516 U
	Aroclor 1260	2	2	3	3	2	1	0.0512 U	0.0556 U	0.0577 U	0.0500 U	0.0558 U	0.0550 U	0.0500 U	0.0616 U	0.0579 U	0.0500 U	0.0518 U	0.0516 U
	Total PCBs	2	2	3	3	2	1	0.0512 U	0.0556 U	0.0577 U	0.0500 U	0.0558 U	0.0550 U	0.0500 U	0.0616 U	0.0579 U	0.0500 U	0.0518 U	0.0516 U
PCB Hon	nologs	1							,]							
11:	Monochlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
II. O. O.	Dichlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NΛ	NA	NΛ	NA
	Trichlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NΑ	NA	NA	NA	NA	NA	NA	NA	ÑΑ	NA	NA	NA
	Tetrachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NΛ	NA	NA	NA .	NA	NA	NA	NΛ	NA	NA	NΛ
	Pentachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Hexachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Heptachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1	Octachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	NA.	NA	NA
1	Nonachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Decachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NΛ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Total PCBs	2	2	3	3	2	1	NA	NA	NA	NA	NA	NA	NA	NΛ	NA	NA	NA	NA
Metals																			
(mg/kg)	Antimony	20	20	30	30	20	N/A	R	R	R	R	R	R	4.21 U	4.97 U	4.78 U	4.21 U	4.38 U	4.37 U
(ing/kg)	Arsenic	20	20	20	20	20	N/A	5.69	4.90	2.92 U	5.65	6.79	2.88 U	2.63 U	4.19	2.99 U	2.63 U	3.21	2.73 U
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	45.3	67.3	10.4	33.9	195	8.66	48.6	150	11.0	10.6	130	20.6
	Beryllium	100	100	200	200	100	N/A	0.27 U	0.30 U	0.30 U	0.27 U	0.64	0.29 U	0.27 U	0.32 U	0.30 U	0.27 U	0.28 U	0.28 U
	Cadmium	2	2	30	30	2	N/A	0.27	0.30 U	0.30 U	0.27 0	0.04	0.29 U	0.27	1.25	0.30 U	0.27 U	0.25	0.28 U
	Chromium	30	30	200	200	30	N/A	8.67	9.39	5.44	8.93	10.8	4.59	20.5	13.1	4.56	2.98	7.79	13.5
	1	300	300	300	300	300	N/A	199	218	3.44	85.4	482	2.91	20.3	511	5.27	4.99	418	3.83
	Lead Nickel	20	20	700	700	20	N/A	6.17	8.27	2.71	5.70	6.57	2.60	5.46	10.5	2.98	3.32	6.16	3.83 7.24
	i	400	400	800	800	400	N/A	5.21 U	5.91 U	5.83 U	5.70 5.21 U	5.65 U	5.75 U	5.46 5.26 U	6.21 U	5.98 U	5.26 U	5.47 U	5.46 U
	Selenium	L	1			1						§					I		
	Silver	100	100	200	200	100	N/A	3.54	6.21	0.96	2.81	3.97	0.81	4.13	3.90	0.60 U	1.72	2.37	3.04
	Thallium	8	8	60	60	8	N/A	3.13 U	3.55 U	3.50 U	3.13 U	3.39 U	3.45 U	3.16 U	3.73 U	3.59 U	3.16 U	3.28 U	3.28 U
	Vanadium	600	600	1,000	1,000	600	N/A	15.4	18.1	6.88	17.4	16.8	6.62	10.4	14.8	8.22	7.77	13.2	22.6
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	77.8	51.3	13.7	80.8	33.4	13.7	102	625	10.3	13.5	118	37.7
L	Mercury	20	20	30	30	20	N/A	0.168	0.362	0.020 U	0.246	0.447	0.012 U	1.68	0.530	0.022 U	0.026 U	0.524	0.012 U

						Sam	ple Location:		SB-229		SB-230	SB-231	SB-232	SB-	233	SB-	-234	SB-234-A	SB-234-B
A 1	Analista						le Depth (ft.):	1	5	8	0.5	0.5	0.5	0.5	2	0.5	2	0-0.5	0-0.5
Analysis	Analyte					,	Sample Date:	7/10/2008	7/10/2008	7/10/2008	7/10/2008	7/10/2008	7/10/2008	7/10/2008	7/10/2008	7/10/2008	7/10/2008	7/31/2008	7/31/2008
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1**	TSCA	171012000	1710/2000	771072000	110/2000	771072000	771012000	1710/2000	7.10.2000	111012000	1.10.2000	175175000	//22000
PAHs																· · · ·			
(mg/kg)	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	0.173 U	0.205 U	0.180 U	0.180 U	0.179 U	0.182 U	0.173 U	3.24	0.192 U	0.203 U	NA	NΛ
(807	Acenaphthylene	600	10	600	10	l i	N/A	0.173 U	0.205 U	0.180 U	0.180 U	0.179 U	0.182 U	0.173 U	0.995 U	0.192 U	0.203 U	NA	NA
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	0.173 U	0.205 U	0.180 U	0.180 U	0.179 U	0.182 U	0.173 U	4.93	0.192 U	0.203 U	NA	NΛ
	Benzo(a)anthracene	7	7	40	40	7	N/A	0.219	0.303	0.180 U	0.180 U	0.179 U	0.182 U	0.173 U	7.53	0.192 U	0.203 U	NA	NA
	Benzo(a)pyrene	2	2	4	4	2	N/A	0.202	0.313	0.180 U	0.180 U	0.179 U	0.182 U	0.173 U	5.48	0.192 U	0.203 U	NA	NA
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	0.229	0.385	0.180 U	0.180 U	0.179 U	0.182 U	0.173 U	6.60	0.192 U	0.203 U	NA	NA
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	0.173 U	0.211	0.180 U	0.180 U	0.179 U	0.182 U	0.173 U	2.76	0.192 U	0.203 U	NA	NA
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	0.173 U	0.205 U	0.180 U	U 081.0	0.179 U	0.182 U	0.173 U	2.49	0.192 U	0.203 U	NΛ	NA
	Chrysene	70	70	400	400	70	N/A	0.205	0.309	0.180 U	0.180 U	0.179 U	0.182 U	0.173 U	7.35	0.192 U	0.215	NA	NA
	Dibenz(a,h)anthracene	0.7	0.7	4	4	0.7	N/A	0.173 U	0.205 U	0.180 U	0.180 U	0.179 U	0.182 U	0.173 U	0.995 U	0.192 U	0.203 U	NA	NΛ
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	0.334	0.554	0.180 U	0.180 U	0.179 U	0.189	0.173 U	13.4	0.192 U	0.294	NA	NA
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	0.173 U	0.205 U	0.180 U	0.180 U	0.179 U	0.182 U	0.173 U	3.50	0.192 U	0.203 U	NA	NA
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	0.173 U	0.242	0.180 U	0.180 U	0.179 U	0.182 U	0.173 U	3.60	0.192 U	0.203 U	NA	NA
	2-Methylnaphthalene	80	300	80	500	0.7	N/A	0.173 U	0.205 U	0.180 U	0.180 U	0.179 U	0.182 U	0.173 U	1.16	0.192 U	0.203 U	NA	NA
	Naphthalene	40	500	40	1,000	4	N/A	0.173 U	0.205 U	0.180 U	0.180 U	0.179 U	0.182 U	0.173 U	1.38	0.192 U	0.203 U	NA	NA
	Phenanthrene	500	500	1,000	1,000	10	N/A	0.335	0.391	0.180 U	0.180 U	0.179 U	0.182 U	0.173 U	20.0	0.192 U	0.203 U	NA	NA
	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	0.413	0.556	0.180 U	0.180 U	0.179 U	0.250	0.196	13.4	0.216	0.429	NA	NA
PCBs													ļ						
(mg/kg)	Aroclor 1016	2	2	3	3	2	****	0.0504 U	0.0612 U	0.0522 U	0.0543 U	0.0525 U	0.0528 U	0.0515 U	0.0623 U	0.0570 U	0.0578 U	NA	NA
	Aroclor 1221	2	2	3	3	2	3	0.0504 U	0.0612 U	0.0522 U	0.0543 U	0.0525 U	0.0528 U	0.0515 U	0.0623 U	0.0570 U	0.0578 U	NA	NA
	Aroclor 1232	2	2	3	3	2	***	0.0504 U	0.0612 U	0.0522 U	0.0543 U	0.0525 U	0.0528 U	0.0515 U	0.0623 U	0.0570 U	0.0578 U	NA	NA
	Aroclor 1242	2	2	3	3	2	1	0.0504 U	0.0612 U	0.0522 U	0.0543 U	0.0525 U	0.0528 U	0.0515 U	0.0623 U	0.0570 U	0.0578 U	NA	NA
	Aroclor 1248	2	2	3	3	2	3	0.0504 U	0.0612 U	0.0522 U	0.0543 U	0.0525 U	0.0528 U	0.0515 U	0.0623 U	0.0570 U	0.0578 U	NA	NA
	Aroclor 1254	2	2	3	3	2	pour pour	0.0504 U	0.0612 U	0.0522 U	0.0543 U	0.0525 U	0.0528 U	0.0515 U	0.0623 U	0.0570 U	0.0578 U	NA	NA
-	Aroclor 1260	2	2	3	3	2	***	0.0504 U	0.0612 U	0.0522 U	0.0543 U	0.0525 U	0.0528 U	0.0515 U	0.0623 U	0.108 J	0.0578 U	NA	NA
	Total PCBs	2	2	3	3	2	1	0.0504 U	0.0612 U	0.0522 U	0.0543 U	0.0525 U	0.0528 U	0.0515 U	0.0623 U	0.108 J	0.0578 U	NA	NA
PCB Hon																			
	Monochlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	0.015 U	NA	NA	NA							
	Dichlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	0.015 U	NA	NΛ	NA	NA	NA	NA	NA	NA	NA	NΛ
	Trichtorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA.	0.015 U	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Tetrachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	0.029 U	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA
	Pentachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA NA	0.029 U	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA
	Hexachlorobiphenyl	N/A	N/A	N/A	N/A N/A	N/A N/A	N/A N/A	NA NA	0.029 U 0.044 U	NA NA	NA NA	NA NA							
	Heptachlorobiphenyl	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A	NA NA	0.044 U	NA NA	NA NA	NA NA							
	Octachlorobiphenyl Nonachlorobiphenyl	N/A	N/A	N/A N/A	N/A	N/A	N/A	NA NA	0.044 U	NA NA	NA NA	NA NA							
	Decachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA NA	0.074 U	NA NA	NA NA	NA.	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA
	Total PCBs		2	3	3	2	1	NA NA	0.074 U	NA NA	NA	NA.	NA	NA NA	NA.	NΛ	NA NA	NA	NA
Metals	10077 022		<u> </u>				`	, ,,,	0.07.	, , ,			1.7.1	7317					
(mg/kg)	Antimony	20	20	30	30	20	N/A	4.14 U	4.92 U	4.31 U	R	R	4.37 U	4.15 U	4.78 U	4.60 U	4.85 U	NA	NA
(3/ 15/ 15/	Arsenic	20	20	20	20	20	N/A	2.59 U	4.59	2.70 U	4.38	9.93	4.98	5.45	9.44	42.1	11.9	11.2	3.88
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	23.8	146	19.4	26.9	66.5	25.4	25.1	308	32.5	221	NA	NA
	Beryllium	100	100	200	200	100	N/A	0.26 U	0.31 U	0.27 U	0.28 U	0.27 U	0.28 U	0.26 U	0.30 U	0.29 U	0.70	NA.	NA
	Cadmium	2	2	30	30	2	N/A	0.26 U	0.32	0.27 U	0.28 U	0.27 U	0.41	0.35	1.93	0.82	0.70 0.31 U	NA.	NΛ
	Chromium	30	30	200	200	30	N/A	3.76	13.1	14.4	10.4	28.7	12.1	10.5	20.0	19.9	9.69	NA	NA
	Lead	300	300	300	300	300	N/A	49.0	141	2.75	20.7	16.6	47.6	68.7	1,640	56.9	152	NA	NA
	Nickel	20	20	700	700	20	N/A	3.64	9.08	6.79	6.75	14.6	5.47	5.40	12.0	8.10	12.4	NΛ	NA
	Selenium	400	400	800	800	400	N/A	5.17 U	6.15 U	5.39 U	5.42 U	5.35 U	5.46 U	5.19 U	5.97 U	5.75 U	6.07 U	NA	NA
	Silver	100	100	200	200	100	N/A	1.93	3.26	3.07	4.25	4.40	2.94	2.84	14.6	3.16	1.15	NA	NA
-	Thallium	8	8	60	60	8	N/A	3.10 U	3.69 U	3.23 U	3.26 U	3.21 U	3.28 U	3.11 U	3.58 U	3.45 U	3.64 U	NA	NΛ
}	Vanadium	600	600	1,000	1,000	600	N/A	8.60	20.1	22.0	17.3	23.6	18.5	20.5	21.6	25.3	22.4	NA	NA
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	23.6	101	35.4	18.4	23.1	32.0	38.8	776	33.7	63.0	NA	NA
l .	Mercury	20	20	30	30	20	N/A	0.035	0.434	0.018 U	0.041	0.024	0.319	0.228	4.77	0.199	0.065	NA	NA

		I				Sam	ple Location:	SB-234-C	SB-234-D	SR-	-235	SB-235-A	SB-235-B	SB-	-236	SB-236-A	SB-	-237	SB-237-A	SB-238
Analysis	Anolyte						le Depth (ft.):	0-0.5	0-0.5	0.5	2	0-0.5	0-0.5	0.5	2	0-0.5	0.5	2	0-0.5	0.5
Anaiysis	Milatyte						Sample Date:	7/31/2008	7/31/2008	7/10/2008	7/10/2008	7/31/2008	7/31/2008	7/10/2008	7/10/2008	7/31/2008	7/10/2008	7/10/2008	7/31/2008	7/11/2008
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1**	TSCA	773772000	775312000	777072000	1.10.2000									
PAHs																				
(mg/kg)	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	NA	NA	0.176 U	0.170 U	NA	NΛ	0.174 U	0.169 U	NA	0.177 U	0.172 U	NA	0.181 U
	Acenaphthylene	600	10	600	10)	N/A	NA	NA	0.176 U	0.170 U	NA	NA	0.174 U	0.169 U	NA	0.177 U	0.172 U	NA	0.181 U
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	0.176 U	0.170 U	NA	NA	0.174 U	0.169 U	NA	0.177 U	0.172 U	NA	0.181 U
	Benzo(a)anthracene	. 7	7	40	40	7	N/A	NA	NA	0.176 U	0.170 U	NA	NΛ	0.448	0.169 U	NA	0.177 U	0.172 U	NA	0.181 U
	Benzo(a)pyrene	2	2	4	4	2	N/A	NA	NA	0.176 U	0.170 U	NA	NA	0.402	0.169 U	NA	0.177 U	0.172 U	NA	0.181 U
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	NA	NA	0.176 U	0.170 U	NA	NA	0.504	0.169 U	NA	0.177 U	0.172 U	NA	0.181 U
[Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	0.176 U	0.170 U	NA	NA	0.282	0.169 U	NA	0.177 U	0.172 U	NA	0.181 U
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	NA	NA	0.176 U	0.170 U	NΛ	NA	0.174 U	0.169 U	NA	0.177 U	0.172 U	NA	0.181 U
	Chrysenc	70	70	400	400	70	N/A	NA	NA	0.176 U	0.170 U	NA NA	NΛ	0.482	0.169 U	NA	0.177 U	0.172 U	NA	0.181 U
	Dibenz(a,h)anthracene	0.7	0.7	4	4	0.7	N/A	NA	NA	0.176 U	0.170 U	NA	NA	0.174 U	0.169 U	NA	0.177 U	0.172 U	NA	0.181 U
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	0.176 U	0.170 U	NA	NA	0.787	0.169 U	NA	0.177 U	0.172 U	NA	0.181 U
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	0.176 U	0.170 U	NA NA	NA	0.174 U	0.169 U	NA	0.177 U	0.172 U	NA	0.181 U
H I	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	NA	NA	0.176 U	0.170 U	NA	NA	0.317	0.169 U	NA	0.177 U	0.172 U	NΛ	0.181 U
3	2-Methylnaphthalene	80	300	80	500	0.7	N/A	NA	NA	0.176 U	0.170 U	NΛ	NA	0.174 U	0.169 U	NA	0.177 U	0.172 U	NA	0.181 U
	Naphthalene	40	500	40	1,000	4	N/A	NA	NA	0.176 U	0.170 U	NA	NA	0.174 U	0.169 U	NA	0.177 U	0.172 U	NA	0.181 U
	Phenanthrene	500	500	1,000	1,000	10	N/A	NA	NA	0.176 U	0.170 U	NA	NA	1.10	0.169 U	NA	0.177 U	0.172 U	NA	0.181 U
	Ругепе	1,000	1,000	3,000	3,000	1,000	N/A	NA NA	NA	0.176 U	0.170 U	NA	NA	1.05	0.169 U	NA	0.177 U	0.172 U	NA	0.181 U
PCBs																				
(mg/kg)	Aroclor 1016	2	2	3	3	2	1	NA	NA	0.0515 U	0.0500 U	NA	NA	0.0514 U	0.0500 U	NA	0.0522 U	0.0501 U	NA	0.0517 U
l I	Aroclor 1221	2	2	3	3	2	1	NA	NΛ	0.0515 U	0.0500 U	NA	NA	0.0514 U	0.0500 U	NA	0.0522 U	0.0501 U	NA	0.0517 U
	Aroclor 1232	2	2	3	3	2	1	NΛ	NA	0.0515 U	0.0500 U	NA	NA	0.0514 U	0.0500 U	NA	0.0522 U	0.0501 U	NA	0.0517 U
	Aroclor 1242	2	2	3	3	2	1	NA	NA	0.0515 U	0.0500 U	NA	NA	0.0514 U	0.0500 U	NA	0.0522 U	0.0501 U	NA	0.0517 U
	Aroclor 1248	2	2	3	3	2	1	NA	NA	0.0515 U	0.0500 U	NA	NA	0.0514 U	0.0500 U	NA.	0.0522 U	0.0501 U	NA	0.0517 U
	Aroclor 1254	2	2	3	3	2	1	NA	NA	0.0515 U	0.0500 U	NA	NA	0.0514 U	0.0500 U	NA	0.0522 U	0.0501 U	NA	0.0517 U
	Aroclor 1260	2	2	3	3	2		NA	NA	0.0515 U	0.0500 U	NA	NA NA	0.0555 J 0.0555 J	0.0500 U 0.0500 U	NA NA	0.0522 U 0.0522 U	0.0501 U 0.0501 U	NA NA	0.0517 U 0.0517 U
	Total PCBs	2	2	3	3	2	1	NΑ	NA	0.0515 U	0.0500 U	NA	NA	0.0555 3	0.0300 0	INZA	0.0522 U	0.0301 0	INA	0.0317 0
PCB Hon	. 9	27/1	,,,,		27/4	21/4	27/4		274	214	, , , , , , , , , , , , , , , , , , ,) N: A	NΑ	NA	NΑ	NA	NA	NA	NA	NA
(mg/kg)	Monochlorobiphenyl	N/A	N/A	N/A	N/A	N/A N/A	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Dichlorobiphenyl	N/A N/A	N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
1	Trichlorobiphenyl	N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA.
	Tetrachlorobiphenyl Pentachlorobiphenyl	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA
	Hexachlorobiphenyl	N/A N/A	N/A	N/A N/A	N/A	N/A N/A	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NΛ	NA NA	NA NA	NA NA	NA	NA	NA NA	NA
	Heptachlorobiphenyl	N/A N/A	N/A	N/A N/A	N/A N/A	N/A	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NΛ	NA NA
	Octachlorobiphenyl	N/A N/A	N/A	N/A	N/A	N/A	N/A	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA.	NA NA	NA	NA.
	Nonachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA .	NA.	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA
1	Decachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA.	NA.	NΛ	NA	NA	NA	NA	NA	NA	NA
	Total PCBs	2	2	3	3	2	1	NA	NΛ	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NΛ
Metals										,										:
(mg/kg)	Antimony	20	20	30	30	20	N/A	NA	NA	4.22 U	4.06 U	NA	NA	4.16 U	4.05 U	NA	4.24 U	4.11 U	NA	4.34 U
\"\o \\o)	Arsenic	20	20	20	20	20	N/A	7.86	9.32	7.07	3.08	9.20	12.3	7.24	2.54 U	39.8	2.75	2.93	30.1	3.02
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	26.7	16.0	NA	NA	31.8	14.2	NA	50.0	19.2	NA	22.1
	Beryllium	100	100	200	200	100	N/A	NA	NA	0.27 U	0.32	NA	NA	0.26 U	0.35	NA	0.27 U	0.42	NA	0.28 U
	Cadmium	2	2	30	30	2	N/A	NA	NA	0.34	0.26 U	NA	NA	0.38	0.26 U	NA	0.56	0.26 U	NA	0.42
	Chromium	30	30	200	200	30	N/A	NA	NA	13.9	5.71	NA	NA	22.5	6.13	NA	27.6	7.88	NΛ	9.59
	Lead	300	300	300	300	300	N/A	NA	NΛ	47.5	6.65	NA	NA	44.6	3.92	NA	269	3.74	NΛ	14.9
	Nickel	20	20	700	700	20	N/A	NA	NA	5.89	3.43	NA	NA ·	6.73	4.36	NA	6.03	4.33	NA	6.38
	Selenium	400	400	800	800	400	N/A	NA	NA	5.27 U	5.08 U	NA	NA	5.20 U	5.07 U	NA	5.30 U	5.14 U	NA	5.43 U
	Silver	100	100	200	200	100	N/A	NΛ	NA	2.48	0.69	NA	NA	2.82	0.71	NA	4.68	0.87	NΛ	3.69
	Thallium	8	8	60	60	8	N/A	NA	NA	3.17 U	3.05 U	NA	NA	3.12 U	3.04 U	NΑ	3.18 U	3.09 U	NA	3.26 U
	Vanadium	600	600	1,000	1,000	600	N/A	NA	NΛ	20.3	8.82	NA NA	NA	20.7	8.12	NA	11.4	11.2	NA	16.4
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	NA	NA	34.6	14.7	NA	NA	31.7	18.4	NA	118	16.1	NA	22.1
ı	Mercury	20	20	30	30	20	N/A	NA	NA	0.166	0.032	NA	NA	0.189	0.027	NA	0.217	0.019	NA	0.050

						Sam	ple Location:	SB-239	SB-240	SB-241	SB-242	SB-	-243	SB-	-244	SB-245	SB-246	SB-247	SB-248
A a laai n	Analuta						le Depth (ft.):	0.5	0.5	0.5	0.5	0.5	0.5	0.5	2	0.5	0.5	0.5	0.5
Analysis	Analyte						Sample Date:	7/11/2008	7/11/2008	7/11/2008	7/11/2008	7/11/2008	7/11/2008	7/11/2008	7/11/2008	7/11/2008	7/11/2008	7/11/2008	7/11/2008
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1**	TSCA	71112000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Field Dup						
PAHs																			
(mg/kg)	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	0.178 U	0.197 U	0.193 U	0.188 U	0.185 U	0.181 U	0.196 U	0.181 U	0.200 U	0.201 U	0.209 U	0.220 U
(Acenaphthylene	600	10	600	10	1	N/A	0.178 U	0.197 U	0.193 U	0.188 U	0.185 U	0.181 U	0.196 U	0.181 U	0.200 U	0.201 U	0.209 U	0.220 U
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	0.178 U	0.197 ป	0.193 U	0.188 U	0.185 U	0.181 U	0.196 U	0.181 U	0.200 U	0.201 U	0.209 U	0.220 U
	Benzo(a)anthracene	7	7	40	40	7	N/A	0.178 U	0.197 U	0.193 U	0.188 U	0.587	0.181 U	0.196 U	0.315	0.213	0.202	0.269	0.293
	Benzo(a)pyrene	2	2	4	4	2	N/A	0.178 U	0.197 U	0.193 U	0.188 U	0.612	0.181 U	0.196 U	0.252	0.204	0.201 U	0.243	0.302
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	0.178 U	0.197 U	0.193 U	0.188 U	0.277	0.181 U	0.196 U	0.397	0.233	0.234	0.328	0.390
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	0.178 U	0.197 U	0.193 U	0.188 U	0.252	0.181 U	0.196 U	0.193	0.200 U	0.201 U	0.209 U	0.220 U
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	0.178 U	0.197 U	0.193 U	0.188 U	0.185 U	0.181 U	0.196 U	0.181 U	0.200 U	0.201 U	0.209 U	0.220 U
	Chrysene	70	70	400	400	70	N/A	0.178 U	0.197 U	0.193 U	0.188 U	0.458	0.181 U	0.196 U	0.335	0.215	0.216	0.296	0.317
	Dibenz(a,h)anthracene	0.7	0.7	4	4	0.7	N/A	0.178 U	0.197 U	0.193 U	0.188 U	0.185 U	0.181 U	0.196 U	0.181 U	0.200 U	0.201 U	0.209 U	0.220 U
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	0.178 U	0.197 U	0.193 U	0.188 U	0.185 U	0.181 U	0.196 U	0.668	0.370	0.337	0.463	0.504
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	0.178 U	0.197 U	0.193 U	0.188 U	0.185 U	0.181 U	0.196 U	0.181 U	0.200 U	0.201 U	0.209 U	0.220 U
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	0.178 U	0.197 U	0.193 U	0.188 U	0.185 U	0.181 U	0.196 U	0.219	0.200 U	0.201 U	0.209 U	0.220 U
	2-Methylnaphthalene	80	300	80	500	0.7	N/A	0.178 U	0.197 U	0.193 U	0.188 U	0.185 U	0.181 U	0.196 U	0.181 U	0.200 U	0.201 U	0.209 U	0.220 U
	Naphthalene	40	500	40	1,000	4	N/A	0.178 U	0.197 U	0.193 U	0.188 U	0.185 U	0.181 U	0.196 U	0.181 U	0.200 U	0.201 U	0.209 U	0.220 U
	Phenanthrene	500	500	1,000	1,000	10	N/A	0.178 U	0.197 U	0.193 U	0.188 U	0.185 U	0.181 U	0.196 U	0.626	0.331	0.267	0.230	0.241
	Рутепе	1,000	1,000	3,000	3,000	1,000	N/A	0.178 U	0.197 U	0.193 U	-0.188 U	0.245	0.181 U	0.208	0.640	0.385	0.329	0.427	0.442
PCBs									, i										
(mg/kg)	Aroclor 1016	2	2	3	3	2	1	0.0526 U	0.0573 U	0.0534 U	0.0567 U	0.0538 U	0.0542 U	0.0580 U	0.0528 U	0.0604 U	0.0618 U	0.0586 U	0.0642 U
	Aroclor 1221	2	2	3	3	2	1	0.0526 U	0.0573 U	0.0534 U	0.0567 U	0.0538 U	0.0542 U	0.0580 U	0.0528 U	0.0604 U	0.0618 U	0.0586 U	0.0642 U
	Aroclor 1232	2	2	3	3	2	1	0.0526 U	0.0573 U	0.0534 U	0.0567 U	0.0538 U	0.0542 U	0.0580 U	0.0528 U	0.0604 U	0.0618 U	0.0586 U	0.0642 U
	Aroclor 1242	2	2	3	3	2	1	0.0526 U	0.0573 U	0.0534 U	0.0567 U	0.0538 U	0.0542 U	0.0580 U	0.0528 U	0.0604 U	0.0618 U	0.0586 U	0.0642 U
	Aroclor 1248	2	2	3	3	2	1	0.0526 U	0.0573 U	0.0534 U	0.0567 U	0.0538 U	0.0542 U	0.0580 U	0.0528 U	0.0604 U	0.0618 U	0.0586 U	0.0642 U
1	Aroclor 1254	2	2	3	3	2	1	0.0526 U	0.0573 U	0.0534 U	0.0567 U	0.0538 U	0.0542 U	0.0580 U	0.0528 U	0.0604 U	0.0618 U	0.0586 U	0.0642 U
	Aroclor 1260	2	2	3	3	2	1	0.0526 U	0.0573 U	0.0534 U	0.0567 U	0.0538 U	0.0542 U	0.0580 U	0.0528 U	0.0604 U	0.0618 U	0.0586 U	0.0642 U
	Total PCBs	2	2	3	3	2	1	0.0526 U	0.0573 U	0.0534 U	0.0567 U	0.0538 U	0.0542 U	0.0580 U	0.0528 U	0.0604 U	0.0618 U	0.0586 U	0.0642 U
PCB Hon	nologs																		
(mg/kg)	Monochlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NΛ	NA	NA	NA
	Dichlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NΛ	NA	NA	NA	NA	NA	NA	NA
	Trichlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NΛ	NA	NA	NA
1	Tetrachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Pentachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Hexachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NΛ	NA	NA	NA
	Heptachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Octachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nonachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NΛ	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA
	Decachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NΑ	NA NA	NA NA	NA NA
	Total PCBs	L	2	3	3	2	l	NA	NA	NA	NA	NΛ	NA	NΛ	NA	NA	NA	NA	NA
Metals		20		20	20	20	N/A	426 11	4.70 11	4./2 11	461 11	4.43 U	4.34 U	4.69 U	425 11	470 H	4.81 U	5.00 U	5.28 U
(mg/kg)	Antimony	20	20	30	30	20	N/A	4.26 U	4.73 U	4.63 U	4.51 U	1		4.69 U 2.93 U	4.35 U	4.79 U	3.01 U	3.86	3.28 U 3.30 U
	Arsenic	20	20	20	20	20	N/A	2.66 U	2.96 U	2.90 U	2.82 U	2.92	2.71 U		6.08	3.00 U		37.8	
-	Barium	1,000	1,000	3,000	3,000	1,000	N/A	18.3	16.9	14.5	22.6	19.5	16.1	49.5	93.6	24.3	21.0	0.32 U	48.2
	Beryllium	100	100	200	200	100	N/A	0.27 U 0.27	0.30 U 0.30 U	0.29 U 0.29 U	0.29 U 0.29 U	0.28 U 0.28 U	0.28 U 0.28 U	0.30 U 0.43	0.44 0.28 U	0.30 U 0.33	0.31 U 0.39	0.32 0	0.33 U 0.46
	Cadmium	2	2	30	30	2 30	N/A N/A		7.52			6.64	6.93	22.0	11.7	0.53 15.3	11.1	18.2	24.5
	Chromium	30	30 300	200	200	300	N/A N/A	7.41 16.9	15.1	6.17 16.7	10.6 21.3	12.9	15.1	311	391	57.7	51.3	125	113
	Lead Nickel	300	300 20	300 700	300 700	20	N/A N/A	4.82	4.96	4.12	5.98	5.22	4.94	6.87	5.41	4.87	4.06	6.44	6.65
	}	20	400	1	700 800	400	1 1	5.32 U	5.91 U	5.79 U	5.64 U	5.54 U	5.42 U	5.86 U	5.41 5.43 U	5.99 U	6.01 U	6.25 U	6.60 U
	Selenium	400	!	800		1	N/A N/A	3.15	2.95		3.04 U	3.30	2.90	3.86 U	1.40	2.77	2.58	3.45	3.22
	Silver	100 8	100 8	200 60	200 60	100	N/A N/A	3.20 U	3.55 U	2.62 3.47 U	3.39 U	3.30 3.32 U	3.26 U	3.52 U	3.26 U	3.59 U	3.61 U	3.75 U	3.96 U
	Thallium Vanadium	600	600	1,000	1,000	600	N/A N/A	3.20 U 14.4	13.3	13.0	17.6	13.7	12.5	21.6	19.0	16.3	13.9	16.5	22.5
	1	2,500	2,500	3,000	3,000	2,500	N/A N/A	20.0	13.3	16.9	23.6	17.2	12.5 17.1	64.6	85.9	33.7	41.9	61.8	57.5
	Zinc Mercury	2,300	2,300	3,000	30	2,300	N/A N/A	0.055	0.043	0.047	0.046	0.048	0.041	0.429	0.946	0.121	0.117	0.190	0.220
<u> </u>	[1*1616U1 y	L 2V	L 20	30		20	7017	0.022	0.073	0.077	0.070	0.070	0.071	0.727	V1/7U	U-1,4-1	U-117	V.170	0.220

			***************************************			Sam	ple Location:	SB-	.749	SB-250	SB-251	SB	-252	SB-252-A	SB-252-B	SB-252-C	SB-252-D	SB-	-253	SB-253-A
Analysis	Analyte						le Depth (ft.):	0.5	2	0.5	0.5	0.5	2	0-0.5	0-0.5	0-0.5	0-0.5	0.5	2	0-0.5
Analysis	Alialyte					-	Sample Date:	7/11/2008	7/11/2008	7/11/2008	7/11/2008	7/15/2008	7/15/2008	7/31/2008	7/31/2008	7/31/2008	7/31/2008	7/15/2008	7/15/2008	7/31/2008
ļ		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1**	TSCA													
PAHs								·												
(mg/kg)	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	0.223 U	0.192 U	0.220 U	0.189 U	0.216 U	0.191 U	NA	NA	NA.	NA	0.179 U	0.193 U	NA
	Acenaphthylene	600	10	600	10	1	N/A	0.223 U	0.192 U	0.220 U	0.189 U	0.216 U	0.191 U	NA	NA	NA	NA	0.179 U	0.193 U	NA
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	0.223 U	0.192 U	0.220 U	0.189 U	0.216 U	0.191 U	NA	NA	NA	NA	0.179 U	0.193 U	NA
	Benzo(a)anthracene	7	7	40	40	7	N/A	0.234	0.307	0.220 U	0.189 U	0.216 U	0.191 U	NA NA	NA NA	NA NA	NA	0.179 U	0.232 0.242	NA NA
	Benzo(a)pyrene	2	2	4	4	2	N/A	0.259	0.306	0.220 U	0.189 U	0.216 U	0.191 U	NA NA	NA NA	NA NA	NA	0.179 U 0.179 U	0.242	NA NA
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	0.333	0.326	0.295	0.233 0.189 U	0.216 U 0.432 U	0.191 U 0.191 U	NA NA	NA NA	NA NA	NA NA	0.179 U 0.358 U	0.201	NA NA
	Benzo(g,h,i)perylenc	1,000	1,000	3,000	3,000	1,000	N/A	0.223 U	0.251 0.192 U	0.220 U 0.220 U	0.189 U	0.432 U 0.216 U	0.191 U	NA NA	NA NA	NA NA	NA NA	0.338 U	0.217 0.193 U	NA NA
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	0.223 U 0.252	0.192 0	0.220	0.189 U	0.216 U	0.191 U	NA	NA NA	NA NA	NA NA	0.179 U	0.193	NA
	Chrysene	70	70	400	400 4	70 0.7	N/A N/A	0.232 0.223 U	0.313 0.192 U	0.233 0.220 U	0.189 U	0.432 U	0.191 U	NA NA	NA NA	NA.	NA NA	0.358 U	0.193 U	NA NA
	Dibenz(a,h)anthracene	1,000	0.7 1.000	3,000	3,000	1,000	N/A N/A	0.223	0.192 0	0.220 0	0.228	0.432 U	0.191 U	NA NA	NA NA	NA NA	NA	0.179 U	0.403	NA.
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	0.223 U	0.303 0.192 U	0.220 U	0.189 U	0.216 U	0.191 U	NA.	NA	NA	NΛ	0.179 U	0.193 U	NA
	Fluorene Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	0.223 U	0.192	0.220 U	0.189 U	0.432 U	0.191 U	NA	NA NA	NA	NA	0.358 U	0.230	NA
	2-Methylnaphthalene	80	300	80	500	0.7	N/A	0.223 U	0.192 U	0.220 U	0.189 U	0.432 U	0.191 U	NA	NA.	NA	NA.	0.179 U	0.193 U	NA
	Naphthalene	40	500	40	1,000	4	N/A	0.223 U	0.192 U	0.220 U	0.189 U	0.216 U	0.191 U	NA	NA	NA	NΛ	0.179 U	0.193 U	NA
	Phenanthrene	500	500	1,000	1,000	10	N/A	0.223 U	0.260	0.240	0.189 U	0.216 U	0.191 U	NA	NA.	NA	NA	0.179 U	0.234	NA
	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	0.372	0.768	0.329	0.202	0.216 U	0.191 U	NA	NA	NA	NA	0.179 U	0.480	NA
PCBs	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -					,				_	1									:
(mg/kg)	Aroclor 1016	2	2	3	3	2	1	0.0612 U	0.0562 U	0.0670 U	0.0550 U	0.0507 U	0.0556 U	NA	NA.	NA	NA	0.0512 U	0.0538 U	NA
(6 6)	Aroclor 1221	2	2	3	3	2	1	0.0612 U	0.0562 U	0.0670 U	0.0550 U	0.0507 U	0.0556 U	NA	NA	NA	NA	0.0512 U	0.0538 U	NA
	Aroclor 1232	2	2	3	3	2	1	0.0612 U	0.0562 U	0.0670 U	0.0550 U	0.0507 U	0.0556 U	NA	NA	NA	NA	0.0512 U	0.0538 U	NA
	Aroclor 1242	2	2	3	3	2	1	0.0612 U	0.0562 U	0.0670 U	0.0550 U	0.0507 U	0.0556 U	NA	NA	NA	NA	0.0512 U	0.0538 U	NA
	Aroclor 1248	2	2	3	3	2	1	0.0612 U	0.0562 U	0.0670 U	0.0550 U	0.0507 U	0.0556 U	NA	NA	NA NA	NA	0.0512 U	0.0538 U	NA
	Aroclor 1254	2	2	3	3	2	1	0.0612 U	0.0562 U	0.0670 U	0.0550 U	0.0507 U	0.0556 U	NA	NA.	NA	NA	0.0512 U	0.0538 U	NA
	Aroclor 1260	2	2	3	3	2	1	0.0612 U	0.0562 U	0.0670 U	0.0550 U	0.0507 U	0.0556 U	NA	NA	NΛ	NA	0.0512 U	0.0538 U	NA
	Total PCBs	2	2	3	3	2	1	0.0612 U	0.0562 U	0.0670 U	0.0550 U	0.0507 U	0.0556 U	NA	NA	NA	NA	0.0512 U	0.0538 U	NA
PCB Hor	. 9	2721			, , , , , , , , , , , , , , , , , , ,	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	, , , , l	X7.4	N1.4	MA	314	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA
(mg/kg)	Monochlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA
	Dichlorobiphenyl	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA	NA NA	NA NA	NA NA
	Trichlorobiphenyl	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Tetrachlorobiphenyl Pentachlorobiphenyl	N/A N/A	N/A	N/A	N/A	N/A	N/A	NΛ	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA	NA.	NA
	Hexachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NΛ	NΛ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA.	NA.	NA
	Heptachlorobiphenyl	N/A N/A	N/A N/A	N/A	N/A N/A	N/A	N/A	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA.	NA NA	NA	NA NA	NA NA	NA	NA.
	Octachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA.	NA	NA NA	NA NA	NA.	NA	NA NA	NA NA	NA	NA NA	NA	NA
	Nonachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	NA	NA	NA
	Decachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Total PCBs	2	2	3	3	2	1	NA	NA	NA	NA	NA	NA	NΑ	NΛ	NA	NA	NA	NA	NA
Metals																				
(mg/kg)	Antimony	20	20	30	30	20	N/A	5.35 U	4.61 U	5.28 U	4.53 U	R	4.57 U	NA	NA	NA	NA	R	4.62 U	NA
	Arsenic	20	20	20	20	20	N/A	3.35 U	4.17	3.30 U	5.74	58.5	7.82	274	69.9	116	157	59.3	14.0	142
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	37.7	35.3	45.8	33.4	34.3	24.3	NA	NA	NA	NA	31.8	26.3	NA
	Beryllium	100	100	200	200	100	N/A	0.34 U	0.32	0.33 U	0.29 U	0.27 U	0.47	NA	NA	NA	NA	0.27 U	0.39	NA
	Cadmium	2	2	30	30	2	N/A	0.48	0.29 U	0.42	0.34	0.27 U	0.29 U	NA	NA	NA NA	NA	0.27 U	0.29 U	NA
	Chromium	30	30	200	200	30	N/A	32.1	13.0	26.3	14.2	16.9	8.18	NA	NA	NA NA	NA	12.1	9.72	NA
	Lead	300	300	300	300	300	N/A	119	73.0	102	91.3	28.5	23.5	NA	NA .	NA NA	NΛ	30.5	41.0	NA
	Nickel	20	20	700	700	20	N/A	5.39	3.92	6.43	5.51	10.4	3.76	NA	NΛ	NA NA	NA NA	7.93	3.95	NA
1	Selenium	400	400	800	800	400	N/A	6.69 U	5.76 U	6.59 U	5.66 U	5.40 U	5.71 U	NA NA	NA NA	NA NA	NA	5.36 U	5.78 U	NΛ
	Silver	100	100	200	200	100	N/A	2.54	0.58 U	2.84	2.90	5.06	1.15	NA NA	NA NA	NA NA	NA NA	5.15	1.45	NA NA
	Thallium	8	8	60	60	8	N/A	4.02 U	3.46 U	3.96 U 20.4	3.40 U	3.24 U	3.43 U	NA NA	NA NA	NA NA	NA NA	3.22 U 18.9	3.47 U	NΛ
	Vanadium	600 2,500	600 2,500	1,000 3,000	1,000	600 2,500	N/A N/A	19.9 48.0	12.0 33.1	45.3	23.0 35.6	19.0 33.3	14.6 20.4	NA NA	NA NA	NA NA	NA NA	24.7	16.5 22.1	NA NA
	Zinc Mercury	2,500	2,500	3,000	3,000 30	2,500	N/A N/A	0.294	0.372	45.5 0.294	0.165	0.052	0.117	NA NA	NA NA	NA NA	NA NA	0.066	0.354	NA NA
<u></u>	interesting.	1 20	L 20	L	1 20	20	11/61	V:4/7	V-3/A	U-277	4.142	4.452	1	3 4% 9	. 47.3			0.000	0,004	17/1

	I .	ī				Sam	ple Location:	SB-253-B	SB-253-C	SB-2	53-D	SB-253-E	ŞB-	254	SB-	-255	SB	-256	SB-	-257
Analysis	Analyte	İ					le Depth (ft.):	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0.5	2	0.5	2	4.5	8	5	7.5
Milalysis	Maryte	ļ.				•	Sample Date:	7/31/2008	7/31/2008	7/31/2008	7/31/2008	7/31/2008	7/15/2008	7/15/2008	7/15/2008	7/15/2008	8/12/2008	8/12/2008	8/12/2008	8/12/2008
		\$-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1**	TSCA	7,07,4000			Field Dup									
PAHs																				
(mg/kg)	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	NA	NA	NA	NA	NA	0.180 U	0.259	0.183 U	0.177 U	0.192 U	0.190 U	0.204 U	1.23 U
(- 0 - 0)	Acenaphthylene	600	10	600	10	1	N/A	NA	NA	NA	NA	NA	0.180 U	0.510	0.183 U	0.177 U	0.192 U	0.190 U	0.204 U	1.23 U
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	0.180 U	0.995	0.183 U	0.177 U	0.192 U	0.190 U	0.204 U	1.23 U
	Benzo(a)anthracene	7	7	40	40	7	N/A	NA	NA	NA	NA	NA	0.654	3.30	0.325	0.480	0.192	0.190 U	0.204 U	1.23 U
	Вепго(а)рутепе	2	2	4	4	2	N/A	NA	NA	NA	NA	NA	0.667	2.98	0.349	0.510	0.192 U	0.190 U	0.204 U	1.23 U
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	NΛ	NA	NA	NA	NA ·	0.870	3.48	0.411	0.540	0.193	0.190 U	0.204 U	1.23 U
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	0.778	2.76	0.294	0.409	0.192 U	0.190 U	0.204 U	1.23 U
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	NA	NA	NA	NA	NA	0.270	1.29	0.183 U	0.197	0.192 U	0.190 U	0.204 U	1.23 U
	Chrysene	70	70	400	400	70	N/A	NA	NA	NA	NA	NA	0.738	3.56	0.355	0.504	0.192 U	0.190 U	0.204 U	1.23 U
	Dibenz(a,h)anthracene	0.7	0.7	4	4	0.7	N/A	NA	NA	NA	NA	NA	0.360 U	0.711	0.366 U	0.177 U	0.192 U	0.190 U	0.204 U	1.23 U
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	1.08	4.37	0.599	0.714	0.321	0.190 U	0.204 U	1.23 U
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	0.180 U	0.395	0.183 U	0.177 U	0.192 U	0.190 U	0.204 U	1.23 U
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	NA	NA	NA	NA	NA	0.762	3.12	0.312	0.469	0.192 U	0.190 U	0.204 U	1.23 U
	2-Methylnaphthalene	80	300	80	500	0.7	N/A	NA	NA	NA	NA	NA	0.180 U	0.175 U	0.183 U	0.177 U	0.192 U	0.190 U	0.204 U	1.23 U
	Naphthalene	40	500	40	1,000	4	N/A	NA	NA	NA	NA	NA	0.180 U	0.246	0.183 U	0.177 U	0.192 U	0.190 U	0.204 U	1.23 U
	Phenanthrene	500	500	1,000	1,000	10	N/A	NA	NA	NA	NA	NA	0.820	3.77	0.344	0.453	0.282	0.190 U	0.204 U	1.23 U
	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	1.63	5.07	0.608	0.990	0.332	0.190 U	0.204 U	1.23 U
PCBs			1			ļ								2 2521 11	0.0506 11	0.0500 11		0.0551 U	0.0610.11	0.170 11
(mg/kg)	Aroclor 1016	2	2	3	3	2]]	NA	NA	NA	NA	NA	0.0524 U	0.0501 U	0.0506 U	0.0523 U	0.0579 U	1	0.0610 U	0.173 U
	Aroclor 1221	2	2	3	3	2]]	NA	NA	NA	NA	NA	0.0524 U	0.0501 U	0.0506 U	0.0523 U	0.0579 U	0.0551 U	0.0610 U	0.173 U 0.173 U
	Aroclor 1232	2	2	3	3	2		NA	NA	NA	NA	NA	0.0524 U	0.0501 U	0.0506 U	0.0523 U 0.0523 U	0.0579 U	0.0551 U	0.0610 U 0.0610 U	0.173 U
	Aroclor 1242	2	2	3	3	2	1	NA	NA	NA	NA	NA	0.0524 U	0.0501 U 0.0501 U	0.0506 U 0.0506 U	0.0523 U	0.0579 U 0.0579 U	0.0551 U 0.0551 U	0.0610 U	0.173 U 0.173 U
	Aroclor 1248	2	2	3	3	2		NA	NA	NA	NA NA	NA NA	0.0524 U 0.0524 U	0.0501 U	0.0506 U	0.0323 0	0.0579 U	0.0551 U		0.173 U
	Aroclor 1254	2	2	3	3	2		NA	NA NA	NA NA	NA NA	NA NA	0.0324 U	0.0501 U	0.0506 U	0.0523 U	0.0579 U	0.0551 U	0.0010 U	0.173 U
	Aroclor 1260	2 2	2 2	3 3	3	2 2	1	NA NA	NA NA	NA NA	NA NA	NA NA	0.0324 U	0.0501 U	0.0506 U	0.0323	0.0379 U	0.0551 U	0.0610 U	0.173 U
	Total PCBs	Z		3	3	2	'	INA	INA	1873	IVA	NA.	0.0324 0	0.0301 0	0.0300 0	0.120	0.0377	0.0331 0	0.0070 0	0.175 0
PCB Hon	. •		N/A	23/4	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	0.014 U	NA	NA	NA
	Monochlorobiphenyl	N/A	N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.014 U	NA NA	NA NA	NA
	Dichlorobiphenyl	N/A	N/A N/A	N/A	N/A	N/A	N/A	NA NA	NA NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	0.014 U	NA.	NA NA	NA NA
	Trichlorobiphenyl Tetrachlorobiphenyl	N/A N/A	N/A	N/A N/A	N/A N/A	N/A	N/A	NA NA	NA NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	0.028 U	NA.	NA NA	NA
ŀ	Pentachlorobiphenyl	N/A N/A	N/A	N/A	N/A	N/A	N/A	NA NA	NA NA	NA NA	NA.	NA NA	NA.	NA	NA	NA NA	0.028 U	NA	NA.	NA NA
	Hexachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA NA	NA.	NA.	NA	NA.	NA	NA	NA	0.028 U	NA	NA.	NA
	Heptachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA NA	NA.	NA.	NA.	NA	NA	NA	NA	0.042 U	NA	NA	NA
	Octachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA.	NA	NA	NA	NA	NA	0.042 U	NA	NA	NA
	Nonachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.069 U	NA	NA	NA
	Decachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NΛ	NA	NA	NA	NΑ	NA	NA	0.069 U	NA	NA	NA
	Total PCBs	1 -	2	3	3	2	1	NA	NA	NA	NA	NA	NA	NΛ	NA	NA	0.069 U	NA	NA	NA
Metals			 	İ																
(mg/kg)	Antimony	20	20	30	30	20	N/A	NA	NA	NA	NA	NA	R	4.20 U	R	4.24 U	4.60 U	4.55 U	4.88 U	14.7 U
J - 5,	Arsenic	20	20	20	20	20	N/A	66.5	48.8	103	140	18.9	11.0	8.98	7.41	5.41	5.79	2.84 U	4.34	9.16 U
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	NΛ	NA	NA	NΑ	NA	34.3	98.9	40.3	366	240	7.70	213	46.6
	Beryllium	100	100	200	200	100	N/A	NΛ	NA	NA	NA	NA	0.27 U	0.27 U	0.28 U	0.42	0.47	0.29 U	0.59	0.92 U
	Cadmium	2	2	30	30	2	N/A	NA	NA	NA	NA	NA	0.27 U	0.27 U	0.40	0.51	0.38	0.29 U	0.31 U	0.92 U
	Chromium	30	30	200	200	30	N/A	NA	NA	NA	NA	NA	8.70	14.0	10.4	7.60	13.3	3.34	9.67	4.81
	Lead	300	300	300	300	300	N/A	NA	NA	NA	NA	NA	109	532	79.6	131	484	2.20	115	2.75 U
	Nickel	20	20	700	700	20	N/A	NA	NA	NΛ	NA	NA	5.29	6.37	5.08	5.27	8.15	1.66	10.4	2.32
	Selenium	400	400	800	800	400	N/A	NΑ	NA	NA	NA	NA	5.39 U	5.25 U	5.48 U	5.30 U	5.75 U	5.68 U	6.10 U	18.4 U
	Silver	100	100	200	200	100	N/A	NA	NΛ	NΛ	NA	NΑ	2.89	4.31	2.70	1.31	0.58 U	0.57 U	0.61 U	1.84 U
	Thallium	8	8	60	60	8	N/A	NA	NA	NA	NA	NA	3.24 U	3.15 U	3.29 U	3.18 U	3.45 U	3.41 U	3.66 U	11.0 U
	Vanadium	600	600	1,000	1,000	600	N/A	NA	NA	NA	NA	NA	17.6	13.0	16.8	14.8	16.2	5.68 U	21.0	18.4 U
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	NA	NA	NΛ	NA	NA	33.6	24.7	52.2	118	151	6.10	40.5	3.67 U
	Mercury	20	20	30	30	20	N/A	NA	NΛ	NA	NA	NA	0.295	0.730	0.238	0.198	1.22	0.024 U	0.722	0.120

		1				Sair	ple Location:	SB-	-258	SB-	259		SB-260	.,		SB-261			
Analysis	Analyte	İ					le Depth (ft.):	5	8	5	8	1	4.5	8	1	4	4	7	
Milalysis	Marye					•	Sample Date:	8/12/2008	8/12/2008	8/12/2008	8/12/2008	7/14/2008	7/14/2008	7/14/2008	7/14/2008	7/14/2008	7/14/2008	7/14/2008	
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1**	TSCA								[ļ	Field Dup		
PAHs	-														0.100 1.	0.400 11		0.105.77	
(mg/kg)	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	0.201 U	0.178 U	0.202 U	0.181 U	0.184 U	0.202 U	0.194 U	0.192 U	0.423 U	0.217 U	0.185 U	
	Acenaphthylene	600	10	600	10	1	N/A	0.201 U	0.178 U	0.202 U	0.181 U	0.184 U	0.202 U	0.194 U	0.192 U	0.423 U	0.217 U	0.185 U	
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	0.201 U	0.178 U	0.202 U	0.181 U	0.184 U	0.209	0.194 U	0.192 U	0.423 U	0.217 U	0.185 U	
	Benzo(a)anthracene	7	7	40	40	7	N/A	0.201 U	0.178 U	0.202 U	0.181 U	0.184 U	0.814	0.194 U	0.828	0.423 U	0.217 U	0.185 U	
	Вепго(а)ругепе	2	2	4	4	2	N/A	0.201 U	0.178 U	0.202 U	0.181 U	0.184 U	0.845	0.194 U	0.740	0.423 U	0.217 U	0.185 U	
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	0.201 U	0.178 U	0.202 U	0.181 U	0.184 U	0.946	0.194 U	0.886	0.423 U	0.217 U	0.185 U	
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	0.201 U	0.178 U	0.202 U	0.181 U	0.367 U	0.45	0.388 U	0.383 U	0.845 U	0.433 U	0.369 U	
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	0.201 U	0.178 U	0.202 U	0.181 U	0.184 U	0.334	0.194 U	0.330	0.423 U	0.217 U	0.185 U	
	Chrysene	70	70	400	400	70	N/A	0.201 U	0.178 U	0.202 U	0.181 U	0.184 U	0.804	0.194 U	0.943	0.423 U	0.337	0.185 U	
	Dibenz(a,h)anthracene	0.7	0.7	4	4	0.7	N/A	0.201 U	0.178 U	0.202 U	0.181 U	0.367 U	0.404 U	0.388 U	0.383 U	0.845 U	0.433 U	0.369 U	
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	0.201 U	0.178 U	0.202 U	0.181 U	0.184 U	1.28	0.194 U	0.796	0.423 U	0.217 U	0.185 U	
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	0.201 U	0.178 U	0.202 U	0.181 U	0.184 U	0.202 U	0.194 U	0.192 U	0.423 U	0.217 U	0.185 U	
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	0.201 U	0.178 U	0.202 U	0.181 U	0.367 U	0.513	0.388 U	0.449	0.845 U	0.433 U	0.369 U	
	2-Methylnaphthalene	80	300	80	500	0.7	N/A	0.201 U	0.178 U	0.202 U	0.181 U	0.184 U	0.202 U	0.194 U	0.192 U	0.423 U	0.217 U	0.185 U	
	Naphthalene	40	500	40	1,000	4	N/A	0.201 U	0.178 U	0.202 U	0.181 U	0.184 U	0.202 U	0.194 U	0.192 U	0.423 U	0.217 U	0.185 U	
	Phenanthrene	500	500	1,000	1,000	10	N/A	0.201 U	0.178 U	0.202 U	0.181 U	0.184 U	1.13	0.194 U	0.392	0.423 U	0.329	0.185 U	
	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	0.201 U	0.178 U	0.202 U	0.181 U	0.256	1.96	0.194 U	1.35	0.423 U	0.217 U	0.185 U	
PCBs																			
(mg/kg)	Aroclor 1016	2	2	3	3	2	1	0.0594 U	0.0540 U	0.0561 U	0.0527 U	0.0576 U	0.0564 U	0.0579 U	0.0530 U	0.0621 U	0.0554 U	0.0518 U	
	Aroclor 1221	2	2	3	3	2	1	0.0594 U	0.0540 U	0.0561 U	0.0527 U	0.0576 U	0.0564 U	0.0579 U	0.0530 U	0.0621 U	0.0554 U	0.0518 U	
ŀ	Aroclor 1232	2	2	3	3	2	1	0.0594 U	0.0540 U	0.0561 U	0.0527 U	0.0576 U	0.0564 U	0.0579 U	0.0530 U	0.0621 U	0.0554 U	0.0518 U	
	Aroclor 1242	2	2	3	3	2	1	0.0594 U	0.0540 U	0.0561 U	0.0527 U	0.0576 U	0.0564 U	0.0579 U	0.0530 U	0.0621 U	0.0554 U	0.0518 U	
	Aroclor 1248	2	2	3	3	2	1	0.0594 U	0.0540 U	0.0561 U	0.0527 U	0.0576 U	0.0564 U	0.0579 U	0.0530 U	0.0621 U	0.0554 U	0.0518 U	
	Aroclor 1254	2	2	3	3	2	1	0.0594 U	0.0540 U	0.0561 U	0.0527 U	0.0576 U	0.0564 U	0.0579 U	0.0530 U	0.0621 U	0.0554 U	0.0518 U	
	Aroclor 1260	2	2	3	3	2	1	0.0594 U	0.0540 U	0.0561 U	0.0527 U	0.0576 U	0.0564 U	0.0579 U	0.0530 U	0.0621 U	0.0554 U	0.0518 U	
	Total PCBs	2	2	3	3	2	1	0.0594 U	0.0540 U	0.0561 U	0.0527 U	0.0576 U	0.0564 U	0.0579 U	0.0530 U	0.0621 U	0.0554 U	0.0518 U	
PCB Hon	, ,																		
(mg/kg)	Monochlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	0.016 U	NA	NA	
	Dichlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NΛ	NA	NA	0.016 U	NA	NA	
	Trichlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	0.016 U	NA	NΛ	
	Tetrachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	0.033 U	NA	NA	
ŀ	Pentachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NΛ	NA	NA	NA	NA	NA	NΛ	0.033 U	NA	NΛ	
	Hexachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	0.033 U	NA	NA	
	Heptachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	0.049 U	NA	NA	
	Octachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	0.049 U	NA	NA	
	Nonachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NΛ	NA	0.081 U	NA	NA	
	Decachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NΛ	NA	NA NA	NA NA	0.081 U	NA NA	NA	
	Total PCBs	2	2	3	3	2	1	NA	NA NA	NΛ	NA	NA	NA	NA	NA	0.081 U	NA	NA NA	
Metals		20	20	20	20	20	NI/A	4 00 11	436 17	400 11	424 11	h .	×.	r.	R	, n	n	n	
(mg/kg)	Antimony	20	20	30	30	20	N/A N/A	4.82 U	4.26 U	4.83 U	4.34 U	R	R	R		201	23.3	2 20 R	
	Arsenic	20	20	20	20	20	N/A	17.9	2.99 16.5	3.03	2.71 U 17.2	8.10 48.1	10.0	4.54	8.32 442	28.1 219	•	3.39	
	Barium	1,000	1,000	3,000	3,000	1,000	N/A N/A	146	0.27 U	19.3	0.27	48.1 0.28 U	83.6 0.31 U	16.8	0.29 U	0.40	230	11.5 0.28 U	
	Beryllium Cadmium	100	100	200 30	200	100 2	N/A N/A	0.57 0.32	0.27 U	0.31 U 0.31 U	0.27 0.28 U	0.28 U 0.40		0.30 U 0.30 U	0.29 0	1.63	0.53 1.70	0.28 U	
	1	30	2 30	200	30 200	30	N/A N/A	10.2	13.6		6.32	9.59	0.51 8.42	12.7	0.68 8.54	13.3	1.70 14.5		
	Chromium	300 300	300	300	300	300	N/A N/A	10.2 1,780	4.02	2.24 5.02	3.73	718	231	2.25	8.54 398	219	159	11.6 3.09	
	Lead Nickel	20	20	700	700	20	N/A	20.7	6.35	5.02 1.00	3.73 4.05	8.29	7.80	6.80	9.96	19.4	18.6	5.34	
}	Selenium	400	400	700 800	800	400	N/A N/A	6.02 U	5.32 U	6.04 U	4.05 5.42 U	5.50 U	6.06 U	5.82 U	5.75 U	6.34 U	6.49 U	5.34 5.54 U	
1	1	100	100		1	100	N/A N/A	0.02 U 0.61 U	0.54 U	0.04 U	0.55 U	9.37	l	2.21	7.74	15.8	25.4	2.36	
]	Silver Thallium	8	8	200 60	200 60	8	N/A N/A	3.62 U	3.20 U		3.26 U	9.37 3.30 U	5.96 3.64 U	3.49 U	3.45 U	3.81 U	25.4 3.90 U	3.32 U	
-	Vanadium	600	600	1,000	1,000	600	N/A N/A	28.4	11.8	3.62 U 12.3	3.20 () 10.7	21.9	3.04 U	15.6	3.45 U 18.1	3.81 0	3.90 U 39.2	3.32 U 13.9	
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A N/A	45.4	17.0	12.5	13.6	76.2	148	14.6	192	805	933	21.0	
	Mercury	2,300	2,300	3,000	3,000	2,300	N/A	0.366	0.012 U	0.014	0.014 U	6.09	0.386	0.020 U	0.077	0.323	0.139	0.016 U	
L	Intologia	<u> </u>	L 20	30	30	20	14/71	0.000	0.012 U	0.014	0.014 0	0.09	0.500	V.V2U U	0.0//	V-J4J	0.137	0.010 U	

-	T	Sample Location					nla I contion:		SB-262			SB-263		SB-264			SB-265		1	SB-266		
	4 1 - 4 -						bie Location: le Depth (ft.):	1	3.5	7.5	1	35-203	Ŕ	1	3.5	7	1	4	7.5	1	4	9
Analysis	Analyte					,	Sample Date:	7/14/2008	7/14/2008	7/14/2008	7/14/2008	7/14/2008	7/14/2008	7/14/2008	7/14/2008	7/14/2008	7/14/2008	7/14/2008	7/14/2008	7/15/2008	7/15/2008	7/15/2008
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3		TSCA	771472000	771472000	173412000	7.14.2000	771472000	777,2000	111112000			771 112000				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
20 1 77		3-1/077-2	3-7/011-3	0-210 H-2	0-27011-3	1001	10011								İ							
PAHs		1,000	1,000	3,000	3,000	A	N/A	0.187 U	0.226 U	0.191 U	0.211 U	0.237 U	0.197 U	1.03	0.230 U	0.195 U	0.175 U	0.232	0.200 U	0.176 U	0.201 U	0.204 U
(mg/kg)	Acenaphthene	600	1,000	600	10	7,	N/A	0.187 U	0.226 U	0.191 U	0.211 U	0.237 U	0.197 U	0.490	0.230 U	0.195 U	0.175 U	0.232 U	0.200 U	0.176 U	0.201 U	0.204 U
1	Acenaphthylene		1,000	3,000	3,000	1,000	N/A	0.137	0.226 U	0.191 U	0.211 U	0.237 U	0.197 U	3.61	0.230 U	0.195 U	0.175 U	0.797	0.200 U	0.176 U	0.201 U	0.204 U
	Anthracene	1,000	1,000	3,000 40	40	7	N/A	1.24	0.226 U	0.191 U	0.308	0.237 U	0.197 U	6.95	0.296	0.195 U	0.175 U	1.87	0.200 U	0.176 U	0.547	0.204 U
	Benzo(a)anthracene	,	/	l	I .	1	N/A	1.05	0.226 U	0.191 U	0.338	0.237 U	0.197 U	5.94	0.245	0.195 U	0.175 U	1.66	0.200 U	0.176 U	0.629	0.204 U
	Benzo(a)pyrene	2	2	4	4	2 7		1.05	0.226 U	0.191 U	l	0.237 U	0.197 U	7.16	0.243	0.195 U	0.175 U	1.96	0.200 U	0.176 U	0.712	0.204 U
	Benzo(b)fluoranthene	7	7	40	40		N/A				0.461	0.237 U	0.197 U	3.52	0.460 U	0.193 U	0.175 U 0.349 U	1.15	0.200 U	0.351 U	0.595	0.408 U
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	0.489	0.451 U	0.382 U	0.422 U	ŧ .	ŀ		0.400 U	I .	0.349 U 0.175 U	0.721	0.200 U	0.331 U	0.353	0.408 U 0.204 U
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	0.434	0.226 U	0.191 U	0.211 U	0.237 U	0.197 U	2.36	•	0.195 U		(1	l	0.601	1
	Chrysene	70	70	400	400	70	N/A	1.14	0.226 U	0.191 U	0.457	0.237 U	0.197 U	7.59	0.265	0.195 U	0.175 U	1.91	0.200 U	0.176 U	1	0.204 U
	Dibenz(a,h)anthracene	0.7	0.7	4	4	0.7	N/A	0.374 U	0.451 U	0.382 U	0.422 U	0.473 U	0.393 U	i fi i	0.460 U	0.389 U	0.349 U	0.464 U	0.399 U	0.351 U	0.401 U	0.408 U
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	1.69	0.226 U	0.191 U	0.298	0.324	0.197 U	13.4	0.426	0.195 U	0.175 U	2.86	0.200 U	0.176 U	0.964	0.204 U
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	0.187 U	0.226 U	0.191 U	0.211 U	0.237 U	0.197 U	2.81	0.230 U	0.195 U	0.175 U	0.327	0.200 U	0.176 U	0.201 U	0.204 U
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	0.591	0.451 U	0.382 U	0.422 U	0.473 U	0.393 U	4.24	0.460 U	0.389 U	0.349 U	1.36	0.399 U	0.351 U	0.653	0.408 U
1	2-Methylnaphthalene	80	300	80	500	0.7	N/A	0.187 U	0.226 U	0.191 U	0.211 U	0.237 U	0.197 U	0.971	0.230 U	0.195 U	0.175 U	0.232 U	0.200 U	0.176 U	0.201 U	0.204 U
	Naphthalene	40	500	40	1,000	4	N/A	0.187 U	0.226 U	0.191 U	0.211 U	0.907	0.197 U	0.180 U	0.230 U	0.195 U	0.175 U	0.265	0.200 U	0.176 U	0.201 U	0.204 U
	Phenanthrene	500	500	1,000	1,000	10	N/A	1.75	0.226 U	0.191 U	0.211 U	0.315	0.197 U	18.0	0.485	0.195 U	0.175 U	3.16	0.200 U	0.176 U	0.788	0.204 U
	Ругепе	1,000	1,000	3,000	3,000	1,000	N/A	2.04	0.226 U	0.191 U	0.512	0.306	0.197 U	11.7	0.591	0.195 U	0.175 U	3.57	0.200 U	0.176 U	1.32	0.204 U
PCBs																						
(mg/kg)	Aroclor 1016	2	2	3	3	2	1	0.0503 U	0.0659 U	0.0563 U	0.0562 U	0.0653 U	0.0565 U	0.0501 U	0.0656 U	0.0548 U	0.0510 U	0.0632 U	0.0570 U	0.0502 U	0.0571 U	0.0593 U
(88)	Aroclor 1221	2	2	3	3	2	1	0.0503 U	0.0659 U	0.0563 U	0.0562 U	0.0653 U	0.0565 U	0.0501 U	0.0656 U	0.0548 U	0.0510 U	0.0632 U	0.0570 U	0.0502 U	0.0571 U	0.0593 U
	Aroclor 1232	2	2	3	3	2	1	0.0503 U	0.0659 U	0.0563 U	0.0562 U	0.0653 U	0.0565 U	0.0501 U	0.0656 U	0.0548 U	0.0510 U	0.0632 U	0.0570 U	0.0502 U	0.0571 U	0.0593 U
	Aroclor 1242	2	2	3	3	2	1	0.0503 U	0.0659 U	0.0563 U	0.0562 U	0.0653 U	0.0565 U	0.0501 U	0.0656 U	0.0548 U	0.0510 U	0.0632 U	0.0570 U	0.0502 U	0.0571 U	0.0593 U
	Aroclor 1248	2	2	3	3	2	1	0.0503 U	0.0659 U	0.0563 U	0.0562 U	0.0653 U	0.0565 U	0.0501 U	0.0656 U	0.0548 U	0.0510 U	0.0632 U	0.0570 U	0.0502 U	0.0571 U	0.0593 U
	Aroclor 1254	2	2	3	3	2	1	0.0503 U	0.0659 U	0.0563 U	0.0562 U	0.0653 U	0.0565 U	0.0501 U	0.0656 U	0.0548 U	0.153 *	0.0632 U	0.0570 U	0.0502 U	0.0571 U	0.0593 U
-	Aroclor 1260	2	2	3	3	2	1	0.0503 U	0.0659 U	0.0563 U	0.0562 U	0.0653 U	0.0565 U	0.0501 U	0.0656 U	0.0548 U	0.084 *	0.0632 U	0.0570 U	0.0502 U	0.0571 U	0.0593 U
	Total PCBs	2	2	3	3	2	1	0.0503 U	0.0659 U	0.0563 U	0.0562 U	0.0653 U	0.0565 U	0.0501 U	0.0656 U	0.0548 U	0.237	0.0632 U	0.0570 U	0.0502 U	0.0571 U	0.0593 U
PCB Hon	<u> </u>		<u> </u>																			
(mg/kg)	Monochlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NΛ	NA	NA	NA									
(mg/kg)	Dichlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA NA	NA	NA.	NA.	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NΛ	NA.
	Trichlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA.	NA	NA	NA	NA	NA	NA	NA NA	NA	NA .	NA.	NA	NA	NA	NA NA
	Tetrachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA.	NA	NA	NA NA	NA.	NA	NA	NA.	NA	NA.	NA.	NA.	NA	NA NA	NA NA
	Pentachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA.	NA NA	NA.	NA	NA	NA NA	NA NA	NA	NA NA	NA.	NA	NA NA	NA NA
	, ,	N/A	N/A	N/A	N/A	N/A	N/A	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NΛ	NA	NA	NA NA	NA	NA NA
	Hexachlorobiphenyl Heptachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA -	NA NA	NA	NA NA	NA.	NA NA	NA	NA NA
	Octachlorobiphenyl	N/A N/A	N/A N/A	N/A	N/A N/A	N/A N/A	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1	Nonachlorobiphenyl	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Decachlorobiphenyl	N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		2	1 1	١ .	1 .	1 _ 1	1 1 1 1 1 1 1	NA NA	NA NA			NA NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA I
Madel	Total PCBs	4		3	3	2	<u> </u>	21/1	1473	NA	NA	1173	7423	1471	HA.	11/2	1373	1171	14/3	1173	1473	11/1
Metals		30	20	20	30	1 20 1	N1/A			77	,	7.5	r.		г.		, n	I.	n.	, p	D.	
(mg/kg)	Antimony	20	20	30	30	20	N/A	R	R	R	K K	7.15	R	R . 42	20.4	R	R	K ICO] 300 K	R	K K	K
	Arsenic	20	20	20	20	20	N/A	4.58	20.5	2.87 U	13.3	13.8	4.82	4.43	20.2	2.92 U	2.66	16.3	3.00 U	5.64	9.94	3.06 U
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	24.1	216	7.17	273	220	20.3	30.8	359	13.6	10.8	270	5.99 U	25.5	202	6.12 U
	Beryllium	100	100	200	200	100	N/A	0.29 U	0.34 U	0.29 U	0.32 U	0.36 U	0.30 U	0.27 U	0.35 U	0.30 U	0.27 U	0.35 U	0.30 U	0.27 U	0.31 U	0.31 U
	Cadmium	2	2	30	30	2	N/A	0.29 U	1.42	0.29 U	0.48	0.53	0.30 U	0.27 U	0.50	0.30 U	0.27 U	2.90	0.30 U	0.27 U	0.34	0.31 U
	Chromium	30	30	200	200	30	N/A	7.07	20.7	3.23	8.11	9.25	9.76	5.66	11.5	6.12	4.76	18.0	1.95	22.1	12.4	1.44
	Lead	300	300	300	300	300	N/A	10.3	861	2.98	129	299	5.53	112	2,690	4.93	43.2	872	2.28	3.15	286	1.74
1	Nickel	20	20	700	700	20	N/A	4.68	23.3	2.03	13.5	15.5	9.07	5.15	23.9	5.03	4.00	44.2	1.33	12.1	9.44	1.58
	Selenium	400	400	800	800	400	N/A	5.61 U	6.76 U	5.73 U	6.33 U	7.09 U	5.89 U	5.38 U	6.89 U	5.84 U	5.24 U	6.96 U	5.99 U	5.26 U	6.01 U	6.12 U
	Silver	100	100	200	200	100	N/A	2.31	20.0	1.37	2.65	3.55	2.25	2.47	9.46	1.62	1.64	17.4	0.60 U	3.52	5.95	0.62 U
	Thallium	8	8	60	60	8	N/A	3.37 U	4.06 U	3.44 U	3.80 U	4.25 U	3.54 U	3.23 U	4.14 U	3.51 U	3.14 U	4.18 U	3.59 U	3.16 U	3.61 U	3.67 U
	Vanadium	600	600	1,000	1,000	600	N/A	13.6	28.5	5.73 U	21.9	27.6	17.1	15.1	31.9	9.35	9.68	22.6	5.99 U	23.3	26.1	6.12 U
			1	م م م م	1	1 5	3 3773	20.0	(50		ا ممد ا			I	1 220	أممدا	24.77	(0.2	ابدا	ا ہے۔ ا		10.6
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	30.9	659	10.5	131	333	27.6	52.7	230	13.9	34.7	603	14.3	25.5	70.0	j 10.0 j

		<u> </u>				Sam	ple Location:		SB-267			SB-268			SB-269		SP-1	SP-2	WC-1
Analysis	Analyte						e Depth (ft.):	1	3.5	9	1	4.5	9	1	4	9.5	N/A	N/A	N/A
Zilaiysis	Maryto	İ					Sample Date:	7/14/2008	7/14/2008	7/14/2008	7/15/2008	7/15/2008	7/15/2008	7/15/2008	7/15/2008	7/15/2008	8/7/2008	8/7/2008	8/7/2008
	<u> </u>	S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1**	TSCA												
PAHs																			
(mg/kg)	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	0.169 U	0.207 U	0.199 U	0.187 U	0.245 U	0.210 U	0.171 U	0.200 U	0.194 U	NA	NA	NA
	Acenaphthylene	600	10	600	10	1	N/A	0.169 U	0.207 U	0.199 U	0.187 U	0.245 U	0.210 U	0.171 U	0.200 U	0.194 U	NA	NA	NA
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	0.169 U	0.207 U	0.199 U	0.187 U	0.269	0.677	0.171 U	0.200 U	0.194 U	NA	NA	NA
	Benzo(a)anthracene	7	7	40	40	7	N/A	0.260	0.207 U	0.199 U	0.187 U	0.360	0.903	0.171 U	0.231	0.194 U	NA	NA	NA
	Benzo(a)pyrene	2	2	4	4	2	N/A	0.271	0.207 U	0.199 U	0.187 U	0.292	0.677	0.171 U	0.231	0.194 U	NA	NA	NA
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	0.343	0.275	0.199 U	0.187 U	0.311	0.615	0.171 U	0.259	0.194 U	NA	NA	NA
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	0.338 U	0.413 U	0.397 U	0.373 U	0.489 U	0.446	0.342 U	0.400 U	0.388 U	NA	NA	NA
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	0.169 U	0.207 U	0.199 U	0.187 U	0.245 U	0.225	0.171 U	0.200 U	0.194 U	NA	NA	NA
	Chrysene	70	70	400	400	70	N/A	0.325	0.682	0.199 U	0.187 U	0.359	0.873	0.171 U	0.251	0.194 U	NA	NA	NA
	Dibenz(a,h)anthracene	0.7	0.7	4	4	0.7	N/A	0.338 U	0.413 U	0.397 U	0.373 U	0.489 U	0.420 U	0.342 U	0.400 U	0.388 U	NA	NA	NA
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	0.523	0.207 U	0.199 U	0.324	0.722	1.65	0.171 U	0.463	0.194 U	NA	NA	NA
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	0.169 U	0.207 U	0.199 U	0.187 U	0.245 U	0.299	0.171 U	0.200 U	0.194 U	NA	NA	NA
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	0.338 U	0.413 U	0.397 U	0.373 U	0.489 U	0.435	0.342 U	0.400 U	0.388 U	NA	NΛ	NA
	2-Methylnaphthalene	80	300	80	500	0.7	N/A	0.169 U	0.207 U	0.199 U	0.187 U	0.245 U	0.210 U	0.171 U	0.200 U	0.194 U	NA	NA	NA
	Naphthalene	40	500	40	1,000	4	N/A	0.169 U	0.207 U	0.199 U	0.187 U	0.245 U	0.210 U	0.171 U	0.200 U	0.194 U	NA	NA	NA
	Phenanthrene	500	500	1,000	1,000	10	N/A	0.230	0.846	0.199 U	0.259	1.25	3.19	0.171 U	0.507	0.194 U	NA	NA	NA
	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	0.585	0.289	0.199 U	0.320	0.840	2.38	0.192	0.565	0.194 U	NA	NA	NA
PCBs																			
(mg/kg)	Aroclor 1016	2	2	3	3	2	1	0.0500 U	0.0586 U	0.0584 U	0.0550 U	0.0760 U	0.0581 U	0.0507 U	0.0612 U	0.0538 U	NA	NA	NA
	Aroclor 1221	2	2	3	3	2	1	0.0500 U	0.0586 U	0.0584 U	0.0550 U	0.0760 U	0.0581 U	0.0507 U	0.0612 U	0.0538 U	NA	NA	NA
	Aroclor 1232	2	2	3	3	2	1	0.0500 U	0.0586 U	0.0584 U	0.0550 U	0.0760 U	0.0581 U	0.0507 U	0.0612 U	0.0538 U	NA .	NA	NA
	Aroclor 1242	2	2	3	3	2	1	0.0500 U	0.0586 U	0.0584 U	0.0550 U	0.0760 U	0.0581 U	0.0507 U	0.0612 U	0.0538 U	NA	NA	NA
	Aroclor 1248	2	2	3	3	2	1	0.0500 U	0.0586 U	0.0584 U	0.0550 U	0.0760 U	0.0581 U	0.0507 U	0.0612 U	0.0538 U	NA	NA	NA
	Aroclor 1254	2	2	3	3	2	1	0.0500 U	0.0586 U	0.0584 U	0.0727 *	0.0760 U	0.0581 U	0.0507 U	0.0612 U	0.0538 U	NA	NA	NA
	Aroclor 1260	2	2	3	3	2	1	0.0500 U	0.0586 U	0.0584 U	0.0550 U	0.0760 U	0.0581 U	0.0507 U	0.0612 U	0.0538 U	NA NA	NA	NA
	Total PCBs	2	2	3	3	2	l	0.0500 U	0.0586 U	0.0584 U	0.0727	0.0760 U	0.0581 U	0.0507 U	0.0612 U	0.0538 U	NA	NA	NA
PCB Hon																			
(mg/kg)	Monochlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA NA	NA										
	Dichlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA NA	NA										
	Trichlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NΛ	NA	NA	NA NA	NA	NA
•	Tetrachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NΛ	NΛ	NΛ								
	Pentachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA NA	NA	NA								
<u> </u>	Hexachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA
	Heptachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA
	Octachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
	Nonachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Decachlorobiphenyl Total BCPs	N/A	N/A	N/A	N/A	N/A	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
24	Total PCBs	2	2	3	3	2	i	INA	1447	IVA	INA	14\/7	JAYZ	141/	29/1	14/1	11//	1414	11/4
Metals	l				30		<u>,,, </u>		15	*	**	74	, , l	75	r.		,,, ,,	4.46 11	401 11
(mg/kg)	Antimony	20	20	30	30	20	N/A	R	R	R	R 5.52	77 P	2 15 II	R	R	R 2 40	4.49 U	4.46 U	4.01 U
	Arsenic	20	20	20	20	20	N/A	3.19	14.3	4.84	5.53	27.8	3.15 U	6.51	11.7	3.48	10.7	4.00	12.9
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	14.0	200	7.59	21.5	575	6.40	25.0	185	12.5	34.6	21.8	9.25
	Beryllium	100	100	200	200	100	N/A	0.26 U	0.31 U	0.30 U	0.28 U	0.43	0.32 U	0.26 U	0.30 U	0.30 U	0.29 U	0.28 U	0.26 U
	Cadmium	2	2	30	30	2	N/A	0.26 U	0.31 U	0.30 U	0.28 U	1.23	0.32 U	0.29	0.50	0.30 U	0.29 U	0.28 U	0.26 U
	Chromium	30	30	200	200	30	N/A	5.14	5.30	3.81	7.97	51.9	1.90	8.12	12.3	5.13	9.34	7.39	0.79
	Lead	300	300	300	300	300	N/A	47.9	209	3.13	39.0	1,320	2.82	43.8	1,790	4.51	38.9	42.6	22.1
	Nickel	20	20	700	700	20	N/A	3.98	11.7	4.02	4.51	24.2	2.04	5.14	7.56	4.81	7.26	4.28	2.08
	Selenium	400	400	800	800	400	N/A	5.06 U	6.19 U	5.95 U	5.59 U	7.34 U	6.30 U	5.13 U	6.00 U	5.81 U	5.61 U	5.57 U	5.01 U
	Silver	100	100	200	200	100	N/A	2.22	3.94	1.17	2.52	15.8	0.63 U	2.99	4.23	1.24	5.18	1.77	0.51 U
	Thallium	8	8	60	60	8	N/A	3.04 U	3.72 U	3.57 U	3.35 U	4.40 U	3.78 U	3.08 U	3.60 U	3.49 U	3.37 U	3.35 U	3.01 U
	Vanadium	600	600	1,000	1,000	600	N/A	10.6	18.3	5.95 U	14.9	41.6	6.30 U	15.3	18.9	8.91	16.3	13.8	5.01 U
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	33.8	25.3	14.1	43.1	834	11.1	32.9	125	18.3	21.2	23.1	7.75
	Mercury	20	20	30	30	20	N/A	0.079	0.078	0.012 U	0.183	38.4	0.017 U	0.222	0.122	0.014 U	0.086	0.11	0.018 U

[<u> </u>			****	San	ple Location:	WF-1	WF-2	WF-3	w	F-4	WF-5	WF-6	WF-7	WF-8	WF-9	WF-10	WF-11
Analysis	Analyte	1					le Depth (ft.):	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
Allalysis	Analyte						Sample Date:	9/30/2008	9/30/2008	9/30/2008	9/30/2008	9/30/2008	9/30/2008	9/30/2008	9/30/2008	9/30/2008	9/30/2008	9/30/2008	9/30/2008
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1**	TSCA	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				Field dup				}			
PAHs												i						1	
(mg/kg)	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NΛ	NA	NA	NA
(טיי שייי)	Acenaphthylene	600	10	600	10	1	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NΛ	NA	NA	NΛ
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Benzo(a)anthracene	7	7	40	40	7	N/A	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Benzo(a)pyrene	2	2	4	4	2	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	NA	NA	NA	NA	NA	NA	NA	NΛ	NΛ	NA	NA	NA
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Chrysene	70	70	400	400	70	N/A	NA	NA	NA	NA	NA	NA	NA	NΛ	NA	NA	NA	NA
	Dibenz(a,h)anthracene	0.7	0.7	4	4	0.7	N/A	NA	NA	NA	NA	NA	NA	NA	ÑΑ	NA	NA	NΛ	NA
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA
1	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	NΛ	NA	NA	NA	NA	NA	NA	NA	NΛ	NA	NA	NA
	2-Methylnaphthalene	80	300	80	500	0.7	N/A	NA	NA	NA	NA	NA	NΛ	NA	NA	NA	NA	NA	NA
	Naphthalene	40	500	40	1,000	4	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1	Phenanthrene	500	500	1,000	1,000	10	N/A	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NΛ	NΛ
	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs										-									
(mg/kg)	Aroclor 1016	2	2	3	3	2	1	NA	NA	NA	NA	NA	NΛ	NA	NA	NA	NA	NA	NA
	Aroclor 1221	2	2	3	3	2	1	NA	NA	NA	NA	NΛ	NΛ	NA	NA	NΛ	NA	NA	NA
	Aroclor 1232	2	2	3	3	2]	NA	NA	NA	NA	NA	NA	NA	NA	NΛ	NA	NA	NA
	Aroclor 1242	2	2	3	3	2	1	NA	NA	NA	NA	NA	NA	NA	NA	NΛ	NA	NA	NA
	Aroclor 1248	2	2	3	3	2	1	NA	NA	NA	NA	NA	NA	NA	NA	NΛ	NA	NA	NA
H	Aroclor 1254	2	2	3	3	2	1	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Aroclor 1260	2	2	3	3	2	1	NА	NA	NA	NA	NA	NA	NA	NA	NΛ	NA	NA	NA
	Total PCBs	2	2	3	3	2	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCB Hon	nologs		Į																
(mg/kg)	Monochlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NΛ	NA	NA	NA
	Dichlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NΛ	NA	NA	NA	NA	NA	NΛ	NA	NA	NA
	Trichlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NΛ	NA	NA	NA	NA	NA	NA	NA
	Tetrachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NΛ	NA	NA	NA	NA
	Pentachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA
	Hexachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Heptachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA
	Octachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
	Nonachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NΑ	NA NA	NA	NA	NA	NA	NA	NΛ	NA	NA	NA
	Decachiorobiphenyl Total PCPs	N/A	N/A	N/A	N/A	N/A	N/A	NA Na	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Total PCBs	2	2	3	3	2	1 1	NA	NA	NA	NA	NΑ	NA	NA	NA	NΛ	NA	NA	NA
Metals	l						<u>,,,</u>	N 1.								, .	.,.		37.
(mg/kg)	Antimony	20	20	30	30	20	N/A	NA TO	NA	NA	NA	NA 25.0	NA 0.00	NA	NA 7.00	NA (50	NA 10.5	NA COC	NA 7.06
	Arsenic	20	20	20	20	20	N/A	7.84	14.4	12.0	24.2	25.8	9.89	5.82	7.86	6.50	10.7	6.96	7.86
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Beryllium	100	100	200	200	100	N/A	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NΛ
	Cadmium	2	2	30	30	2	N/A	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA
	Chromium	30	30	200	200	30	N/A	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA
	Lead	300	300	300	300	300	N/A	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NΛ
	Nickel	20	20	700	700	20	N/A	NA .	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
	Selenium	400	400	800	800	400	N/A	NA	NΑ	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
	Silver	100	100	200	200	100	N/A	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA	NΛ	NA	NA	NA
	Thallium	8	8	60	60	8	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NΛ	NA NA	NA NA	NΛ
	Vanadium	600	600	1,000	1,000	600	N/A	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA
ļ	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	NA Na	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
<u> </u>	Метситу	20	20	30	30	20	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 1 Summary of Analytical Results for Soil Samples - 2008 Walsh Field New Bedford, Massachusetts

						Sam	ple Location:	WF-12	WF-13	WF-14	WF-15	WF-16	WF-17	WF-18
Analonia	Analista						e Depth (ft.):	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
Analysis	Anaiyie					-	Sample Date:	9/30/2008	9/30/2008	9/30/2008	9/30/2008	9/30/2008	9/30/2008	9/30/2008
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1**	TSCA	713012000	J150/2000	3/20/2000	3/30/2000	3700.2000	J. 00/2000	
AHs														
mg/kg)	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	NA	NA	NA	NA	NA	NA	NA
0 0,	Acenaphthylene	600	10	600	10	1	N/A	NA	NA	NA	NA	NA	NA	NA
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA
	Benzo(a)anthracene	7	7	40	40	7	N/A	NA	NA	NA	NA	NA	NA	NA
	Benzo(a)pyrene	2	2	4	4	2	N/A	NA	NA	NA	NA	NΛ	NA	NA
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	NA	NA NA	NA	NA	NA	NA	NA
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NΑ	NA	NA	NA
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	NA	NA	NA	NA	NΑ	NA	NA
	Chrysene	70	70	400	400	70	N/A	NΛ	NA	NA	NA	NA	NA	NA
	Dibenz(a,h)anthracene	0.7	0.7	4	4	0.7	N/A	NA	NA	NA	NA	NA	NA	NA
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	NA	NA	NA	NA	NA	NA	NA
	2-Methylnaphthalene	80	300	80	500	0.7	N/A	NA	NA	NA NA	NA	NA	NA	NA
	Naphthalene	40	500	40	1,000	4	N/A	NA	NA	NA	NA	NA	NA	NA
	Phenanthrene	500	500	1,000	1,000	10	N/A	NA	NA	NA NA	NA.	NA.	NA NA	NA
	Pyrene Pyrene	1,000	000,1	3,000	3,000	1,000	N/A	NA NA	NA NA	NA NA	NA	NA.	NA NA	NA
PCBs	i yiciic	1,000	1,000	3,000	5,000	1,000	1471	1111		****				
	Aroclor 1016	2	2	3	3	2	1	NA	NA	NA	NA	NA	NA	NA
(UE) KE)	Aroclor 1221	2	2	3	3	2	1	NA	NA	NA	NA	NA	NA	NA
	Aroclor 1232	2	2	3	3	2	1	NA	NA	NA	NA	NA	NA	NA
	Aroclor 1242	2	2	3	3	2	,	NA	NA	NA.	NA	NA.	NA	NA
	Aroclor 1248	2	2	3	3	2	,	NA	NA NA	NA	NA	NA	NA NA	NA.
	Aroclor 1254	2	2	3	3	2	,	NA	NA NA	NA NA	NA	NA.	NA NA	NA.
	Aroclor 1260	2	2	3	3	2	1	NΛ	NA	NA	NA	NA	NA.	NA
	Total PCBs	2	2	3	3	2		NA	NA NA	NA NA	NA.	NA NA	NA NA	NA.
PCB Hon	<u></u>	<u> </u>												
	Monochlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA
mg/kg/	Dichlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA.	NA	NA	NA	NA	NA
	Trichlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA .	NA	NA	NA	NA	NA
	Tetrachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA NA	NA	NA	NΛ	NA	NA
	Pentachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA .	NA	NA.	NA	NA	NA
	Hexachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA NA	NA	NA.	NA	NA	NA
	Heptachlorobiphenyl	N/A N/A	N/A	N/A	N/A	N/A	N/A	NA.	NA	NA	NA.	NA.	NA	NA
		N/A	N/A	N/A	N/A	N/A	N/A	NA.	NA	NA	NA	NA.	NA	NA.
	Octachlorobiphenyl Nonachlorobiphenyl	N/A N/A	N/A	N/A N/A	N/A	N/A	N/A	NA NA	NA NA	NA NA	NA NA	NA	NA	NA
	Decachlorobiphenyl	N/A N/A	N/A N/A	N/A	N/A	N/A N/A	N/A	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA
	Total PCBs	2	2	3	3	2	1	NA	NA	NΛ	NA.	NA	NA.	NΛ
Metals	100017 0225		_											
mg/kg)	Antimony	20	20	30	30	20	N/A	NA	NA	NΑ	NA	NA	NA	NA
	Arsenic	20	20	20	20	20	N/A	6.53	7.25	9.51	6.27	5.46	5.75	6.05
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	NΛ	NA	NA	NA	NA	NA	NA
	Beryllium	100	100	200	200	100	N/A	NA	NA	NA	NA	NA	NA	NΛ
	Cadmium	2	2	30	30	2	N/A	NA	NA	NA	NΛ	NΑ	NA	NA
	Chromium	30	30	200	200	30	N/A	NA	NA	NA	NA	NA	NA	NΛ
	Lead	300	300	300	300	300	N/A	NA	NA	NA	NA	NA	NA	NA
	Nickel	20	20	700	700	20	N/A	NA.	NA NA	NA	NA	NA	NA	NA
	Selenium	400	400	800	800	400	N/A	NA	NA.	NA NA	NA	NA	NA NA	NA.
	Silver	ŀ	100	200	200	100	N/A	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA
	1	100	1		60		N/A N/A		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Thallium	8	8	60	I	8		NΛ	l :				J	1
	Vanadium	600	600	1,000	1,000	600	N/A	NA	NA NA	NA NA	NΛ	NA NA	NA NA	NA NA
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	NA	NA NA	NA	NA	NA NA	NA NA	NA NA
	Mercury	20	20	30	30	20	N/A	NA	NA	NA	NΛ	NA	NA	NA

Notes:

All units in mg/kg unless otherwise specified.

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

J - Estimated value.

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

R - Rejected data point due to matrix spike recovery <30%.

U - Compound was not detected at specified quantitation limit.

UJ - Estimated nondetect.

Values in **Bold** indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method 1 standards.

Values shown in Bold and shaded type exceed TSCA but are less than the listed Method 1 standards.

PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria.

- * The sample exhibits altered PCB pattern; best possible Aroclor match reported.
- ** For reference purposes only.
- (a) The sample was re-collected on 7/23/2008 for mercury analysis due to the limited volume of the original sample.

		Sample Location:	SB-252-A	SB-252-C	SB-252-D	SB-253-A	SB-253-D
Analysis	Analyte	Sample Depth (ft.):	0-0.5	0-0.5	0-0.5	0-0.5	0~0.5
		Sample Date:	7/31/2008	7/31/2008	7/31/2008	7/31/2008	7/31/2008
		Toxicity Characteristic*					
TCLP M	etals				***************************************		
(mg/L)							
	Arsenic (as leachate)	5.0	0.211	0.053	0.151	0.144	0.042

Notes:

All units in mg/L unless otherwise specified.

mg/L - milligrams per Liter.

Values in Bold indicate the compound was detected.

TCLP - Toxicity Characteristic Leaching Procedure

* - Maximum Concentration of Contaminants for Toxicity Characteristic 310 CMR 30.125 (as leachate)

APPENDIX C

COPIES OF NOTIFICATION LETTERS TO CITY OF NEW BEDFORD MAYOR AND BOARD OF HEALTH

Wannalancit Mills 650 Suffolk Street Lowell, MA 01854

978.970.5600 PHONE 978.453.1995 FAX

www.TRCsolutions.com

TRC Reference No. 115058

October 30, 2008

Mayor Scott W. Lang City of New Bedford 1213 Purchase Street New Bedford, Massachusetts 02740

RE: Immediate Response Action

Walsh Field – Varsity Baseball Diamond Release Tracking Number 4-21407

Dear Mayor Lang:

As required under the Massachusetts Contingency Plan (MCP; 310 CMR 40.0000), specifically, 310 CMR 40.0428 (Public Involvement), you are hereby notified of the City of New Bedford's intention to conduct an Immediate Response Action (IRA) at the above referenced site. Work to be performed under this IRA includes:

- Removing the surface soil (approximate depth of 6 inches) within the Varsity Baseball Diamond that contains elevated concentrations of arsenic; and
- Replacing the removed surface soil with appropriately documented contaminant-free soil.

The City of New Bedford is anticipating that this work will begin on or about the week ending November 7, 2008 and will be finished by December 20, 2008. Note that this notice supersedes prior notification concerning the implementation of Release Abatement Measure (RAM).

Please contact David Fredette in the City of New Bedford Department of Environmental Stewardship for additional information at 508-961-4576, or the undersigned at 978-656-3565.

Sincerely,

TRC

David M. Sullivan, LSP, CHMM

Senior Project Manager

Wannalancit Mills 650 Suffolk Street Lowell, MA 01854

978.970.5600 PHONE 978.453.1995 FAX

www.TRCsolutions.com

TRC Reference No. 115058

October 30, 2008

Marianne DeSouza Health Department City of New Bedford 1213 Purchase Street New Bedford, Massachusetts 02740

RE: Immediate Response Action
Walsh Field – Varsity Baseball Diamond
Release Tracking Number 4-21407

Dear Ms. DeSouza:

As required under the Massachusetts Contingency Plan (MCP; 310 CMR 40.0000), specifically, 310 CMR 40.0428 (Public Involvement), you are hereby notified of the City of New Bedford's intention to conduct an Immediate Response Action (IRA) at the above referenced site. Work to be performed under this IRA includes:

- Removing the surface soil (approximate depth of 6 inches) within the Varsity Baseball Diamond that contains elevated concentrations of arsenic; and
- Replacing the removed surface soil with appropriately documented contaminant-free soil.

The City of New Bedford is anticipating that this work will begin on or about the week ending November 7, 2008 and will be finished by December 20, 2008. Note that this notice supersedes prior notification concerning the implementation of Release Abatement Measure (RAM).

Please contact David Fredette in the City of New Bedford Department of Environmental Stewardship for additional information at 508-961-4576, or the undersigned at 978-656-3565.

Sincerely,

TRC

David M. Sullivan, LSP, CHMM

Senior Project Manager

APPENDIX D DUST EXPOSURE CALCULATION WORKSHEET

New Bedford	50311		JLATION WORKSHEE Factor for this site = 1		
Chemical	Exposure Limit (mg/m3)	Maximum Soil Concentration (mg/kg)	Exposure Limit Based on Single Compound (EL Mix, mg/m3)	Dust Quotient for Each Compound (level/limit)	Problem from Single Compound [5mg/m3)/ELmix]
Arsenic	0.01	274	36.5	2.74E+04	0.137
Barium	0.5	575	869.57	1.15E+03	0.006
Beryllium	0.002	1	2,500.	4.00E+02	0.002
Cadmium	0.005	3	1,724.14	5.80E+02	0.003
Chromium	0.5	52	9,615.38	1.04E+02	0.001
Lead	0.05	532	93.98	1.06E+04	0.053
Manganese	1	1.E-9	1.E+15	1.00E-09	0.000
Mercury	0.05	38	1,302.08	7.68E+02	0.004
Nickel	1	44	2.27E+4	4.40E+01	0.000
Silver	0.01	25	393.7	2.54E+03	0.013
Vanadium	0.05	933	53.59	1.87E+04	0.093
Zinc	5	118	4.24E+4	2.36E+01	0.000
Dust	t Exposure Lev	el at Mixture PEL =	Sum 16.049	6.23E+04	0.312