

Wannalancit Mills 650 Suffolk Street Lowell, MA 01854

978.970.5600 PHONE 978.453.1995 FAX

www.TRCsolutions.com

TRC Project Number: 115058

July 24, 2009

Massachusetts Department of Environmental Protection Southeast Regional Office 20 Riverside Drive Lakeville, Massachusetts 02347

RE: Release Abatement Measure (RAM) Status Report

Varsity Diamond Portion of Walsh Field Hunter and Parker Streets, New Bedford, Massachusetts Release Tracking Number (RTN) 4-15685

To Whom It May Concern:

Consistent with the requirements of the Massachusetts Contingency Plan (MCP; 310 CMR 40.0000), specifically 310 CMR 40.0440, attached please find a Release Abatement Measure (RAM) Status Report for the above-referenced Site in New Bedford, Massachusetts. This submittal also includes Massachusetts Department of Environmental Protection (MassDEP) transmittal form BWSC-106 as an attachment to the RAM Status Report.

If you have any questions concerning the RAM Status Report or transmittal forms, please do not hesitate to contact me at 978-656-3565 or via e-mail at dsullivan@trcsolutions.com.

Sincerely,

David M. Sullivan, LSP, CHMM

Senior Project Manager

David M. Gallwan

Attachment

cc. D. Fredette, S. Alfonse; Department of Environmental Stewardship

M. Cote, G. Martin; MassDEP Southeast Regional Office

RELEASE ABATEMENT MEASURE STATUS REPORT

Varsity Diamond Portion of Walsh Field Soil Removal and Grading in Support of Construction Activity Parker and Hunter Streets New Bedford, Massachusetts Release Tracking Number 4-15685

Prepared for:

Department of Environmental StewardshipCity of New Bedford
133 William Street
New Bedford, Massachusetts 02740

Prepared by:

TRC Environmental Corporation Wannalancit Mills 650 Suffolk Street Lowell, Massachusetts 01854 (978) 970-5600

July 2009

TABLE OF CONTENTS

I. II. III.	BACKGROUND
TABLI	ES
Table 1	: Summary of Analytical Detected Results for Soil Samples– Historical
Table 2	
Table 3	
Table 4	: Summary of Analytical TCLP Results for Waste Characterization Sample – 2009
Table 5	: Summary of Analytical Results for Borrow Soil Characterization Sample – November 2008
FIGUE	RES
Figure	1 Site Locus Plan
Figure 1	2 Analytical Results Summary Map
Figure :	3 Construction Activity Locations
Figure 4	4 Warning Track and Bullpen Sampling Locations

ATTACHMENTS

Attachment A

Dust Monitoring Data Logs Select Results from Laboratory Analytical Reports Attachment B

Release Abatement Measure Status Report

Varsity Diamond Portion of Walsh Field – Soil Removal and Grading in Support of Construction Activity

Parker and Hunter Streets New Bedford, Massachusetts

Release Tracking Number (RTN) 4-15685

TRC Project Number: 115058

TRC Environmental Corporation (TRC) is submitting this Release Abatement Measure Status Report (RAM Status Report) to the Massachusetts Department of Environmental Protection (MassDEP) on behalf of the City of New Bedford (City) in accordance with 310 CMR 40.0440 of the Massachusetts Contingency Plan (MCP). This RAM Status Report addresses the construction activities (field refurbishment and upgrades) that are being undertaken by the City at the Varsity Diamond portion of Walsh Field. This portion of Walsh Field (the "Site") is located to the southeast of the intersection of Hunter and Parker Streets in New Bedford, Massachusetts. The construction activities proposed in the RAM Plan submitted to MassDEP on April 3, 2009 included the installation of fence posts and new paving in potentially contaminated areas, removal of existing asphalt, and grading activities. The Site is a portion of the Parker Street Waste Site (PSWS) that is tracked by the Massachusetts Department of Environmental Protection (MassDEP) under Release Tracking Number (RTN) 4-15685. A site location map is provided as Figure 1.

This RAM Status Report is organized as follows: Section I (Background) briefly summarizes information on TRC's involvement with the Site, the circumstances of the release and the objectives of this RAM Status Report. Section II (RAM Status Report) provides the information required for a RAM Status Report under the MCP, as set forth under 310 CMR 40.0445. Section III (References) lists information sources relied upon in the preparation of this RAM Status Report. Attachment A contains dust monitoring logs and Attachment B contains selected results from laboratory analytical data.

I. BACKGROUND

In February 2006, The Beta Group, Incorporated of Norwood, Massachusetts (BETA) conducted subsurface investigations at the Walsh Field portion of the Site to evaluate the horizontal and vertical extent of fill and to determine contaminants of concern. A total of 80 soil borings were advanced and twelve surface soil samples (0–6") were collected. Soil samples were collected at boring locations where fill was observed at depths less than 2.5 feet below grade. Soil samples were collected and analyzed for polychlorinated biphenyls (PCBs), Resource Conservation and Recovery Act (RCRA) 8 metals, polyaromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), pesticides and/or herbicides. Several of the samples indicated detections of contaminants that exceeded their applicable MCP Method 1 S-1 Soil Standards. Contaminants that exceeded the MCP Method 1 S-1 Soil Cleanup Standards include arsenic, barium, cadmium, lead, and various PAHs. PCBs were not detected in excess of the MCP Method 1 S-1 Soil Cleanup Standards.

TRC conducted additional soil testing in July, August, and September 2008. The objective of TRC's additional soil testing was to address data gaps in the delineation of the contamination from the former PSWS including the Walsh Field property. The follow-up work was conducted with the concurrence of the City.

TRC contracted New England Geotech of Jamestown, Rhode Island, to perform drilling activities at the Site under TRC field supervision. The borings were advanced using Geoprobe® direct push methods. The samples were visually examined in the field for evidence of petroleum contamination and field screened using the MassDEP jar headspace methodology and a photoionization detector (PID). Samples were collected from each boring at various depths to delineate the extent of contamination.

At Walsh Field, TRC's investigative approach was largely focused on addressing apparent data gaps in the BETA data set in shallow soil. A subset of deeper soil borings were also advanced to evaluate the presence or absence of fill, the vertical extent of contamination, and the potential presence of contaminants of concern in soil and fill material that may be present based on documentation available to TRC and past sampling in the area. The deeper soil borings were advanced and samples were collected until native overburden was encountered, unless refusal was encountered first. Where native material was submitted for laboratory analysis, 2 samples of native material were typically collected in borings selected to characterize the native horizon. The lower native samples were retained for analysis contingent upon the results of the upper native horizon analysis in an attempt to delineate the vertical extent of contamination exceeding applicable standards, if present. The contingent native material was not analyzed if the laboratory results of the native material interval above it did not indicate contamination above cleanup criteria. Samples were also taken of white line chalk and stockpiled soil in order to investigate their potential as a source of arsenic contamination.

As of December, 2008, TRC advanced a total of 86 soil borings (including 35 surface samples, two stockpile samples and one sample of white line chalk) to various depths at Walsh Field. A total of 137 samples were submitted for laboratory analysis of PCBs, PAHs, and/or MCP metals and mercury. The laboratory results indicated the exceedance of the applicable MCP regulatory criteria for PAHs and several heavy metals. PCB concentrations were below the applicable MCP regulatory criteria for all soil samples submitted, and below laboratory detection limits for many of the samples. The highest PCB concentration was detected in sample SB-264 at 0.237 mg/kg. A summary of the data was submitted in TRC's Data Summary Report, Walsh Field, New Bedford, Massachusetts dated October 2008.

A summary of TRC and BETA laboratory analytical results potentially applicable to the area of work around the Varsity Diamond is included in Table 1. For samples taken from the 0 to 1 foot below ground surface horizon, outside of the diamond area, the laboratory results did not indicate any exceedances of the applicable MCP regulatory criteria. For samples taken below the 0 to 1 foot horizon, the laboratory results indicated the exceedance of the applicable MCP regulatory criteria for the following: six samples for PAHs (including anthracene benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene) with the highest levels detected at sample location WFB-4; two samples for arsenic at sampling locations WFC-2 (26 mg/kg) and WFD-5 (22 mg/kg); one sample for barium at sample location WFC-2 (1,060 mg/kg); nine samples for lead with concentrations ranging from 311 mg/kg at sample location WFE-1 to 4,590 mg/kg at sample location WFC-2; two samples for nickel at sample locations SB-265 (44.2 mg/kg) and SB-268 (24.2 mg/kg); three samples for chromium at sample locations WFC-2 (62 mg/kg). WFD-3 (56 mg/kg) and SB-268 (51.9 mg/kg); three samples for cadmium at sample locations WFC-2 (5.61 mg/kg), WFD-5 (5.96 mg/kg) and SB-265 (2.9 mg/kg); and one sample for mercury at sample location SB-268 (38.4 mg/kg). An analytical data summary map for areas proximate to RAM-related activity is included on Figure 2.

A review of boring logs for borings taken in the vicinity of the Varsity Diamond portion of Walsh Field indicated fill at depths greater than 2.5 feet below ground surface. The relevant boring logs were included in the original RAM Plan submitted to MassDEP on April 3, 2009.

On March 19, 2009, TRC submitted 17 (sixteen samples and one field duplicate) soil samples for laboratory analysis of PAHs and 14 MCP Metals to determine the presence or absence of contaminants of concern in the warning track, bullpen areas and coaches boxes slated for regrading. All samples were collected from the 0 to 0.5-foot interval using hand tools. Sampling locations are identified in Figure 4. The results of laboratory analyses for these samples are provided in Table 2.

Analysis of soil for total PAHs, MCP metals and mercury was conducted on samples in accordance with MassDEP Compendium of Analytical Methods. The analytical results did not indicate the detection of any PAHs at concentrations exceeding their applicable MCP Method 1 cleanup standards. The analytical results did not indicate the detection of MCP metals and mercury at concentrations exceeding their applicable MCP Method 1 cleanup standards with the following exceptions: arsenic was detected at a concentration of 59.3 mg/kg at sample location WTR-SS-15; nickel was detected at four sample locations (WTR-SS-09, WTR-SS-10, WTR-SS-11, and WTR-SS-13) at concentrations ranging from 23.3 mg/kg to 38.5 mg/kg; chromium was detected in nine sample locations (WTR-SS-01, WTR-SS-05, WTR-SS-06, WTR-SS-08, WTR-SS-09, WTR-SS-10, WTR-SS-11, WTR-SS-13, and WTR-SS-14) at concentrations ranging from 30.6 mg/kg to 85.0 mg/kg. Given that the less toxic chromium(III) is far more prevalent in the environment than chromium(VI), as chromium(VI) requires extreme pH and Eh conditions that rarely exist in the natural environment in order for chromium(VI) to predominate over chromium(III), it is likely that the chromium detected is predominantly in the chromium(III) oxidation state and therefore below the chromium (III) MCP Method 1S-1 criterion of 1,000 mg/kg.

In early 2009, the City won an opportunity to host an advanced-level baseball team at the Varsity Diamond on Walsh Field. The City anticipated that the team, which plays in a league that promotes a higher level of play, will encourage economic development in New Bedford. In order to satisfy field quality and dimension requirements of the new league, the City proposed several improvements and upgrades to the Varsity Diamond portion of Walsh Field. Because work related to the improvements could encounter contaminated soils, the construction activities were described in the RAM Plan. The RAM Plan, submitted to MassDEP on April 3, 2009, outlined the following activities (as needed):

- Excavation of soil during site construction activities to include installation of fence posts, and paving;
- Sampling and analysis of areas to be excavated for paving in order to pre-characterize the soils for disposal purposes;
- Excavation of existing asphalt;
- Grading of warning tracks, bullpens and coaches boxes;
- Temporary stockpiling and stockpile management (or equivalent use of roll-offs);
- Offsite reuse, recycling or disposal of potentially contaminated soils and asphalt excavated during Site construction activities; and
- Replacing the removed soil where necessary with appropriately documented contaminant-free fill
 material screened in advance for the presence of regulated contaminants.

Section II provides the RAM Status Report per 310 CMR 40.0445.

II. RELEASE ABATEMENT MEASURE STATUS REPORT (310 CMR 40.0445)

This RAM Status Report is organized according to the minimum information needs set forth under 310 CMR 40.0445(2)(a) through (e) of the MCP.

(a) The Status of Response Operations

The majority of the response operations proposed in the RAM Plan submitted to MassDEP on April 3, 2009 have been completed. These operations include:

- <u>Soil Sampling</u> Sampling of soils located in the areas to be excavated for paving was conducted on March 19, 2009, but the data were not available in time for the submittal of the RAM Plan. Four samples were collected (NAP-SS-1 through NAP-SS-4). Laboratory analysis was performed in order to pre-characterize these soils for disposal purposes. These data are presented here in Table 3.
- <u>Soil Excavation</u> Soil was excavated during the installation of fence posts for a new center field fence, two new bullpens, protection for the existing dugouts, and to relocate the existing backstop. Excavation was performed on April 17-18, 20, and 22-24, 2009. Excavated soils were placed into a lined roll-off container for temporary storage, and sample Fence DSP-1 was collected from the container to pre-characterize the soils for disposal purposes.

The area behind the newly installed backstop was excavated to prepare for paving on June 1, 2009. During this excavation, the edges of existing pavement, which had extended to the edge of the former backstop, were cut to provide a clean, smooth transition to prepare for paving. Asphalt cuttings and excavated soils were placed on separate sheets of 6 mil polyethylene, covered for temporary storage, and set aside for disposal with upcoming Walsh Field remedial action. This area was paved with new asphalt on June 1, 2009.

- <u>Fence Post Removal</u> Fence posts were removed from the former backstop and the former center field fence on April 17-18, 20, and 22-24, 2009. Concrete anchors for these posts were placed into a lined roll-off container for off-site disposal.
- Grading Activities Grading of new warning tracks, bullpens, coaches boxes, and fungo circles was performed on May 29 and June 1 through 2, 2009. Minimum quantities of sod and soil excavated from the fungo circles were placed onto 6 mil polyethylene sheeting, covered for temporary on-site storage, and set aside for disposal with upcoming Walsh Field remedial action.
- <u>Backfilling Activities</u> Areas within the vicinity of the dugouts and the fungo circles were
 backfilled with new soil material on June 1, 2009, and stone dust was placed on the newly graded
 warning track on June 2, 2009. The source of backfill was tested for the presence of VOCs,
 semivolatile organic compound (SVOCs), extractable petroleum hydrocarbons (EPH), volatile
 petroleum hydrocarbons (VPH), pesticides, herbicides, metals, and PCBs. Documentation of the
 source material characterization is attached as Table 5.
- Environmental Monitoring Environmental monitoring was performed during the above activities in accordance with the procedures outlined in Section 6 of the original RAM Plan submitted to MassDEP on April 3, 2009. Dust levels did not exceed the prescribed action limit of 0.15 milligrams per cubic meter (mg/m³) for fifteen minutes or longer during any of the construction activities. However, one extraneous, unsustained reading was recorded on April 20 at 9:01:52. This reading (1056964.612 mg/m³) is above the upper readable limit of 100 mg/m³ for this model

dust monitor, and is considered an anomalous reading. Data was downloaded daily, and log sheets are attached as Attachment B. Due to a possible malfunction, dust monitoring data was not automatically recorded on June 1, 2009. Field data was recorded by the TRC geologist on-site, and is also attached in Attachment B.

Based on previous data collected at Walsh Field, significant VOC emissions were not expected during site work. However, field monitoring of the breathing zone was conducted as a precaution using a photo-ionization detector (PID). Excavated soils were also screened for the presence of VOCs. No significant VOC concentrations were encountered during construction activities.

The following items remain to be completed in accordance with the RAM Plan:

- <u>Pavement Excavation</u> Existing substandard pavement at the corner of Hunter and Parker Streets will be excavated. This area will be repayed to improve drainage.
- <u>Soil Excavation and Paving</u> Soils along the north and west of the Varsity Diamond, as indicated in Figure 3 and characterized by samples NAP-SS-1 through NAP-SS-4, will be excavated to prepare for paving. These areas will be paved with asphalt, and the soils will be disposed or recycled off-site.
- <u>Disposal Characterization Analysis</u> Soil and asphalt that was excavated on May 29 and June 1 through 2, 2009, has been temporarily stored at the Site. The soil will be sampled for disposal characterization to evaluate management options. The asphalt will be sent to an appropriate off-site disposal/recycling facility.
- <u>Soil Disposal</u> Following additional disposal characterization analysis, the soil that is temporarily being stored at the Site will be disposed or recycled at an appropriate facility. Several off-site facilities are being considered, but the final destination of the soil has not been determined.

(b) Significant New Site Information or Data

A summary of the results of laboratory analysis for samples collected in the areas to be excavated for paving (NAP-SS-1 through NAP-SS-4) is presented in Table 3. VOC concentrations were not detected in any of the samples. SVOC concentrations were detected in Samples NAP-SS-2 and NAP-SS-3 only, but total SVOC concentrations remained well below the applicable standards. No PCBs were detected in any of the samples. Mercury, arsenic, chromium, and lead were detected in each of the samples, and cadmium was detected in sample NAP-SS-1 only, but all detected metal concentrations were below Massachusetts reuse, recycling and/or disposal standards. Total petroleum hydrocarbons (TPH) concentrations were detected in each of the four samples, but levels remained below applicable standards.

Laboratory analytical results for sample Fence DSP-1, which was intended to pre-characterize the soil excavated for fence post installations, are also presented in Table 3. Concentrations of VOCs, SVOCs, RCRA 8 metals, and TPH were detected, but all levels were below applicable standards. No PCB concentrations were detected. Toxicity Characteristic Leaching Procedure (TCLP) analysis was performed on sample Fence DSP-1, and detected concentrations of barium, cadmium, and lead remained below respective standards. TCLP analytical results are presented in Table 4.

(c) Details of and/or Plans for the Management of Remediation Waste, Remedial Wastewater, and/or Remedial Additives

Soil generated during the response operations conducted on April 17-18, 20, and 22-24, 2009 was placed into a roll-off container. Following disposal characterization analysis of sample Fence DSP-1, this soil was subsequently stockpiled at the Site for on-site reuse.

Soil generated during the response operations conducted on May 29 and June 1 through 2, 2009 were placed onto 6 mil polyethylene sheeting and covered for temporary storage. Excavated asphalt cuttings generated during the June 1, 2009 response operations was stockpiled separately. Management of this material will be determined following characterization.

Disposal characterization for the NAP-SS-1 through NAP-SS-4 soils, which will be excavated to prepare for paving, indicates the soil is suitable for a variety of reuse, recycling, and disposal options. Several off-site facilities are being considered, but the final facility location has not been determined at this time. Laboratory results for the NAP-SS-1 through NAP-SS-4 soils, as well as the Fence DSP-1 sample, are included in Attachment C.

(d) Other Necessary Information

There is no other necessary information available for presentation at this time.

(e) LSP Opinion

The objective of this RAM is to provide the regulatory framework for the City of New Bedford to perform construction activities in potentially contaminated soil at the Varsity Diamond portion of Walsh Field. This RAM is being conducted in conformance with the original RAM Plan submitted to MassDEP on April 3, 2009.

This RAM Status Report has been prepared in accordance with 310 CMR 40.0445 as set forth in the MCP.

David M. Sullivan, LSP, CHMM

TRC Environmental Corporation

Licensed Site Professional No. 1488

7/24/2009

Date

III. REFERENCES

MassGIS, 2008	Massachusetts Geographic Information System (MassGIS), On-line MassDEP Priority Resource Map. Accessed July 28, 2008. http://maps.massgis.state.ma.us/21e/viewer.htm
MassDEP, 2002	Technical Update – Background Levels of Polycyclic Aromatic Hydrocarbons and Metals in Soil. Prepared by the Massachusetts Department of Environmental Protection (MassDEP) Office of Research and Standards. May 2002.
MassDEP, 1994	Interim Remediation Waste Management Policy for Petroleum Contaminated Soils, WSC-94-400,
MassDEP, 1997	COMM#97-001 Reuse and Disposal of Contaminated Soils and Sediments at Massachusetts Landfills.

TABLES

Table 1 Summary of Analytical Detected Results for Soil Samples - Historical Walsh Field New Bedford, Massachusetts

,			······					- A.S 2			111145	1 1000	1 1507213	13/773 1	11/1	1)-2	WFD-3	13/1])-4
1	4						ole Location:	WFA-2 2-2.5	0-1	A-4 1-2,5	WFB-4 1-2.5	WFB-5 2-2.5	WFC-2 2-2.5	WFD-1 1.25-2.5	0-0.5	0.75-2.5	1-2.5	0-0.5	2-2.5
Analysis	Analyte						e Depth (ft.): Sample Date:	2/23/2006	2/23/2006	2/23/2006	2/23/2006	2/23/2006	2/23/2006	2/23/2006	2/23/2006	2/23/2006	2/23/2006	2/23/2006	2/23/2006
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1	TSCA	2/23/2000	2/2,92000	2/23/2000	2123120000	272372000	272,372000	112,72000	212172000	2/25/2000	202000	2, 23, 2000	2/25/2000
VOO-		3-1/GW-2	3-1/OW-3	3-2/()W-2	3-2/GW-3	KC 3-1	1304												
VOCs	Chloromethane	NS	NS	NS	NS	100	N/A	NA	NA	0.11	0.096	NA.	NA	NA	NA	NA	0.170	NA	NA
(mg/kg)	Bromomethane	0.5	30	0.5	30	0.5	N/A	NA.	NA	0.36	0.45	NA NA	NA	NA.	NA	NA.	0.65	NA	NΑ
	Methylene chloride	20	200	20	900	0.1	N/A	NA	NA	0.041 U	0.035	NA	'NA	NA	NΛ	NA	0.061 U	NA	NA
PAHs / Di	benzofuran			1															
(mg/kg)	Dibenzofuran	NS	NS	NS	NS	100	N/A	0.550 U	NA	0.059	28.0	NA	0.095 U	0.084	NA	0.059	0.850 U	NA	0.550 U
	2-Methylnaphthalene	80	300	80	500	0.7	N/A	0.550 U	NA	0.056 U	7.40	NA	0.095 U	0.058 U	NA	0.057 U	0.850 U	NA	0.550 U
	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	0.550 U	NA	0.098	16.0	NA	0.095 U	0.140	NA	0.078	0.850 U	NA	0.550 U
	Acenaphthylene	600	10	600	10	1	N/A	0.670	NA	0.240	47.0	NA	0.095 U	0.230	NA	0.460	0.850 U	NA	3.20
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	2.0	NA	0.490	100 160	NA	0.095 U 0.095 U	0.410 0.940	NA NA	0.680 1.80	0.850 U 0.850 U	NA NA	5.20 7.20
	Benzo(a)anthracene	7	7	40 4	40 4	7 2	N/A N/A	3.20 3.0	NA NA	1.10 1.0	95.0	NA NA	0.095 U 0.095 U	0.940	NA NA	1.50	0.850 U	NA NA	3.90
	Benzo(a)pyrene	2 7	2 7	40	40	7	N/A	2.0	NA NA	0.790	76.0	NA NA	0.095 U	0.820	NA NA	1.20	0.850 U	NA.	2.40
	Benzo(b)fluoranthene Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	1.20	NA NA	0.400	27.0	NA NA	0.095 U	0.490	NA NA	0.600	0.850 U	NA.	0.910
	Benzo(g,n,r)perylene Benzo(k)fluoranthene	70	70	400	400	70	N/A	3.80	NA	1.10	110	NA	0.095 U	0.830	NA.	1.70	0.850 U	NA	3.70
	Chrysene	70	70	400	400	70	N/A	2.60	NA	0.930	170	NA	0.095 U	0.920	NA	1.10	0.850 U	NA	5.50
lj.	Dibenz(a,h)anthracene	0.7	0.7	4	4	0.7	N/A	0.570	NA	0.200	17.0	NA	0.095 U	0.230	NA	0.290	0.850 U	NA	0.830
li	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	7.0	NA	1.90	310	NA	0.096	1.90	NA	2.70	1.50	NA	7.90
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	0.550 U	NA	0.120	50.0	NA	0.095 U	0.150	NA	0.120	0.850 U	NA	0.550 U
ļ.	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	1.10	NA	0.350	28.0	NA	0.095 U	0.440	NA	0.540	0.850 U	NA	0.920
	Naphthalene	40	500	40	1,000	4	N/A	0.550 U	NA	0.056 U	5.40 U	NA	0.095 U	0.067	NA	0.071	0.850 U	NA	0.550 U
	Phenanthrene	500	500	1,000	1,000	10	N/A	6.0	NA	1.40	430 330	NA	0.095 U	1.60 2.0	NA NA	1.80 3.20	1.10 1.0	NA NA	6.20 16.0
DCD	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	7.60	NA	2.20	330	NA	0.140	2.0	NA	3.20	1.0	NA NA	10.0
PCBs	Aroclor 1254	2	2	3	3	2	, ,	0.13	0.1 U	0.1 U	0.1 U	0.1 U	0.18 U	0.1 U	0.11 U	0.11 U	0.17 U	0.12 U	0.11 U
	Aroclor 1260	2	2	3	3	2	i i	0.11 U	0.1 U	0.1 U	0.1 U	0.1 U	0.18 U	0.1 U	0.11 U	0.11 U	0.17 U	0.12 U	0.11 U
	Total PCBs	2	2	3	3	2	i	0.13	0.2 U	0,2 Ŭ	0.21 U	0.2 U	0.37 U	0.2 U	0.22 U	0.22 U	0.34 U	0.23 U	0.21 U
Metals, to			_																
(mg/kg)	Mercury	20	20	30	30	20	N/A	0.064 U	NA	0.259	0.069 U	NA	1.31	0.231	NA	0.187	0.737	NA	0.077
	Arsenic	20	20	20	20	20	N/A	2.10	NA	4.94	1.21	NA	26	5.11	NA	2.66	5.95	NA	1.65
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	30	NA	271	36	NA	1,060	91	NA	182	237	NA	21
1	Beryllium	100	100	200	200	100	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1	Cadmium	2	2	30	30	2	N/A	0.32	NA	0.72	0.34 U	NA	5.61	0.47	NA	0.40	1.27	NA	0.41
	Chromium	30	30	200	200	30	N/A	7.26	NA	7.31	4.17	NA	62	8.60	NA NA	8.52 294	56 882	NA	4.81 24
	l.cad Nickel	300 20	300 20	300 700	300 700	300 20	N/A N/A	90 NA	NA NA	319 NA	58 NA	NA NA	4.590 NA	184 NA	NA NA	294 NA	NA	NA NA	NA
	Selenium	400	400	800	800	400	N/A	0.64 U	NA NA	0.72 U	0.67 U	NA NA	2.03	0.77 U	NA NA	0.67 U	1.06 U	NA NA	0.69 U
	Silver	100	100	200	200	100	N/A	0.32 U	NA NA	0.36 U	0.34 U	NA NA	7.40	0.39 U	NA NA	0.33 U	0.53 U	NA NA	0.34 U
	Vanadium	600	600	1,000	1,000	600	N/A	NA	NΛ	NA NA	NA.	NA.	NA.	NA	NA.	NA	NA	NA	NA
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	NA	NA	NA	NA	NΛ	NA	NA	NΑ	NA	NA	NA	NA
Total Petr	oleum Hydrocarbons																		
(mg/kg)	Diesel Range Organics	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	112	6.063	NA	NA	73	NA	NA	984	NA	NA
	Gasoline Range Organics	1,000	1,000	3,000	3,000	1,000	N/A	NA	ŅΑ	5.3	5.4	NΛ	NA	NA	NΛ	NA	7.7 U	NA	NA
Metals, T							5 000								.,,	.,.		.,,	.,,
	Lead, TCLP	NS	NS	NS	NS	NS	5.0***	NA	NA	1.8	NA	NA	NA.	0,2	NA	NA	1.1	NA	NA
Reactivity			110	110		110	N1/4	,,,	N1.	0.00	0.40	1	N1.4	0.04 33	N.4	NI A	02.11	N1.A	NI A
(mg/kg)	Reactive Cyanide	NS	NS	NS	NS	NS	N/A	NA	NA	0.26 U	0.48	NA	NA	0.26 U	N۸	NA	0.3 U	NA	NA
Flashpoin (°F)	t Flashpoint	NS	NS	NS	NS	NS	N/A	NA	NΑ	>200	>200	NA.	NA.	>200	NA	NA	>200	NA	NΑ
(<u>r</u>)	Trasubour	i No	1 185	1 1/2	I INO	INO	19774	17/4	L 13/3	L 2200	221R)	1 13/1	1 11/1	/40V	11/1	13/3	1 /200	130	1 13/3

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).
mg/l, - milligrams per liter
NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

NS - No MassDEP standards exist for this compound.

R - Rejected data point during data review.

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method 1 standards or TCLP standard, as applicable.

VOCs - Volatife Organic Compounds. PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls.
RC - Reportable Concentration.
TSCA - Toxic Substances Control Act criteria.

TCLP - Toxicity Characteristic Leaching Procedure.

(1) - MassDEP Method 1 standards and RC for C9-C10 aromatics used.

(2) - MassDEP RC for Dichloropropane used.

(3) - MassDEP RC for Dichloropropene used.

(4) - MassDEP RC for 1,3-Dichloropropene used.
(5) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic.

115058_New Bedford

Table 1 Summary of Analytical Detected Results for Soil Samples - Historical Walsh Field New Bedford, Massachusetts

					····			Wi		WI		WFE-2	010	254	CD CD	255		SB-265			SB-266	
A	Amalada						e Location: Depth (ft.):	2/23/2006	2/23/2006	2/23/2006	2/23/2006	2/23/2006	0.5	2,34	0.5	2.3.7	1	313-205	7.5	1	4	9
Analysis	Analyte					•	imple Date:	0-1	1-2.5	0.75-2.5	0.75-2.5	1.75-2.5	7/15/2008	7/15/2008	7/15/2008	7/15/2008	7/14/2008	7/14/2008	7/14/2008	7/15/2008	7/15/2008	7/15/2008
i		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1	TSCA	V-1	1-2.,7	(1.71) 212	Field Dup	1171. 211	.,									1
VOCs		3-1/()11-2	3-1/(111-3	3-27()11-2	0-2/(111-3	NO D-1	10011															
(mg/kg)	Chloromethane	NS	NS	NS	NS NS	100	N/A	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
(mg/kg)	Bromomethane	0.5	30	0.5	30	0.5	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA NA
	Methylene chloride	20	200	20	900	0.1	N/A	NA	NΛ	NA	NΛ	NA	NA	NA '	NA	NA	NA	NA	NA	ŇΑ	NA	NA NA
PAHs / Di	benzofuran																					
(mg/kg)	Dibenzofuran	NS	NS	NS	NS	100	N/A	NΑ	0.710 U	0.230	NΑ	0.130	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
	2-Methylnaphthalene	80	300	80	500	0.7	N/A	NΛ	0.710 U	0.077	NΛ	0.130	0.180 U	0.175 U	0.183 U	0.177 U	0.175 U	0.232 U	0.200 U	0.176 U	0.201 U	0.204 U
li	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	NA	0.710 U	0.370	NΛ	0.220	0.180 U	0.259	0.183 U	0.177 U	0.175 U	0.232	0.200 U	0.176 U	0.201 U	0.204 U
	Acenaphthylene	600	10	600	10	1	N/A	NΛ	0.710 U	0.560	NA	0.810	0.180 U	0.510 0.995	0.183 U 0.183 U	0.177 U 0.177 U	0.175 U 0.175 U	0.232 U 0.797	0.200 U 0.200 U	0.176 U 0.176 U	0.201 U 0.201 U	0.204 U 0.204 U
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	NA	0.710 U	1.10 2.70	NA NA	1.70 3.30	0.180 U 0.654	3,30	0.183	0.177 0	0.175 U	1.87	0.200 U	0.176 U	0.547	0.204 U
	Benzo(a)anthracene	7	7	40	40 4	7	N/A	NA NA	0.710 U 0,710 U	3.0	NA NA	2,40	0.667	2.98	0.349	0.510	0.175 U	1.66	0.200 U	0.176 U	0.629	0.204 U
	Benzo(a)pyrene	2 7	2 7	40	40	2 7	N/A N/A	NA NA	0.710 U	2.40	NA NA	2.10	0.870	3,48	0.411	0.540	0.175 U	1.96	0.200 U	0.176 U	0.712	0.204 U
	Benzo(b)fluoranthene Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	NA NA	0.710 U	1.60	NA.	1.30	0.778	2.76	0.294	0.409	0.349 U	1.15	0.399 U	0.351 U	0.595	0.408 U
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	NA	0.710 U	2.30	NA	2.70	0.270	1.29	0.183 U	0.197	0.175 U	0.721	0.200 U	0.176 U	0.258	0.204 U
	Chrysene	70	70	400	400	70	N/A	NA	0.710 U	2.40	NA	3.0	0.738	3.56	0.355	0.504	0.175 U	1.91	0.200 U	0.176 U	0.601	0.204 U
	Dibenz(a,h)anthracene	0.7	0.7	4	4	0.7	N/A	NA	0,710 U	0.650	NA	0.670	0.360 U	0.711	0.366 U	0.177 U	0.349 U	0.464 U	0.399 U	0.351 บ	0.401 U	0.408 U
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	NA	0.710 U	5.80	NA	5.50	1.08	4.37	0.599	0.714	0.175 ป	2.86	0.200 U	0.176 U	0.964	0.204 U
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	NA	0.710 U	0.370	NA	0.460	0.180 U	0.395	0.183 U	0.177 U	0.175 U	0.327	0.200 U	0.176 U	0.201 U	0.204 U
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	NA	0.710 U	1.40	NA	1.0	0.762	3.12	0.312	0.469	0.349 U	1.36	0.399 U	0.351 U	0.653	0.408 U
	Naphthalene	40	500	40	1,000	4	N/A	NA	0.710 U	0.150	NA	0.220	0.180 U	0.246	0.183 U	0.177 U	0.175 U	0.265	0.200 U	0.176 U	0.201 U	0.204 U 0.204 U
	Phenanthrene	500	500	1,000	1,000	10	N/A	NA	0.710 U	4.50 5.40	NA	5.70 6.40	0.820 1.63	3.77 5.07	0.344 0.608	0.453 0.990	0.175 U 0.175 U	3.16 3.57	0.200 U 0.200 U	0.176 U 0.176 U	0.788 1.32	0.204 U
DOD	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	NA	0.710 U	3.4V	NA	0.40	1.05	3.07	17.000	0.990	0.175 0	3.33	0.200 0	0.170 0	1,02	0.204 0
PCBs	Aroclor 1254	2	2	3	3	2	1	0,1 U	0.1 U	0,1 U	0,1 U	0.1 U	0.0524 U	0,0501 U	0.0506 U	0,126 J	0,153 J	0.0632 U	0.0570 U	0.0502 U	0.0571 U	0.0593 U
	Aroclor 1254 Aroclor 1260	2	2	3	3	2	i	0,1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.0524 U	0.0501 U	0.0506 U	0.0523 U	0.084 J	0.0632 U	0.0570 U	0.0502 U	0.0571 U	0.0593 U
	Total PCBs	2	2	3	3	2	i	0,2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.0524 U	0.0501 U	0.0506 U	0.126 J	0.237 J	0.0632 U	0.0570 U	0.0502 U	0.0571 U	0.0593 U
Metals, to	<u> </u>		<u> </u>																			
	Mercury	20	20	30	30	20	N/A	NA	0.553	0.577	0.585	0.108	0.295	0.730	0.238	0.198	0.068	0.276	0.028 U	0.017 U	0.406	0.012 U
	Arsenic	20	20	20	20	20	N/A	NA	22	3.37	4.92	8.29	11.0	8.98	7,41	5.41	2.66	16.3	3.00 U	5.64	9.94	3.06 U
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	NA	973	58	278	46	34.3	98.9	40.3	366	10.8	270	5.99 U	25.5	202	6.12 U
	Beryllium	100	100	200	200	100	N/A	NA	NA	NA NA	NA	NA.	0.27 U	0.27 U	0.28 U	0.42	0.27 U	0.35 U	0.30 U	0.27 U	0.31 U	0.31 U
	Cadmium	2	2	30	30	2	N/A	NA	5.97	0.79	0.83	0.46	0.27 U	0.27 U	0.40	0.51	0.27 U	2.90	0.30 U	0.27 U	0.34	0.31 U
	Chromium	30	30	200	200	30	N/A	NA	19	9.02	9.32	5.14	8.70	14.0	10.4	7.60	4.76	18.0 872	1.95	22.1	12.4 286	1.44
	Lead	300	300	300	300	300	N/A	NA	77.2	311	1,160	244 NA	109 5.29	532 6,37	79.6 5.08	131 5.27	43.2 4.00	44.2	2.28 1.33	3.15 12.1	9.44	1.58
	Nickel	20 400	20 400	700 800	700 800	20 400	N/A N/A	NA NA	NA 2.98	NA 0.78 U	NA 0.76 U	0.77 U	5.29 5.39 U	5.25 U	5.48 U	5.27 5.30 U	5.24 U	6.96 U	5.99 U	5.26 U	6.01 U	6.12 U
	Selenium Silver	100	100	200	200	100	N/A	NA NA	0.48 U	0.76 U	0.76 U	0.77 U	2.89	4.31	2.70	1.31	1.64	17.4	0.60 U	3.52	5,95	0.62 U
	Vanadium	600	600	1,000	1,000	600	N/A	NA.	NA O	NA NA	NA	NA.	17.6	13.0	16.8	14.8	9,68	22.6	5.99 U	23.3	26.1	6.12 U
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	NΑ	NA.	NA	NA	NA	33.6	24.7	52.2	118	34.7	603	14.3	25.5	70.0	10.6
Total Peti	roleum Hydrocarbons								İ								1					
(mg/kg)	Diesel Range Organics	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA.	NA	NΛ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Gasoline Range Organics	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA
Metals, T	CLP Lead, TCLP	NS	NS	NS	NS	NS	5.0~	NΑ	NA	NA	ÑΑ	NA	NA	NA	NA.	NA	NΑ	NA	NA	NA.	NA	NA
Reactivity		İ	1																			
(mg/kg)	Reactive Cyanide	NS	NS	NS	NS	NS	N/A	NA	NA	NA	NA	NA	NA	NA NA	NA	NΛ	NA NA	NA	NA	NA	NA	NA
Flashpoin (°F)	t Flashpoint	NS	NS	NS	NS	NS	N/A	NA	NA.	NΑ	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	NA	NA

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

mg/L - milligrams per liter NA - Sample not analyzed for the listed analyte, N/A - Not applicable.

NS - No MassDEP standards exist for this compound. R - Rejected data point during data review.

U - Compound was not detected at specified quantitation limit. Values in Bold indicate the compound was detected. Values shown in Bold and shaded type exceed one or more of the listed Method 1 standards or TCLP standard, as applicable.

VOCs - Volatile Organic Compounds, PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria,
TCLP - Toxicity Characteristic Leaching Procedure.

(1) - MassDEP Method 1 standards and RC for C9-C10 aromatics used. (2) - MassDEP RC for Dichloropropane used.

(3) - MassDEP RC for Dichloropropene used.

(4) - MassDIP RC for 1,3-Dichloropropene used.
(5) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic.

Table 1 Summary of Analytical Detected Results for Soil Samples - Historical Walsh Field New Bedford, Massachusetts

				·····					····			//1			011 677		WF-1	1 1001.0	1 10011 2	11/15 6
						- 1	le Location:		SB-267			SB-268			SB-269	9,5	0-0.5	WF-2 0-0.5	WF-3 0-0.5	WF-5 0-0.5
Analysis	Analyte					•	Depth (ft.):]	3.5	9	1	4.5	9	1 7050000	4			9/30/2008	9/30/2008	9/30/2008
			r				ample Date:	7/14/2008	7/14/2008	7/14/2008	7/15/2008	7/15/2008	7/15/2008	7/15/2008	7/15/2008	7/15/2008	9/30/2008	9/30/2008	9/30/2008	9/30/2008
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1	TSCA					<u></u>							<u> </u>	
VOCs																	.,.		.,,	.,,
(mg/kg)	Chloromethane	NS	NS	NS	NS NS	100	N/A	NA	NA.	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Bromomethane	0.5 20	30 200	0.5 20	30 900	0.5 0.1	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DITT (D)	Methylene chloride	20	200	20	900	0.1	IVA	INA	IXA	1874	IVA	NA	N/A	IVA	330	110	107	14/4	IIA	IVA
II.	benzofuran	NS	NS	NS	NS	100	N/A	NA	NA	NA	NA	NA	NΛ	NA	NA	NΑ	NA	NA NA	NA	NA
(mg/kg)	Dibenzofuran 2-Methylnaphthalene	80	300	80	500	0.7	N/A N/A	0.169 U	0.207 U	0.199 U	0.187 U	0.245 U	0.210 U	0.171 U	0.200 U	0.194 U	NA NA	NA NA	NA	ΝA
	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	0.169 U	0.207 U	0.199 U	0.187 U	0.245 U	0.210 U	0.171 U	0.200 U	0.194 U	NA.	NA	NA.	NΑ
	Acenaphthylene	600	10	600	10	i	N/A	0.169 U	0.207 U	0.199 U	0.187 U	0.245 U	0.210 U	0.171 U	0.200 U	0.194 U	NA	NA	NA	NA
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	0.169 U	0.207 U	0.199 U	0.187 U	0.269	0.677	0.171 U	0.200 U	0.194 U	NA	NA	NA	ÑΑ
	Benzo(a)anthracene	7	7	40	40	7	N/A	0.260	0.207 U	0.199 U	0.187 U	0.360	0.903	0.171 U	0.231	0.194 U	NA	NA	NA	NA
	Benzo(a)pyrene	2	2	4	4	2	N/A	0.271	0.207 U	0.199 U	0.187 U	0.292	0.677	0.171 U	0.231	0.194 U	NA	NA	NA	NA
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	0.343	0.275	0.199 U	0.187 U	0.311	0.615	0.171 U	0.259	0.194 U	NA	NA	NA	NA
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	0.338 U	0.413 U	0.397 U	0.373 U	0.489 U	0.446	0.342 U	0.400 U	0.388 U	NA	NA	NΛ	NA
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	0.169 U	0.207 U	0.199 U	0.187 U	0.245 U	0.225	0.171 U	0.200 U	0.194 U	NA	NΛ	NΛ	NA
	Chrysene	70	70	400	400	70	N/A	0.325	0.682	0.199 U	0.187 U	0.359	0.873	0.171 U	0.251	0.194 U	NA	NA	NA	NA
	Dibenz(a,h)anthracene	0.7	0.7	4	4	0.7	N/A	0.338 U	0.413 U	0.397 U	0.373 U	0.489 U	0.420 U	0.342 U	0.400 U	0.388 U	NA	NA NA	NA	• NA
	Pluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	0.523	0.207 U	0.199 U	0.324	0.722	1.65	0.171 U	0.463	0.194 U	NA	NA NA	NA NA	NA NA
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	0.169 U 0.338 U	0.207 U	0.199 U 0.397 U	0.187 U 0.373 U	0.245 U 0.489 U	0.299 0.435	0.171 U 0.342 U	0.200 U 0.400 U	0.194 U 0.388 U	NA NA	NA NA	NA NA	NA NA
	Indeno(1,2,3-cd)pyrene	7 40	7 500	40 40	40 1,000	7 4	N/A N/A	0.338 U 0.169 U	0.413 U 0.207 U	0.397 U 0.199 U	0.373 U 0.187 U	0.489 U 0.245 U	0.435 0.210 U	0.342 U	0.400 U	0.366 U	NA NA	NA NA	NA NA	NA NA
	Naphthalene Phenanthrene	500	500	1,000	1,000	10	N/A N/A	0.169 0	0.207 0	0.199 U	0.259	1.25	3.19	0.171 U	0.507	0.194 U	NA NA	NA NA	NA NA	NA NA
	Pyrene	1.000	1,000	3,000	3,000	1.000	N/A	0.585	0.289	0.199 U	0.320	0.840	2.38	0.192	0.565	0.194 U	NA.	NA NA	NA.	NA
PCBs	1 110110	7,000	1,000	5,000	.,,,,,,,	1,000		vic-oc-	0,207	0.777				04473	3,0,0					
CD3	Aroclor 1254	2	2	3	3	2	1	0.0500 U	0.0586 U	0,0584 U	0.0727 .	0.0760 U	0.0581 U	0.0507 ป	0.0612 U	0.0538 U	NA	NA.	NA NA	NA
	Aroclor 1260	2	2	3	3 1	2	i	0.0500 U	0.0586 U	0.0584 U	0.0550 U	0.0760 U	0.0581 U	0.0507 U	0.0612 U	0.0538 U	NA	NA	NA	NA
	Total PCBs	2	2	3	3	2	1	0.0500 U	0.0586 U	0.0584 U	0.0727 J	0.0760 U	0.0581 U	0.0507 U	0.0612 U	0.0538 U	NΛ	NA	NA	NA
Metals, to	<u></u>			1														Ì		İ
(mg/kg)	Мегсигу	20	20	30	30	20	N/A	0.079	0.078	0.012 U	0.183	38.4	0.017 U	0.222	0.122	0.014 U	NA	NA	NA	NA
· · · · · · ·	Arsenic	20	20	20	20	20	N/A	3.19	14.3	4.84	5.53	27.8	3.15 U	6.51	11.7	3.48	7.84	14.4	12.0	9.89
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	14.0	200	7.59	21.5	575	6.40	25.0	185	12.5	NA	NA	NA	NA
	Beryllium	100	100	200	200	100	N/A	0.26 U	0.31 U	0.30 U	0.28 U	0.43	0.32 U	0.26 U	0.30 U	0.30 U	NA	NA	NA	NA
	Cadmium	2	2	30	30	2	N/A	0.26 U	0.31 U	0.30 U	0.28 U	1.23	0.32 U	0.29	0.50	0.30 U	NA	NA	NA	NA
	Chromium	30	30	200	200	30	N/A	5.14	5,30	3.81	7.97	51.9	1.90	8.12	12.3	5.13	NA	NA	NA	NA
	Lead	300	300	300	300	300	N/A	47.9	209	3.13	39.0	1,320	2.82	43.8	1,790	4.51	NA	NA	NA	NA
	Nickel	20	20	700	700	20	N/A	3.98	11.7	4.02	4.51	24,2 7.34 U	2.04 6.30 U	5.14	7.56 6.00 U	4.81 5.81 U	NA NA	NA NA	NA NA	NA NA
1	Sclenium Silver	400 100	400 100	800 200	800 200	400 100	N/A N/A	5.06 U 2.22	6.19 U 3.94	5.95 U 1,17	5.59 U 2.52	15.8	0.63 U	5.13 U 2.99	4.23	1.24	NA NA	NA NA	NA NA	NA NA
1	Vanadium	600	600	1.000	1,000	600	N/A	10.6	18.3	5.95 U	14,9	41.6	6.30 U	15.3	18.9	8.91	NA NA	NA NA	NA NA	NA NA
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	33.8	25,3	14.1	43.1	834	11.1	32.9	125	18.3	NΑ	NA.	NA NA	NA.
Total Petr	roleum Hydrocarbons	T	 			_,							<u> </u>							
(mg/kg)	Diesel Range Organics	1,000	1,000	3,000	3,000	1.000	N/A	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
, , ,	Gasoline Range Organics	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NΛ	NA	NA	NA	NA	NA	NA	NA
Metals, T	CLP																			
	Lead, TCLP	NS	NS	NS	NS	NS	5.00	NA	NA	NA	NA	NA	NΛ	NA	NA	NA	NΛ	NA	NA	NA
Reactivity	ft .			1											1					
(mg/kg)	Reactive Cyanide	NS	NS	NS	NS	NS	N/A	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NΛ
Flashpoin																		-		
(°F)	Flashpoint	NS	NS	NS	NS	N\$	N/A	NA	NA	ŅΑ	NA.	NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm),

mg/L, - milligrams per liter
NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

NS - No MassDEP standards exist for this compound.

R - Rejected data point during data review.

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected. Values shown in Bold and shaded type exceed one or more of the Beted Method 1 standards or TCLP standard, as applicable.

VOCs - Volatile Organic Compounds.
PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria.
TCLP - Toxicity Characteristic Leaching Procedure.

(1) - MassDEP Method 1 standards and RC for C9-C10 aromatics used.

(2) - MassDEP RC for Dichloropropane used.

(3) - MassDEP RC for Dichloropropene used.

(4) - MassDEP RC for 1.3-Dichloropropene used.
(5) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic.

Page 3 of 4

Table 1 Summary of Analytical Detected Results for Soil Samples - Historical Walsh Field New Bedford, Massachusetts

													3325.13		3111:32	WF-14	WF-15	WF-16	WF-17	WF-18
Amelinia	Analus					,	ple Location: e Depth (ft.):	WF-6 0-0.5	WF-7 0-0.5	WF-8 0-0.5	WF-9 0-0.5	WF-10 0-0.5	WF-11 0-0.5	WF-12 0-0.5	WF-13 0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
Analysis	Analyte					•	Sample Date:	9/30/2008	9/30/2008	9/30/2008	9/30/2008	9/30/2008	9/30/2008	9/30/2008	9/30/2008	9/30/2008	9/30/2008	9/30/2008	9/30/2008	9/30/2008
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1	TSCA	37.307.2000	37,777,2070	2750743770	1100200	7.00.200	***************************************							
VOCs		5-17(177-2	G-17(117-D	327377 2	O ZiKim D	11001	10011													
(mg/kg)	Chloromethane	NS	NS	NS	NS	100	N/A	NΑ	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA.	NA	NA
	Bromomethane	0.5	30	0.5	30	0.5	N/A	ÑΑ	NA	NA	NA.	NA	NΛ	NA	NA	NA	NA	NA	NA	NA
	Methylene chloride	20	200	20	900	0.1	N/A	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	NA
PAHs / Di	benzofuran																			
(mg/kg)	Dibenzofuran	NS	NS	NS	NS	100	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	2-Methylnaphthalene	80	300	80	500	0.7	N/A	NA.	NA	NA	NA	NA	NA.	NA.	NA	NA	NA NA	NA.	NA NA	NA NA
	Acenaphthene	1,000	1,000	3.000	3,000	4	N/A	NA	NA	NA	NA NA	NA	NA :	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Acenaphthylene	600	10	600	10	1,000	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.
	Anthracene	1,000 7	1,000 7	3,000 40	3,000 40	7	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA.	NA	NA.	NA NA	NA	NA
	Benzo(a)anthracene Benzo(a)pyrene	2	2	40	40	2	N/A	NA	NA	NA	NA NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	NA	NA	NA	NA	NA	NΛ	NA	NA	NA	NA	NA	NA	NA
	Benzo(g,h.i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΛ	NA
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	NA	NΑ	NA	NΑ	NA	NA	NA	NA	NΛ	NA	NA	NA	NA
ĺ	Chrysene	70	70	400	400	70	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1	Dibenz(a,h)anthracene	0.7	0.7	4	4	0.7	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	, NA
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NΛ	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Indeno(1,2,3-cd)pyrene	7 40	7 500	40 40	40 1,000	7 4	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.
	Naphthalene Phenanthrene	500	500	1,000	1,000	10	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA	NA.	NA.	NA.
	Pyrene	1,000	1.000	3,000	3,000	1,000	N/A	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs	7.7.5.15	1,000	.,	.,,					,											
, CD3	Aroclor 1254	2	2	3	3	2	1	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA.	NA
	Aroclor 1260	2	2	3	3	2	1	NA	NA	NA	NA	NA	NA	NA	NΑ	NA.	NA	NA	NA	NA
	Total PCBs	2	2	3	3	2	1	NA	NΛ	NA	NΑ	NA NA	NA	NA	NΑ	NA	NA	NA NA	NA	NA
Metals, to	tal																			
(mg/kg)	Mercury	20	20	30	30	20	N/A	N۸	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA
	Arsenic	20	20	20	20	20	N/A	5.82	7.86	6.50	10.7	6.96	7.86	6.53	7.25	9.51	6.27	5.46	5.75	6.05
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Beryllium	100	100 2	200 30	200 30	100 2	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Cadmium Chromium	2 30	30	200	200	30	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA	NA NA	NA NA	NA NA	NA.	NA.
	Lead	300	300	300	300	300	N/A	NA.	NA NA	NA.	NA.	NA	NA.	NA.	NA.	NA	NA	NA.	NA	NA
	Nickel	20	20	700	700	20	N/A	NΛ	NA	NA	NA	NA	NΑ	NA	NA	NA.	NA	NΑ	NA	NA
	Sclenium	400	400	800	800	400	N/A	NA	NA	NΛ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Silver	100	100	200	200	100	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Vanadium	600	600	1,000	1,000	600	N/A	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA.	NA	NA
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	NΛ	NA	NA	NA	NA	NA	NΛ	NA	NA	NA	NA.	NA	NA
11	oleum Hydrocarbons			2.000	2.000	1.000						N/A		l NA	NI A	NA	N.A	l NA	l NA	NA
(mg/kg)	Diesel Range Organics Gasoline Range Organics	1,000 1,000	1,000 1,000	3,000 3,000	3,000 3,000	1,000	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Metals, T		1,000	1,000	5,000	3,000	1,000	13/75	11/1	11/1	170	11/3	1373	110	13/1	17/1	*172		177	1111	
racials, 1	Lead, TCLP	NS	NS	NS	NS	NS	5.0***	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Reactivity	Reactive Cyanide	NS	NS	NS	NS	NS	N/A	NA	NA	NΑ	NA	NA	NA.	NA.	NA	NA	NA	NA	NA	NA
(mg/kg) Flashpoin		189	iso	isa isa	143	180	INIA	1873	13/3	BO	11/0	INA.	110	13/3	1373	3473	1471	1 11/1	1173	11/1
riasnpoin (°F)	t Flashpoint	NS	NS	NS	NS	NS	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	NA

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm), mg/l, - milligrams per liter
NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

NS - No MassDEP standards exist for this compound.

R - Rejected data point during data review.

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method 1 standards or TCLP standard, as applicable.

VOCs - Volatile Organic Compounds.

PAHs - Polynuclear Aromatic Hydrocarbons. PCBs - Polychlorinated Bipbenyls.

RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria.

TCLP - Toxicity Characteristic Leaching Procedure.

(1) - MassDEP Method 1 standards and RC for C9-C10 aromatics used.

(2) - MassDEP RC for Dichloropropane used.

(3) - MasSDEP RC for Dichloropropene used.
(4) - MasSDEP RC for 1,3-Dichloropropene used.
(5) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Comminants for Toxicity Characteristic.

Page 4 of 4

Table 2 Summary of Analytical Results for Warning Track and Bullpen - March 2009 Walsh Field New Bedford, Massachusetts

Analysis	Analyte					Samp	le Location:	WTR-SS-01	WTR-SS-02	WTR-SS-03	WTR	-SS-04	WTR-SS-05	WTR-SS-06	WTR-SS-07	WTR-SS-08	WTR-SS-09	WTR-SS-10	WTR-SS-11	WTR-SS-12	WTR-SS-13	WTR-SS-14	WTR-SS-15	WTR-SS-16
1	1,	1				Sample	Depth (ft.):	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
						ŝ	ample Date:	3/19/2009	3/19/2009	3/19/2009	3/19/2009	3/19/2009	3/19/2009	3/19/2009	3/19/2009	3/19/2009	3/19/2009	3/19/2009	3/19/2009	3/19/2009	3/19/2009	3/19/2009	3/19/2009	3/19/2009
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1*	TSCA					Field Dup												
PAHs																								
(mg/kg)	2-Methylnaphthalene	80	300	80	500	0.7	N/A	0.194 U	0.204 U	0.183 U	0.184 U	0.183 U	0.191 U	0.176 U	0.199 U	0.193 U	0.181 U	0.186 U	0.173 U	0.206 U	0.178 U	0.187 U	0.195 U	0.177 U
	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	0.194 U	0.204 U	0.183 U	0.184 U	0.183 U	0.191 U	0.176 U	0.199 U	0.193 U	0.181 U	0.186 U	0.173 U	0.206 U	0.178 U	0.187 U	0.195 U	0.177 U
	Acenaphthylene	600	10	600	10	1	N/A	0.194 U	0.204 U	0.183 U	0.184 U	0.183 U	0.191 U	0.176 U	0.199 U	0.193 U	0.181 U	0.186 U	0.173 U	0.206 U	0.178 U	0.187 U	0.195 U	0.177 U
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	0.194 U	0.204 U	0.183 U	0.184 U	0.183 U	0.191 U	0.176 U	0.199 U	0.193 U	0.181 U	0.186 U	0.173 U	0.406	0.178 U	0.187 U	0.195 U	0.177 U
	Benzo(a)anthracene	7	7	40	40	7	N/A	0.194 U	0.204 U	0.183 U	0.184 U	0.183 U	0.197	0.176 U	0.38	0.193 U	0.181 U	0.186 U	0.173 U	0.913	0.178 U	0.279	0.195 U	0.177 U
	Benzo(a)pyrene	2	2	4	4	2	N/A	0.194 U	0.204 U	0.185	0.184 U	0.183 U	0.236	0.176 U	0.349	0.193 U	0.181 U	0.186 U	0.173 U	0.818	0.178 U	0.296	0.195 U	0.177 U
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	0.194 U	0.204 U	0.215	0.184 U	0.183 U	0.248	0.176 U	0.408	0.193 U	0.181 U	0.186 U	0.173 U	0.92	0.178 U	0.336	0.195 U	0.177 U
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	0.194 U	0.204 U	0.183 U	0.184 U	0.183 U	0.191 U	0.176 U	0.217	0.193 U	0.181 U	0.186 U	0.173 U	0.474	0.178 U	0.191	0.195 U	0.177 U
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	0.194 U	0.204 U	0.183 U	0.184 U	0.183 U	0.191 U	0.176 U	0.199 U	0.193 U	0.181 U	0.186 U	0.173 U	0.365	0.178 U	0.187 U	0.195 U	0.177 U
	Chrysene	70	70	400	400	70	N/A	0.194 U	0.204 U	0.193	0.184 U	0.183 U	0.234	0.176 U	0.421	0.193 U	0.181 U	0.186 U	0.173 U	0.945°	0.178 U	0.31	0.195 U	0.177 U
	Dibenz(a,h)anthracene	0.7	0.7	4	4	0.7	N/A	0.194 U	0.204 U	0.183 U	0.184 U	0.183 U	0.191 U	0.176 U	0.199 U	0.193 U	0.181 U	0.186 U	0.173 U	0.206 U	0.178 U	0.187 U	0.195 U	0.177 U
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	0.194 U	0.204 U	0.274	0.184 U	0.183 U	0.272	0.176 U	0.59	0.193 U	0.181 U	0.186 U	0.173 U	1.39	0.178 U	0.421	0.195 U	0.177 U
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	0.194 U	0.204 U	0.183 U	0.184 U	0.183 U	0.191 U	0.176 U	0.199 U	0.193 U	0.181 U	0.186 U	0.173 U	0.206 U	0.178 U	0.187 U	0.195 U	0.177 U
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	0.194 U	0.204 U	0.183 U	0.184 U	0.183 U	0.191 U	0.176 U	0.247	0.193 U	0.181 U	0.186 U	0.173 U	0.65	0.178 U	0.235	0.195 U	0.177 U
	Naphthalene	40	500	40	1,000	4	N/A	0.194 U	0.204 U	0.183 U	0.184 U	0.183 U	0.191 U	0.176 U	0.199 U	0.193 U	0.181 U	0.186 U	0.173 U	0.206 U	0.178 U	0.187 U	0.195 U	0.177 U
	Phenanthrene	500	500	1,000	1,000	10	N/A	0.194 U	0.204 U	0.206	0.184 U	0.183 U	0.191 U	0.176 U	0.674	0.193 U	0.181 U	0.186 U	0.173 U	1.88	0.178 U	0.308	0.195 U	0.177 U
	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	0.202	0.204 U	0.412	0.184 U	0.183 U	0.424	0.176 U	1.03	0.193 U	0.181 U	0.186 U	0.173 U	1.87	0.178 U	0.612	0.195 U	0.209
Metals, to	tal																							
(mg/kg)	Mercury	20	20	30	30	20	N/A	0.093	0.127	0.074	0.059	0.060	0.117	0.031	0.169	0.062	0.014 U	0.016 U	0.014 U	0.172	0.034	0.114	0.057	0.026
	Antimony	20	20	30	30	20	N/A	4.66 U	4.89 U	4.38 U	4.41 U	4.39 U	4.59 U	4.22 U	4.77 U	4.63 U	4.35 U	4.45 U	4.15 U	4.93 U	4.27 U	4.48 U	4.67 U	4.25 U
	Arsenic	20	20	20	20	20	N/A	8.18	7.59	5.23	16.3	13.5	4.95	4.51	4.34	3.20	4.49	5.86	3.44	5.47	4.16	10.1	59.3	6.60
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	75.5	35.1	55.7	50.9	47.3	71.2	107	215	64.5	126	157	112	29.4	108	80.8	54.5	35.6
	Beryllium	100	100	200	200	100	N/A	0.30 U	0.31 U	0.28 U	0.28 U	0.28 U	0.29 U	0.27 U	0.30 U	0.29 U	0.28 U	0.28 U	0.26 U	0.31 U	0.27 U	0.28 U	0.30 U	0.27 U
	Cadmium	2	2	30	30	2	N/A	0.34	0.31 U	0.28 U	0.28 U	0.28 U	0.33	0.27 U	0.38	0.29 U	0.28 U	0.28 U	0.26 U	0.31 U	0.27 U	0.29	0.29	0.27 U
	Chromium	30	30	200	200	30	N/A	34.5	11.4	26.2	12.9	11.3	30.6	39.8	10.6	36.1	85.0	76.6	71.4	9.55	48.9	33.6	18.2	15.0
	Lead	300	300	300	300	300	N/A	31.7	60.5	10.5	44.3	45.6	85.7	30.2	197	28.5	4.10	5.68	4.58	55.7	10.9	82.8	36.5	19.3
	Nickel	20	20	700	700	20	N/A	15.7	5.31	13.1	7.94	7.30	13.1	19.2	4.72	16.6	38.5	36.6	33.7	4.66	23.3	17.1	9.69	8.77
	Selenium	400	400	800	800	400	N/A	5.82 U	6.12 U	5.47 U	5.51 U	5.49 U	5.73 U	5.27 U	5.96 U	5.79 U	5.43 U	5.57 U	5.19 U	6.16 U	5.34 U	5.60 U	5.84 U	5.31 U
	Silver	100	100	200	200	100	N/A	0.59 U	0.62 U	0.55 U	0.56 U	0.55 U	0.58 U	0.53 U	0.60 U	0.58 U	0.55 U	0.56 U	0.52 U	0.62 U	0.54 U	0.56 U	0.59 U	0.54 U
	Thallium	8	8	60	60	8	N/A	3.49 U	3.67 U	3.28 U	3.31 U	3.29 U	3.44 U	3.16 U	3.58 U	3.47 U	3.26 U	3.34 U	3.12 U	3.70 U	3.20 U	3.36 U	3.51 U	3.19 U
	Vanadium	600	600	1,000	1,000	600	N/A	26.5	17.7	20.9	18.9	17.6	22.6	33.0	13.9	21.7	35.5	47.8	32.7	15.7	33.5	21.8	20.0	17.1
1	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	187	55.3	30.6	28.7	26.5	63.4	42.7	81.5	46.6	39.7	40.4	38.0	36.5	36.8	82.9	29.9	31.1

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method 1 standards.

PAHs - Polynuclear Aromatic Hydrocarbons.

RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria.

* - For reference purpose only.

Table 3
Summary of Analytical Results for Waste Characterization Soil Samples - 2009
Walsh Field
New Bedford, Massachusetts

Analysis	Analyte				Sa	Sample Location: ample Depth (ft.): Sample Date:	NAP-SS-01 0-0.5 3/19/2009	NAP-SS-02 0-0.5 3/19/2009	NAP-SS-03 0-0.5 3/19/2009	NAP-SS-04 0-0.5 3/19/2009	Fence DSP- 4/24/2009
•		Reuse	Level*	Soil Recyclin	ng Facility Summ	ary Levels**					
		Lined Landfills	Unlined Landfill	Hot Mix Asphalt Plants	Thermal Processing Plant	Cold Mix Emulsion Plant					
VOCs											
(mg/kg)	Acetone	N/A	N/A	N/A	N/A	N/A	0.13 U	0.12 U	0.14 U	0.12 U	0.085 U
	tert-Amylmethyl Ether	N/A	N/A	N/A	N/A	N/A	0.002 U	0.002 U	0.002 U	0.002 U	0.00085 U
	Benzene	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U	0.003 U	0.003 U	0.0017 U
	Bromobenzene	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U	0.003 U	0.003 U	0.0017 U
	Bromochloromethane	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U	0.003 U	0.003 U	0.0017 L
	Bromodichloromethane	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U	0.003 U	0.003 U	0.0017 t
	Bromoform	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U	0.003 U	0.003 U	0.0085 L
	Bromomethane	N/A	N/A	N/A	N/A	N/A	0.013 U	0.012 U	0.014 U	0.012 U	0.0085 L
	2-Butanone (MEK)	N/A	N/A	N/A	N/A	N/A	0.052 U	0.047 U	0.054 U	0.047 U	0.034 L
	n-Butylbenzene	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U	0.003 U	0.003 U	0.0021
	sec-Butylbenzene	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U	0.003 U	0.003 U	0.0017 L
	tert-Butylbenzene	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U	0.003 U	0.003 U	0.0017 L
	tert-Butylethyl Ether	N/A	N/A	Ñ/A	N/A	N/A	0.002 U	0.002 U	0.002 U	0.002 U	0.00085 U
	Carbon Disulfide	N/A	N/A	N/A	N/A	N/A	0.013 U	0.012 U	0.014 U	0.012 U	0.0051 U
	Carbon Tetrachloride	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U	0.003 U	0.003 U	0.0017 U
	Chlorobenzene	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U	0.003 U	0.003 U	0.0017
	Chlorodibromomethane	N/A	N/A	N/A	N/A	N/A	0.002 U	0.002 U	0.002 U	0.002 U	0.0042 1
	Chloroethane	N/A	N/A	N/A	N/A	N/A	0.026 U	0.024 U	0.027 U	0.024 U	0.017 U
	Chloroform	N/A	N/A	N/A	N/A	N/A	0.006 U	0.005 U	0.006 U	0.005 U	0.0034 U
	Chloromethane	N/A	N/A	N/A	N/A	N/A	0.013 U	0.012 U	0.014 U	0.012 U	0.0085 U
	2-Chlorotoluene	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U	0.003 U	0.003 U	0.0017 U
	4-Chlorotoluene	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U	0.003 U	0.003 U	0.0017
	1,2-Dibromo-3-Chloropropane	N/A	N/A	N/A	N/A	N/A	0.013 U	0.012 U	0.014 U	0.012 U	0.0017
	1,2-Dibromoethane	N/A	N/A	N/A	N/A	N/A	0.002 U	0.002 U	0.002 U	0.002 U	0.00085
	Dibromomethane	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U	0.003 U	0.003 U	0.0017
	1,2-Dichlorobenzene	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U	0.003 U	0.003 U	0.0017
	1,3-Dichlorobenzene	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U	0.003 U	0.003 U	0.0017
	1,4-Dichlorobenzene	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U	0.003 U	0.003 U	0.0017
	Dichlorodifluoromethane	N/A	N/A	N/A	N/A	N/A	0.026 U	0.024 U	0.027 U	0.024 U	0.017
	1,1-Dichloroethane	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U 0.003 U	0.003 U 0.003 U	0.003 U 0.003 U	0.0017
	1,2-Dichloroethane	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U 0.005 U	0.003 U 0.006 U	0.005 U	0.0017
	1,1-Dichloroethylene	N/A	N/A	N/A	N/A	N/A	0.006 U	0.003 U 0.003 U	0.006 U 0.003 U	I	0.0034
	cis-1,2-Dichloroethylene	N/A	N/A	N/A	N/A	N/A	0.003 U		0.003 U		0.0017
	trans-1,2-Dichloroethylene	N/A	N/A	N/A	N/A	N/A	0.003 U		0.003 U	0.003 U 0.003 U	0.0017
	1,2-Dichloropropane	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U 0.002 U	0.003 U	0.003 U 0.002 U	
	1,3-Dichloropropane	N/A	N/A	N/A	N/A	N/A	0.002 U 0.003 U	0.002 U 0.003 U	0.002 U	0.002 U	0.00085 0.0017
	2,2-Dichloropropane	N/A	N/A	N/A	N/A	N/A	0.003 U		0.003 U	0.003 U	0.0017
	1,1-Dichloropropene	N/A	N/A	N/A	N/A	N/A N/A	0.003 U 0.002 U	0.003 U 0.002 U	0.003 U 0.002 U	0.003 U 0.002 U	0.0017
	cis-1,3-Dichloropropene	N/A	N/A	N/A	N/A		0.002 U 0.002 U	0.002 U 0.002 U	0.002 U	0.002 U	0.0042
	trans-1,3-Dichloropropene	N/A	N/A	N/A	N/A	N/A	0.002 U 0.026 U	9		0.002 U 0.024 U	0.0042
	Diethyl Ether	N/A	N/A	N/A	N/A	N/A		0.024 U	0.027 U	1	0.00085
	Diisopropyl Ether	N/A	N/A	N/A	N/A	N/A	0.002 U	0.002 U	0.002 U	0.002 U	l .
	1,4-Dioxane	N/A	N/A	N/A	N/A	N/A	0.13 U	0.12 U	0.14 U	0.12 U	0.085
	Ethyl Benzene	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U	0.003 U	0.003 U	0.0017
	Hexachlorobutadiene 2-Hexanone	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.003 U 0.026 U	0.003 U 0.024 U	0.003 U 0.027 U	0.003 U 0.024 U	0.0017 0.017

Table 3 Summary of Analytical Results for Waste Characterization Soil Samples - 2009 Walsh Field New Bedford, Massachusetts

					v Bedford, Wassa				3717 00 00	37475 00 04	
						Sample Location:	NAP-SS-01	NAP-SS-02	NAP-SS-03	NAP-SS-04	Fence DSP-1
					Sa	ample Depth (ft.):		0-0.5	0-0.5	0-0.5	4/04/0000
Analysis	Analyte	*	T 10	0.1170 11	T 224 G	Sample Date:	3/19/2009	3/19/2009	3/19/2009	3/19/2009	4/24/2009
		Reuse	Level*	Soil Recyclii	ng Facility Sumn	iary Leveis**					
		Lined	Unlined	Hot Mix	Thermal	Cold Mix					
		Landfills	Landfill	Asphalt Plants	Processing Plant	Emulsion Plant					
	Isopropylbenzene	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U	0.003 U	0.003 U	0.0017 U
	p-Isopropyltoluene	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U	0.003 U	0.003 U	0.0017 U
	MTBE	N/A	N/A	N/A	N/A	N/A	0.006 U	0.005 U	0.006 U	0.005 U	0.0034 1
	Methylene Chloride	N/A	N/A	N/A	N/A	N/A	0.026 U	0.024 U	0.027 U	0.024 U	0.017
	MIBK	N/A	N/A	N/A	N/A	N/A	0.026 U	0.024 U	0.027 U	0.024 U	0.017
	Naphthalene	N/A	N/A	N/A	N/A	N/A	0.013 U	0.012 U	0.014 U	0.012 U	0.0085 T
	n-Propylbenzene	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U	0.003 U	0.003 U	0.0017
	Styrene	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U	0.003 U	0.003 U	0.0085 T
	1,1,1,2-Tetrachloroethane	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U	0.003 U	0.003 U	0.0017 U
	1,1,2,2-Tetrachloroethane	N/A	N/A	N/A	N/A	N/A	0.002 U	0.002 U	0.002 U	0.002 U	0.00085
	Tetrachloroethylene	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U	0.003 U	0.003 U	0.0017
	Tetrahydrofuran	N/A	N/A	N/A	N/A	N/A	0.013 U	0.012 U	0.014 U	0.012 U	0.0085
	Toluene	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U	0.003 U	0.003 U	0.0017
	1,2,3-Trichlorobenzene	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U	0.003 U	0.003 U	0.0085
	1,2,4-Trichlorobenzene	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U	0.003 U	0.003 U	0.0085
	1,1,1-Trichloroethane	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U	0.003 U	0.003 U	0.0017
	1,1,2-Trichloroethane	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U	0.003 U	0.003 U	0.0017
	Trichloroethylene	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U	0.003 U	0.003 U	0.0017
	Trichlorofluoromethane	N/A	N/A	N/A	N/A	N/A	0.013 U	0.012 U	0.014 U	0.012 U	0.0085
	1,2,3-Trichloropropane	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U	0.003 U	0.003 U	0.0017
	1,2,4-Trimethylbenzene	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U	0.003 U	0.003 U	0.0017
	1,3,5-Trimethylbenzene	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U	0.003 U	0.003 U	0.0017
	Vinyl Chloride	N/A	N/A	N/A	N/A	N/A	0.013 U	0.012 U	0.014 U	0.012 U	0.0085
	m + p Xylene	N/A	N/A	N/A	N/A	N/A	0.006 U	0.005 U	0.006 U	0.005 U	0.0034
	o-Xylene	N/A	N/A	N/A	N/A	N/A	0.003 U	0.003 U	0.003 U	0.003 U	0.0017
	Total VOCs	10	4		30 to 1,800		ND	ND	ND	ND	0.0038
SVOCs											
mg/kg)	Acenaphthene	N/A	N/A	N/A	N/A	N/A	0.205 U	0.198 U	0.200 U	0.203 U	0.19
	Acenaphthylene	N/A	N/A	N/A	N/A	N/A	0.205 U	0.198 U	0.200 U	0.203 U	0.19
	Acetophenone	N/A	N/A	N/A	N/A	N/A	0.41 U	0.40 U	0.40 U	0.41 U	0.39
	Aniline	N/A	N/A	N/A	N/A	N/A	0.41 U	0.40 U	0.40 U	0.41 U	0.39
	Anthracene	N/A	N/A	N/A	N/A	N/A	0.205 U	0.252	0.200 U	0.203 U	0.19
	Benzo(a)anthracene	N/A	N/A	N/A	N/A	N/A	0.205 U	0.445	0.200 U	0.203 U	0.24
	Benzo(a)pyrene	N/A	N/A	N/A	N/A	N/A	0.205 U	0.356	0.200 U	0.203 U	0.27
	Benzo(b)fluoranthene	N/A	N/A	N/A	N/A	N/A	0.205 U	0.400	0.200 U	0.203 U	0.28
	Benzo(g,h,i)perylene	N/A	N/A	N/A	N/A	N/A	0.205 U	0.239	0.200 U	0.203 U	0.24
	Benzo(k)fluoranthene	N/A	N/A	N/A	N/A	N/A	0.205 U	0.198 U	0.200 U	0.203 U	0.19
	Bis(2-chloroethoxy)methane	N/A	N/A	N/A	N/A	N/A	0.41 U	0.40 U	0.40 U	0.41 U	0.39
	Bis(2-chloroethyl)ether	N/A	N/A	N/A	N/A	N/A	0.41 U	0.40 U	0.40 U	0.41 U	0.39
	Bis(2-chloroisopropyl)ether	N/A	N/A	N/A	N/A	N/A	0.41 U	0.40 U	0.40 U	0.41 U	0.39
	Bis(2-ethylhexyl)phthalate	N/A	N/A	N/A	N/A	N/A	0.41 U	0.40 U	0.40 U	0.41 U	0.39
	4-Bromophenyl phenyl ether	N/A	N/A	N/A	N/A	N/A	0.41 U	0.40 U	0.40 U	0.41 U	0.39
	Butylbenzylphthalate	N/A	N/A	N/A	N/A	N/A	0.82 U	0.79 U	0.80 U	0.81 U	0.76
	4-Chloroaniline	N/A	N/A	N/A	N/A	N/A	0.82 U	0.79 U	0.80 U	0.81 U	0.76
	2-Chloronaphthalene	N/A	N/A	N/A	N/A	N/A	0.41 U	0.40 U	0.40 U	0.41 U	0.39
	2-Chlorophenol	N/A	N/A	N/A	N/A	N/A	0.41 U	0.40 U	0.40 U	0.41 U	0.39
	Chrysene	N/A	N/A	N/A	N/A	N/A	0.205 U	0.460	0.200 U	0.203 U	0.26

115058_New Bedford_New Bedford, MA

Table 3
Summary of Analytical Results for Waste Characterization Soil Samples - 2009
Walsh Field
New Bedford, Massachusetts

						Sample Location: umple Depth (ft.):		NAP-SS-02 0-0.5	NAP-SS-03 0-0.5	NAP-SS-04 0-0.5	Fence DSP-
Analysis	Analyte	Reuse	T assal*	Cail Dogwalia	ng Facility Summ	Sample Date:	3/19/2009	3/19/2009	3/19/2009	3/19/2009	4/24/2009
		Reuse	Lever	Son Recycli	ig racinty Summ	ary Levels					
		Lined Landfills	Unlined Landfill	Hot Mix Asphalt Plants	Thermal Processing Plant	Cold Mix Emulsion Plant					
	Dibenzofuran	N/A	N/A	N/A	N/A	N/A	0.41 U	0.40 U	0.40 U	0.41 U	0.39 L
	Dibenz(a,h)anthracene	N/A	N/A	N/A	N/A	N/A	0.205 U	0.198 U	0.200 U	0.203 U	0.19 L
	1,2-Dichlorobenzene	N/A	N/A	N/A	N/A	N/A	0.41 U	0.40 U	0.40 U	0.41 U	0.39 t
	1,3-Dichlorobenzene	N/A	N/A	N/A	N/A	N/A	0.41 U	0.40 U	0.40 U	0.41 U	0.39 U
	1,4-Dichlorobenzene	N/A	N/A	N/A	N/A	N/A	0.41 U	0.40 U	0.40 U	0.41 U	0.39 T
	3,3'-Dichlorobenzidine	N/A	N/A	N/A	N/A	N/A	0.21 U	0.20 U	0.20 U	0.21 U	0.19 U
	2,4-Dichlorophenol	N/A	N/A	N/A	N/A	N/A	0.41 U	0.40 U	0.40 U	0.41 U	0.39 1
	Diethylphthalate	N/A	N/A	N/A	N/A	N/A	0.41 U	0.40 U	0.40 U	0.41 U	0.39 1
	2,4-Dimethylphenol	N/A	N/A	N/A	N/A	N/A	0.41 U	0.40 U	0.40 U	0.41 U	0.39 T
	Dimethylphthalate	N/A	N/A	N/A	N/A	N/A	0.82 U	0.79 U	0.80 U	0.81 U	0.76
	Di-n-butylphthalate	N/A	N/A	N/A	N/A	N/A	0.41 U	0.40 U	0.40 U	0.41 U	0.39 1
	Di-n-octylphthalate	N/A	N/A	N/A	N/A	N/A	0.82 U	0.79 U	0.80 U	0.81 U	0.76
	2,4-Dinitrophenol	N/A	N/A	N/A	N/A	N/A	0.82 U	0.79 U	0.80 U	0.81 U	0.76
	2,4-Dinitrotoluene	N/A	N/A	N/A	N/A	N/A	0.41 U	0.40 U	0.40 U	0.41 U	0.39
	2,6-Dinitrotoluene	N/A	N/A	N/A	N/A	N/A	0.41 U	0.40 U	0.40 U	0.41 U	0.39
	Azobenzene	N/A	N/A	N/A	N/A	N/A	0.41 U	0.40 U	0.40 U	0.41 U	NA
	Fluoranthene	N/A	N/A	N/A	N/A	N/A	0.205 U	0.755	0.200 U	0.203 U	0.46
	Fluorene	N/A	N/A	N/A	N/A	N/A	0.205 U	0.198 U	0.200 U	0.203 U	0.19
	Hexachlorobenzene	N/A	N/A	N/A	N/A	N/A	0.41 U	0.40 U	0.40 U	0.41 U	0.39
	Hexachlorobutadiene	N/A	N/A	N/A	N/A	N/A	0.41 U	0.40 U	0.40 U	0.41 U	0.39
	Hexachloroethane	N/A	N/A	N/A	N/A	N/A	0.41 U	0.40 U	0.40 U	0.41 U	0.39
	Indeno(1,2,3-cd)pyrene	N/A	N/A	N/A	N/A	N/A	0.205 U	0.292	0.200 U	0.203 U	0.24
	Isophorone	N/A	N/A	N/A	N/A	N/A	0.41 U	0.40 U	0.40 U	0.41 U	0.39
	o-cresol	N/A	N/A	N/A	N/A	N/A	0.41 U	0.40 U	0.40 U	0.41 U	NA
	m & p-cresol(s)	N/A	N/A	N/A	N/A	N/A	0.41 U	0.40 U	0.40 U	0.41 U	NA
	2-Methylnaphthalene	N/A	N/A	N/A	N/A	N/A	0.205 U	0.198 U	0.200 U	0.203 U	0.19
	Naphthalene	N/A	N/A	N/A	N/A	N/A	0.205 U	0.198 U	0.200 U	0.203 U	0.19
	Nitrobenzene	N/A	N/A	N/A	N/A	N/A	0.41 U	0.40 U	0.40 U	0.41 U	0.39
	2-Nitrophenol	N/A	N/A	N/A	N/A	N/A	0.41 U	0.40 U	0.40 U	0.41 U	0.39
	4-Nitrophenol	N/A	N/A	N/A	N/A	N/A	0.82 U	0.79 U	0.80 U	0.81 U	0.76
	Pentachlorophenol	N/A	N/A	N/A	N/A	N/A	0.41 U	0.40 U	0.40 U	0.41 U	0.39
	Phenanthrene	N/A	N/A	N/A	N/A	N/A	0.205 U	1.02	0.200 U	0.203 U	0.37
	Phenol	N/A	N/A	N/A	N/A	N/A	0.41 U	0.40 U	0.40 U	0.41 U	0.39
	Pyrene	N/A	N/A	N/A	N/A	N/A	0.205 U	1.02	0.269	0.203 U	0.62
	1,2,4-Trichlorobenzene	N/A	N/A	N/A	N/A	N/A	0.41 U	0.40 U	0.40 U	0.41 U	0.39
	2,4,5-Trichlorophenol	N/A	N/A	N/A	N/A	N/A	0.41 U	0.40 U	0.40 U	0.41 U	0.39
	2,4,6-Trichlorophenol	N/A	N/A	N/A	N/A	N/A	0.41 U	0.40 U	0.40 U	0.41 U	0.39
	Azobenzene	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	0.39
	2-Methylphenol	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	0.39
	3,4-Methylphenol	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	0.39
	Total SVOCs	100	100	N/A	N/A	N/A	ND	5.239	0.269	ND	2.98
CBs											
ng/kg)	Aroclor 1016	N/A	N/A	N/A	N/A	N/A	0.123 U	0.119 U	0.120 U	0.122 U	0.11
 	Aroclor 1221	N/A	N/A	N/A	N/A	N/A	0.123 U	0.119 U	0.120 U	0.122 U	0.11
	Aroclor 1232	N/A	N/A	N/A	N/A	N/A	0.123 U	0.119 U	0.120 U	0.122 U	0.11
	Aroclor 1232 Aroclor 1242	N/A	N/A	N/A	N/A	N/A	0.123 U	0.119 U	0.120 U	0.122 U	0.11
	Aroclor 1248	N/A	N/A	N/A	N/A	N/A	0.123 U	0.119 U	0.120 U	0.122 U	0.11

Table 3 Summary of Analytical Results for Waste Characterization Soil Samples - 2009 Walsh Field New Bedford, Massachusetts

					(Sample Location:	NAP-SS-01	NAP-SS-02	NAP-SS-03	NAP-SS-04	Fence DSP-1
						mple Depth (ft.):		0-0.5	0-0.5	0-0.5	
Analysis	Analyte				-,-	Sample Date:		3/19/2009	3/19/2009	3/19/2009	4/24/2009
rinarysis	Tillalyto	Reuse	Level*	Soil Recyclin	ng Facility Summ			2.777.			
		Rease	DOTOL	Son Recyclin	[u., 2001.010					
		Lined	Unlined	Hot Mix	Thermal	Cold Mix					
		Landfills	Landfill	 	Processing Plant						
	Aroclor 1254	N/A	N/A	N/A	N/A	N/A	0.123 U	0.119 U	0.120 U	0.122 U	0.11 U
	Aroclor 1260	N/A	N/A	N/A	N/A	N/A	0.123 U	0.119 U	0.120 U	0.122 U	0.11 U
	Aroclor 1262	N/A	N/A	N/A	N/A	N/A	0.123 U	0.119 U	0.120 U	0.122 U	0.11 U
	Aroclor 1268	N/A	N/A	N/A	N/A	N/A	0.123 U	0.119 U	0.120 U	0.122 U	0.11 U
	Total PCBs	< 2	< 2	< 2	< 2	< 2	ND	ND	ND	ND	ND
Metals, to	tal										
(mg/kg)	Mercury	10	10	10	3	10	0.102	0.162	0.138	0.154	0.84
	Arsenic	40	40	30	30	30	5.49	7.34	4.80	6.51	5.0
	Barium	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	54
	Cadmium	80	30	30	11	30	0.32	0.30 U	0.30 U	0.31 U	0.41
	Chromium	1,000	1,000	500	500	500	12.7	11.9	8.18	9.58	26
	Lead	2,000	1,000	1,000	1,000	1,000	73.5	99.7	123	52.9	33
	Selenium	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	5.7 U
	Silver	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	0.57 U
Total Peti	oleum Hydrocarbon										
(mg/kg)	TPH	5,000	2,500		5,000 to 60,000		24	22	35	51	21

Notes

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

mg/L - milligrams per liter.

NA - Sample not analyzed for the listed analyte.

N/A - Not listing criteria applicable/available.

ND - Not detected.

U - Compound was not detected at specified quantitation limit.

Values in **Bold** indicate the compound was detected.

VOCs - Volatile Organic Compounds.

SVOCs - Semi-Volatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

^{* -} Contaminant Levels for the Reuse and Disposal of Contaminated Soil at Massachusetts Landfills, August 1997.

^{** -} Massachusetts Soil Recycling Facility Summary Levels

Table 4
Summary of Analytical TCLP Results for Waste Characterization Soil Sample - 2009
Walsh Field
New Bedford, Massachusetts

		Sample Location:	Fence DSP-1
		Sample Depth (ft.):	
Analysis	Analyte	Sample Date:	4/24/2009
		Criteria	
Metals, T	CLP		
(mg/L)	Mercury	0.2	0.0001 U
	Arsenic	5.0	0.010 U
	Barium	100.0	0.84
	Cadmium	1.0	0.0074
	Chromium	5.0 ,	0.010 U
	Lead	5.0	1.50
	Selenium	1.0	0.050 U
	Silver	5.0	0.0050 U

Notes:

mg/L - milligrams per liter.

NA - Sample not analyzed for the listed analyte.

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed the listed criteria.

TCLP - Toxicity Characteristic Leaching Procedure.

(a) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic .

Table 5
Summary of Analytical Results for BORROW Soil Characterization Sample - November 2008
New Bedford, Massachusetts

Analysis	Analyte				Sam	BORROV 11/3/200	
		S-1/GW-2	S-1/GW-3	S-2/GW-3	RC S-1	Sample Date: TSCA	
VOCs							
mg/kg)	Acetone	50	400	400	6	N/A	0.068
	tert-Amylmethyl Ether	NS	NS	NS	NS	N/A	0.001
	Benzene	30	30	200	2	N/A	0.002
	Bromobenzene	NS	NS	NS	100	N/A	0.002
	Bromochloromethane	NS	NS	NS	NS	N/A	0.002
	Bromodichloromethane	0.1	20	100	0.1	N/A	0.002
	Bromoform	1	200	800	0.1	N/A	0.002
	Bromomethane	0.5	30	30	0.5	N/A	0.007
	2-Butanone (MEK)	50	400	400	4	N/A	0.028
	n-Butylbenzene	100(1)	100 ⁽¹⁾	500(1)	100 ⁽¹⁾	N/A	0.007
	sec-Butylbenzene	100 ⁽¹⁾	100 ^m	500 ⁽¹⁾	′100 ⁽¹⁾	N/A	0.002
	tert-Butylbenzene	100(1)	100 ^(t)	500 ⁽¹⁾	100 ⁽¹⁾	N/A	0.002
	tert-Butylethyl Ether	NS	NS	NS	NS	N/A	0.001
	Carbon Disulfide	NS	NS	NS	100	N/A	0.005
	Carbon Tetrachloride	5	10	60	5	N/A	0.002
	Chlorobenzene	3	100	100	1	N/A	0.002
	Chlorodibromomethane	0.03	20	100	0.005	N/A	0.001
	Chloroethane	NS	NS	NS	100	N/A	0.014
	Chloroform	0.3	400	800	0.3	N/A	0.003
	Chloromethane	NS	NS	NS	100	N/A	0.007
	2-Chlorotoluene	NS	NS	NS	100	N/A	0.002
	4-Chlorotoluene	NS	NS	NS	100	N/A	0.002
	1,2-Dibromo-3-Chloropropane	NS	NS	NS	10	N/A	0.002
	1,2-Dibromoethane	0.1	0.7	4	0.1	N/A	0.001
	Dibromomethane	NS	NS	NS	500	N/A	0.002
	1,2-Dichlorobenzene	30	300	300	9	N/A	0.002
	1,3-Dichlorobenzene	40	100	500	1	N/A	0.002
	1,4-Dichlorobenzene	4	50	300	0.7	N/A	0.002
	Dichlorodifluoromethane	NS	NS	NS	1,000	N/A	0.014
	1,1-Dichloroethane	5	500	1,000	0.4	N/A	0.002
	1,2-Dichloroethane	0.1	10	90	0.1	N/A	0.002
	1,1-Dichloroethylene	40	500	1,000	3	N/A	0.003
	cis-1,2-Dichloroethylene	0.4	100	500	0.3	N/A	0.002
	trans-1,2-Dichloroethylene	1	500	1,000	1	N/A	0.002
	1,2-Dichloropropane	0.1	10	100	0.1	N/A	0.002
	1,3-Dichloropropane	NS	NS	NS	500	N/A	0.001
	2,2-Dichloropropane	NS	NS	NS	0.1(2)	N/A	0.002
	I,1-Dichloropropene	NS	NS	NS	0.01(3)	N/A	0.002
	cis-1,3-Dichloropropene	0.44	9(4)	70(4)	0.01(4)	N/A	0.001
	trans-1,3-Dichloropropene	0.4(4)	9(4)	70(4)	0.01(4)	N/A	0.001
	Diethyl Ether	NS	NS	NS	100	N/A	0.014
	Diisopropyl Ether	NS	NS	NS	100	N/A	0.001
	1,4-Dioxane	6	70	500	0.2	N/A	0.068
	Ethyl Benzene	500	500	1,000	40	N/A	0.002
	Hexachlorobutadiene	6	6	90	6	N/A	0.002
	2-Hexanone	NS	NS	NS	100	N/A	0.014
	Isopropylbenzene	100(1)	100(1)	500(1)	1,000	N/A	0.002
	p-Isopropyltoluene	1000	100(1)	500 ⁽¹⁾	100 ⁽¹⁾	N/A	0.002
	мтве	100	100	500	0.1	N/A	0.003
	Methylene Chloride	20	200	900	0.1	N/A	0.014
	MIBK	50	400	400	0.4	N/A	0.014
	Naphthalene	40	500	1,000	4	N/A	0.007
	n-Propylbenzene	100(1)	1000	500 ⁽¹⁾	100	N/A	0.007
	Styrene	4	30	200	3	N/A	0.002
	1,1,1,2-Tetrachloroethane	0.1	7	100	0.1	N/A	0.002
	1,1,2,2-Tetrachloroethane	0.02	0.8	100	0.005	N/A	0.002
	Tetrachloroethylene	10	30	200	1	N/A	0.002

Table 5
Summary of Analytical Results for BORROW Soil Characterization Sample - November 2008
New Bedford, Massachusetts

		IVEW DEC	lford, Massa				
						nple Location:	
Analysis	Analyte	Sample Depth (f				11/3/2008	
		6 1 6 7 7 7	0.1(0)31.0	0.040337.0	DC 6.1	Sample Date:	
		S-1/GW-2	S-1/GW-3	S-2/GW-3	RC S-1	TSCA	0.007 7
	Tetrahydrofuran	NS 500	NS 500	NS 1 000	500 30	N/A N/A	0.007 U 0.002 U
	Toluene	500 NS	500 NS	1,000 NS	NS	N/A N/A	0.002 C
	1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	70	500	900	2	N/A	0.007 L
	1,1,1-Trichloroethane	500	500	1,000	30	N/A	0.007 L
	1,1,2-Trichloroethane	2	4	60	0.1	N/A	0.002 U
	Trichloroethylene	2	90	700	0.3	N/A	0.002 T
	Trichlorofluoromethane	NS	NS	NS	1,000	N/A	0.007 L
	1,2,3-Trichloropropane	NS	NS	NS	100	N/A	0.002 U
	1,2,4-Trimethylbenzenc	1000	100(1)	500 ⁽¹⁾	1,000	N/A	0.002 U
	1,3,5-Trimethylbenzene	100 ⁰	100(1)	500(1)	10	N/A	0.002 €
	Vinyl Chloride	0.6	0.6	4	* 0.6	N/A	0.007 U
	m + p Xylene	300	500	1,000	300	N/A	0.003 U
	o-Xylene	300	500	1,000	300	N/A	0.002 t
VPH							
(mg/kg)	C5-C8 Aliphatics	100	100	500	100	N/A	20.3 t
	C9-C12 Aliphatics	1,000	1,000	3,000	1,000	N/A	13.5 U
	C9-C10 Aromatics	100	100	500	100	N/A	13.5 U
	Benzene	30 500	30 500	200 1,000	2 40	N/A N/A	0.068 U 0.068 U
	Ethylbenzene MTBE	100	100	500	0.1	N/A	0.008 0
	Naphthalene	40	500	1,000	4	N/A	0.674 t
	Toluene	500	500	1,000	30	N/A	0.068
	m/p-Xylene	300	500	1,000	300	N/A	0.135 U
	o-Xylene	300	500	1,000	300	N/A	0.069
ЕРН	1						
(mg/kg)	C9-C18 Aliphatics	1,000	1,000	3,000	1,000	N/A	32.8 U
· 0 0,	C19-C36 Aliphatics	3,000	3,000	5,000	3,000	N/A	32.8 T
	C11-C22 Aromatics	1,000	1,000	3,000	1,000	N/A	32.8 t
	Acenaphthene	1,000	1,000	3,000	4	N/A	0.20 t
	Acenaphthylene	600	10	10	1	N/A	0.20
	Anthracene	1,000	1,000	3,000	1,000	N/A	0.20
	Benzo(a)anthracene	7	7	40	7	N/A	0.20
	Benzo(a)pyrene	2	2	4	2	N/A	0.20
	Benzo(b)fluoranthene	7	7	40	7	N/A	0.20
	Benzo(g,h,i)perylene	1,000	1,000	3,000	1,000	N/A	0.20
	Benzo(k)fluoranthene	70	70	400	70 70	N/A	0.20
	Chrysene	70 0.7	70 0.7	400	70 0.7	N/A N/A	0.20 0.20
	Dibenzo(a,h)anthracene Fluoranthene	1,000	1,000	4 3,000	1,000	N/A N/A	0.20 0.20
	Fluorene	1,000	1,000	3,000	1,000	N/A	0.20
	Indeno(1,2,3-cd)pyrene	7	7	40	7	N/A	0.20
	2-Methylnaphthalene	80	300	500	0.7	N/A	0.20
	Naphthalene	40	500	1,000	4	N/A	0.20
	Phenanthrene	500	500	1,000	10	N/A	0.20
	Pyrene	1,000	1,000	3,000	1,000	N/A	0.20
SVOCs				·····			
(mg/kg)	Acenaphthene	1000	1000	3000	4	N/A	0.182
	Acenaphthylene	600	10	10	1	N/A	0.182
	Acetophenone	NS	NS	NS	1000	N/A	0.37
	Aniline	NS	NS	NS	1000	N/A	0.37
	Anthracene	1000	1000	3000	1000	N/A	0.182
	Benzo(a)anthracene	7	7	40	7	N/A	0.182
	Benzo(a)pyrene	2	2	4	2	N/A	0.182
	Benzo(b)fluoranthene	7	7	40	7	N/A	0.182
	Benzo(g,h,i)perylene	1000	1000	3000	1000	N/A	0.182
	Benzo(k)fluoranthene	70	70	400	70	N/A	0.182
	Bis(2-chloroethoxy)methane	NS	NS	NS	500	N/A	0.37

Table 5
Summary of Analytical Results for BORROW Soil Characterization Sample - November 2008
New Bedford, Massachusetts

ماديدا م	Analyta	Sample Location: Sample Depth (ft.):						
Analysis	Analyte	Sample Depth (it.) Sample Date						
		S-1/GW-2	S-1/GW-3	S-2/GW-3	RC S-1	TSCA		
	Bis(2-chloroethyl)ether	0.7	0.7	3	0.7	N/A	0.37	
	Bis(2-chloroisopropyl)ether	NS	NS	NS	0.7	N/A	0.37	
	Bis(2-ethylhexyl)phthalate	200	200	700	200	N/A	0.37	
	4-Bromophenyl phenyl ether	NS	NS	NS	100	N/A	0.37	
	Butylbenzylphthalate	NS	NS	NS	100	N/A	0.73	
	4-Chloroaniline	100	3	3	1	N/A	0.73	
	2-Chloronaphthalene	NS	NS	NS	1000	N/A	0.37	
	2-Chlorophenol	100	100	300	0.7	N/A	0.37	
	Chrysene	70	70	400	70	N/A	0.182	
	Dibenzofuran	NS	NS	NS	100	N/A	0.37	
	Dibenz(a,h)anthracene	0.7	0.7	4	0.7	N/A	0.182	
	1,2-Dichlorobenzene	30	300	300	, 9	N/A	0.37	
	1,3-Dichlorobenzene	40	100	500	1	N/A	0.37	
	1,4-Dichlorobenzene	4	50	300	0.7	N/A	0.37	
	3,3'-Dichlorobenzidine	1	i	10	1	N/A	0.19	
	2,4-Dichlorophenol	60	40	40	0.7	N/A	0.37	
	Diethylphthalate	200	300	300	10	N/A	0.37	
	2,4-Dimethylphenol	100	500	1000	0.7	N/A	0.37	
	Dimethylphthalate	50	600	600	30	N/A	0.73	
	Di-n-butylphthalate	NS	NS	NS	50	N/A	0.37	
	Di-n-octylphthalate	NS	NS	NS	1000	N/A	0.73	
	2,4-Dinitrophenol	50	50	90	3	N/A	0.73	
	2,4-Dinitrotoluene	2	2	10	0.7	N/A	0.37	
	2,6-Dinitrotoluene	NS	NS	NS	100	N/A	0.37	
	Azobenzene	NS 1000	NS 1000	NS 2000	50 1000	N/A N/A	0.37 0.182	
	Fluoranthene Fluorene	1000 1000	1000 1000	3000 3000	1000	N/A N/A	0.182	
	Hexachlorobenzene	0.7	0.7	5	0.7	N/A	0.182	
	Hexachlorobutadiene	6	6	90	6	N/A	0.37	
	Hexachloroethane	3	9	100	0.7	N/A	0.37	
	Indeno(1,2,3-cd)pyrene	7	7	40	7	N/A	0.182	
	Isophorone	NS NS	NS	NS	100	N/A	0.37	
	o-cresol	NS	NS	NS	500	N/A	0.37	
	m & p-cresol(s)	NS	NS	NS	500	N/A	0.37	
	2-Methylnaphthalene	80	300	500	0.7	N/A	0.182	
	Naphthalene	40	500	1000	4	N/A	0.182	
	Nitrobenzene	NS	NS	NS	500	N/A	0.37	
	2-Nitrophenol	NS	NS	NS	100	N/A	0.37	
	4-Nitrophenol	NS	NS	NS	100	N/A	0.73	
	Pentachlorophenol	10	10	10	3	N/A	0.37	
	Phenanthrene	500	500	1000	10	N/A	0.182	
	Phenol	50	20	20	1	N/A	0.37	
	Pyrene	1000	1000	3000	1000	N/A	0.182	
	1,2,4-Trichlorobenzene	70	500	900	2	N/A	0.37	
	2,4,5-Trichlorophenol	1000	600	600	4	N/A	0.37	
	2,4,6-Trichlorophenol	20	20	20	0.7	N/A	0.37	
esticides "		0.04			0.04	N/4	0.006	
ng/kg)	Aldrin	0.04	0.04	0.4	0.04	N/A	0.006	
	alpha-BHC	NS NS	NS NC	NS NS	50 10	N/A N/A	0.006 0.006	
	beta-BHC	NS NG	NS NC	NS NC	10	N/A N/A	0.006	
	delta-BHC gamma-BHC (Lindane)	NS 0.7	NS 0.5	NS 0.5	0.003	N/A N/A	0.008	
	Chlordane	0.7	0.5	30	0.003	N/A N/A	0.003	
	4,4-DDD	4	4	30	4	N/A N/A	0.022	
	4,4-DDE	3	3	20	3	N/A	0.0011	
	4,4-DDT	3	3	20	3	N/A N/A	0.0011	
	Dieldrin	0.05	0.05	0.4	0.05	N/A	0.0011	
	Endosulfan I	NS	NS	NS	0.05	N/A	0.0044	

Table 5
Summary of Analytical Results for BORROW Soil Characterization Sample - November 2008
New Bedford, Massachusetts

						nple Location:		
Analysis	Analyte				ole Depth (ft.):			
		Sample Date:						
		S-1/GW-2	S-1/GW-3	S-2/GW-3	RC S-1	TSCA		
	Endosulfan II	NS	NS	NS	0.5	N/A	0.009 U	
	Endosulfan Sulfate	NS	NS	NS	0.5	N/A	0.009 U	
	Endrin	8	8	10	8	N/A	0.009 U	
	Endrin Ketone	NS	NS	N\$	NS	N/A	0.009 U	
	Heptachlor	0.2	0.2	2	0.2	N/A	0.006 U	
	Heptachlor Epoxide	0.09	0.09	0.7	0.09	N/A	0.006 U	
	Hexachlorobenzene	0.7	0.7	5	0.7	N/A	0.006 U	
	Methoxychlor	200	200	300	200	N/A	0.055 U	
Herbicide	es							
(mg/kg)	MCPP	NS	NS	NS	NS	N/A	3.7 U	
	MCPA	NS	NS	NS	100	N/A	3.7 U	
	Dalapon	NS	NS	NS	NS	N/A	0.037 U	
	Dicamba	NS	NS	NS	500	N/A	0.037 U	
	Dichloroprop	NS	NS	NS	NS	N/A	0.037 U	
	2,4-D	NS	NS	NS	100	N/A	0.037 U	
	2,4-DB	NS	NS	NS	100	N/A	0.037 U	
	2,4,5-T	NS	NS	NS	100	N/A	0.037 U	
	2,4,5-TP (Silvex)	NS	NS	NS	100	N/A	0.037 U	
	Dinoseb	NS	NS	NS	500	N/A	0.037 U	
PCBs							İ	
(mg/kg)	PCB 1016	2	2	3	2	1	0.11 U	
	PCB-1221	2	2	3	2	1	0.11 U	
	PCB-1232	2	2	3	2	1	0.11 U	
	PCB-1242	2	2	3	2	1	0.11 U	
	PCB-1248	2	2	3	2	1	0.11 U	
	PCB-1254	2	2	3	2	1	0.11 U	
	PCB-1260	2	2	3	2	1	0.11 U	
	PCB 1262	2	2	3	2	1	0.11 U	
	PCB 1268	2	2	3	2	1	0.11 U	
Metals, t	otal							
(mg/kg)	Arsenic	20	20	20	20	N/A	2.73 U	
. 0	Barium	1,000	1,000	3,000	1,000	N/A	48.8	
	Cadmium	2	2	30	2	N/A	0.28 U	
	Chromium	30	30	200	30	N/A	13.1	
	Lead	300	300	300	300	N/A	2.21	
	Mercury	20	20	30	20	N/A	0.015 U	
	Selenium	400	400	800	400	N/A	5.46 U	
	Silver	100	100	200	100	N/A	0.55 U	

Notes:

All units in mg/kg.

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

N/A - Not applicable.

NS - No MassDEP standards exist for this compound.

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected.

EPH - Extractable Petroleum Hydrocarbons.

PCBs - Polychlorinated Biphenyls.

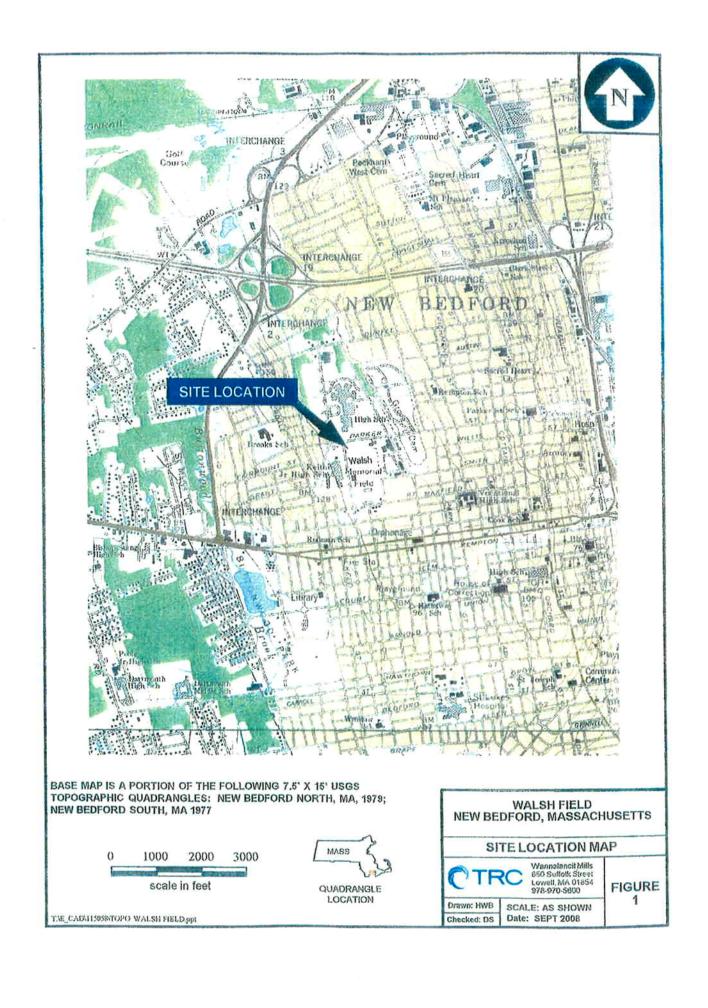
RC - Reportable Concentration.

 $\ensuremath{\mathsf{SVOCs}}$ - Semivolatile Organic Compounds.

TSCA - Toxic Substances Control Act criteria.

VOCs - Volatile Organic Compounds.

VPH - Volatile Petroleum Hydrocarbons.


(1) - MCP Method 1 standards and RC for C9-C10 aromatics used.

(2) - MCP RC for Dichloropropane used.

(3) - MCP RC for Dichloropropene used.

(4) - MCP Method 1 standards and RC for 1,3-Dichloropropene used.

FIGURES

LEGEND:

JULY OB BORINGS BETA WALSH FIELD BORINGS SEPT OBA BORINGS

NOTE: NOTE:
ALL BORINGS, WELLS, AND SOIL GAS
LOCATIONS ARE PRELIMINARY AND SUBJECT
TO CHANGE AND ARE BASED ON SITE
CONDITIONS AND BEST PROFESSIONAL
JUDGEMENT,

Summary of Regulatory Comparison Criteria for Soil (mg/kg)						
Contaminan1	\$-1/GW -2	S-1/GW-	3 S-2/GW-2	S-2/GW-3	RC S-1	TSCA
Names						
Benzo(a)pyrene (BAP)	2	2	4	4	2	N/A
Total PCBs	2	2;	- 3	3	2	- 1
Arsenic	20	20	20	20	20	N/A
Cadmium	2	2	30	30	2	N/A
Chronium	30	30	200	200	30	N/A
Lead	300	300	300	300	300	N/A
Nickel	20	20	700	700	20	N/A

NOTES:
ALL UNITS IN MG/AG UNLESS OTHERWISE SPECIFIED.
MG/KG - MILLIGRAMS PER KILOGRAM (DRY WEIGHT).
NA. SAMPLE NOT ANALYZED FOR THE LISTED ANALYTE
N/A. NOT APPLICABLE.
POBS. - POLYCHLORINATED BIPHENYLS,
RCS - REPORTABLE CONCENTRATIONS,
TSCA. - TOXIC SUBSTANCES CONTROL ACT,
U - COMPOUND WAS NOT DETECTED AT SPECIFIED QUANTITATION LIMIT.

VALUES SHOWN IN PEACH BACKGROUND EXCEED ONE OR MORE OF THE LISTED MASSDEP METHOD 1 STANDARDS

SAMPLE LOCATION SAMPLE DATE	WFB-04 02/23/06 Constituent	1.00 - 2.50	SAMPLE DEPTH (DEPTH
	BAP	95	RANGE) IN FEET
CONTAMINANT NAME /ABBREVIATION	Total PCBs	0.21 U	
	Arsenic	1.21	
	Cadmium	0.34 U	
	Chromium	4.17	[
	Legd	58	0

WALSH FIELD NEW BEDFORD, MASSACHUSETTS

VARSITY DIAMOND AREA - RAM SOIL ANALYTICAL RESULTS SUMMARY MAP

03/12/2009

CHECKED BY: DP

2

Wannalancit Mills 650 Suffolk Street Lowell, MA 01854 (978) 970-5600 **FIGURE** DATE: DRAWN BY: PZ

:\E_CAD\115058\TRACK - BULLPEN SAMP LOCS.dwg

ATTACHMENT A DUST MONITORING FIELD LOGS

TrakPro Version 4.10 ASCII Data File

Model: Dust Trak Model Number: 8520 Serial Number: 85202243

Test ID: 1

Test Abbreviation: Start Date: 4/18/2009 Start Time: 8:15:25

Duration (dd:hh:mm:ss): 0:03:54:00

Time constant (seconds): 10 Log Interval (mm:ss): 1:00 Number of points: 234

Notes: Upwind

Statistics

Channel: Aerosol Units: mg/m³ Average: 0.015 Minimum: 0.011

Time of Minimum: 10:10:25 Date of Minimum: 4/18/2009

Maximum: 0.039

Time of Maximum: 9:11:25 Date of Maximum: 4/18/2009

Calibration

Sensor: Aerosol Cal. Date: 4/13/2009

> Aerosol (mg/m³ Date (mm/dd/yyyy) Time (hh:mm:ss) 4/18/2009 8:52:25 0.012 8:53:25 0.013 4/18/2009 8:54:25 0.012 4/18/2009 4/18/2009 8:55:25 0.014 4/18/2009 8:56:25 0.015 8:57:25 4/18/2009 0.012 4/18/2009 8:58:25 0.013 4/18/2009 8:59:25 0.014 4/18/2009 9:00:25 0.016 4/18/2009 9:01:25 0.014 4/18/2009 9:02:25 0.014 4/18/2009 9:03:25 0.013 4/18/2009 9:04:25 0.014 4/18/2009 9:05:25 0.013

4/18/2009	9:06:25	0.012
4/18/2009	9:07:25	0.013
4/18/2009	9:08:25	0.013
4/18/2009	9:09:25	0.013
4/18/2009	9:10:25	0.013
4/18/2009	9:11:25	0.039
4/18/2009	9:12:25	0.012
4/18/2009	9:13:25	0.014
4/18/2009	9:14:25	0.012
4/18/2009	9:15:25	0.012
4/18/2009	9:16:25	0.014
4/18/2009	9:17:25	0.012
4/18/2009	9:18:25	0.014
4/18/2009	9:19:25	0.015
4/18/2009	9:20:25	0.013
4/18/2009	9:21:25	0.013
4/18/2009	9:22:25	0.013
4/18/2009	9:23:25	0.013
4/18/2009	9:24:25	0.012
4/18/2009	9:25:25	0.012
4/18/2009	9:26:25	0.015
4/18/2009	9:27:25	0.013
4/18/2009	9:28:25	0.014
4/18/2009	9:29:25	0.013
4/18/2009	9:30:25	0.013
4/18/2009	9:31:25	0.013
4/18/2009	9:32:25	0.012
4/18/2009	9:33:25	0.015
4/18/2009	9:34:25	0.014
4/18/2009	9:35:25	0.014
4/18/2009	9:36:25	0.014
4/18/2009	9:37:25	0.012
4/18/2009	9:38:25	0.012
4/18/2009	9:39:25	0.012
4/18/2009	9:40:25	0.014
4/18/2009	9:41:25	0.012
4/18/2009	9:42:25	0.012
4/18/2009	9:43:25	0.014
4/18/2009	9:44:25	0.012
4/18/2009	9:45:25	0.012
4/18/2009	9:46:25	0.012
4/18/2009	9:47:25	0.013
4/18/2009	9:48:25	0.012
4/18/2009	9:49:25	0.014
4/18/2009	9:50:25	0.012

4/18/2009	9:51:25	0.013
4/18/2009	9:52:25	0.015
4/18/2009	9:53:25	0.016
4/18/2009	9:54:25	0.013
4/18/2009	9:55:25	0.015
4/18/2009	9:56:25	0.018
4/18/2009	9:57:25	0.015
4/18/2009	9:58:25	0.014
4/18/2009	9:59:25	0.013
4/18/2009	10:00:25	0.014
4/18/2009	10:01:25	0.014
4/18/2009	10:02:25	0.015
4/18/2009	10:03:25	0.012
4/18/2009	10:04:25	0.012
4/18/2009	10:05:25	0.013
4/18/2009	10:06:25	0.013
4/18/2009	10:07:25	0.012
4/18/2009	10:08:25	0.012
4/18/2009	10:09:25	0.013
4/18/2009	10:10:25	0.011
4/18/2009	10:11:25	0.012
4/18/2009	10:12:25	0.017
4/18/2009	10:13:25	0.017
4/18/2009	10:14:25	0.013
4/18/2009	10:15:25	0.013
4/18/2009	10:16:25	0.016
4/18/2009	10:17:25	0.012
4/18/2009	10:18:25	0.013
4/18/2009	10:19:25	0.014
4/18/2009	10:20:25	0.011
4/18/2009	10:21:25	0.012
4/18/2009	10:22:25	0.014
4/18/2009	10:23:25	0.013
4/18/2009	10:24:25	0.012
4/18/2009	10:25:25	0.013
4/18/2009	10:26:25	0.014
4/18/2009	10:27:25	0.015
4/18/2009	10:28:25	0.02
4/18/2009	10:29:25	0.013
4/18/2009	10:30:25	0.012
4/18/2009	10:31:25	0.014
4/18/2009	10:32:25	0.013
4/18/2009	10:33:25	0.021
4/18/2009	10:34:25	0.019
4/18/2009	10:35:25	0.014

4/18/2009	10:36:25	0.016
4/18/2009	10:37:25	0.015
4/18/2009	10:38:25	0.013
4/18/2009	10:39:25	0.013
4/18/2009	10:40:25	0.013
4/18/2009	10:41:25	0.012
4/18/2009	10:42:25	0.012
4/18/2009	10:43:25	0.012
4/18/2009	10:44:25	0.013
4/18/2009	10:45:25	0.014
4/18/2009	10:46:25	0.014
4/18/2009	10:47:25	0.014
4/18/2009	10:48:25	0.014
4/18/2009	10:49:25	0.013
4/18/2009	10:50:25	0.013
4/18/2009	10:51:25	0.013
4/18/2009	10:52:25	0.019
4/18/2009	10:53:25	0.012
4/18/2009	10:54:25	0.014
4/18/2009	10:55:25	0.014
4/18/2009	10:56:25	0.014
4/18/2009	10:57:25	0.013
4/18/2009	10:58:25	0.013
4/18/2009	10:59:25	0.014
4/18/2009	11:00:25	0.014
4/18/2009	11:01:25	0.012
4/18/2009	11:02:25	0.013
4/18/2009	11:03:25	0.017
4/18/2009	11:04:25	0.021
4/18/2009	11:05:25	0.016
4/18/2009	11:06:25	0.013
4/18/2009	11:07:25	0.014
4/18/2009	11:08:25	0.013
4/18/2009	11:09:25	0.018
4/18/2009	11:10:25	0.014
4/18/2009	11:11:25	0.013
4/18/2009	11:12:25	0.013
4/18/2009	11:13:25	0.018
4/18/2009	11:14:25	0.022
4/18/2009	11:15:25	0.028
4/18/2009	11:16:25	0.02
4/18/2009	11:17:25	0.02
4/18/2009	11:18:25	0.013
4/18/2009	11:19:25	0.017
4/18/2009	11:20:25	0.018

4/18/2009	11:21:25	0.029
4/18/2009	11:22:25	0.015
4/18/2009	11:23:25	0.015
4/18/2009	11:24:25	0.016
4/18/2009	11:25:25	0.02
4/18/2009	11:26:25	0.016
4/18/2009	11:27:25	0.017
4/18/2009	11:28:25	0.02
4/18/2009	11:29:25	0.02
4/18/2009	11:30:25	0.025
4/18/2009	11:31:25	0.025
4/18/2009	11:32:25	0.019
4/18/2009	11:33:25	0.031
4/18/2009	11:34:25	0.016
4/18/2009	11:35:25	0.014
4/18/2009	11:36:25	0.017
4/18/2009	11:37:25	0.018
4/18/2009	11:38:25	0.025
4/18/2009	11:39:25	0.018
4/18/2009	11:40:25	0.022
4/18/2009	11:41:25	0.027
4/18/2009	11:42:25	0.026
4/18/2009	11:43:25	0.016
4/18/2009	11:44:25	0.021
4/18/2009	11:45:25	0.016
4/18/2009	11:46:25	0.014
4/18/2009	11:47:25	0.015
4/18/2009	11:48:25	0.015
4/18/2009	11:49:25	0.015
4/18/2009	11:50:25	0.017
4/18/2009	11:51:25	0.019
4/18/2009	11:52:25	0.014
4/18/2009	11:53:25	0.015
4/18/2009	11:54:25	0.017
4/18/2009	11:55:25	0.015
4/18/2009	11:56:25	0.015
4/18/2009	11:57:25	0.013
4/18/2009	11:58:25	0.013
4/18/2009	11:59:25	0.016
4/18/2009	12:00:25	0.014
4/18/2009	12:01:25	0.014
4/18/2009	12:02:25	0.014
4/18/2009	12:03:25	0.014
4/18/2009	12:04:25	0.014
4/18/2009	12:05:25	0.017

4/19/2000	12:06:25	0.016
4/18/2009 4/18/2009	12:07:25	0.010
4/18/2009	12:08:25	0.014
4/18/2009	12:09:25	0.013
4/18/2009	12:10:25	0.015
4/18/2009	12:11:25	0.013
4/18/2009	12:12:25	0.014
4/18/2009	12:13:25	0.014
4/18/2009	12:14:25	0.013
4/18/2009	12:15:25	0.014
4/18/2009	12:16:25	0.013
4/18/2009	12:17:25	0.02
4/18/2009	12:18:25	0.014
4/18/2009	12:19:25	0.014
4/18/2009	12:20:25	0.013
4/18/2009	12:21:25	0.013
4/18/2009	12:22:25	0.014
4/18/2009	12:23:25	0.014
	12:24:25	0.010
4/18/2009 4/18/2009	12:25:25	0.017
4/18/2009	12:26:25	0.014
4/18/2009	12:27:25	0.014
4/18/2009	12:28:25	0.014
4/18/2009	12:29:25	0.013
4/18/2009	12:30:25	0.015
	12:31:25	0.013
4/18/2009 4/18/2009	12:31:25	0.013
4/18/2009	12:33:25	0.014
4/18/2009	12:34:25	0.013
4/18/2009	12:35:25	0.014
4/18/2009	12:36:25	0.013
4/18/2009	12:37:25	0.014
4/18/2009	12:38:25	0.014
	12:39:25	0.014
4/18/2009	12:40:25	0.013
4/18/2009	12:41:25	0.013
4/18/2009		0.013
4/18/2009	12:42:25	0.013
4/18/2009	12:43:25 12:44:25	
4/18/2009 4/18/2009		0.013 0.013
4/10/4007	12:45:25	0.013

TrakPro Version 4.10 ASCII Data File

Model: Dust Trak Model Number: 8520 Serial Number: 85202243

Test ID: 1

Test Abbreviation: Start Date: 4/18/2009 Start Time: 8:51:25

Duration (dd:hh:mm:ss): 0:03:54:00

Time constant (seconds): 10 Log Interval (mm:ss): 1:00 Number of points: 234 Notes: Downwind

Statistics

Channel: Aerosol Units: mg/m³ Average: 0.015 Minimum: 0.011

Time of Minimum: 10:10:25 Date of Minimum: 4/18/2009

Maximum: 0.039

Time of Maximum: 9:11:25 Date of Maximum: 4/18/2009

Calibration

Sensor: Aerosol

Cal. Date: 4/13/2009

Date (MM/dd/yyyy)	Time (hh:mm:ss)	Aerosol (mg/m3)
4/18/2009	8:52:25	0.012
4/18/2009	8:53:25	0.013
4/18/2009	8:54:25	0.012
4/18/2009	8:55:25	0.014
4/18/2009	8:56:25	0.015
4/18/2009	8:57:25	0.012
4/18/2009	8:58:25	0.013
4/18/2009	8:59:25	0.014
4/18/2009	9:00:25	0.016
4/18/2009	9:01:25	0.014
4/18/2009	9:02:25	0.014
4/18/2009	9:03:25	0.013
4/18/2009	9:04:25	0.014
4/18/2009	9:05:25	0.013

4/18/2009	9:06:25	0.012
4/18/2009	9:07:25	0.013
4/18/2009	9:08:25	0.013
4/18/2009	9:09:25	0.013
4/18/2009	9:10:25	0.013
4/18/2009	9:11:25	0.039
4/18/2009	9:12:25	0.012
4/18/2009	9:13:25	0.014
4/18/2009	9:14:25	0.012
4/18/2009	9:15:25	0.012
4/18/2009	9:16:25	0.014
4/18/2009	9:17:25	0.012
4/18/2009	9:18:25	0.014
4/18/2009	9:19:25	0.015
4/18/2009	9:20:25	0.013
4/18/2009	9:21:25	0.013
4/18/2009	9:22:25	0.013
4/18/2009	9:23:25	0.013
4/18/2009	9:24:25	0.012
4/18/2009	9:25:25	0.012
4/18/2009	9:26:25	0.015
4/18/2009	9:27:25	0.013
4/18/2009	9:28:25	0.014
4/18/2009	9:29:25	0.013
4/18/2009	9:30:25	0.013
4/18/2009	9:31:25	0.013
4/18/2009	9:32:25	0.012
4/18/2009	9:33:25	0.015
4/18/2009	9:34:25	0.014
4/18/2009	9:35:25	0.014
4/18/2009	9:36:25	0.014
4/18/2009	9:37:25	0.012
4/18/2009	9:38:25	0.012
4/18/2009	9:39:25	0.012
4/18/2009	9:40:25	0.014
4/18/2009	9:41:25	0.012
4/18/2009	9:42:25	0.012
4/18/2009	9:43:25	0.014
4/18/2009	9:44:25	0.012
4/18/2009	9:45:25	0.012
4/18/2009	9:46:25	0.012
4/18/2009	9:47:25	0.013
4/18/2009	9:48:25	0.012
4/18/2009	9:49:25	0.014
4/18/2009	9:50:25	0.012

4/19/2000	9:51:25	0.013
4/18/2009	9:51:25 9:52:25	0.015
4/18/2009	9:53:25 9:53:25	0.015
4/18/2009		0.013
4/18/2009	9:54:25	
4/18/2009	9:55:25	0.015
4/18/2009	9:56:25	0.018
4/18/2009	9:57:25	0.015
4/18/2009	9:58:25	0.014
4/18/2009	9:59:25	0.013
4/18/2009	10:00:25	0.014
4/18/2009	10:01:25	0.014
4/18/2009	10:02:25	0.015
4/18/2009	10:03:25	0.012
4/18/2009	10:04:25	0.012
4/18/2009	10:05:25	0.013
4/18/2009	10:06:25	0.013
4/18/2009	10:07:25	0.012
4/18/2009	10:08:25	0.012
4/18/2009	10:09:25	0.013
4/18/2009	10:10:25	0.011
4/18/2009	10:11:25	0.012
4/18/2009	10:12:25	0.017
4/18/2009	10:13:25	0.017
4/18/2009	10:14:25	0.013
4/18/2009	10:15:25	0.013
4/18/2009	10:16:25	0.016
4/18/2009	10:17:25	0.012
4/18/2009	10:18:25	0.013
4/18/2009	10:19:25	0.014
4/18/2009	10:20:25	0.011
4/18/2009	10:21:25	0.012
4/18/2009	10:22:25	0.014
4/18/2009	10:23:25	0.013
4/18/2009	10:24:25	0.012
4/18/2009	10:25:25	0.013
4/18/2009	10:26:25	0.014
4/18/2009	10:27:25	0.015
4/18/2009	10:28:25	0.02
4/18/2009	10:29:25	0.013
4/18/2009	10:30:25	0.012
4/18/2009	10:31:25	0.014
4/18/2009	10:32:25	0.013
4/18/2009	10:33:25	0.021
4/18/2009	10:34:25	0.019
4/18/2009	10:35:25	0.014
 	·	

4/18/2009	10:36:25	0.016
4/18/2009	10:37:25	0.015
4/18/2009	10:38:25	0.013
4/18/2009	10:39:25	0.013
4/18/2009	10:40:25	0.013
4/18/2009	10:41:25	0.012
4/18/2009	10:42:25	0.012
4/18/2009	10:43:25	0.012
4/18/2009	10:44:25	0.013
4/18/2009	10:45:25	0.014
4/18/2009	10:46:25	0.014
4/18/2009	10:47:25	0.014
4/18/2009	10:48:25	0.014
4/18/2009	10:49:25	0.013
4/18/2009	10:50:25	0.013
4/18/2009	10:51:25	0.013
4/18/2009	10:52:25	0.019
4/18/2009	10:53:25	0.012
4/18/2009	10:54:25	0.014
4/18/2009	10:55:25	0.014
4/18/2009	10:56:25	0.014
4/18/2009	10:57:25	0.013
4/18/2009	10:58:25	0.013
4/18/2009	10:59:25	0.014
4/18/2009	11:00:25	0.014
4/18/2009	11:01:25	0.012
4/18/2009	11:02:25	0.013
4/18/2009	11:03:25	0.017
4/18/2009	11:04:25	0.021
4/18/2009	11:05:25	0.016
4/18/2009	11:06:25	0.013
4/18/2009	11:07:25	0.014
4/18/2009	11:08:25	0.013
4/18/2009	11:09:25	0.018
4/18/2009	11:10:25	0.014
4/18/2009	11:11:25	0.013
4/18/2009	11:12:25	0.013
4/18/2009	11:13:25	0.018
4/18/2009	11:14:25	0.022
4/18/2009	11:15:25	0.028
4/18/2009	11:16:25	0.02
4/18/2009	11:17:25	0.02
4/18/2009	11:18:25	0.013
4/18/2009	11:19:25	0.017
4/18/2009	11:20:25	0.018

4/18/2009	11:21:25	0.029
4/18/2009	11:22:25	0.015
4/18/2009	11:23:25	0.015
4/18/2009	11:24:25	0.016
4/18/2009	11:25:25	0.02
4/18/2009	11:26:25	0.016
4/18/2009	11:27:25	0.017
4/18/2009	11:28:25	0.02
4/18/2009	11:29:25	0.02
4/18/2009	11:30:25	0.025
4/18/2009	11:31:25	0.025
4/18/2009	11:32:25	0.019
4/18/2009	11:33:25	0.031
4/18/2009	11:34:25	0.016
4/18/2009	11:35:25	0.014
4/18/2009	11:36:25	0.017
4/18/2009	11:37:25	0.018
4/18/2009	11:38:25	0.025
4/18/2009	11:39:25	0.018
4/18/2009	11:40:25	0.022
4/18/2009	11:41:25	0.027
4/18/2009	11:42:25	0.026
4/18/2009	11:43:25	0.016
4/18/2009	11:44:25	0.021
4/18/2009	11:45:25	0.016
4/18/2009	11:46:25	0.014
4/18/2009	11:47:25	0.015
4/18/2009	11:48:25	0.015
4/18/2009	11:49:25	0.015
4/18/2009	11:50:25	0.017
4/18/2009	11:51:25	0.019
4/18/2009	11:52:25	0.014
4/18/2009	11:53:25	0.015
4/18/2009	11:54:25	0.017
4/18/2009	11:55:25	0.015
4/18/2009	11:56:25	0.015
4/18/2009	11:57:25	0.013
4/18/2009	11:58:25	0.013
4/18/2009	11:59:25	0.016
4/18/2009	12:00:25	0.014
4/18/2009	12:01:25	0.014
4/18/2009	12:02:25	0.014
4/18/2009	12:03:25	0.014
4/18/2009	12:04:25	0.014
4/18/2009	12:05:25	0.017

4/18/2009	12:06:25	0.016
4/18/2009	12:07:25	0.014
4/18/2009	12:08:25	0.015
4/18/2009	12:09:25	0.019
4/18/2009	12:10:25	0.015
4/18/2009	12:11:25	0.014
4/18/2009	12:12:25	0.014
4/18/2009	12:13:25	0.015
4/18/2009	12:14:25	0.014
4/18/2009	12:15:25	0.015
4/18/2009	12:16:25	0.02
4/18/2009	12:17:25	0.014
4/18/2009	12:18:25	0.014
4/18/2009	12:19:25	0.015
4/18/2009	12:20:25	0.013
4/18/2009	12:21:25	0.014
4/18/2009	12:22:25	0.014
4/18/2009	12:23:25	0.016
4/18/2009	12:24:25	0.017
4/18/2009	12:25:25	0.014
4/18/2009	12:26:25	0.014
4/18/2009	12:27:25	0.014
4/18/2009	12:28:25	0.015
4/18/2009	12:29:25	0.013
4/18/2009	12:30:25	0.015
4/18/2009	12:31:25	0.013
4/18/2009	12:32:25	0.014
4/18/2009	12:33:25	0.013
4/18/2009	12:34:25	0.014
4/18/2009	12:35:25	0.013
4/18/2009	12:36:25	0.014
4/18/2009	12:37:25	0.014
4/18/2009	12:38:25	0.014
4/18/2009	12:39:25	0.015
4/18/2009	12:40:25	0.013
4/18/2009	12:41:25	0.013
4/18/2009	12:42:25	0.013
4/18/2009	12:43:25	0.013
4/18/2009	12:44:25	0.013
4/18/2009	12:45:25	0.013

TrakPro Version 4.10 ASCII Data File

Model: Dust Trak Model Number: 8520 Serial Number: 85202265

Test ID: 3

Test Abbreviation: Start Date: 4/20/2009 Start Time: 8:17:52

Duration (dd:hh:mm:ss): 0:06:26:00

Time constant (seconds): 1 Log Interval (mm:ss): 1:00 Number of points: 386

Notes: Upwind

Statistics

Channel: Aerosols Units: mg/m3 Average: 2738.256

Minimum: 0

Time of Minimum: 12:35:52 Date of Minimum: 4/20/2009 Maximum: 1056964.612 Time of Maximum: 9:01:52 Date of Maximum: 4/20/2009

Calibration

Sensor: Cal. date

Date (MM/dd/yyyy)	Time (hh:mm:ss)	Aerosol (mg/m3)
4/20/2009	8:18:52	0.007
4/20/2009	8:19:52	0.009
4/20/2009	8:20:52	0.009
4/20/2009	8:21:52	0.009
4/20/2009	8:22:52	0.009
4/20/2009	8:23:52	0.009
4/20/2009	8:24:52	0.009
4/20/2009	8:25:52	0.009
4/20/2009	8:26:52	0.009
4/20/2009	8:27:52	0.009
4/20/2009	8:28:52	0.009
4/20/2009	8:29:52	0.009
4/20/2009	8:30:52	0.009
4/20/2009	8:31:52	0.009
4/20/2009	8:32:52	0.009

4/20/2009	8:33:52	0.009
4/20/2009	8:34:52	0.009
4/20/2009	8:35:52	0.009
4/20/2009	8:36:52	0.009
4/20/2009	8:37:52	0.009
4/20/2009	8:38:52	0.009
4/20/2009	8:39:52	0.009
4/20/2009	8:40:52	0.009
4/20/2009	8:41:52	0.009
4/20/2009	8:42:52	0.009
4/20/2009	8:43:52	0.009
4/20/2009	8:44:52	0.008
4/20/2009	8:45:52	0.009
4/20/2009	8:46:52	0.009
4/20/2009	8:47:52	0.008
4/20/2009	8:48:52	0.009
4/20/2009	8:49:52	0.009
4/20/2009	8:50:52	0.008
4/20/2009	8:51:52	0.008
4/20/2009	8:52:52	0.006
4/20/2009	8:53:52	0.004
4/20/2009	8:54:52	0.004
4/20/2009	8:55:52	0.004
4/20/2009	8:56:52	0.004
4/20/2009	8:57:52	0.004
4/20/2009	8:58:52	0.005
4/20/2009	8:59:52	0.005
4/20/2009	9:00:52	0.006
4/20/2009	9:01:52	1056964.612
4/20/2009	9:02:52	0.004
4/20/2009	9:03:52	0.005
4/20/2009	9:04:52	0.004
4/20/2009	9:05:52	0.004
4/20/2009	9:06:52	0.003
4/20/2009	9:07:52	0.004
4/20/2009	9:08:52	0.004
4/20/2009	9:09:52	0.004
4/20/2009	9:10:52	0.004
4/20/2009	9:11:52	0.004
4/20/2009	9:12:52	0.004
4/20/2009	9:13:52	0.004
4/20/2009	9:14:52	0.005
4/20/2009	9:15:52	0.004
4/20/2009	9:16:52	0.004
4/20/2009	9:17:52	0.003

4/20/2009	9:18:52	0.003
4/20/2009	9:19:52	0.003
4/20/2009	9:20:52	0.005
4/20/2009	9:21:52	0.004
4/20/2009	9:22:52	0.004
4/20/2009	9:23:52	0.005
4/20/2009	9:24:52	0.004
4/20/2009	9:25:52	0.004
4/20/2009	9:26:52	0.004
4/20/2009	9:27:52	0.004
4/20/2009	9:28:52	0.003
4/20/2009	9:29:52	0.003
4/20/2009	9:30:52	0.003
4/20/2009	9:31:52	0.004
4/20/2009	9:32:52	0.004
4/20/2009	9:33:52	0.004
4/20/2009	9:34:52	0.004
4/20/2009	9:35:52	0.005
4/20/2009	9:36:52	0.004
4/20/2009	9:37:52	0.005
4/20/2009	9:38:52	0.004
4/20/2009	9:39:52	0.006
4/20/2009	9:40:52	0.007
4/20/2009	9:41:52	0.005
4/20/2009	9:42:52	0.005
4/20/2009	9:43:52	0.004
4/20/2009	9:44:52	0.003
4/20/2009	9:45:52	0.004
4/20/2009	9:46:52	0.004
4/20/2009	9:47:52	0.004
4/20/2009	9:48:52	0.004
4/20/2009	9:49:52	0.004
4/20/2009	9:50:52	0.005
4/20/2009	9:51:52	0.004
4/20/2009	9:52:52	0.005
4/20/2009	9:53:52	0.003
4/20/2009	9:54:52	0.004
4/20/2009	9:55:52	0.004
4/20/2009	9:56:52	0.004
4/20/2009	9:57:52	0.005
4/20/2009	9:58:52	0.004
4/20/2009	9:59:52	0.005
4/20/2009	10:00:52	0.004
4/20/2009	10:01:52	0.004
4/20/2009	10:02:52	0.003

4/20/2009	10:03:52	0.004
4/20/2009	10:04:52	0.004
4/20/2009	10:05:52	0.004
4/20/2009	10:06:52	0.003
4/20/2009	10:07:52	0.004
4/20/2009	10:08:52	0.005
4/20/2009	10:09:52	0.004
4/20/2009	10:10:52	0.005
4/20/2009	10:11:52	0.004
4/20/2009	10:12:52	0.004
4/20/2009	10:13:52	0.004
4/20/2009	10:14:52	0.004
4/20/2009	10:15:52	0.004
4/20/2009	10:16:52	0.004
4/20/2009	10:17:52	0.004
4/20/2009	10:18:52	0.005
4/20/2009	10:19:52	0.004
4/20/2009	10:20:52	0.004
4/20/2009	10:21:52	0.005
4/20/2009	10:22:52	0.004
4/20/2009	10:23:52	0.005
4/20/2009	10:24:52	0.004
4/20/2009	10:25:52	0.004
4/20/2009	10:26:52	0.004
4/20/2009	10:27:52	0.004
4/20/2009	10:28:52	0.004
4/20/2009	10:29:52	0.005
4/20/2009	10:30:52	0.006
4/20/2009	10:31:52	0.005
4/20/2009	10:32:52	0.006
4/20/2009	10:33:52	0.005
4/20/2009	10:34:52	0.005
4/20/2009	10:35:52	0.004
4/20/2009	10:36:52	0.005
4/20/2009	10:37:52	0.005
4/20/2009	10:38:52	0.005
4/20/2009	10:39:52	0.005
4/20/2009	10:40:52	0.006
4/20/2009	10:41:52	0.005
4/20/2009	10:42:52	0.005
4/20/2009	10:43:52	0.005
4/20/2009	10:44:52	0.005
4/20/2009	10:45:52	0.005
4/20/2009	10:46:52	0.005
4/20/2009	10:47:52	0.007
0, _ 0 0 /		

4/20/2009	10:48:52	0.006
4/20/2009	10:49:52	0.005
4/20/2009	10:50:52	0.005
4/20/2009	10:51:52	0.005
4/20/2009	10:52:52	0.004
4/20/2009	10:53:52	0.005
4/20/2009	10:54:52	0.006
4/20/2009	10:55:52	0.007
4/20/2009	10:56:52	0.01
4/20/2009	10:57:52	0.007
4/20/2009	10:58:52	0.005
4/20/2009	10:59:52	0.005
4/20/2009	11:00:52	0.005
4/20/2009	11:01:52	0.006
4/20/2009	11:02:52	0.005
4/20/2009	11:03:52	0.006
4/20/2009	11:04:52	0.007
4/20/2009	11:05:52	0.006
4/20/2009	11:06:52	0.009
4/20/2009	11:07:52	0.005
4/20/2009	11:08:52	0.007
4/20/2009	11:09:52	0.007
4/20/2009	11:10:52	0.005
4/20/2009	11:11:52	0.006
4/20/2009	11:12:52	0.006
4/20/2009	11:13:52	0.005
4/20/2009	11:14:52	0.005
4/20/2009	11:15:52	0.006
4/20/2009	11:16:52	0.005
4/20/2009	11:17:52	0.006
4/20/2009	11:18:52	0.006
4/20/2009	11:19:52	0.009
4/20/2009	11:20:52	0.01
4/20/2009	11:21:52	0.007
4/20/2009	11:22:52	0.007
4/20/2009	11:23:52	0.005
4/20/2009	11:24:52	0.006
4/20/2009	11:25:52	0.006
4/20/2009	11:26:52	0.006
4/20/2009	11:27:52	0.008
4/20/2009	11:28:52	0.005
4/20/2009	11:29:52	0.008
4/20/2009	11:30:52	0.007
4/20/2009	11:31:52	0.006
4/20/2009	11:32:52	0.009

4/20/2009	11:33:52	0.008
4/20/2009	11:34:52	0.007
4/20/2009	11:35:52	0.011
4/20/2009	11:36:52	0.006
4/20/2009	11:37:52	0.012
4/20/2009	11:38:52	0.011
4/20/2009	11:39:52	0.006
4/20/2009	11:40:52	0.012
4/20/2009	11:41:52	0.02
4/20/2009	11:42:52	0.007
4/20/2009	11:43:52	0.011
4/20/2009	11:44:52	0.012
4/20/2009	11:45:52	0.005
4/20/2009	11:46:52	0.01
4/20/2009	11:47:52	0.005
4/20/2009	11:48:52	0.004
4/20/2009	11:49:52	0.005
4/20/2009	11:50:52	0.005
4/20/2009	11:51:52	0.007
4/20/2009	11:52:52	0.004
4/20/2009	11:53:52	0.019
4/20/2009	11:54:52	0.005
4/20/2009	11:55:52	0.006
4/20/2009	11:56:52	0.014
4/20/2009	11:57:52	0.006
4/20/2009	11:58:52	0.006
4/20/2009	11:59:52	0.006
4/20/2009	12:00:52	0.007
4/20/2009	12:01:52	0.009
4/20/2009	12:02:52	0.01
4/20/2009	12:03:52	0.014
4/20/2009	12:04:52	0.006
4/20/2009	12:05:52	0.006
4/20/2009	12:06:52	0.008
4/20/2009	12:07:52	0.007
4/20/2009	12:08:52	0.012
4/20/2009	12:09:52	0.007
4/20/2009	12:10:52	0.004
4/20/2009	12:11:52	0.016
4/20/2009	12:12:52	0.01
4/20/2009	12:13:52	0.006
4/20/2009	12:14:52	0.007
4/20/2009	12:15:52	0.005
4/20/2009	12:16:52	0.005
4/20/2009	12:17:52	0.004

4/20/2009	12:18:52	0.005
4/20/2009	12:19:52	0.006
4/20/2009	12:20:52	0.005
4/20/2009	12:21:52	0.005
4/20/2009	12:22:52	0.007
4/20/2009	12:23:52	0.006
4/20/2009	12:24:52	0.006
4/20/2009	12:25:52	0.005
4/20/2009	12:26:52	0.012
4/20/2009	12:27:52	0.005
4/20/2009	12:28:52	0.004
4/20/2009	12:29:52	0.005
4/20/2009	12:30:52	0.005
4/20/2009	12:31:52	0.018
4/20/2009	12:32:52	0.014
4/20/2009	12:33:52	0.005
4/20/2009	12:34:52	0.015
4/20/2009	12:35:52	0
4/20/2009	12:36:52	0.006
4/20/2009	12:37:52	0.013
4/20/2009	12:38:52	0.01
4/20/2009	12:39:52	0.005
4/20/2009	12:40:52	0.007
4/20/2009	12:41:52	0.006
4/20/2009	12:42:52	0.005
4/20/2009	12:43:52	0.005
4/20/2009	12:44:52	0.006
4/20/2009	12:45:52	0.005
4/20/2009	12:46:52	0.006
4/20/2009	12:47:52	0.011
4/20/2009	12:48:52	0.007
4/20/2009	12:49:52	0.008
4/20/2009	12:50:52	0.01
4/20/2009	12:51:52	0.008
4/20/2009	12:52:52	0.005
4/20/2009	12:53:52	0.005
4/20/2009	12:54:52	0.004
4/20/2009	12:55:52	0.006
4/20/2009	12:56:52	0.005
4/20/2009	12:57:52	0.005
4/20/2009	12:58:52	0.008
4/20/2009	12:59:52	0.007
4/20/2009	13:00:52	0.005
4/20/2009	13:01:52	0.006
4/20/2009	13:02:52	0.009

4/20/2009	13:03:52	0.006
4/20/2009	13:04:52	0.005
4/20/2009	13:05:52	0.004
4/20/2009	13:06:52	0.005
4/20/2009	13:07:52	0.004
4/20/2009	13:08:52	0.005
4/20/2009	13:09:52	0.005
4/20/2009	13:10:52	0.006
4/20/2009	13:11:52	0.007
4/20/2009	13:12:52	0.007
4/20/2009	13:13:52	0.006
4/20/2009	13:14:52	0.006
4/20/2009	13:15:52	0.007
4/20/2009	13:16:52	0.006
4/20/2009	13:17:52	0.007
4/20/2009	13:18:52	0.005
4/20/2009	13:19:52	0.005
4/20/2009	13:20:52	0.005
4/20/2009	13:21:52	0.005
4/20/2009	13:22:52	0.006
4/20/2009	13:23:52	0.006
4/20/2009	13:24:52	0.005
4/20/2009	13:25:52	0.006
4/20/2009	13:26:52	0.006
4/20/2009	13:27:52	0.005
4/20/2009	13:28:52	0.006
4/20/2009	13:29:52	0.007
4/20/2009	13:30:52	0.01
4/20/2009	13:31:52	0.007
4/20/2009	13:32:52	0.005
4/20/2009	13:33:52	0.009
4/20/2009	13:34:52	0.006
4/20/2009	13:35:52	0.006
4/20/2009	13:36:52	0.007
4/20/2009	13:37:52	0.014
4/20/2009	13:38:52	0.006
4/20/2009	13:39:52	0.005
4/20/2009	13:40:52	0.007
4/20/2009	13:41:52	0.014
4/20/2009	13:42:52	0.009
4/20/2009	13:43:52	0.007
4/20/2009	13:44:52	0.005
4/20/2009	13:45:52	0.005
4/20/2009	13:46:52	0.006
4/20/2009	13:47:52	0.005

4/20/2009	13:48:52	0.005
4/20/2009	13:49:52	0.006
4/20/2009	13:50:52	0.007
4/20/2009	13:51:52	0.008
4/20/2009	13:52:52	0.007
4/20/2009	13:53:52	0.006
4/20/2009	13:54:52	0.006
4/20/2009	13:55:52	0.006
4/20/2009	13:56:52	0.005
4/20/2009	13:57:52	0.006
4/20/2009	13:58:52	0.005
4/20/2009	13:59:52	0.007
4/20/2009	14:00:52	0.005
4/20/2009	14:01:52	0.006
4/20/2009	14:02:52	0.005
4/20/2009	14:03:52	0.006
4/20/2009	14:04:52	0.005
4/20/2009	14:05:52	0.004
4/20/2009	14:06:52	0.005
4/20/2009	14:07:52	0.005
4/20/2009	14:08:52	0.005
4/20/2009	14:09:52	0.005
4/20/2009	14:10:52	0.006
4/20/2009	14:11:52	0.005
4/20/2009	14:12:52	0.005
4/20/2009	14:13:52	0.006
4/20/2009	14:14:52	0.006
4/20/2009	14:15:52	0.006
4/20/2009	14:16:52	0.005
4/20/2009	14:17:52	0.005
4/20/2009	14:18:52	0.006
4/20/2009	14:19:52	0.006
4/20/2009	14:20:52	0.006
4/20/2009	14:21:52	0.006
4/20/2009	14:22:52	0.006
4/20/2009	14:23:52	0.006
4/20/2009	14:24:52	0.006
4/20/2009	14:25:52	0.006
4/20/2009	14:26:52	0.006
4/20/2009	14:27:52	0.006
4/20/2009	14:28:52	0.006
4/20/2009	14:29:52	0.006
4/20/2009	14:30:52	0.007
4/20/2009	14:31:52	0.006
4/20/2009	14:32:52	0.006

4/20/2009	14:33:52	0.006
4/20/2009	14:34:52	0.006
4/20/2009	14:35:52	0.006
4/20/2009	14:36:52	0.006
4/20/2009	14:37:52	0.009
4/20/2009	14:38:52	0.006
4/20/2009	14:39:52	0.006
4/20/2009	14:40:52	0.006
4/20/2009	14:41:52	0.006
4/20/2009	14:42:52	0.007
4/20/2009	14:43:52	0.006

TrakPro Version 4.10 ASCII Data File

Model: Dust Trak Model Number: 8520 Serial Number: 85202243

Test ID: 2

Test Abbreviation: Start Date: 4/20/2009 Start Time: 8:21:03

Duration (dd:hh:mm:ss): 0:06:26:00

Time constant (seconds): 10 Log Interval (mm:ss): 1:00 Number of points: 386 Notes: Downwind

Statistics

Channel: Aerosol Units: mg/m3 Average: 0.009 Minimum: 0.005

Time of Minimum: 9:21:03 Date of Minimum: 4/20/2009

Maximum: 0.046

Time of Maximum: 12:31:03 Date of Maximum: 4/20/2009

Calibration

Sensor: Aerosol Cal. Date: 4/13/2009

Date (mm/dd/yyyy)	Time (hh:mm:ss)	Aerosol (mg/m ³)
4/20/2009	8:22:03	0.011
4/20/2009	8:23:03	0.011
4/20/2009	8:24:03	0.011
4/20/2009	8:25:03	0.011
4/20/2009	8:26:03	0.011
4/20/2009	8:27:03	0.011
4/20/2009	8:28:03	0.011
4/20/2009	8:29:03	0.011
4/20/2009	8:30:03	0.011
4/20/2009	8:31:03	0.011
4/20/2009	8:32:03	0.011
4/20/2009	8:33:03	0.011
4/20/2009	8:34:03	0.011
4/20/2009	8:35:03	0.011

4/20/2009	8:36:03	0.011
4/20/2009	8:37:03	0.01
4/20/2009	8:38:03	0.01
4/20/2009	8:39:03	0.01
4/20/2009	8:40:03	0.011
4/20/2009	8:41:03	0.011
4/20/2009	8:42:03	0.011
4/20/2009	8:43:03	0.011
4/20/2009	8:44:03	0.011
4/20/2009	8:45:03	0.011
4/20/2009	8:46:03	0.01
4/20/2009	8:47:03	0.01
4/20/2009	8:48:03	0.01
4/20/2009	8:49:03	0.01
4/20/2009	8:50:03	0.01
4/20/2009	8:51:03	0.01
4/20/2009	8:52:03	0.01
4/20/2009	8:53:03	0.01
4/20/2009	8:54:03	0.007
4/20/2009	8:55:03	0.006
4/20/2009	8:56:03	0.006
4/20/2009	8:57:03	0.006
4/20/2009	8:58:03	0.006
4/20/2009	8:59:03	0.007
4/20/2009	9:00:03	0.006
4/20/2009	9:01:03	0.007
4/20/2009	9:02:03	0.008
4/20/2009	9:03:03	0.009
4/20/2009	9:04:03	0.007
4/20/2009	9:05:03	0.009
4/20/2009	9:06:03	0.008
4/20/2009	9:07:03	0.007
4/20/2009	9:08:03	0.008
4/20/2009	9:09:03	0.008
4/20/2009	9:10:03	0.007
4/20/2009	9:11:03	0.007
4/20/2009	9:12:03	0.006
4/20/2009	9:13:03	0.007
4/20/2009	9:14:03	0.006
4/20/2009	9:15:03	0.006
4/20/2009	9:16:03	0.007
4/20/2009	9:17:03	0.006
4/20/2009	9:18:03	0.007
4/20/2009	9:19:03	0.019
4/20/2009	9:20:03	0.006

4/20/2009	9:21:03	0.005
4/20/2009	9:22:03	0.005
4/20/2009	9:23:03	0.006
4/20/2009	9:24:03	0.006
4/20/2009	9:25:03	0.007
4/20/2009	9:26:03	0.006
4/20/2009	9:27:03	0.006
4/20/2009	9:28:03	0.006
4/20/2009	9:29:03	0.006
4/20/2009	9:30:03	0.005
4/20/2009	9:31:03	0.005
4/20/2009	9:32:03	0.005
4/20/2009	9:33:03	0.025
4/20/2009	9:34:03	0.006
4/20/2009	9:35:03	0.006
4/20/2009	9:36:03	0.006
4/20/2009	9:37:03	0.006
4/20/2009	9:38:03	0.006
4/20/2009	9:39:03	0.006
4/20/2009	9:40:03	0.006
4/20/2009	9:41:03	0.007
4/20/2009	9:42:03	0.006
4/20/2009	9:43:03	0.006
4/20/2009	9:44:03	0.006
4/20/2009	9:45:03	0.007
4/20/2009	9:46:03	0.006
4/20/2009	9:47:03	0.006
4/20/2009	9:48:03	0.006
4/20/2009	9:49:03	0.006
4/20/2009	9:50:03	0.006
4/20/2009	9:51:03	0.006
4/20/2009	9:52:03	0.006
4/20/2009	9:53:03	0.006
4/20/2009	9:54:03	0.008
4/20/2009	9:55:03	0.006
4/20/2009	9:56:03	0.006
4/20/2009	9:57:03	0.007
4/20/2009	9:58:03	0.005
4/20/2009	9:59:03	0.006
4/20/2009	10:00:03	0.007
4/20/2009	10:01:03	0.013
4/20/2009	10:02:03	0.006
4/20/2009	10:03:03	0.006
4/20/2009	10:04:03	0.005
4/20/2009	10:05:03	0.005
TI 2012007	10.00.00	0.000

4/20/2009	10:06:03	0.005
4/20/2009	10:07:03	0.006
4/20/2009	10:08:03	0.006
4/20/2009	10:09:03	0.007
4/20/2009	10:10:03	0.006
4/20/2009	10:11:03	0.006
4/20/2009	10:12:03	0.006
4/20/2009	10:13:03	0.006
4/20/2009	10:14:03	0.006
4/20/2009	10:15:03	0.006
4/20/2009	10:16:03	0.005
4/20/2009	10:17:03	0.006
4/20/2009	10:18:03	0.006
4/20/2009	10:19:03	0.006
4/20/2009	10:20:03	0.006
4/20/2009	10:21:03	0.009
4/20/2009	10:22:03	0.01
4/20/2009	10:23:03	0.006
4/20/2009	10:24:03	0.006
4/20/2009	10:25:03	0.006
4/20/2009	10:26:03	0.006
4/20/2009	10:27:03	0.006
4/20/2009	10:28:03	0.006
4/20/2009	10:29:03	0.008
4/20/2009	10:30:03	0.006
4/20/2009	10:31:03	0.007
4/20/2009	10:32:03	0.008
4/20/2009	10:33:03	0.006
4/20/2009	10:34:03	0.006
4/20/2009	10:35:03	0.006
4/20/2009	10:36:03	0.006
4/20/2009	10:37:03	0.006
4/20/2009	10:38:03	0.006
4/20/2009	10:39:03	0.007
4/20/2009	10:40:03	0.006
4/20/2009	10:41:03	0.006
4/20/2009	10:42:03	0.006
4/20/2009	10:43:03	0.007
4/20/2009	10:44:03	0.029
4/20/2009	10:45:03	0.006
4/20/2009	10:46:03	0.007
4/20/2009	10:47:03	0.006
4/20/2009	10:48:03	0.007
4/20/2009	10:49:03	0.007
4/20/2009	10:50:03	0.006

4/20/2009	10:51:03	0.006
4/20/2009	10:52:03	0.008
4/20/2009	10:53:03	0.006
4/20/2009	10:54:03	0.006
4/20/2009	10:55:03	0.007
4/20/2009	10:56:03	0.006
4/20/2009	10:57:03	0.006
4/20/2009	10:58:03	0.006
4/20/2009	10:59:03	0.009
4/20/2009	11:00:03	0.007
4/20/2009	11:01:03	0.006
4/20/2009	11:02:03	0.007
4/20/2009	11:03:03	0.007
4/20/2009	11:04:03	0.007
4/20/2009	11:05:03	0.007
4/20/2009	11:06:03	0.007
4/20/2009	11:07:03	0.006
4/20/2009	11:08:03	0.006
4/20/2009	11:09:03	0.008
4/20/2009	11:10:03	0.007
4/20/2009	11:11:03	0.007
4/20/2009	11:12:03	0.007
4/20/2009	11:13:03	0.009
4/20/2009	11:14:03	0.008
4/20/2009	11:15:03	0.008
4/20/2009	11:16:03	0.008
4/20/2009	11:17:03	0.007
4/20/2009	11:18:03	0.007
4/20/2009	11:19:03	0.008
4/20/2009	11:20:03	0.008
4/20/2009	11:21:03	0.008
4/20/2009	11:22:03	0.02
4/20/2009	11:23:03	0.008
4/20/2009	11:24:03	0.009
4/20/2009	11:25:03	0.007
4/20/2009	11:26:03	0.008
4/20/2009	11:27:03	0.008
4/20/2009	11:28:03	0.008
4/20/2009	11:29:03	0.009
4/20/2009	11:30:03	0.007
4/20/2009	11:31:03	0.008
4/20/2009	11:32:03	0.007
4/20/2009	11:33:03	0.011
4/20/2009	11:34:03	0.01
4/20/2009	11:35:03	0.009

		0.000
4/20/2009	11:36:03	800.0
4/20/2009	11:37:03	0.007
4/20/2009	11:38:03	0.007
4/20/2009	11:39:03	0.009
4/20/2009	11:40:03	0.011
4/20/2009	11:41:03	0.006
4/20/2009	11:42:03	0.008
4/20/2009	11:43:03	0.008
4/20/2009	11:44:03	0.008
4/20/2009	11:45:03	0.011
4/20/2009	11:46:03	0.009
4/20/2009	11:47:03	0.01
4/20/2009	11:48:03	0.006
4/20/2009	11:49:03	0.006
4/20/2009	11:50:03	0.006
4/20/2009	11:51:03	0.007
4/20/2009	11:52:03	0.008
4/20/2009	11:53:03	0.023
4/20/2009	11:54:03	0.006
4/20/2009	11:55:03	0.008
4/20/2009	11:56:03	0.007
4/20/2009	11:57:03	0.007
4/20/2009	11:58:03	0.013
4/20/2009	11:59:03	0.008
4/20/2009	12:00:03	0.007
4/20/2009	12:01:03	0.008
4/20/2009	12:02:03	0.008
4/20/2009	12:03:03	0.012
4/20/2009	12:04:03	0.01
4/20/2009	12:05:03	0.007
4/20/2009	12:06:03	0.008
4/20/2009	12:07:03	0.007
4/20/2009	12:08:03	0.007
4/20/2009	12:09:03	0.008
4/20/2009	12:10:03	0.01
4/20/2009	12:11:03	0.01
4/20/2009	12:12:03	0.013
4/20/2009	12:13:03	0.008
4/20/2009	12:14:03	0.007
4/20/2009	12:15:03	0.006
4/20/2009	12:16:03	0.007
4/20/2009	12:17:03	0.006
4/20/2009	12:18:03	0.005
4/20/2009	12:19:03	0.005
4/20/2009	12:20:03	0.005
41 &UI &UU7	14.40.00	0.000

4/20/2009	12:21:03	0.006
4/20/2009	12:22:03	0.016
4/20/2009	12:23:03	0.007
4/20/2009	12:24:03	0.006
4/20/2009	12:25:03	0.01
4/20/2009	12:26:03	0.006
4/20/2009	12:27:03	0.008
4/20/2009	12:28:03	0.028
4/20/2009	12:29:03	0.015
4/20/2009	12:30:03	0.02
4/20/2009	12:31:03	0.046
4/20/2009	12:32:03	0.038
4/20/2009	12:33:03	0.026
4/20/2009	12:34:03	0.015
4/20/2009	12:35:03	0.007
4/20/2009	12:36:03	0.011
4/20/2009	12:37:03	0.007
4/20/2009	12:38:03	0.009
4/20/2009	12:39:03	0.01
4/20/2009	12:40:03	0.01
4/20/2009	12:41:03	0.006
4/20/2009	12:42:03	0.008
4/20/2009	12:43:03	0.015
4/20/2009	12:44:03	0.007
4/20/2009	12:45:03	0.015
4/20/2009	12:46:03	0.007
4/20/2009	12:47:03	0.02
4/20/2009	12:48:03	0.011
4/20/2009	12:49:03	0.012
4/20/2009	12:50:03	0.008
4/20/2009	12:51:03	0.007
4/20/2009	12:52:03	0.011
4/20/2009	12:53:03	0.012
4/20/2009	12:54:03	0.021
4/20/2009	12:55:03	0.025
4/20/2009	12:56:03	0.008
4/20/2009	12:57:03	0.008
4/20/2009	12:58:03	0.007
4/20/2009	12:59:03	0.006
4/20/2009	13:00:03	0.006
4/20/2009	13:01:03	0.007
4/20/2009	13:02:03	0.006
4/20/2009	13:03:03	0.007
4/20/2009	13:04:03	0.01
4/20/2009	13:05:03	0.009

4/20/2009	13:06:03	0.012
4/20/2009	13:07:03	0.017
4/20/2009	13:08:03	0.007
4/20/2009	13:09:03	0.007
4/20/2009	13:10:03	0.012
4/20/2009	13:11:03	0.02
4/20/2009	13:12:03	0.008
4/20/2009	13:13:03	0.008
4/20/2009	13:14:03	0.008
4/20/2009	13:15:03	0.007
4/20/2009	13:16:03	0.008
4/20/2009	13:17:03	0.008
4/20/2009	13:18:03	0.007
4/20/2009	13:19:03	0.008
4/20/2009	13:20:03	0.008
4/20/2009	13:21:03	0.009
4/20/2009	13:22:03	0.008
4/20/2009	13:23:03	0.007
4/20/2009	13:24:03	0.007
4/20/2009	13:25:03	0.008
4/20/2009	13:26:03	0.008
4/20/2009	13:27:03	0.008
4/20/2009	13:28:03	0.008
4/20/2009	13:29:03	0.008
4/20/2009	13:30:03	0.01
4/20/2009	13:31:03	0.009
4/20/2009	13:32:03	0.011
4/20/2009	13:33:03	0.016
4/20/2009	13:34:03	0.024
4/20/2009	13:35:03	0.012
4/20/2009	13:36:03	0.007
4/20/2009	13:37:03	0.01
4/20/2009	13:38:03	0.01
4/20/2009	13:39:03	0.014
4/20/2009	13:40:03	0.009
4/20/2009	13:41:03	0.007
4/20/2009	13:42:03	0.011
4/20/2009	13:43:03	0.01
4/20/2009	13:44:03	0.012
4/20/2009	13:45:03	0.007
4/20/2009	13:46:03	0.018
4/20/2009	13:47:03	0.008
4/20/2009	13:48:03	0.008
4/20/2009	13:49:03	0.007
4/20/2009	13:50:03	0.01

4/20/2009	13:51:03	0.007
4/20/2009	13:52:03	0.007
4/20/2009	13:53:03	0.01
4/20/2009	13:54:03	0.007
4/20/2009	13:55:03	0.007
4/20/2009	13:56:03	0.000
4/20/2009	13:57:03	0.009
4/20/2009	13:58:03	0.009
4/20/2009	13:59:03	0.007
4/20/2009	14:00:03	0.007
4/20/2009	14:01:03	0.009
4/20/2009	14:02:03	0.009
4/20/2009	14:03:03	0.009
4/20/2009	14:04:03	0.008
4/20/2009	14:05:03 14:06:03	0.007 0.008
4/20/2009 4/20/2009	14:07:03	0.008
4/20/2009	14:08:03	0.011
4/20/2009	14:09:03	0.019
4/20/2009	14:10:03	0.008
4/20/2009	14:11:03	0.014
4/20/2009	14:12:03	0.01
4/20/2009	14:13:03	0.012
4/20/2009	14:14:03	0.007
4/20/2009	14:15:03	0.008
4/20/2009	14:16:03	0.007
4/20/2009	14:17:03	0.007
4/20/2009	14:18:03	0.007
4/20/2009	14:19:03	0.007
4/20/2009	14:20:03	0.017
4/20/2009	14:21:03	0.016
4/20/2009	14:22:03	0.013
4/20/2009	14:23:03	0.011
4/20/2009	14:24:03	0.017
4/20/2009	14:25:03	0.013
4/20/2009	14:26:03	0.01
4/20/2009	14:27:03	0.008
4/20/2009	14:28:03	0.014
4/20/2009	14:29:03	0.011
4/20/2009	14:30:03	0.008
4/20/2009	14:31:03	0.008
4/20/2009	14:32:03	0.008
4/20/2009	14:33:03	0.007
4/20/2009	14:34:03	0.007
4/20/2009	14:35:03	0.008

4/20/2009	14:36:03	0.008
4/20/2009	14:37:03	0.008
4/20/2009	14:38:03	0.008
4/20/2009	14:39:03	0.009
4/20/2009	14:40:03	0.008
4/20/2009	14:41:03	0.029
4/20/2009	14:42:03	0.008
4/20/2009	14:43:03	0.008
4/20/2009	14:44:03	0.008
4/20/2009	14:45:03	0.009
4/20/2009	14:46:03	0.008
4/20/2009	14:47:03	0.008

TrakPro Version 4.10 ASCII Data File

Model: Dust Trak Model Number: 8520 Serial Number: 85202265

Test ID: 1

Test Abbreviation: Start Date: 4/22/2009 Start Time: 8:24:17

Duration (dd:hh:mm:ss): 0:05:04:00

Time constant (seconds): 1 Log Interval (mm:ss): 1:00 Number of points: 304

Notes: Upwind

Statistics

Channel: Aerosol Units: mg/m3 Average: 0.012 Minimum: 0.003

Time of Minimum: 9:28:17 Date of Minimum: 4/22/2009

Maximum: 0.027

Time of Maximum: 11:38:17 Date of Maximum: 4/22/2009

Calibration

Sensor: Aerosol Cal. Date: 4/8/2009

Date (mm/dd/yyyy)	Time (hh:mm:ss)	Aerosol (mg/m ³)
4/22/2009	8:25:17	0.005
4/22/2009	8:26:17	0.006
4/22/2009	8:27:17	0.006
4/22/2009	8:28:17	0.007
4/22/2009	8:29:17	0.008
4/22/2009	8:30:17	0.007
4/22/2009	8:31:17	0.007
4/22/2009	8:32:17	0.006
4/22/2009	8:33:17	0.007
4/22/2009	8:34:17	0.007
4/22/2009	8:35:17	0.006
4/22/2009	8:36:17	0.007
4/22/2009	8:37:17	0.006
4/22/2009	8:38:17	0.007

8:39:17	0.006
8:40:17	0.007
8:41:17	0.006
8:42:17	0.007
8:43:17	0.01
8:44:17	0.006
8:45:17	0.007
8:46:17	0.007
8:47:17	0.007
8:48:17	0.007
8:49:17	0.007
8:50:17	0.007
8:51:17	0.005
8:52:17	0.006
8:53:17	0.006
8:54:17	0.005
8:55:17	0.007
8:56:17	0.007
8:57:17	0.005
8:58:17	0.006
8:59:17	0.005
9:00:17	0.005
9:01:17	0.005
9:02:17	0.005
9:03:17	0.005
9:04:17	0.005
9:05:17	0.005
9:06:17	0.006
9:07:17	0.006
9:08:17	0.005
9:09:17	0.006
9:10:17	0.006
9:11:17	0.008
	0.006
9:13:17	0.005
9:14:17	0.005
- ' '	0.005
	0.006
	0.006
	0.007
9:19:17	0.006
9:20:17	0.005
9:21:17	0.006
9:22:17	0.005
9:23:17	0.006
	8:40:17 8:41:17 8:42:17 8:42:17 8:43:17 8:44:17 8:45:17 8:46:17 8:47:17 8:48:17 8:49:17 8:50:17 8:51:17 8:52:17 8:53:17 8:55:17 8:55:17 8:55:17 8:55:17 9:00:17 9:01:17 9:02:17 9:03:17 9:04:17 9:05:17 9:06:17 9:07:17 9:08:17 9:08:17 9:10:17 9:11:17 9:12:17 9:13:17 9:13:17 9:15:17 9:16:17 9:16:17 9:16:17 9:16:17

4/22/2009	9:24:17	0.006
4/22/2009	9:25:17	0.006
4/22/2009	9:26:17	0.006
4/22/2009	9:27:17	0.007
4/22/2009	9:28:17	0.003
4/22/2009	9:29:17	0.006
4/22/2009	9:30:17	0.006
4/22/2009	9:31:17	0.006
4/22/2009	9:32:17	0.006
4/22/2009	9:33:17	0.006
4/22/2009	9:34:17	0.006
4/22/2009	9:35:17	0.006
4/22/2009	9:36:17	0.007
4/22/2009	9:37:17	0.007
4/22/2009	9:38:17	0.006
4/22/2009	9:39:17	0.007
4/22/2009	9:40:17	0.007
4/22/2009	9:41:17	0.007
4/22/2009	9:42:17	0.006
4/22/2009	9:43:17	0.006
4/22/2009	9:44:17	0.008
4/22/2009	9:45:17	0.008
4/22/2009	9:46:17	0.006
4/22/2009	9:47:17	0.006
4/22/2009	9:48:17	0.006
4/22/2009	9:49:17	0.006
4/22/2009	9:50:17	0.006
4/22/2009	9:51:17	0.006
4/22/2009	9:52:17	0.006
4/22/2009	9:53:17	0.007
4/22/2009	9:54:17	0.006
4/22/2009	9:55:17	0.006
4/22/2009	9:56:17	0.006
4/22/2009	9:57:17	0.006
4/22/2009	9:58:17	0.006
4/22/2009	9:59:17	0.006
4/22/2009	10:00:17	0.006
4/22/2009	10:01:17	0.007
4/22/2009	10:02:17	0.006
4/22/2009	10:03:17	0.006
4/22/2009	10:04:17	0.006
4/22/2009	10:05:17	0.007
4/22/2009	10:06:17	0.006
4/22/2009	10:07:17	0.006
4/22/2009	10:08:17	0.006

4/22/2009	10:09:17	0.006
4/22/2009	10:10:17	0.006
4/22/2009	10:11:17	0.007
4/22/2009	10:12:17	0.007
4/22/2009	10:13:17	0.007
4/22/2009	10:14:17	0.007
4/22/2009	10:15:17	0.007
4/22/2009	10:16:17	0.007
4/22/2009	10:17:17	0.007
4/22/2009	10:18:17	0.007
4/22/2009	10:19:17	0.007
4/22/2009	10:20:17	0.007
4/22/2009	10:21:17	0.007
4/22/2009	10:22:17	0.008
4/22/2009	10:23:17	0.008
4/22/2009	10:24:17	0.008
4/22/2009	10:25:17	0.008
4/22/2009	10:26:17	0.007
4/22/2009	10:27:17	0.007
4/22/2009	10:28:17	0.007
4/22/2009	10:29:17	0.009
4/22/2009	10:30:17	0.008
4/22/2009	10:31:17	0.007
4/22/2009	10:32:17	0.008
4/22/2009	10:33:17	0.007
4/22/2009	10:34:17	0.007
4/22/2009	10:35:17	0.008
4/22/2009	10:36:17	0.008
4/22/2009	10:37:17	0.008
4/22/2009	10:38:17	0.008
4/22/2009	10:39:17	0.008
4/22/2009	10:40:17	0.008
4/22/2009	10:41:17	800.0
4/22/2009	10:42:17	0.008
4/22/2009	10:43:17	0.008
4/22/2009	10:44:17	0.008
4/22/2009	10:45:17	0.008
4/22/2009	10:46:17	0.008
4/22/2009	10:47:17	0.008
4/22/2009	10:48:17	0.008
4/22/2009	10:49:17	0.008
4/22/2009	10:50:17	0.008
4/22/2009	10:51:17	0.008
4/22/2009	10:52:17	0.009
4/22/2009	10:53:17	0.008

4/22/2009	10:54:17	0.008
4/22/2009	10:55:17	0.008
4/22/2009	10:56:17	0.008
4/22/2009	10:57:17	0.008
4/22/2009	10:58:17	0.008
4/22/2009	10:59:17	0.008
4/22/2009	11:00:17	0.008
4/22/2009	11:01:17	0.008
4/22/2009	11:02:17	0.008
4/22/2009	11:03:17	0.008
4/22/2009	11:04:17	0.008
4/22/2009	11:05:17	0.008
4/22/2009	11:06:17	0.008
4/22/2009	11:07:17	0.008
4/22/2009	11:08:17	0.007
4/22/2009	11:09:17	0.008
4/22/2009	11:10:17	0.008
4/22/2009	11:11:17	0.008
4/22/2009	11:12:17	0.009
4/22/2009	11:13:17	0.008
4/22/2009	11:14:17	0.008
4/22/2009	11:15:17	0.008
4/22/2009	11:16:17	0.008
4/22/2009	11:17:17	0.007
4/22/2009	11:18:17	0.008
4/22/2009	11:19:17	0.01
4/22/2009	11:20:17	0.014
4/22/2009	11:21:17	0.014
4/22/2009	11:22:17	0.011
4/22/2009	11:23:17	0.011
4/22/2009	11:24:17	0.012
4/22/2009	11:25:17	0.013
4/22/2009	11:26:17	0.015
4/22/2009	11:27:17	0.015
4/22/2009	11:28:17	0.015
4/22/2009	11:29:17	0.015
4/22/2009	11:30:17	0.018
4/22/2009	11:31:17	0.019
4/22/2009	11:32:17	0.018
4/22/2009	11:33:17	0.019
4/22/2009	11:34:17	0.02
4/22/2009	11:35:17	0.023
4/22/2009	11:36:17	0.021
4/22/2009	11:37:17	0.02
4/22/2009	11:38:17	0.027

4/22/2009	11:39:17	0.02
4/22/2009	11:40:17	0.02
4/22/2009	11:41:17	0.022
4/22/2009	11:42:17	0.021
4/22/2009	11:43:17	0.018
4/22/2009	11:44:17	0.018
4/22/2009	11:45:17	0.019
4/22/2009	11:46:17	0.018
4/22/2009	11:47:17	0.017
4/22/2009	11:48:17	0.017
4/22/2009	11:49:17	0.018
4/22/2009	11:50:17	0.018
4/22/2009	11:51:17	0.018
4/22/2009	11:52:17	0.018
4/22/2009	11:53:17	0.017
4/22/2009	11:54:17	0.017
4/22/2009	11:55:17	0.018
4/22/2009	11:56:17	0.018
4/22/2009	11:57:17	0.018
4/22/2009	11:58:17	0.018
4/22/2009	11:59:17	0.022
4/22/2009	12:00:17	0.019
4/22/2009	12:01:17	0.018
4/22/2009	12:02:17	0.017
4/22/2009	12:03:17	0.016
4/22/2009	12:04:17	0.017
4/22/2009	12:05:17	0.016
4/22/2009	12:06:17	0.016
4/22/2009	12:07:17	0.017
4/22/2009	12:08:17	0.017
4/22/2009	12:09:17	0.017
4/22/2009	12:10:17	0.017
4/22/2009	12:11:17	0.018
4/22/2009	12:12:17	0.016
4/22/2009	12:13:17	0.017
4/22/2009	12:14:17	0.017
4/22/2009	12:15:17	0.017
4/22/2009	12:16:17	0.017
4/22/2009	12:17:17	0.017
4/22/2009	12:18:17	0.017
4/22/2009	12:19:17	0.017
4/22/2009	12:20:17	0.017
4/22/2009	12:21:17	0.017
4/22/2009	12:22:17	0.017
4/22/2009	12:23:17	0.017

4/22/2009	12:24:17	0.018
4/22/2009	12:25:17	0.018
4/22/2009	12:26:17	0.018
4/22/2009	12:27:17	0.018
4/22/2009	12:28:17	0.018
4/22/2009	12:29:17	0.019
4/22/2009	12:30:17	0.019
4/22/2009	12:31:17	0.02
4/22/2009	12:32:17	0.019
4/22/2009	12:33:17	0.02
4/22/2009	12:34:17	0.02
4/22/2009	12:35:17	0.02
4/22/2009	12:36:17	0.021
4/22/2009	12:37:17	0.021
4/22/2009	12:38:17	0.022
4/22/2009	12:39:17	0.02
4/22/2009	12:40:17	0.02
4/22/2009	12:41:17	0.02
4/22/2009	12:42:17	0.02
4/22/2009	12:43:17	0.022
4/22/2009	12:44:17	0.021
4/22/2009	12:45:17	0.02
4/22/2009	12:46:17	0.018
4/22/2009	12:47:17	0.018
4/22/2009	12:48:17	0.019
4/22/2009	12:49:17	0.02
4/22/2009	12:50:17	0.017
4/22/2009	12:51:17	0.017
4/22/2009	12:52:17	0.017
4/22/2009	12:53:17	0.019
4/22/2009	12:54:17	0.019
4/22/2009	12:55:17	0.019
4/22/2009	12:56:17	0.02
4/22/2009	12:57:17	0.018
4/22/2009	12:58:17	0.019
4/22/2009	12:59:17	0.018
4/22/2009	13:00:17	0.018
4/22/2009	13:01:17	0.018
4/22/2009	13:02:17	0.018
4/22/2009	13:03:17	0.018
4/22/2009	13:04:17	0.018
4/22/2009	13:05:17	0.019
4/22/2009	13:06:17	0.018
4/22/2009	13:07:17	0.018
4/22/2009	13:08:17	0.018

4/22/2009	13:09:17	0.017
4/22/2009	13:10:17	0.017
4/22/2009	13:11:17	0.018
4/22/2009	13:12:17	0.019
4/22/2009	13:13:17	0.019
4/22/2009	13:14:17	0.021
4/22/2009	13:15:17	0.022
4/22/2009	13:16:17	0.019
4/22/2009	13:17:17	0.02
4/22/2009	13:18:17	0.023
4/22/2009	13:19:17	0.021
4/22/2009	13:20:17	0.018
4/22/2009	13:21:17	0.019
4/22/2009	13:22:17	0.02
4/22/2009	13:23:17	0.02
4/22/2009	13:24:17	0.022
4/22/2009	13:25:17	0.023
4/22/2009	13:26:17	0.022
4/22/2009	13:27:17	0.021
4/22/2009	13:28:17	0.025

TrakPro Version 4.10 ASCII Data File

Model: Dust Trak Model Number: 8520 Serial Number: 85202243

Test ID: 1

Test Abbreviation: Start Date: 4/22/2009 Start Time: 8:23:51

Duration (dd:hh:mm:ss): 0:05:04:00

Time constant (seconds): 10 Log Interval (mm:ss): 1:00 Number of points: 304 Notes: Downwind

Statistics

Channel: Aerosol Units: mg/m3 Average: 0.012 Minimum: 0.005

Time of Minimum: 9:03:51 Date of Minimum: 4/22/2009

Maximum: 0.024

Time of Maximum: 12:24:51 Date of Maximum: 4/22/2009

Calibration

Sensor: Aerosol Cal. Date: 4/13/2009

Date (mm/dd/yyyy)	Time (hh:mm:ss)	Aerosol (mg/m ³)
4/22/2009	8:24:51	0.007
4/22/2009	8:25:51	0.007
4/22/2009	8:26:51	0.008
4/22/2009	8:27:51	0.008
4/22/2009	8:28:51	0.007
4/22/2009	8:29:51	0.007
4/22/2009	8:30:51	0.007
4/22/2009	8:31:51	0.008
4/22/2009	8:32:51	0.008
4/22/2009	8:33:51	0.008
4/22/2009	8:34:51	0.007
4/22/2009	8:35:51	0.007
4/22/2009	8:36:51	0.007
4/22/2009	8:37:51	0.007

8:38:51	800.0
8:39:51	0.008
8:40:51	0.007
8:41:51	0.008
8:42:51	0.007
8:43:51	0.007
8:44:51	0.007
8:45:51	0.007
8:46:51	0.007
8:47:51	0.007
8:48:51	0.007
8:49:51	0.007
8:50:51	0.007
8:51:51	0.007
8:52:51	0.007
8:53:51	0.007
8:54:51	0.006
8:55:51	0.007
8:56:51	0.006
8:57:51	0.006
8:58:51	0.006
8:59:51	0.006
9:00:51	0.006
9:01:51	0.007
9:02:51	0.009
9:03:51	0.005
9:04:51	0.006
9:05:51	0.006
9:06:51	0.006
9:07:51	0.006
9:08:51	0.006
9:09:51	0.006
9:10:51	0.006
9:11:51	0.006
9:12:51	0.005
9:13:51	0.006
9:14:51	0.006
9:15:51	0.005
9:16:51	0.006
9:17:51	0.006
9:18:51	0.006
9:19:51	0.006
9:20:51	0.006
9:21:51	0.005
9:22:51	0.006
	8:39:51 8:40:51 8:41:51 8:42:51 8:43:51 8:44:51 8:45:51 8:45:51 8:46:51 8:47:51 8:48:51 8:50:51 8:50:51 8:53:51 8:53:51 8:55:51 8:55:51 8:58:51 8:59:51 9:00:51 9:01:51 9:02:51 9:03:51 9:04:51 9:05:51 9:05:51 9:06:51 9:07:51 9:05:51 9:10:51 9:10:51 9:10:51 9:10:51 9:10:51 9:10:51 9:10:51 9:10:51 9:10:51 9:10:51 9:10:51 9:10:51 9:10:51 9:10:51 9:10:51 9:10:51 9:10:51

4/22/2009	9:23:51	0.006
4/22/2009	9:24:51	0.006
4/22/2009	9:25:51	0.006
4/22/2009	9:26:51	0.006
4/22/2009	9:27:51	0.007
4/22/2009	9:28:51	0.006
4/22/2009	9:29:51	0.007
4/22/2009	9:30:51	0.006
4/22/2009	9:31:51	0.006
4/22/2009	9:32:51	0.006
4/22/2009	9:33:51	0.006
4/22/2009	9:34:51	0.007
4/22/2009	9:35:51	0.006
4/22/2009	9:36:51	0.007
4/22/2009	9:37:51	0.007
4/22/2009	9:38:51	0.007
4/22/2009	9:39:51	0.009
4/22/2009	9:40:51	0.006
4/22/2009	9:41:51	0.006
4/22/2009	9:42:51	0.007
4/22/2009	9:43:51	0.006
4/22/2009	9:44:51	0.006
4/22/2009	9:45:51	0.007
4/22/2009	9:46:51	0.006
4/22/2009	9:47:51	0.006
4/22/2009	9:48:51	0.007
4/22/2009	9:49:51	0.006
4/22/2009	9:50:51	0.007
4/22/2009	9:51:51	0.007
4/22/2009	9:52:51	0.006
4/22/2009	9:53:51	0.006
4/22/2009	9:54:51	0.006
4/22/2009	9:55:51	0.007
4/22/2009	9:56:51	0.006
4/22/2009	9:57:51	0.007
4/22/2009	9:58:51	0.007
4/22/2009	9:59:51	0.007
4/22/2009	10:00:51	0.007
4/22/2009	10:01:51	0.007
4/22/2009	10:02:51	0.007
4/22/2009	10:03:51	0.007
4/22/2009	10:04:51	0.006
4/22/2009	10:05:51	0.007
4/22/2009	10:06:51	0.006
4/22/2009	10:07:51	0.006

4/22/2009	10:08:51	0.006
4/22/2009	10:09:51	0.007
4/22/2009	10:10:51	0.007
4/22/2009	10:11:51	0.006
4/22/2009	10:12:51	0.007
4/22/2009	10:13:51	0.007
4/22/2009	10:14:51	0.007
4/22/2009	10:15:51	0.007
4/22/2009	10:16:51	0.007
4/22/2009	10:17:51	0.007
4/22/2009	10:18:51	0.007
4/22/2009	10:19:51	0.008
4/22/2009	10:20:51	0.008
4/22/2009	10:21:51	0.011
4/22/2009	10:22:51	0.008
4/22/2009	10:23:51	0.008
4/22/2009	10:24:51	0.008
4/22/2009	10:25:51	0.008
4/22/2009	10:26:51	0.009
4/22/2009	10:27:51	0.008
4/22/2009	10:28:51	0.008
4/22/2009	10:29:51	0.01
4/22/2009	10:30:51	0.007
4/22/2009	10:31:51	0.008
4/22/2009	10:32:51	0.008
4/22/2009	10:33:51	0.008
4/22/2009	10:34:51	0.008
4/22/2009	10:35:51	0.008
4/22/2009	10:36:51	0.008
4/22/2009	10:37:51	0.008
4/22/2009	10:38:51	0.008
4/22/2009	10:39:51	0.008
4/22/2009	10:40:51	0.007
4/22/2009	10:41:51	0.008
4/22/2009	10:42:51	0.008
4/22/2009	10:43:51	0.008
4/22/2009	10:44:51	0.008
4/22/2009	10:45:51	0.008
4/22/2009	10:46:51	0.008
4/22/2009	10:47:51	0.008
4/22/2009	10:48:51	0.008
4/22/2009	10:49:51	0.009
4/22/2009	10:50:51	0.009
4/22/2009	10:51:51	0.009
4/22/2009	10:52:51	0.008

10:53:51	0.008
	0.008
	0.009
	0.008
	0.009
	0.008
	0.008
	0.009
	0.009
	0.008
	. 0.008
	0.008
	0.008
	0.008
	0.008
	0.008
	0.008
	0.008
11:11:51	0.008
11:12:51	0.007
11:13:51	0.007
11:14:51	0.008
11:15:51	0.008
11:16:51	0.008
11:17:51	0.008
11:18:51	0.007
11:19:51	0.008
11:20:51	0.009
11:21:51	0.013
11:22:51	0.014
11:23:51	0.012
11:24:51	0.01
11:25:51	0.013
11:26:51	0.015
11:27:51	0.014
11:28:51	0.014
11:29:51	0.015
11:30:51	0.015
	0.017
	0.018
	0.018
11:34:51	0.018
11:35:51	0.02
11:36:51	0.02
11:37:51	0.02
	11:12:51 11:13:51 11:14:51 11:15:51 11:16:51 11:17:51 11:18:51 11:19:51 11:20:51 11:22:51 11:22:51 11:24:51 11:25:51 11:25:51 11:25:51 11:25:51 11:25:51 11:25:51 11:25:51 11:25:51 11:25:51 11:25:51 11:25:51 11:25:51 11:25:51 11:25:51 11:25:51 11:25:51 11:25:51 11:25:51 11:25:51

4/22/2009	11:38:51	0.019
4/22/2009	11:39:51	0.018
4/22/2009	11:40:51	0.018
4/22/2009	11:41:51	0.019
4/22/2009	11:42:51	0.021
4/22/2009	11:43:51	0.021
4/22/2009	11:44:51	0.017
4/22/2009	11:45:51	0.017
4/22/2009	11:46:51	0.017
4/22/2009	11:47:51	0.018
4/22/2009	11:48:51	0.017
4/22/2009	11:49:51	0.016
4/22/2009	11:50:51	0.017
4/22/2009	11:51:51	0.017
4/22/2009	11:52:51	0.018
4/22/2009	11:53:51	0.017
4/22/2009	11:54:51	0.017
4/22/2009	11:55:51	0.017
4/22/2009	11:56:51	0.019
4/22/2009	11:57:51	0.018
4/22/2009	11:58:51	0.017
4/22/2009	11:59:51	0.017
4/22/2009	12:00:51	0.018
4/22/2009	12:01:51	0.018
4/22/2009	12:02:51	0.018
4/22/2009	12:03:51	0.017
4/22/2009	12:04:51	0.015
4/22/2009	12:05:51	0.016
4/22/2009	12:06:51	0.016
4/22/2009	12:07:51	0.016
4/22/2009	12:08:51	0.017
4/22/2009	12:09:51	0.016
4/22/2009	12:10:51	0.017
4/22/2009	12:11:51	0.016
4/22/2009	12:12:51	0.016
4/22/2009	12:13:51	0.016
4/22/2009	12:14:51	0.016
4/22/2009	12:15:51	0.017
4/22/2009	12:16:51	0.017
4/22/2009	12:17:51	0.017
4/22/2009	12:18:51	0.017
4/22/2009	12:19:51	0.017
4/22/2009	12:20:51	0.017
4/22/2009	12:21:51	0.016
4/22/2009	12:22:51	0.019

4/22/2009	12:23:51	0.017
4/22/2009	12:24:51	0.024
4/22/2009	12:25:51	0.017
4/22/2009	12:26:51	0.018
4/22/2009	12:27:51	0.017
4/22/2009	12:28:51	0.018
4/22/2009	12:29:51	0.017
4/22/2009	12:30:51	0.019
4/22/2009	12:31:51	0.019
4/22/2009	12:32:51	0.019
4/22/2009	12:33:51	, 0.019
4/22/2009	12:34:51	0.021
4/22/2009	12:35:51	0.019
4/22/2009	12:36:51	0.02
4/22/2009	12:37:51	0.02
4/22/2009	12:38:51	0.022
4/22/2009	12:39:51	0.021
4/22/2009	12:40:51	0.02
4/22/2009	12:41:51	0.02
4/22/2009	12:42:51	0.02
4/22/2009	12:43:51	0.021
4/22/2009	12:44:51	0.02
4/22/2009	12:45:51	0.02
4/22/2009	12:46:51	0.02
4/22/2009	12:47:51	0.019
4/22/2009	12:48:51	0.017
4/22/2009	12:49:51	0.019
4/22/2009	12:50:51	0.02
4/22/2009	12:51:51	0.017
4/22/2009	12:52:51	0.018
4/22/2009	12:53:51	0.017
4/22/2009	12:54:51	0.019
4/22/2009	12:55:51	0.019
4/22/2009	12:56:51	0.019
4/22/2009	12:57:51	0.021
4/22/2009	12:58:51	0.019
4/22/2009	12:59:51	0.018
4/22/2009	13:00:51	0.019
4/22/2009	13:01:51	0.018
4/22/2009	13:02:51	0.018
4/22/2009	13:03:51	0.019
4/22/2009	13:04:51	0.019
4/22/2009	13:05:51	0.021
4/22/2009	13:06:51	0.021
4/22/2009	13:07:51	0.019

4/22/2009	13:08:51	0.018
4/22/2009	13:09:51	0.019
4/22/2009	13:10:51	0.019
4/22/2009	13:11:51	0.018
4/22/2009	13:12:51	0.017
4/22/2009	13:13:51	0.019
4/22/2009	13:14:51	0.02
4/22/2009	13:15:51	0.021
4/22/2009	13:16:51	0.022
4/22/2009	13:17:51	0.022
4/22/2009	13:18:51	0.021
4/22/2009	13:19:51	0.019
4/22/2009	13:20:51	0.018
4/22/2009	13:21:51	0.019
4/22/2009	13:22:51	0.02
4/22/2009	13:23:51	0.02
4/22/2009	13:24:51	0.021
4/22/2009	13:25:51	0.022
4/22/2009	13:26:51	0.024
4/22/2009	13:27:51	0.022

TrakPro Version 4.10 ASCII Data File

Model: Dust Trak Model Number: 8520 Serial Number: 85202265

Test ID: 1

Test Abbreviation: Start Date: 4/23/2009 Start Time: 8:01:22

Duration (dd:hh:mm:ss): 0:07:57:00

Time constant (seconds): 1 Log Interval (mm:ss): 1:00 Number of points: 477

Notes: Upwind

Statistics

Channel: Aerosol Units: mg/m3 Average: 0.004 Minimum: 0.001

Time of Minimum: 9:58:22 Date of Minimum: 4/23/2009

Maximum: 0.03

Time of Maximum: 9:07:22 Date of Maximum: 4/23/2009

Calibration

Sensor: Aerosol Cal. Date: 4/23/2009

	Pure a se si	
Date (mm/dd/yyyy)	Time (hh:mm:ss)	Aerosol (mg/m ³)
4/23/2009	8:02:22	0.01
4/23/2009	8:03:22	0.009
4/23/2009	8:04:22	0.008
4/23/2009	8:05:22	0.008
4/23/2009	8:06:22	0.007
4/23/2009	8:07:22	0.007
4/23/2009	8:08:22	0.007
4/23/2009	8:09:22	0.007
4/23/2009	8:10:22	0.006
4/23/2009	8:11:22	0.007
4/23/2009	8:12:22	0.006
4/23/2009	8:13:22	0.006
4/23/2009	8:14:22	0.006
4/23/2009	8:15:22	0.006

4/23/2009	8:16:22	0.006
4/23/2009	8:17:22	0.006
4/23/2009	8:18:22	0.006
4/23/2009	8:19:22	0.006
4/23/2009	8:20:22	0.006
4/23/2009	8:21:22	0.006
4/23/2009	8:22:22	0.006
4/23/2009	8:23:22	0.006
4/23/2009	8:24:22	0.006
4/23/2009	8:25:22	0.006
4/23/2009	8:26:22	0.006
4/23/2009	8:27:22	0.006
4/23/2009	8:28:22	0.005
4/23/2009	8:29:22	0.006
4/23/2009	8:30:22	0.006
4/23/2009	8:31:22	0.006
4/23/2009	8:32:22	0.006
4/23/2009	8:33:22	0.006
4/23/2009	8:34:22	0.006
4/23/2009	8:35:22	0.006
4/23/2009	8:36:22	0.006
4/23/2009	8:37:22	0.006
4/23/2009	8:38:22	0.005
4/23/2009	8:39:22	0.006
4/23/2009	8:40:22	0.005
4/23/2009	8:41:22	0.005
4/23/2009	8:42:22	0.006
4/23/2009	8:43:22	0.005
4/23/2009	8:44:22	0.005
4/23/2009	8:45:22	0.005
4/23/2009	8:46:22	0.005
4/23/2009	8:47:22	0.005
4/23/2009	8:48:22	0.005
4/23/2009	8:49:22	0.005
4/23/2009	8:50:22	0.005
4/23/2009	8:51:22	0.005
4/23/2009	8:52:22	0.011
4/23/2009	8:53:22	0.005
4/23/2009	8:54:22	0.005
4/23/2009	8:55:22	0.005
4/23/2009	8:56:22	0.005
4/23/2009	8:57:22	0.005
4/23/2009	8:58:22	0.005
4/23/2009	8:59:22	0.004
4/23/2009	9:00:22	0.004

4/23/2009	9:01:22	0.004
4/23/2009	9:02:22	0.004
4/23/2009	9:03:22	0.004
4/23/2009	9:04:22	0.004
4/23/2009	9:05:22	0.004
4/23/2009	9:06:22	0.017
4/23/2009	9:07:22	0.03
4/23/2009	9:08:22	0.005
4/23/2009	9:09:22	0.005
4/23/2009	9:10:22	0.004
4/23/2009	9:11:22	, 0.004
4/23/2009	9:12:22	0.005
4/23/2009	9:13:22	0.005
4/23/2009	9:14:22	0.005
4/23/2009	9:15:22	0.005
4/23/2009	9:16:22	0.004
4/23/2009	9:17:22	0.004
4/23/2009	9:18:22	0.004
4/23/2009	9:19:22	0.004
4/23/2009	9:20:22	0.004
4/23/2009	9:21:22	0.004
4/23/2009	9:22:22	0.004
4/23/2009	9:23:22	0.004
4/23/2009	9:24:22	0.004
4/23/2009	9:25:22	0.004
4/23/2009	9:26:22	0.004
4/23/2009	9:27:22	0.003
4/23/2009	9:28:22	0.003
4/23/2009	9:29:22	0.003
4/23/2009	9:30:22	0.004
4/23/2009	9:31:22	0.004
4/23/2009	9:32:22	0.003
4/23/2009	9:33:22	0.003
4/23/2009	9:34:22	0.003
4/23/2009	9:35:22	0.003
4/23/2009	9:36:22	0.003
4/23/2009	9:37:22	0.003
4/23/2009	9:38:22	0.003
4/23/2009	9:39:22	0.003
4/23/2009	9:40:22	0.003
4/23/2009	9:41:22	0.003
4/23/2009	9:42:22	0.003
4/23/2009	9:43:22	0.003
4/23/2009	9:44:22	0.003
4/23/2009	9:45:22	0.003

4/23/2009	9:46:22	0.003
4/23/2009	9:47:22	0.003
4/23/2009	9:48:22	0.003
4/23/2009	9:49:22	0.003
4/23/2009	9:50:22	0.003
4/23/2009	9:51:22	0.003
4/23/2009	9:52:22	0.003
4/23/2009	9:53:22	0.003
4/23/2009	9:54:22	0.003
4/23/2009	9:55:22	0.003
4/23/2009	9:56:22	0.003
4/23/2009	9:57:22	0.003
4/23/2009	9:58:22	0.001
4/23/2009	9:59:22	0.003
4/23/2009	10:00:22	0.003
4/23/2009	10:01:22	0.003
4/23/2009	10:02:22	0.003
4/23/2009	10:03:22	0.003
4/23/2009	10:04:22	0.003
4/23/2009	10:05:22	0.002
4/23/2009	10:06:22	0.004
4/23/2009	10:07:22	0.003
4/23/2009	10:08:22	0.003
4/23/2009	10:09:22	0.003
4/23/2009	10:10:22	0.003
4/23/2009	10:11:22	0.003
4/23/2009	10:12:22	0.003
4/23/2009	10:13:22	0.003
4/23/2009	10:14:22	0.003
4/23/2009	10:15:22	0.003
4/23/2009	10:16:22	0.003
4/23/2009	10:17:22	0.003
4/23/2009	10:18:22	0.003
4/23/2009	10:19:22	0.003
4/23/2009	10:20:22	0.004
4/23/2009	10:21:22	0.004
4/23/2009	10:22:22	0.004
4/23/2009	10:23:22	0.003
4/23/2009	10:24:22	0.003
4/23/2009	10:25:22	0.003
4/23/2009	10:26:22	0.003
4/23/2009	10:27:22	0.003
4/23/2009	10:28:22	0.003
4/23/2009	10:29:22	0.003
4/23/2009	10:30:22	0.003

4/23/2009	10:31:22	0.003
4/23/2009	10:32:22	0.003
4/23/2009	10:33:22	0.003
4/23/2009	10:34:22	0.003
4/23/2009	10:35:22	0.003
4/23/2009	10:36:22	0.004
4/23/2009	10:37:22	0.004
4/23/2009	10:38:22	0.003
4/23/2009	10:39:22	0.003
4/23/2009	10:40:22	0.003
4/23/2009	10:41:22	. 0.003
4/23/2009	10:42:22	0.003
4/23/2009	10:43:22	0.003
4/23/2009	10:44:22	0.003
4/23/2009	10:45:22	0.003
4/23/2009	10:46:22	0.003
4/23/2009	10:47:22	0.003
4/23/2009	10:48:22	0.003
4/23/2009	10:49:22	0.003
4/23/2009	10:50:22	0.003
4/23/2009	10:51:22	0.003
4/23/2009	10:52:22	0.003
4/23/2009	10:53:22	0.003
4/23/2009	10:54:22	0.003
4/23/2009	10:55:22	0.003
4/23/2009	10:56:22	0.003
4/23/2009	10:57:22	0.003
4/23/2009	10:58:22	0.003
4/23/2009	10:59:22	0.003
4/23/2009	11:00:22	0.003
4/23/2009	11:01:22	0.003
4/23/2009	11:02:22	0.003
4/23/2009	11:03:22	0.003
4/23/2009	11:04:22	0.003
4/23/2009	11:05:22	0.003
4/23/2009	11:06:22	0.003
4/23/2009	11:07:22	0.003
4/23/2009	11:08:22	0.003
4/23/2009	11:09:22	0.003
4/23/2009	11:10:22	0.003
4/23/2009	11:11:22	0.003
4/23/2009	11:12:22	0.003
4/23/2009	11:13:22	0.003
4/23/2009	11:14:22	0.004
4/23/2009	11:15:22	0.003

4/23/2009	11:16:22	0.003
4/23/2009	11:17:22	0.003
4/23/2009	11:18:22	0.003
4/23/2009	11:19:22	0.003
4/23/2009	11:20:22	0.004
4/23/2009	11:21:22	0.003
4/23/2009	11:22:22	0.003
4/23/2009	11:23:22	0.003
4/23/2009	11:24:22	0.003
4/23/2009	11:25:22	0.003
4/23/2009	11:26:22	0.003
4/23/2009	11:27:22	0.003
4/23/2009	11:28:22	0.003
4/23/2009	11:29:22	0.001
4/23/2009	11:30:22	0.003
4/23/2009	11:31:22	0.003
4/23/2009	11:32:22	0.003
4/23/2009	11:33:22	0.003
4/23/2009	11:34:22	0.003
4/23/2009	11:35:22	0.003
4/23/2009	11:36:22	0.003
4/23/2009	11:37:22	0.004
4/23/2009	11:38:22	0.003
4/23/2009	11:39:22	0.003
4/23/2009	11:40:22	0.003
4/23/2009	11:41:22	0.003
4/23/2009	11:42:22	0.003
4/23/2009	11:43:22	0.003
4/23/2009	11:44:22	0.003
4/23/2009	11:45:22	0.003
4/23/2009	11:46:22	0.003
4/23/2009	11:47:22	0.003
4/23/2009	11:48:22	0.004
4/23/2009	11:49:22	0.004
4/23/2009	11:50:22	0.003
4/23/2009	11:51:22	0.003
4/23/2009	11:52:22	0.003
4/23/2009	11:53:22	0.003
4/23/2009	11:54:22	0.003
4/23/2009	11:55:22	0.003
4/23/2009	11:56:22	0.004
4/23/2009	11:57:22	0.003
4/23/2009	11:58:22	0.003
4/23/2009	11:59:22	0.003
4/23/2009	12:00:22	0.003

4/23/2009	12:01:22	0.004
4/23/2009	12:02:22	0.004
4/23/2009	12:03:22	0.004
4/23/2009	12:04:22	0.004
4/23/2009	12:05:22	0.003
4/23/2009	12:06:22	0.003
4/23/2009	12:07:22	0.003
4/23/2009	12:08:22	0.003
4/23/2009	12:09:22	0.003
4/23/2009	12:10:22	0.003
4/23/2009	12:11:22	, 0.004
4/23/2009	12:12:22	0.003
4/23/2009	12:13:22	0.003
4/23/2009	12:14:22	0.004
4/23/2009	12:15:22	0.004
4/23/2009	12:16:22	0.003
4/23/2009	12:17:22	0.003
4/23/2009	12:18:22	0.003
4/23/2009	12:19:22	0.003
4/23/2009	12:20:22	0.004
4/23/2009	12:21:22	0.004
4/23/2009	12:22:22	0.004
4/23/2009	12:23:22	0.003
4/23/2009	12:24:22	0.003
4/23/2009	12:25:22	0.003
4/23/2009	12:26:22	0.003
4/23/2009	12:27:22	0.004
4/23/2009	12:28:22	0.004
4/23/2009	12:29:22	0.004
4/23/2009	12:30:22	0.003
4/23/2009	12:31:22	0.003
4/23/2009	12:32:22	0.003
4/23/2009	12:33:22	0.003
4/23/2009	12:34:22	0.004
4/23/2009	12:35:22	0.004
4/23/2009	12:36:22	0.005
4/23/2009	12:37:22	0.004
4/23/2009	12:38:22	0.004
4/23/2009	12:39:22	0.004
4/23/2009	12:40:22	0.004
4/23/2009	12:41:22	0.004
4/23/2009	12:42:22	0.004
4/23/2009	12:43:22	0.004
4/23/2009	12:44:22	0.004
4/23/2009	12:45:22	0.003

4/23/2009	12:46:22	0.004
4/23/2009	12:47:22	0.003
4/23/2009	12:48:22	0.003
4/23/2009	12:49:22	0.003
4/23/2009	12:50:22	0.003
	12:51:22	0.003
4/23/2009	12:52:22	0.003
4/23/2009	12:53:22	0.003
4/23/2009	12:54:22	0.003
4/23/2009	12:55:22	0.003
4/23/2009	12:56:22	0.003
4/23/2009	12:57:22	0.003
4/23/2009	12:58:22	0.003
4/23/2009		0.003
4/23/2009	12:59:22	0.003
4/23/2009	13:00:22	0.003
4/23/2009	13:01:22	0.003
4/23/2009	13:02:22	0.004
4/23/2009	13:03:22	0.003
4/23/2009	13:04:22	
4/23/2009	13:05:22	0.003
4/23/2009	13:06:22	0.004
4/23/2009	13:07:22	0.003
4/23/2009	13:08:22	0.003
4/23/2009	13:09:22	0.003
4/23/2009	13:10:22	0.003
4/23/2009	13:11:22	0.004
4/23/2009	13:12:22	0.004
4/23/2009	13:13:22	0.003
4/23/2009	13:14:22	0.003
4/23/2009	13:15:22	0.003
4/23/2009	13:16:22	0.003
4/23/2009	13:17:22	0.003
4/23/2009	13:18:22	0.003
4/23/2009	13:19:22	0.003
4/23/2009	13:20:22	0.003
4/23/2009	13:21:22	0.003
4/23/2009	13:22:22	0.003
4/23/2009	13:23:22	0.003
4/23/2009	13:24:22	0.003
4/23/2009	13:25:22	0.003
4/23/2009	13:26:22	0.002
4/23/2009	13:27:22	0.002
4/23/2009	13:28:22	0.002
4/23/2009	13:29:22	0.002
4/23/2009	13:30:22	0.002

4/23/2009	13:31:22	0.002
4/23/2009	13:32:22	0.002
4/23/2009	13:33:22	0.002
4/23/2009	13:34:22	0.002
4/23/2009	13:35:22	0.002
4/23/2009	13:36:22	0.002
4/23/2009	13:37:22	0.002
4/23/2009	13:38:22	0.002
4/23/2009	13:39:22	0.002
4/23/2009	13:40:22	0.002
4/23/2009	13:41:22	. 0.002
4/23/2009	13:42:22	0.002
4/23/2009	13:43:22	0.002
4/23/2009	13:44:22	0.005
4/23/2009	13:45:22	0.002
4/23/2009	13:46:22	0.002
4/23/2009	13:47:22	0.002
4/23/2009	13:48:22	0.003
4/23/2009	13:49:22	0.003
4/23/2009	13:50:22	0.003
4/23/2009	13:51:22	0.002
4/23/2009	13:52:22	0.002
4/23/2009	13:53:22	0.002
4/23/2009	13:54:22	0.003
4/23/2009	13:55:22	0.003
4/23/2009	13:56:22	0.003
4/23/2009	13:57:22	0.003
4/23/2009	13:58:22	0.003
4/23/2009	13:59:22	0.003
4/23/2009	14:00:22	0.003
4/23/2009	14:01:22	0.003
4/23/2009	14:02:22	0.003
4/23/2009	14:03:22	0.003
4/23/2009	14:04:22	0.003
4/23/2009	14:05:22	0.003
4/23/2009	14:06:22	0.003
4/23/2009	14:07:22	0.003
4/23/2009	14:08:22	0.003
4/23/2009	14:09:22	0.003
4/23/2009	14:10:22	0.003
4/23/2009	14:11:22	0.003
4/23/2009	14:12:22	0.004
4/23/2009	14:13:22	0.003
4/23/2009	14:14:22	0.005
4/23/2009	14:15:22	0.003

4/23/2009	14:16:22	0.003
4/23/2009	14:17:22	0.003
4/23/2009	14:18:22	0.006
4/23/2009	14:19:22	0.004
4/23/2009	14:20:22	0.003
4/23/2009	14:21:22	0.003
4/23/2009	14:22:22	0.003
4/23/2009	14:23:22	0.003
4/23/2009	14:24:22	0.003
4/23/2009	14:25:22	0.003
4/23/2009	14:26:22	0.003
4/23/2009	14:27:22	0.003
4/23/2009	14:28:22	0.003
4/23/2009	14:29:22	0.002
4/23/2009	14:30:22	0.003
4/23/2009	14:31:22	0.003
4/23/2009	14:32:22	0.003
4/23/2009	14:33:22	0.003
4/23/2009	14:34:22	0.003
4/23/2009	14:35:22	0.003
4/23/2009	14:36:22	0.003
4/23/2009	14:37:22	0.003
4/23/2009	14:38:22	0.003
4/23/2009	14:39:22	0.003
4/23/2009	14:40:22	0.003
4/23/2009	14:41:22	0.003
4/23/2009	14:42:22	0.003
4/23/2009	14:43:22	0.003
4/23/2009	14:44:22	0.003
4/23/2009	14:45:22	0.003
4/23/2009	14:46:22	0.003
4/23/2009	14:47:22	0.003
4/23/2009	14:48:22	0.003
4/23/2009	14:49:22	0.003
4/23/2009	14:50:22	0.003
4/23/2009	14:51:22	0.003
4/23/2009	14:52:22	0.003
4/23/2009	14:53:22	0.003
4/23/2009	14:54:22	0.003
4/23/2009	14:55:22	0.002
4/23/2009	14:56:22	0.003
4/23/2009	14:57:22	0.003
4/23/2009	14:58:22	0.003
4/23/2009	14:59:22	0.003
4/23/2009	15:00:22	0.006

4/23/2009	15:01:22	0.003
4/23/2009	15:02:22	0.003
4/23/2009	15:03:22	0.002
4/23/2009	15:04:22	0.003
4/23/2009	15:05:22	0.002
4/23/2009	15:06:22	0.003
4/23/2009	15:07:22	0.003
4/23/2009	15:08:22	0.002
4/23/2009	15:09:22	0.003
4/23/2009	15:10:22	0.003
4/23/2009	15:11:22	, 0.003
4/23/2009	15:12:22	0.003
4/23/2009	15:13:22	0.003
4/23/2009	15:14:22	0.003
4/23/2009	15:15:22	0.002
4/23/2009	15:16:22	0.003
4/23/2009	15:17:22	0.003
4/23/2009	15:18:22	0.003
4/23/2009	15:19:22	0.003
4/23/2009	15:20:22	0.003
4/23/2009	15:21:22	0.003
4/23/2009	15:22:22	0.003
4/23/2009	15:23:22	0.003
4/23/2009	15:24:22	0.003
4/23/2009	15:25:22	0.003
4/23/2009	15:26:22	0.003
4/23/2009	15:27:22	0.003
4/23/2009	15:28:22	0.003
4/23/2009	15:29:22	0.007
4/23/2009	15:30:22	0.003
4/23/2009	15:31:22	0.006
4/23/2009	15:32:22	0.003
4/23/2009	15:33:22	0.003
4/23/2009	15:34:22	0.003
4/23/2009	15:35:22	0.003
4/23/2009	15:36:22	0.004
4/23/2009	15:37:22	0.005
4/23/2009	15:38:22	0.003
4/23/2009	15:39:22	0.003
4/23/2009	15:40:22	0.003
4/23/2009	15:41:22	0.003
4/23/2009	15:42:22	0.004
4/23/2009	15:43:22	0.003
4/23/2009	15:44:22	0.003
4/23/2009	15:45:22	0.003

4/23/2009	15:46:22	0.003
4/23/2009	15:47:22	0.003
4/23/2009	15:48:22	0.004
4/23/2009	15:49:22	0.003
4/23/2009	15:50:22	0.003
4/23/2009	15:51:22	0.005
4/23/2009	15:52:22	0.005
4/23/2009	15:53:22	0.003
4/23/2009	15:54:22	0.003
4/23/2009	15:55:22	0.004
4/23/2009	15:56:22	0.005
4/23/2009	15:57:22	0.009
4/23/2009	15:58:22	0.005

TrakPro Version 4.10 ASCII Data File

Model: Dust Trak Model Number: 8520 Serial Number: 85202243

Test ID: 1

Test Abbreviation: Start Date: 4/23/2009 Start Time: 8:10:59

Duration (dd:hh:mm:ss): 0:07:51:00

Time constant (seconds): 10 Log Interval (mm:ss): 1:00 Number of points: 471 Notes: Downwind

Statistics

Channel: Aerosol Units: mg/m3 Average: 0.004 Minimum: 0.002

Time of Minimum: 13:32:59 Date of Minimum: 4/23/2009

Maximum: 0.008

Time of Maximum: 8:11:59 Date of Maximum: 4/23/2009

Calibration

Sensor: Aerosol Cal. Date; 4/13/2009

Date (mm/dd/yyyy)	Time (hh:mm:ss)	Aerosol (mg/m ³)
4/23/2009	8:11:59	0.008
4/23/2009	8:12:59	0.008
4/23/2009	8:13:59	0.008
4/23/2009	8:14:59	0.008
4/23/2009	8:15:59	0.008
4/23/2009	8:16:59	0.008
4/23/2009	8:17:59	0.008
4/23/2009	8:18:59	0.008
4/23/2009	8:19:59	0.008
4/23/2009	8:20:59	0.007
4/23/2009	8:21:59	0.008
4/23/2009	8:22:59	0.008
4/23/2009	8:23:59	0.008
4/23/2009	8:24:59	0.008

4/23/2009	8:25:59	0.007
4/23/2009	8:26:59	0.008
4/23/2009	8:27:59	0.008
4/23/2009	8:28:59	0.008
4/23/2009	8:29:59	0.007
4/23/2009	8:30:59	0.007
4/23/2009	8:31:59	0.008
4/23/2009	8:32:59	0.008
4/23/2009	8:33:59	0.007
4/23/2009	8:34:59	0.007
4/23/2009	8:35:59	0.007
4/23/2009	8:36:59	0.008
4/23/2009	8:37:59	0.007
4/23/2009	8:38:59	0.007
4/23/2009	8:39:59	0.007
4/23/2009	8:40:59	0.007
4/23/2009	8:41:59	0.007
4/23/2009	8:42:59	0.007
4/23/2009	8:43:59	0.007
4/23/2009	8:44:59	0.007
4/23/2009	8:45:59	0.007
4/23/2009	8:46:59	0.007
4/23/2009	8:47:59	0.007
4/23/2009	8:48:59	0.007
4/23/2009	8:49:59	0.007
4/23/2009	8:50:59	0.007
4/23/2009	8:51:59	0.006
4/23/2009	8:52:59	0.006
4/23/2009	8:53:59	0.006
4/23/2009	8:54:59	0.006
4/23/2009	8:55:59	0.006
4/23/2009	8:56:59	0.006
4/23/2009	8:57:59	0.007
4/23/2009	8:58:59	0.006
4/23/2009	8:59:59	0.006
4/23/2009	9:00:59	0.006
4/23/2009	9:01:59	0.005
4/23/2009	9:02:59	0.006
4/23/2009	9:03:59	0.006
4/23/2009	9:04:59	0.006
4/23/2009	9:05:59	0.006
4/23/2009	9:06:59	0.006
4/23/2009	9:07:59	0.006
4/23/2009	9:08:59	0.007
4/23/2009	9:09:59	0.007

4/23/2009	9:10:59	0.006
4/23/2009	9:11:59	0.006
4/23/2009	9:12:59	0.007
4/23/2009	9:13:59	0.007
4/23/2009	9:14:59	0.006
4/23/2009	9:15:59	0.007
4/23/2009	9:16:59	0.006
4/23/2009	9:17:59	0.006
4/23/2009	9:18:59	0.005
4/23/2009	9:19:59	0.005
4/23/2009	9:20:59	0.005
4/23/2009	9:21:59	0.005
4/23/2009	9:22:59	0.005
4/23/2009	9:23:59	0.005
4/23/2009	9:24:59	0.005
4/23/2009	9:25:59	0.005
4/23/2009	9:26:59	0.005
4/23/2009	9:27:59	0.005
4/23/2009	9:28:59	0.005
4/23/2009	9:29:59	0.005
4/23/2009	9:30:59	0.005
4/23/2009	9:31:59	0.005
4/23/2009	9:32:59	0.005
4/23/2009	9:33:59	0.005
4/23/2009	9:34:59	0.005
4/23/2009	9:35:59	0.005
4/23/2009	9:36:59	0.005
4/23/2009	9:37:59	0.005
4/23/2009	9:38:59	0.005
4/23/2009	9:39:59	0.005
4/23/2009	9:40:59	0.005
4/23/2009	9:41:59	0.005
4/23/2009	9:42:59	0.005
4/23/2009	9:43:59	0.004
4/23/2009	9:44:59	0.004
4/23/2009	9:45:59	0.004
4/23/2009	9:46:59	0.004
4/23/2009	9:47:59	0.004
4/23/2009	9:48:59	0.005
4/23/2009	9:49:59	0.004
4/23/2009	9:50:59	0.004
4/23/2009	9:51:59	0.005
4/23/2009	9:52:59	0.004
4/23/2009	9:53:59	0.004
4/23/2009	9:54:59	0.004

4/23/2009	9:55:59	0.004
4/23/2009	9:56:59	0.005
4/23/2009	9:57:59	0.005
4/23/2009	9:58:59	0.005
4/23/2009	9:59:59	0.005
4/23/2009	10:00:59	0.004
4/23/2009	10:01:59	0.004
4/23/2009	10:02:59	0.005
4/23/2009	10:03:59	0.005
4/23/2009	10:04:59	0.005
4/23/2009	10:05:59	0.004
4/23/2009	10:06:59	0.004
4/23/2009	10:07:59	0.004
4/23/2009	10:08:59	0.004
4/23/2009	10:09:59	0.004
4/23/2009	10:10:59	0.004
4/23/2009	10:11:59	0.004
4/23/2009	10:12:59	0.004
4/23/2009	10:13:59	0.004
4/23/2009	10:14:59	0.005
4/23/2009	10:15:59	0.004
4/23/2009	10:16:59	0.004
4/23/2009	10:17:59	0.004
4/23/2009	10:18:59	0.004
4/23/2009	10:19:59	0.004
4/23/2009	10:20:59	0.004
4/23/2009	10:21:59	0.005
4/23/2009	10:22:59	0.005
4/23/2009	10:23:59	0.005
4/23/2009	10:24:59	0.004
4/23/2009	10:25:59	0.005
4/23/2009	10:26:59	0.004
4/23/2009	10:27:59	0.004
4/23/2009	10:28:59	0.005
4/23/2009	10:29:59	0.004
4/23/2009	10:30:59	0.004
4/23/2009	10:31:59	0.004
4/23/2009	10:32:59	0.004
4/23/2009	10:33:59	0.004
4/23/2009	10:34:59	0.004
4/23/2009	10:35:59	0.004
4/23/2009	10:36:59	0.004
4/23/2009	10:37:59	0.004
4/23/2009	10:38:59	0.004
4/23/2009	10:39:59	0.004

4/23/2009	10:40:59	0.004
4/23/2009	10:41:59	0.004
4/23/2009	10:42:59	0.004
4/23/2009	10:43:59	0.004
4/23/2009	10:44:59	0.004
4/23/2009	10:45:59	0.004
4/23/2009	10:46:59	0.004
4/23/2009	10:47:59	0.004
4/23/2009	10:48:59	0.004
4/23/2009	10:49:59	0.004
4/23/2009	10:50:59	0.004
4/23/2009	10:51:59	0.004
4/23/2009	10:52:59	0.004
4/23/2009	10:53:59	0.004
4/23/2009	10:54:59	0.004
4/23/2009	10:55:59	0.004
4/23/2009	10:56:59	0.004
4/23/2009	10:57:59	0.004
4/23/2009	10:58:59	0.004
4/23/2009	10:59:59	0.004
4/23/2009	11:00:59	0.004
4/23/2009	11:01:59	0.004
4/23/2009	11:02:59	0.004
4/23/2009	11:03:59	0.004
4/23/2009	11:04:59	0.004
4/23/2009	11:05:59	0.004
4/23/2009	11:06:59	0.004
4/23/2009	11:07:59	0.004
4/23/2009	11:08:59	0.004
4/23/2009	11:09:59	0.004
4/23/2009	11:10:59	0.004
4/23/2009	11:11:59	0.004
4/23/2009	11:12:59	0.004
4/23/2009	11:13:59	0.004
4/23/2009	11:14:59	0.005
4/23/2009	11:15:59	0.004
4/23/2009	11:16:59	0.005
4/23/2009	11:17:59	0.004
4/23/2009	11:18:59	0.004
4/23/2009	11:19:59	0.004
4/23/2009	11:20:59	0.004
4/23/2009	11:21:59	0.004
4/23/2009	11:22:59	0.004
4/23/2009	11:23:59	0.004
4/23/2009	11:24:59	0.004

4/23/2009	11:25:59	0.004
4/23/2009	11:26:59	0.004
4/23/2009	11:27:59	0.004
4/23/2009	11:28:59	0.004
4/23/2009	11:29:59	0.003
4/23/2009	11:30:59	0.004
4/23/2009	11:31:59	0.004
4/23/2009	11:32:59	0.004
4/23/2009	11:33:59	0.004
4/23/2009	11:34:59	0.004
4/23/2009	11:35:59	0.004
4/23/2009	11:36:59	0.004
4/23/2009	11:37:59	0.004
4/23/2009	11:38:59	0.004
4/23/2009	11:39:59	0.004
4/23/2009	11:40:59	0.003
4/23/2009	11:41:59	0.004
4/23/2009	11:42:59	0.004
4/23/2009	11:43:59	0.004
4/23/2009	11:44:59	0.004
4/23/2009	11:45:59	0.004
4/23/2009	11:46:59	0.004
4/23/2009	11:47:59	0.004
4/23/2009	11:48:59	0.004
4/23/2009	11:49:59	0.004
4/23/2009	11:50:59	0.004
4/23/2009	11:51:59	0.004
4/23/2009	11:52:59	0.004
4/23/2009	11:53:59	0.004
4/23/2009	11:54:59	0.004
4/23/2009	11:55:59	0.004
4/23/2009	11:56:59	0.004
4/23/2009	11:57:59	0.003
4/23/2009	11:58:59	0.004
4/23/2009	11:59:59	0.004
4/23/2009	12:00:59	0.004
4/23/2009	12:01:59	0.004
4/23/2009	12:02:59	0.005
4/23/2009	12:03:59	0.004
4/23/2009	12:04:59	0.004
4/23/2009	12:05:59	0.005
4/23/2009	12:06:59	0.004
4/23/2009	12:07:59	0.004
4/23/2009	12:08:59	0.004
4/23/2009	12:09:59	0.003

4/23/2009	12:10:59	0.004
4/23/2009	12:11:59	0.004
4/23/2009	12:12:59	0.004
4/23/2009	12:13:59	0.004
4/23/2009	12:14:59	0.004
4/23/2009	12:15:59	0.004
4/23/2009	12:16:59	0.004
4/23/2009	12:17:59	0.004
4/23/2009	12:18:59	0.004
4/23/2009	12:19:59	0.004
4/23/2009	12:20:59	0.004
4/23/2009	12:21:59	0.004
4/23/2009	12:22:59	0.004
4/23/2009	12:23:59	0.004
4/23/2009	12:24:59	0.004
4/23/2009	12:25:59	0.004
4/23/2009	12:26:59	0.004
4/23/2009	12:27:59	0.004
4/23/2009	12:28:59	0.005
4/23/2009	12:29:59	0.004
4/23/2009	12:30:59	0.004
4/23/2009	12:31:59	0.004
4/23/2009	12:32:59	0.004
4/23/2009	12:33:59	0.004
4/23/2009	12:34:59	0.004
4/23/2009	12:35:59	0.004
4/23/2009	12:36:59	0.005
4/23/2009	12:37:59	0.005
4/23/2009	12:38:59	0.004
4/23/2009	12:39:59	0.004
4/23/2009	12:40:59	0.004
4/23/2009	12:41:59	0.005
4/23/2009	12:42:59	0.004
4/23/2009	12:43:59	0.004
4/23/2009	12:44:59	0.004
4/23/2009	12:45:59	0.004
4/23/2009	12:46:59	0.004
4/23/2009	12:47:59	0.004
4/23/2009	12:48:59	0.004
4/23/2009	12:49:59	0.004
4/23/2009	12:50:59	0.004
4/23/2009	12:51:59	0.004
4/23/2009	12:52:59	0.004
4/23/2009	12:53:59	0.004
4/23/2009	12:54:59	0.004

4/23/2009	12:55:59	0.004
4/23/2009	12:56:59	0.004
4/23/2009	12:57:59	0.004
4/23/2009	12:58:59	0.004
4/23/2009	12:59:59	0.004
4/23/2009	13:00:59	0.005
4/23/2009	13:01:59	0.004
4/23/2009	13:02:59	0.004
4/23/2009	13:03:59	0.004
4/23/2009	13:04:59	0.004
4/23/2009	13:05:59	0.005
4/23/2009	13:06:59	0.005
4/23/2009	13:07:59	0.005
4/23/2009	13:08:59	0.004
4/23/2009	13:09:59	0.004
4/23/2009	13:10:59	0.004
4/23/2009	13:11:59	0.004
4/23/2009	13:12:59	0.004
4/23/2009	13:13:59	0.004
4/23/2009	13:14:59	0.004
4/23/2009	13:15:59	0.004
4/23/2009	13:16:59	0.004
4/23/2009	13:17:59	0.005
4/23/2009	13:18:59	0.004
4/23/2009	13:19:59	0.004
4/23/2009	13:20:59	0.004
4/23/2009	13:21:59	0.003
4/23/2009	13:22:59	0.003
4/23/2009	13:23:59	0.004
4/23/2009	13:24:59	0.004
4/23/2009	13:25:59	0.004
4/23/2009	13:26:59	0.003
4/23/2009	13:27:59	0.003
4/23/2009	13:28:59	0.003
4/23/2009	13:29:59	0.003
4/23/2009	13:30:59	0.003
4/23/2009	13:31:59	0.003
4/23/2009	13:32:59	0.002
4/23/2009	13:33:59	0.002
4/23/2009	13:34:59	0.002
4/23/2009	13:35:59	0.002
4/23/2009	13:36:59	0.002
4/23/2009	13:37:59	0.002
4/23/2009	13:38:59	0.003
4/23/2009	13:39:59	0.002

4/23/2009	13:40:59	0.003
4/23/2009	13:41:59	0.003
4/23/2009	13:42:59	0.003
4/23/2009	13:43:59	0.003
4/23/2009	13:44:59	0.003
4/23/2009	13:45:59	0.003
4/23/2009	13:46:59	0.003
4/23/2009	13:47:59	0.004
4/23/2009	13:48:59	0.003
4/23/2009	13:49:59	0.003
4/23/2009	13:50:59	0.003
4/23/2009	13:51:59	0.003
4/23/2009	13:52:59	0.003
4/23/2009	13:53:59	0.003
4/23/2009	13:54:59	0.003
4/23/2009	13:55:59	0.003
4/23/2009	13:56:59	0.003
4/23/2009	13:57:59	0.003
4/23/2009	13:58:59	0.003
4/23/2009	13:59:59	0.003
4/23/2009	14:00:59	0.003
4/23/2009	14:01:59	0.003
4/23/2009	14:02:59	0.003
4/23/2009	14:03:59	0.003
4/23/2009	14:04:59	0.003
4/23/2009	14:05:59	0.003
4/23/2009	14:06:59	0.004
4/23/2009	14:07:59	0.003
4/23/2009	14:08:59	0.003
4/23/2009	14:09:59	0.003
4/23/2009	14:10:59	0.003
4/23/2009	14:11:59	0.004
4/23/2009	14:12:59	0.003
4/23/2009	14:13:59	0.003
4/23/2009	14:14:59	0.003
4/23/2009	14:15:59	0.003
4/23/2009	14:16:59	0.003
4/23/2009	14:17:59	0.003
4/23/2009	14:18:59	0.004
4/23/2009	14:19:59	0.005
4/23/2009	14:20:59	0.004
4/23/2009	14:21:59	0.003
4/23/2009	14:22:59	0.003
4/23/2009	14:23:59	0.003
4/23/2009	14:24:59	0.003

4/23/2009	14:25:59	0.003
4/23/2009	14:26:59	0.003
4/23/2009	14:27:59	0.003
4/23/2009	14:28:59	0.003
4/23/2009	14:29:59	0.003
4/23/2009	14:30:59	0.003
4/23/2009	14:31:59	0.003
4/23/2009	14:32:59	0.003
4/23/2009	14:33:59	0.004
4/23/2009	14:34:59	0.003
4/23/2009	14:35:59	0.003
4/23/2009	14:36:59	0.003
4/23/2009	14:37:59	0.003
4/23/2009	14:38:59	0.003
4/23/2009	14:39:59	0.003
4/23/2009	14:40:59	0.003
4/23/2009	14:41:59	0.004
4/23/2009	14:42:59	0.003
4/23/2009	14:43:59	0.003
4/23/2009	14:44:59	0.003
4/23/2009	14:45:59	0.003
4/23/2009	14:46:59	0.003
4/23/2009	14:47:59	0.003
4/23/2009	14:48:59	0.003
4/23/2009	14:49:59	0.003
4/23/2009	14:50:59	0.003
4/23/2009	14:51:59	0.003
4/23/2009	14:52:59	0.003
4/23/2009	14:53:59	0.003
4/23/2009	14:54:59	0.003
4/23/2009	14:55:59	0.003
4/23/2009	14:56:59	0.004
4/23/2009	14:57:59	0.003
4/23/2009	14:58:59	0.003
4/23/2009	14:59:59	0.003
4/23/2009	15:00:59	0.003
4/23/2009	15:01:59	0.003
4/23/2009	15:02:59	0.003
4/23/2009	15:03:59	0.003
4/23/2009	15:04:59	0.003
4/23/2009	15:05:59	0.003
4/23/2009	15:06:59	0.003
4/23/2009	15:07:59	0.003
4/23/2009	15:08:59	0.003
4/23/2009	15:09:59	0.003

4/23/2009	15:10:59	0.003
4/23/2009	15:11:59	0.003
4/23/2009	15:12:59	0.003
4/23/2009	15:13:59	0.003
4/23/2009	15:14:59	0.003
4/23/2009	15:15:59	0.003
4/23/2009	15:16:59	0.003
4/23/2009	15:17:59	0.003
4/23/2009	15:18:59	0.003
4/23/2009	15:19:59	0.003
4/23/2009	15:20:59	0.003
4/23/2009	15:21:59	0.003
4/23/2009	15:22:59	0.003
4/23/2009	15:23:59	0.003
4/23/2009	15:24:59	0.003
4/23/2009	15:25:59	0.003
4/23/2009	15:26:59	0.003
4/23/2009	15:27:59	0.003
4/23/2009	15:28:59	0.003
4/23/2009	15:29:59	0.003
4/23/2009	15:30:59	0.003
4/23/2009	15:31:59	0.003
4/23/2009	15:32:59	0.003
4/23/2009	15:33:59	0.003
4/23/2009	15:34:59	0.004
4/23/2009	15:35:59	0.003
4/23/2009	15:36:59	0.003
4/23/2009	15:37:59	0.003
4/23/2009	15:38:59	0.004
4/23/2009	15:39:59	0.003
4/23/2009	15:40:59	0.003
4/23/2009	15:41:59	0.004
4/23/2009	15:42:59	0.003
4/23/2009	15:43:59	0.004
4/23/2009	15:44:59	0.003
4/23/2009	15:45:59	0.003
4/23/2009	15:46:59	0.003
4/23/2009	15:47:59	0.003
4/23/2009	15:48:59	0.003
4/23/2009	15:49:59	0.003
4/23/2009	15:50:59	0.004
4/23/2009	15:51:59	0.004
4/23/2009	15:52:59	0.004
4/23/2009	15:53:59	0.004
4/23/2009	15:54:59	0.004

4/23/2009	15:55:59	0.003
4/23/2009	15:56:59	0.003
4/23/2009	15:57:59	0.003
4/23/2009	15:58:59	0.003
4/23/2009	15:59:59	0.003
4/23/2009	16:00:59	0.003
4/23/2009	16:01:59	0.003

TrakPro Version 4.10 ASCII Data File

Model: Dust Trak Model Number: 8520 Serial Number: 85202265

Test ID: 1

Test Abbreviation: Start Date: 4/24/2009 Start Time: 8:02:32

Duration (dd:hh:mm:ss): 0:08:42:00

Time constant (seconds): 1 Log Interval (mm:ss): 1:00 Number of points: 522

Notes: Upwind

Statistics

Channel: Aerosol Units: mg/m3 Average: 0.009 Minimum: 0.004

Time of Minimum: 14:59:32 Date of Minimum: 4/24/2009

Maximum: 0.024

Time of Maximum: 14:14:32 Date of Maximum: 4/24/2009

Calibration

Sensor: Aerosol Cal. Date" 4/8/2009

Date (mm/dd/yyyy)	Time (hh:mm:ss)	Aerosol (mg/m ³)
4/24/2009	8:03:32	0.009
4/24/2009	8:04:32	0.007
4/24/2009	8:05:32	0.008
4/24/2009	8:06:32	0.009
4/24/2009	8:07:32	0.008
4/24/2009	8:08:32	0.008
4/24/2009	8:09:32	0.009
4/24/2009	8:10:32	0.008
4/24/2009	8:11:32	0.009
4/24/2009	8:12:32	0.008
4/24/2009	8:13:32	0.009
4/24/2009	8:14:32	0.008
4/24/2009	8:15:32	0.009
4/24/2009	8:16:32	0.008

4/24/2009	8:17:32	0.009
4/24/2009	8:18:32	0.01
4/24/2009	8:19:32	0.009
4/24/2009	8:20:32	0.009
4/24/2009	8:21:32	0.01
4/24/2009	8:22:32	0.009
4/24/2009	8:23:32	0.008
4/24/2009	8:24:32	0.008
4/24/2009	8:25:32	0.009
4/24/2009	8:26:32	0.008
4/24/2009	8:27:32	0.009
4/24/2009	8:28:32	0.009
4/24/2009	8:29:32	0.009
4/24/2009	8:30:32	0.009
4/24/2009	8:31:32	0.01
4/24/2009	8:32:32	0.009
4/24/2009	8:33:32	0.009
4/24/2009	8:34:32	0.01
4/24/2009	8:35:32	0.009
4/24/2009	8:36:32	0.009
4/24/2009	8:37:32	0.009
4/24/2009	8:38:32	0.009
4/24/2009	8:39:32	0.009
4/24/2009	8:40:32	0.01
4/24/2009	8:41:32	0.009
4/24/2009	8:42:32	0.009
4/24/2009	8:43:32	0.01
4/24/2009	8:44:32	0.01
4/24/2009	8:45:32	0.01
4/24/2009	8:46:32	0.01
4/24/2009	8:47:32	0.01
4/24/2009	8:48:32	0.009
4/24/2009	8:49:32	0.009
4/24/2009	8:50:32	0.009
4/24/2009	8:51:32	0.01
4/24/2009	8:52:32	0.009
4/24/2009	8:53:32	0.009
4/24/2009	8:54:32	0.009
4/24/2009	8:55:32	0.008
4/24/2009	8:56:32	0.009
4/24/2009	8:57:32	0.008
4/24/2009	8:58:32	0.008
4/24/2009	8:59:32	0.009
4/24/2009	9:00:32	0.009
4/24/2009	9:01:32	0.008

4/24/2009	9:02:32	0.008
4/24/2009	9:03:32	0.008
4/24/2009	9:04:32	0.008
4/24/2009	9:05:32	0.008
4/24/2009	9:06:32	0.008
4/24/2009	9:07:32	0.008
4/24/2009	9:08:32	0.008
4/24/2009	9:09:32	0.008
4/24/2009	9:10:32	0.008
4/24/2009	9:11:32	0.008
4/24/2009	9:12:32	0.008
4/24/2009	9:13:32	0.008
4/24/2009	9:14:32	0.008
4/24/2009	9:15:32	0.007
4/24/2009	9:16:32	0.008
4/24/2009	9:17:32	0.008
4/24/2009	9:18:32	0.008
4/24/2009	9:19:32	0.008
4/24/2009	9:20:32	0.008
4/24/2009	9:21:32	0.021
4/24/2009	9:22:32	0.008
4/24/2009	9:23:32	0.008
4/24/2009	9:24:32	0.008
4/24/2009	9:25:32	0.008
4/24/2009	9:26:32	0.007
4/24/2009	9:27:32	0.008
4/24/2009	9:28:32	0.007
4/24/2009	9:29:32	0.007
4/24/2009	9:30:32	0.008
4/24/2009	9:31:32	0.007
4/24/2009	9:32:32	0.008
4/24/2009	9:33:32	0.008
4/24/2009	9:34:32	0.008
4/24/2009	9:35:32	0.008
4/24/2009	9:36:32	0.007
4/24/2009	9:37:32	0.008
4/24/2009	9:38:32	0.007
4/24/2009	9:39:32	0.007
4/24/2009	9:40:32	0.007
4/24/2009	9:41:32	0.007
4/24/2009	9:42:32	0.007
4/24/2009	9:43:32	0.007
4/24/2009	9:44:32	0.007
4/24/2009	9:45:32	0.007
4/24/2009	9:46:32	0.007

4/24/2009	9:47:32	0.008
4/24/2009	9:48:32	0.007
4/24/2009	9:49:32	0.007
4/24/2009	9:50:32	0.007
4/24/2009	9:51:32	0.008
4/24/2009	9:52:32	0.008
4/24/2009	9:53:32	0.008
4/24/2009	9:54:32	0.007
4/24/2009	9:55:32	0.007
4/24/2009	9:56:32	0.007
4/24/2009	9:57:32	0.007
4/24/2009	9:58:32	0.006
4/24/2009	9:59:32	0.007
4/24/2009	10:00:32	0.006
4/24/2009	10:01:32	0.007
4/24/2009	10:02:32	0.006
4/24/2009	10:03:32	0.008
4/24/2009	10:04:32	0.007
4/24/2009	10:05:32	0.007
4/24/2009	10:06:32	0.007
4/24/2009	10:07:32	0.007
4/24/2009	10:08:32	0.007
4/24/2009	10:09:32	0.007
4/24/2009	10:10:32	0.007
4/24/2009	10:11:32	0.007
4/24/2009	10:12:32	0.008
4/24/2009	10:13:32	0.007
4/24/2009	10:14:32	0.006
4/24/2009	10:15:32	0.007
4/24/2009	10:16:32	0.007
4/24/2009	10:17:32	0.007
4/24/2009	10:18:32	0.007
4/24/2009	10:19:32	0.007
4/24/2009	10:20:32	0.007
4/24/2009	10:21:32	0.007
4/24/2009	10:22:32	0.007
4/24/2009	10:23:32	0.007
4/24/2009	10:24:32	0.007
4/24/2009	10:25:32	0.007
4/24/2009	10:26:32	0.007
4/24/2009	10:27:32	0.007
4/24/2009	10:28:32	0.007
4/24/2009	10:29:32	0.007
4/24/2009	10:30:32	0.008
4/24/2009	10:31:32	0.007

4/24/		10:32:32	0.007
4/24/	2009	10:33:32	0.007
4/24/	2009	10:34:32	0.007
4/24/	2009	10:35:32	0.006
4/24/	2009	10:36:32	0.007
4/24/	2009	10:37:32	0.007
4/24/	2009	10:38:32	0.007
4/24/	2009	10:39:32	0.007
4/24/	2009	10:40:32	0.006
4/24/	2009	10:41:32	0.007
4/24/	2009	10:42:32	0.006
4/24/	2009	10:43:32	0.007
4/24/	2009	10:44:32	0.007
4/24/	2009	10:45:32	0.007
4/24/	2009	10:46:32	0.007
4/24/	2009	10:47:32	0.007
4/24/	2009	10:48:32	0.008
4/24/	2009	10:49:32	0.007
4/24/	2009	10:50:32	0.008
4/24/	2009	10:51:32	0.007
4/24/	2009	10:52:32	0.007
4/24/	2009	10:53:32	0.007
4/24/	2009	10:54:32	0.008
4/24/	2009	10:55:32	0.007
4/24/	2009	10:56:32	0.007
4/24/	2009	10:57:32	0.008
4/24/	2009	10:58:32	0.007
4/24/	2009	10:59:32	0.008
4/24/	2009	11:00:32	0.008
4/24/	2009	11:01:32	0.008
4/24/	2009	11:02:32	0.009
4/24/	2009	11:03:32	0.008
4/24/	2009	11:04:32	0.007
4/24/	2009	11:05:32	0.007
4/24/	2009	11:06:32	0.007
4/24/	2009	11:07:32	800.0
4/24/	2009	11:08:32	0.007
4/24/	2009	11:09:32	0.007
4/24/	2009	11:10:32	0.007
4/24/	2009	11:11:32	0.008
4/24/	2009	11:12:32	0.007
4/24/	2009	11:13:32	0.007
4/24/	2009	11:14:32	0.008
4/24/	2009	11:15:32	0.007
4/24/	2009	11:16:32	0.007

4/24/2009	11:17:32	0.007
4/24/2009	11:18:32	0.007
4/24/2009	11:19:32	0.007
4/24/2009	11:20:32	0.007
4/24/2009	11:21:32	0.007
4/24/2009	11:22:32	0.008
4/24/2009	11:23:32	0.008
4/24/2009	11:24:32	0.007
4/24/2009	11:25:32	0.008
4/24/2009	11:26:32	0.008
4/24/2009	11:27:32	0.007
4/24/2009	11:28:32	0.008
4/24/2009	11:29:32	0.007
4/24/2009	11:30:32	0.007
4/24/2009	11:31:32	0.007
4/24/2009	11:32:32	0.007
4/24/2009	11:33:32	0.007
4/24/2009	11:34:32	0.007
4/24/2009	11:35:32	0.008
4/24/2009	11:36:32	0.007
4/24/2009	11:37:32	0.007
4/24/2009	11:38:32	0.01
4/24/2009	11:39:32	0.007
4/24/2009	11:40:32	0.011
4/24/2009	11:41:32	0.011
4/24/2009	11:42:32	0.007
4/24/2009	11:43:32	0.008
4/24/2009	11:44:32	0.008
4/24/2009	11:45:32	0.008
4/24/2009	11:46:32	0.008
4/24/2009	11:47:32	0.007
4/24/2009	11:48:32	0.007
4/24/2009	11:49:32	0.007
4/24/2009	11:50:32	0.007
4/24/2009	11:51:32	0.008
4/24/2009	11:52:32	0.01
4/24/2009	11:53:32	0.009
4/24/2009	11:54:32	0.008
4/24/2009	11:55:32	0.007
4/24/2009	11:56:32	0.007
4/24/2009	11:57:32	0.007
4/24/2009	11:58:32	0.007
4/24/2009	11:59:32	0.007
4/24/2009	12:00:32	0.011
4/24/2009	12:01:32	0.007

4/24/2009	12:02:32	0.008
4/24/2009	12:03:32	0.007
4/24/2009	12:04:32	0.007
4/24/2009	12:05:32	0.007
4/24/2009	12:06:32	0.007
4/24/2009	12:07:32	0.007
4/24/2009	12:08:32	0.007
4/24/2009	12:09:32	0.007
4/24/2009	12:10:32	0.008
4/24/2009	12:11:32	0.007
4/24/2009	12:12:32	0.01
4/24/2009	12:13:32	0.013
4/24/2009	12:14:32	0.008
4/24/2009	12:15:32	0.009
4/24/2009	12:16:32	0.01
4/24/2009	12:17:32	0.007
4/24/2009	12:18:32	0.008
4/24/2009	12:19:32	0.008
4/24/2009	12:20:32	0.007
4/24/2009	12:21:32	0.008
4/24/2009	12:22:32	0.008
4/24/2009	12:23:32	0.008
4/24/2009	12:24:32	0.008
4/24/2009	12:25:32	800.0
4/24/2009	12:26:32	0.008
4/24/2009	12:27:32	0.007
4/24/2009	12:28:32	0.007
4/24/2009	12:29:32	0.008
4/24/2009	12:30:32	0.008
4/24/2009	12:31:32	0.008
4/24/2009	12:32:32	0.009
4/24/2009	12:33:32	0.008
4/24/2009	12:34:32	0.008
4/24/2009	12:35:32	0.008
4/24/2009	12:36:32	0.008
4/24/2009	12:37:32	0.01
4/24/2009	12:38:32	0.008
4/24/2009	12:39:32	0.008
4/24/2009	12:40:32	0.008
4/24/2009	12:41:32	0.008
4/24/2009	12:42:32	0.008
4/24/2009	12:43:32	0.008
4/24/2009	12:44:32	0.008
4/24/2009	12:45:32	0.008
4/24/2009	12:46:32	0.008

4/24/2009	12:47:32	0.008
4/24/2009	12:48:32	0.01
4/24/2009	12:49:32	0.008
4/24/2009	12:50:32	0.008
4/24/2009	12:51:32	0.008
4/24/2009	12:52:32	0.008
4/24/2009	12:53:32	0.008
4/24/2009	12:54:32	0.008
4/24/2009	12:55:32	0.007
4/24/2009	12:56:32	0.008
4/24/2009	12:57:32	0.008
4/24/2009	12:58:32	0.008
4/24/2009	12:59:32	0.007
4/24/2009	13:00:32	0.008
4/24/2009	13:01:32	0.009
4/24/2009	13:02:32	0.008
4/24/2009	13:03:32	0.008
4/24/2009	13:04:32	0.008
4/24/2009	13:05:32	0.008
4/24/2009	13:06:32	0.008
4/24/2009	13:07:32	0.008
4/24/2009	13:08:32	0.008
4/24/2009	13:09:32	0.008
4/24/2009	13:10:32	0.008
4/24/2009	13:11:32	0.008
4/24/2009	13:12:32	0.008
4/24/2009	13:13:32	0.008
4/24/2009	13:14:32	0.008
4/24/2009	13:15:32	0.009
4/24/2009	13:16:32	0.007
4/24/2009	13:17:32	0.008
4/24/2009	13:18:32	0.007
4/24/2009	13:19:32	0.008
4/24/2009	13:20:32	0.008
4/24/2009	13:21:32	0.008
4/24/2009	13:22:32	0.008
4/24/2009	13:23:32	0.008
4/24/2009	13:24:32	0.007
4/24/2009	13:25:32	0.008
4/24/2009	13:26:32	0.007
4/24/2009	13:27:32	0.008
4/24/2009	13:28:32	0.008
4/24/2009	13:29:32	0.008
4/24/2009	13:30:32	0.007
4/24/2009	13:31:32	0.007

4/24/2009	13:32:32	0.008
4/24/2009	13:33:32	0.01
4/24/2009	13:34:32	0.009
4/24/2009	13:35:32	0.008
4/24/2009	13:36:32	0.007
4/24/2009	13:37:32	0.007
4/24/2009	13:38:32	0.008
4/24/2009	13:39:32	0.007
4/24/2009	13:40:32	0.008
4/24/2009	13:41:32	0.007
4/24/2009	13:42:32	0.007
4/24/2009	13:43:32	0.007
4/24/2009	13:44:32	0.007
4/24/2009	13:45:32	0.007
4/24/2009	13:46:32	0.008
4/24/2009	13:47:32	0.008
4/24/2009	13:48:32	0.008
4/24/2009	13:49:32	0.008
4/24/2009	13:50:32	0.007
4/24/2009	13:51:32	0.007
4/24/2009	13:52:32	0.008
4/24/2009	13:53:32	0.008
4/24/2009	13:54:32	0.007
4/24/2009	13:55:32	0.007
4/24/2009	13:56:32	0.007
4/24/2009	13:57:32	0.007
4/24/2009	13:58:32	0.007
4/24/2009	13:59:32	0.008
4/24/2009	14:00:32	0.008
4/24/2009	14:01:32	0.007
4/24/2009	14:02:32	0.007
4/24/2009	14:03:32	0.007
4/24/2009	14:04:32	0.007
4/24/2009	14:05:32	0.008
4/24/2009	14:06:32	0.008
4/24/2009	14:07:32	0.007
4/24/2009	14:08:32	0.008
4/24/2009	14:09:32	0.008
4/24/2009	14:10:32	0.008
4/24/2009	14:11:32	0.008
4/24/2009	14:12:32	0.008
4/24/2009	14:13:32	0.008
4/24/2009	14:14:32	0.024
4/24/2009	14:15:32	0.009
4/24/2009	14:16:32	0.009

4/24/2009	14:17:32	0.009
4/24/2009	14:18:32	0.009
4/24/2009	14:19:32	0.01
4/24/2009	14:20:32	0.011
4/24/2009	14:21:32	0.01
4/24/2009	14:22:32	0.013
4/24/2009	14:23:32	0.01
4/24/2009	14:24:32	0.01
4/24/2009	14:25:32	0.01
4/24/2009	14:26:32	0.012
4/24/2009	14:27:32	0.012
4/24/2009	14:28:32	0.01
4/24/2009	14:29:32	0.009
4/24/2009	14:30:32	0.01
4/24/2009	14:31:32	0.012
4/24/2009	14:32:32	0.01
4/24/2009	14:33:32	0.01
4/24/2009	14:34:32	0.01
4/24/2009	14:35:32	0.01
4/24/2009	14:36:32	0.01
4/24/2009	14:37:32	0.01
4/24/2009	14:38:32	0.01
4/24/2009	14:39:32	0.009
4/24/2009	14:40:32	0.009
4/24/2009	14:41:32	0.009
4/24/2009	14:42:32	0.01
4/24/2009	14:43:32	0.01
4/24/2009	14:44:32	0.01
4/24/2009	14:45:32	0.011
4/24/2009	14:46:32	0.012
4/24/2009	14:47:32	0.011
4/24/2009	14:48:32	0.012
4/24/2009	14:49:32	0.01
4/24/2009	14:50:32	0.013
4/24/2009	14:51:32	0.01
4/24/2009	14:52:32	0.011
4/24/2009	14:53:32	0.011
4/24/2009	14:54:32	0.011
4/24/2009	14:55:32	0.012
4/24/2009	14:56:32	0.012
4/24/2009	14:57:32	0.01
4/24/2009	14:58:32	0.01
4/24/2009	14:59:32	0.004
4/24/2009	15:00:32	0.016
4/24/2009	15:01:32	0.014

4/24/2009	15:02:32	0.01
4/24/2009	15:03:32	0.01
4/24/2009	15:04:32	0.009
4/24/2009	15:05:32	0.01
4/24/2009	15:06:32	0.009
4/24/2009	15:07:32	0.009
4/24/2009	15:08:32	0.009
4/24/2009	15:09:32	0.009
4/24/2009	15:10:32	0.009
4/24/2009	15:11:32	0.009
4/24/2009	15:12:32	0.009
4/24/2009	15:13:32	0.009
4/24/2009	15:14:32	0.01
4/24/2009	15:15:32	0.01
4/24/2009	15:16:32	0.01
4/24/2009	15:17:32	0.009
4/24/2009	15:18:32	0.011
4/24/2009	15:19:32	0.008
4/24/2009	15:20:32	0.009
4/24/2009	15:21:32	0.008
4/24/2009	15:22:32	0.008
4/24/2009	15:23:32	0.008
4/24/2009	15:24:32	0.009
4/24/2009	15:25:32	0.008
4/24/2009	15:26:32	0.008
4/24/2009	15:27:32	0.01
4/24/2009	15:28:32	0.009
4/24/2009	15:29:32	0.009
4/24/2009	15:30:32	0.01
4/24/2009	15:31:32	0.011
4/24/2009	15:32:32	0.01
4/24/2009	15:33:32	0.009
4/24/2009	15:34:32	0.009
4/24/2009	15:35:32	0.009
4/24/2009	15:36:32	0.01
4/24/2009	15:37:32	0.013
4/24/2009	15:38:32	0.01
4/24/2009	15:39:32	0.011
4/24/2009	15:40:32	0.01
4/24/2009	15:41:32	0.011
4/24/2009	15:42:32	0.01
4/24/2009	15:43:32	0.01
4/24/2009	15:44:32	0.009
4/24/2009	15:45:32	0.011
4/24/2009	15:46:32	0.009

4/24/2009	15;47:32	0.009
4/24/2009	15:48:32	0.01
4/24/2009	15:49:32	0.01
4/24/2009	15:50:32	0.01
4/24/2009	15:51:32	0.011
4/24/2009	15:52:32	0.01
4/24/2009	15:53:32	0.009
4/24/2009	15:54:32	0.01
4/24/2009	15:55:32	0.01
4/24/2009	15:56:32	0.01
4/24/2009	15:57:32	0.009
4/24/2009	15:58:32	0.009
4/24/2009	15:59:32	0.009
4/24/2009	16:00:32	0.009
4/24/2009	16:01:32	0.01
4/24/2009	16:02:32	0.013
4/24/2009	16:03:32	0.011
4/24/2009	16:04:32	0.009
4/24/2009	16:05:32	0.009
4/24/2009	16:06:32	0.009
4/24/2009	16:07:32	0.01
4/24/2009	16:08:32	0.011
4/24/2009	16:09:32	0.011
4/24/2009	16:10:32	0.01
4/24/2009	16:11:32	0.01
4/24/2009	16:12:32	0.01
4/24/2009	16:13:32	0.01
4/24/2009	16:14:32	0.01
4/24/2009	16:15:32	0.012
4/24/2009	16:16:32	0.012
4/24/2009	16:17:32	0.013
4/24/2009	16:18:32	0.013
4/24/2009	16:19:32	0.016
4/24/2009	16:20:32	0.018
4/24/2009	16:21:32	0.01
4/24/2009	16:22:32	0.012
4/24/2009	16:23:32	0.011
4/24/2009	16:24:32	0.01
4/24/2009	16:25:32	0.014
4/24/2009	16:26:32	0.017
4/24/2009	16:27:32	0.012
4/24/2009	16:28:32	0.013
4/24/2009	16:29:32	0.013
4/24/2009	16:30:32	0.014
4/24/2009	16:31:32	0.01

4/24/2009	16:32:32	0.012
4/24/2009	16:33:32	0.013
4/24/2009	16:34:32	0.014
4/24/2009	16:35:32	0.01
4/24/2009	16:36:32	0.014
4/24/2009	16:37:32	0.012
4/24/2009	16:38:32	0.013
4/24/2009	16:39:32	0.017
4/24/2009	16:40:32	0.011
4/24/2009	16:41:32	0.011
4/24/2009	16:42:32	0.01
4/24/2009	16:43:32	0.009
4/24/2009	16:44:32	0.01

TrakPro Version 4.10 ASCII Data File

Model: Dust Trak Model Number: 8520 Serial Number: 85202243

Test ID: 1

Test Abbreviation: Start Date: 4/24/2009 Start Time: 7:55:07

Duration (dd:hh:mm:ss): 0:03:46:00

Time constant (seconds): 10 Log Interval (mm:ss): 1:00 Number of points: 226 Notes: Downwind

Statistics

Channel: Aerosol Units: mg/m3 Average: 0.009 Minimum: 0.006

Time of Minimum: 10:07:07 Date of Minimum: 4/24/2009

Maximum: 0.063

Time of Maximum: 8:55:07 Date of Maximum: 4/24/2009

Calibration

Sensor: Aerosol Cal. Date: 4/13/2009

Date (mm/dd/yyyy)	Time (hh:mm:ss)	Aerosol (mg/m ³)
4/24/2009	7:56:07	0.01
4/24/2009	7:57:07	0.009
4/24/2009	7:58:07	0.009
4/24/2009	7:59:07	0.01
4/24/2009	8:00:07	0.009
4/24/2009	8:01:07	0.01
4/24/2009	8:02:07	0.01
4/24/2009	8:03:07	0.011
4/24/2009	8:04:07	0.01
4/24/2009	8:05:07	0.009
4/24/2009	8:06:07	0.008
4/24/2009	8:07:07	0.01
4/24/2009	8:08:07	0.01
4/24/2009	8:09:07	0.012

4/24/2009	8:10:07	0.013
4/24/2009	8:11:07	0.01
4/24/2009	8:12:07	0.01
4/24/2009	8:13:07	0.01
4/24/2009	8:14:07	0.012
4/24/2009	8:15:07	0.01
4/24/2009	8:16:07	0.01
4/24/2009	8:17:07	0.01
4/24/2009	8:18:07	0.01
4/24/2009	8:19:07	0.047
4/24/2009	8:20:07	0.011
4/24/2009	8:21:07	0.01
4/24/2009	8:22:07	0.013
4/24/2009	8:23:07	0.011
4/24/2009	8:24:07	0.01
4/24/2009	8:25:07	0.01
4/24/2009	8:26:07	0.011
4/24/2009	8:27:07	0.011
4/24/2009	8:28:07	0.01
4/24/2009	8:29:07	0.015
4/24/2009	8:30:07	0.011
4/24/2009	8:31:07	0.011
4/24/2009	8:32:07	0.015
4/24/2009	8:33:07	0.012
4/24/2009	8:34:07	0.01
4/24/2009	8:35:07	0.012
4/24/2009	8:36:07	0.01
4/24/2009	8:37:07	0.011
4/24/2009	8:38:07	0.01
4/24/2009	8:39:07	0.011
4/24/2009	8:40:07	0.011
4/24/2009	8:41:07	0.01
4/24/2009	8:42:07	0.01
4/24/2009	8:43:07	0.01
4/24/2009	8:44:07	0.011
4/24/2009	8:45:07	0.011
4/24/2009	8:46:07	0.011
4/24/2009	8:47:07	0.011
4/24/2009	8:48:07	0.011
4/24/2009	8:49:07	0.01
4/24/2009	8:50:07	0.01
4/24/2009	8:51:07	0.011
4/24/2009	8:52:07	0.015
4/24/2009	8:53:07	0.01
4/24/2009	8:54:07	0.012

4/24/2009	8:55:07	0.063
4/24/2009	8:56:07	0.011
4/24/2009	8:57:07	0.01
4/24/2009	8:58:07	0.011
4/24/2009	8:59:07	0.011
4/24/2009	9:00:07	0.01
4/24/2009	9:01:07	0.01
4/24/2009	9:02:07	0.01
4/24/2009	9:03:07	0.009
4/24/2009	9:04:07	0.01
4/24/2009	9:05:07	0.012
4/24/2009	9:06:07	0.012
4/24/2009	9:07:07	0.01
4/24/2009	9:08:07	0.01
4/24/2009	9:09:07	0.01
4/24/2009	9:10:07	0.009
4/24/2009	9:11:07	0.009
4/24/2009	9:12:07	0.009
4/24/2009	9:13:07	0.009
4/24/2009	9:14:07	0.009
4/24/2009	9:15:07	0.009
4/24/2009	9:16:07	0.009
4/24/2009	9:17:07	0.009
4/24/2009	9:18:07	0.009
4/24/2009	9:19:07	0.008
4/24/2009	9:20:07	0.009
4/24/2009	9:21:07	0.009
4/24/2009	9:22:07	0.01
4/24/2009	9:23:07	0.009
4/24/2009	9:24:07	0.008
4/24/2009	9:25:07	0.009
4/24/2009	9:26:07	0.008
4/24/2009	9:27:07	0.008
4/24/2009	9:28:07	0.009
4/24/2009	9:29:07	0.009
4/24/2009	9:30:07	0.009
4/24/2009	9:31:07	0.008
4/24/2009	9:32:07	0.009
4/24/2009	9:33:07	0.009
4/24/2009	9:34:07	0.008
4/24/2009	9:35:07	0.008
4/24/2009	9:36:07	0.009
4/24/2009	9:37:07	0.009
4/24/2009	9:38:07	0.008
4/24/2009	9:39:07	0.009

4/24/2009	9:40:07	0.008
4/24/2009	9:41:07	0.009
4/24/2009	9:42:07	0.008
4/24/2009	9:43:07	0.008
4/24/2009	9:44:07	0.007
4/24/2009	9:45:07	0.008
4/24/2009	9:46:07	0.008
4/24/2009	9:47:07	0.007
4/24/2009	9:48:07	0.007
4/24/2009	9:49:07	0.008
4/24/2009	9:50:07	0.007
4/24/2009	9:51:07	0.007
4/24/2009	9:52:07	0.007
4/24/2009	9:53:07	0.008
4/24/2009	9:54:07	0.007
4/24/2009	9:55:07	0.007
4/24/2009	9:56:07	0.007
4/24/2009	9:57:07	0.008
4/24/2009	9:58:07	800.0
4/24/2009	9:59:07	0.007
4/24/2009	10:00:07	0.007
4/24/2009	10:01:07	0.008
4/24/2009	10:02:07	0.007
4/24/2009	10:03:07	0.008
4/24/2009	10:04:07	0.007
4/24/2009	10:05:07	0.007
4/24/2009	10:06:07	0.007
4/24/2009	10:07:07	0.006
4/24/2009	10:08:07	0.007
4/24/2009	10:09:07	0.007
4/24/2009	10:10:07	0.01
4/24/2009	10:11:07	0.008
4/24/2009	10:12:07	0.008
4/24/2009	10:13:07	0.008
4/24/2009	10:14:07	0.007
4/24/2009	10:15:07	0.007
4/24/2009	10:16:07	0.006
4/24/2009	10:17:07	0.007
4/24/2009	10:18:07	0.008
4/24/2009	10:19:07	0.007
4/24/2009	10:20:07	0.007
4/24/2009	10:21:07	0.007
4/24/2009	10:22:07	0.007
4/24/2009	10:23:07	0.008
4/24/2009	10:24:07	0.007

4/24/2009	10:25:07	0.006
4/24/2009	10:26:07	0.006
4/24/2009	10:27:07	0.008
4/24/2009	10:28:07	0.006
4/24/2009	10:29:07	0.007
4/24/2009	10:30:07	0.007
4/24/2009	10:31:07	0.007
4/24/2009	10:32:07	0.007
4/24/2009	10:33:07	0.006
4/24/2009	10:34:07	0.006
4/24/2009	10:35:07	0.007
4/24/2009	10:36:07	0.006
4/24/2009	10:37:07	0.007
4/24/2009	10:38:07	0.006
4/24/2009	10:39:07	0.006
4/24/2009	10:40:07	0.006
4/24/2009	10:41:07	0.007
4/24/2009	10:42:07	0.006
4/24/2009	10:43:07	0.007
4/24/2009	10:44:07	0.006
4/24/2009	10:45:07	0.006
4/24/2009	10:46:07	0.007
4/24/2009	10:47:07	0.008
4/24/2009	10:48:07	0.008
4/24/2009	10:49:07	0.007
4/24/2009	10:50:07	0.007
4/24/2009	10:51:07	0.007
4/24/2009	10:52:07	0.008
4/24/2009	10:53:07	0.007
4/24/2009	10:54:07	0.007
4/24/2009	10:55:07	0.007
4/24/2009	10:56:07	0.008
4/24/2009	10:57:07	0.007
4/24/2009	10:58:07	0.007
4/24/2009	10:59:07	0.008
4/24/2009	11:00:07	0.008
4/24/2009	11:01:07	0.007
4/24/2009	11:02:07	0.01
4/24/2009	11:03:07	0.007
4/24/2009	11:04:07	0.008
4/24/2009	11:05:07	0.009
4/24/2009	11:06:07	0.008
4/24/2009	11:07:07	0.008
4/24/2009	11:08:07	0.007
4/24/2009	11:09:07	0.009

4/24/2009	11:10:07	0.008
4/24/2009	11:11:07	0.008
4/24/2009	11:12:07	0.007
4/24/2009	11:13:07	0.008
4/24/2009	11:14:07	0.007
4/24/2009	11:15:07	0.008
4/24/2009	11:16:07	0.007
4/24/2009	11:17:07	0.007
4/24/2009	11:18:07	0.007
4/24/2009	11:19:07	0.007
4/24/2009	11:20:07	0.007
4/24/2009	11:21:07	0.007
4/24/2009	11:22:07	0.007
4/24/2009	11:23:07	0.007
4/24/2009	11:24:07	0.008
4/24/2009	11:25:07	0.008
4/24/2009	11:26:07	0.009
4/24/2009	11:27:07	0.007
4/24/2009	11:28:07	0.008
4/24/2009	11:29:07	0.007
4/24/2009	11:30:07	0.007
4/24/2009	11:31:07	0.006
4/24/2009	11:32:07	0.006
4/24/2009	11:33:07	0.006
4/24/2009	11:34:07	0.006
4/24/2009	11:35:07	0.007
4/24/2009	11:36:07	0.007
4/24/2009	11:37:07	0.007
4/24/2009	11:38:07	0.008
4/24/2009	11:39:07	0.007
4/24/2009	11:40:07	0.007
4/24/2009	11:41:07	0.024

TrakPro Version 4.10 ASCII Data File

Model: Dust Trak Model Number: 8520 Serial Number: 85202243

Test ID: 2

Test Abbreviation: Start Date: 4/24/2009 Start Time: 11:44:23

Duration (dd:hh:mm:ss): 0:04:56:00

Time constant (seconds): 10 Log Interval (mm:ss): 1:00 Number of points: 296

Notes: Downwind

Statistics

Channel: Aerosol
Units: mg/m3
Average: 0.009
Minimum: 0.006

Time of Minimum: 11:47:23 Date of Minimum: 4/24/2009

Maximum: 0.019

Time of Maximum: 15:24:23 Date of Maximum: 4/24/2009

Calibration

Sensor: Aerosol Cal. Date: 4/13/2009

Date (mm/dd/yyyy)	Time (hh:mm:ss)	Aerosol (mg/m ³)
4/24/2009	11:45:23	0.007
4/24/2009	11:46:23	0.008
4/24/2009	11:47:23	0.006
4/24/2009	11:48:23	0.006
4/24/2009	11:49:23	0.01
4/24/2009	11:50:23	0.007
4/24/2009	11:51:23	0.007
4/24/2009	11:52:23	0.007
4/24/2009	11:53:23	0.006
4/24/2009	11:54:23	0.006
4/24/2009	11:55:23	0.006
4/24/2009	11:56:23	0.007
4/24/2009	11:57:23	0.007
4/24/2009	11:58:23	0.006
4/24/2009	11:59:23	0.008
4/24/2009	12:00:23	0.007
4/24/2009	12:01:23	0.007
4/24/2009	12:02:23	0.006
4/24/2009	12:03:23	0.007
4/24/2009	12:04:23	0.006
4/24/2009	12:05:23	0.006
4/24/2009	12:06:23	0.006
4/24/2009	12:07:23	0.006
4/24/2009	12:08:23	0.006
4/24/2009	12:09:23	0.006
4/24/2009	12:10:23	0.006

4/24/2009	12:11:23	0.007
4/24/2009	12:12:23	0.007
4/24/2009	12:13:23	0.007
4/24/2009	12:14:23	0.013
4/24/2009	12:15:23	0.011
4/24/2009	12:16:23	0.008
4/24/2009	12:17:23	0.007
4/24/2009	12:18:23	0.006
4/24/2009	12:19:23	0.007
4/24/2009	12:20:23	0.007
4/24/2009	12:21:23	0.007
4/24/2009	12:22:23	0.007
4/24/2009	12:23:23	0.006
4/24/2009	12:24:23	0.007
4/24/2009	12:25:23	0.006
4/24/2009	12:26:23	0.007
4/24/2009	12:27:23	0.007
4/24/2009	12:28:23	0.008
4/24/2009	12:29:23	0.007
4/24/2009	12:30:23	0.006
4/24/2009	12:31:23	0.007
4/24/2009	12:32:23	0.007
4/24/2009	12:33:23	0.007
4/24/2009	12:34:23	0.007
4/24/2009	12:35:23	0.007
4/24/2009	12:36:23	0.007
4/24/2009	12:37:23	0.007
4/24/2009	12:38:23	0.007
4/24/2009	12:39:23	0.007
4/24/2009	12:40:23	0.007
4/24/2009	12:41:23	0.007
4/24/2009	12:42:23	0.007
4/24/2009	12:43:23	0.007
4/24/2009	12:44:23	0.007
4/24/2009	12:45:23	0.007
4/24/2009	12:46:23	0.007
4/24/2009	12:47:23	0.007
4/24/2009	12:48:23	0.006
4/24/2009	12:49:23	0.007
4/24/2009	12:50:23	0.007
4/24/2009	12:51:23	0.008
4/24/2009	12:52:23	0.007
4/24/2009	12:53:23	0.007
4/24/2009	12:54:23	0.007
4/24/2009	12:55:23	0.007

4/24/2009	12:56:23	0.007
4/24/2009	12:57:23	0.007
4/24/2009	12:58:23	0.007
4/24/2009	12:59:23	0.007
4/24/2009	13:00:23	0.007
4/24/2009	13:01:23	0.007
4/24/2009	13:02:23	0.007
4/24/2009	13:03:23	0.007
4/24/2009	13:04:23	0.007
4/24/2009	13:05:23	0.006
4/24/2009	13:06:23	0.006
4/24/2009	13:07:23	0.007
4/24/2009	13:08:23	0.007
4/24/2009	13:09:23	0.007
4/24/2009	13:10:23	0.006
4/24/2009	13:11:23	0.006
4/24/2009	13:12:23	0.007
4/24/2009	13:13:23	0.007
4/24/2009	13:14:23	0.006
4/24/2009	13:15:23	0.007
4/24/2009	13:16:23	0.006
4/24/2009	13:17:23	0.007
4/24/2009	13:18:23	0.007
4/24/2009	13:19:23	0.006
4/24/2009	13:20:23	0.007
4/24/2009	13:21:23	0.007
4/24/2009	13:22:23	0.006
4/24/2009	13:23:23	0.007
4/24/2009	13:24:23	0.007
4/24/2009	13:25:23	0.009
4/24/2009	13:26:23	0.007
4/24/2009	13:27:23	0.007
4/24/2009	13:28:23	0.007
4/24/2009	13:29:23	0.006
4/24/2009	13:30:23	0.007
4/24/2009	13:31:23	0.006
4/24/2009	13:32:23	0.006
4/24/2009	13:33:23	0.007
4/24/2009	13:34:23	0.007
4/24/2009	13:35:23	0.006
4/24/2009	13:36:23	0.008
4/24/2009	13:37:23	0.009
4/24/2009	13:38:23	0.006
4/24/2009	13:39:23	0.006
4/24/2009	13:40:23	0.007

4/24/2009	13:41:23	0.007
4/24/2009	13:42:23	0.013
4/24/2009	13:43:23	0.015
4/24/2009	13:44:23	0.014
4/24/2009	13:45:23	0.007
4/24/2009	13:46:23	800.0
4/24/2009	13:47:23	0.008
4/24/2009	13:48:23	0.007
4/24/2009	13:49:23	0.007
4/24/2009	13:50:23	0.007
4/24/2009	13:51:23	0.008
4/24/2009	13:52:23	0.007
4/24/2009	13:53:23	0.009
4/24/2009	13:54:23	0.007
4/24/2009	13:55:23	0.007
4/24/2009	13:56:23	0.007
4/24/2009	13:57:23	0.007
4/24/2009	13:58:23	0.01
4/24/2009	13:59:23	0.01
4/24/2009	14:00:23	0.008
4/24/2009	14:01:23	0.009
4/24/2009	14:02:23	0.008
4/24/2009	14:03:23	0.007
4/24/2009	14:04:23	0.008
4/24/2009	14:05:23	0.006
4/24/2009	14:06:23	0.008
4/24/2009	14:07:23	0.008
4/24/2009	14:08:23	0.007
4/24/2009	14:09:23	0.009
4/24/2009	14:10:23	0.01
4/24/2009	14:11:23	0.007
4/24/2009	14:12:23	0.008
4/24/2009	14:13:23	0.009
4/24/2009	14:14:23	0.007
4/24/2009	14:15:23	0.007
4/24/2009	14:16:23	0.009
4/24/2009	14:17:23	0.008
4/24/2009	14:18:23	0.009
4/24/2009	14:19:23	0.008
4/24/2009	14:20:23	0.008
4/24/2009	14:21:23	0.01
4/24/2009	14:22:23	0.011
4/24/2009	14:23:23	0.01
4/24/2009	14:24:23	0.01
4/24/2009	14:25:23	0.009

4/24/2009	14:26:23	0.009
4/24/2009	14:27:23	0.012
4/24/2009	14:28:23	0.012
4/24/2009	14:29:23	0.01
4/24/2009	14:30:23	0.011
4/24/2009	14:31:23	0.009
4/24/2009	14:32:23	0.009
4/24/2009	14:33:23	0.009
4/24/2009	14:34:23	0.009
4/24/2009	14:35:23	0.009
4/24/2009	14:36:23	0.009
4/24/2009	14:37:23	0.01
4/24/2009	14:38:23	0.01
4/24/2009	14:39:23	0.009
4/24/2009	14:40:23	0.009
4/24/2009	14:41:23	0.009
4/24/2009	14:42:23	0.009
4/24/2009	14:43:23	0.01
4/24/2009	14:44:23	0.008
4/24/2009	14:45:23	0.01
4/24/2009	14:46:23	0.01
4/24/2009	14:47:23	0.01
4/24/2009	14:48:23	0.01
4/24/2009	14:49:23	0.01
4/24/2009	14:50:23	0.011
4/24/2009	14:51:23	0.009
4/24/2009	14:52:23	0.014
4/24/2009	14:53:23	0.012
4/24/2009	14:54:23	0.009
4/24/2009	14:55:23	0.01
4/24/2009	14:56:23	0.008
4/24/2009	14:57:23	0.009
4/24/2009	14:58:23	0.01
4/24/2009	14:59:23	0.009
4/24/2009	15:00:23	0.009
4/24/2009	15:01:23	0.015
4/24/2009	15:02:23	0.008
4/24/2009	15:03:23	0.011
4/24/2009	15:04:23	0.009
4/24/2009	15:05:23	0.012
4/24/2009	15:06:23	0.008
4/24/2009	15:07:23	0.008
4/24/2009	15:08:23	0.009
4/24/2009	15:09:23	0.008
4/24/2009	15:10:23	0.008

4/24/2009	15:11:23	0.009
4/24/2009	15:12:23	0.009
4/24/2009	15:13:23	0.01
4/24/2009	15:14:23	0.008
4/24/2009	15:15:23	0.01
4/24/2009	15:16:23	0.01
4/24/2009	15:17:23	0.009
4/24/2009	15:18:23	0.009
4/24/2009	15:19:23	0.01
4/24/2009	15:20:23	0.01
4/24/2009	15:21:23	0.009
4/24/2009	15:22:23	0.012
4/24/2009	15:23:23	0.012
4/24/2009	15:24:23	0.019
4/24/2009	15:25:23	0.014
4/24/2009	15:26:23	0.014
4/24/2009	15:27:23	0.013
4/24/2009	15:28:23	0.01
4/24/2009	15:29:23	0.011
4/24/2009	15:30:23	0.013
4/24/2009	15:31:23	0.01
4/24/2009	15:32:23	0.012
4/24/2009	15:33:23	0.01
4/24/2009	15:34:23	0.009
4/24/2009	15:35:23	0.009
4/24/2009	15:36:23	0.009
4/24/2009	15:37:23	0.01
4/24/2009	15:38:23	0.012
4/24/2009	15:39:23	0.012
4/24/2009	15:40:23	0.012
4/24/2009	15:41:23	0.017
4/24/2009	15:42:23	0.011
4/24/2009	15:43:23	0.01
4/24/2009	15:44:23	0.009
4/24/2009	15:45:23	0.009
4/24/2009	15:46:23	0.009
4/24/2009	15:47:23	0.014
4/24/2009	15:48:23	0.01
4/24/2009	15:49:23	0.018
4/24/2009	15:50:23	0.009
4/24/2009	15:51:23	0.009
4/24/2009	15:52:23	0.009
4/24/2009	15:53:23	0.011
4/24/2009	15:54:23	0.011
4/24/2009	15:55:23	0.01

4/24/2009	15:56:23	0.011
4/24/2009	15:57:23	0.011
4/24/2009	15:58:23	0.009
4/24/2009	15:59:23	0.009
4/24/2009	16:00:23	0.009
4/24/2009	16:01:23	0.009
4/24/2009	16:02:23	0.01
4/24/2009	16:03:23	0.011
4/24/2009	16:04:23	0.009
4/24/2009	16:05:23	0.009
4/24/2009	16:06:23	0.009
4/24/2009	16:07:23	0.009
4/24/2009	16:08:23	0.01
4/24/2009	16:09:23	0.011
4/24/2009	16:10:23	0.009
4/24/2009	16:11:23	0.01
4/24/2009	16:12:23	0.009
4/24/2009	16:13:23	0.009
4/24/2009	16:14:23	0.009
4/24/2009	16:15:23	0.01
4/24/2009	16:16:23	0.009
4/24/2009	16:17:23	0.009
4/24/2009	16:18:23	0.011
4/24/2009	16:19:23	0.012
4/24/2009	16:20:23	0.013
4/24/2009	16:21:23	0.017
4/24/2009	16:22:23	0.017
4/24/2009	16:23:23	0.012
4/24/2009	16:24:23	0.011
4/24/2009	16:25:23	0.009
4/24/2009	16:26:23	0.01
4/24/2009	16:27:23	0.016
4/24/2009	16:28:23	0.013
4/24/2009	16:29:23	0.012
4/24/2009	16:30:23	0.011
4/24/2009	16:31:23	0.012
4/24/2009	16:32:23	0.011
4/24/2009	16:33:23	0.01
4/24/2009	16:34:23	0.011
4/24/2009	16:35:23	0.012
4/24/2009	16:36:23	0.011
4/24/2009	16:37:23	0.01
4/24/2009	16:38:23	0.012
4/24/2009	16:39:23	0.013
4/24/2009	16:40:23	0.015

TrakPro Version 4.10 ASCII Data File

Model: Dust Trak Model Number: 8520 Serial Number: 85202243

Test ID: 1

Test Abbreviation: Start Date: 4/24/2009 Start Time: 7:55:07

Duration (dd:hh:mm:ss): 0:03:46:00

Time constant (seconds): 10 Log Interval (mm:ss): 1:00 Number of points: 226 Notes: Downwind

Statistics

Channel: Aerosol Units: mg/m3 Average: 0.009 Minimum: 0.006

Time of Minimum: 10:07:07 Date of Minimum: 4/24/2009

Maximum: 0.063

Time of Maximum: 8:55:07 Date of Maximum: 4/24/2009

Calibration

Sensor: Aerosol Cal. Date: 4/13/2009

Time (hh:mm:ss)	Aerosol (mg/m ³)
7:56:07	0.01
7:57:07	0.009
7:58:07	0.009
7:59:07	0.01
8:00:07	0.009
8:01:07	0.01
8:02:07	0.01
8:03:07	0.011
8:04:07	0.01
8:05:07	0.009
8:06:07	0.008
8:07:07	0.01
8:08:07	0.01
8:09:07	0.012
	7:56:07 7:57:07 7:58:07 7:59:07 8:00:07 8:01:07 8:02:07 8:03:07 8:04:07 8:05:07 8:06:07 8:07:07

4/24/2009	8:10:07	0.013
4/24/2009	8:11:07	0.01
4/24/2009	8:12:07	0.01
4/24/2009	8:13:07	0.01
4/24/2009	8:14:07	0.012
4/24/2009	8:15:07	0.01
4/24/2009	8:16:07	0.01
4/24/2009	8:17:07	0.01
4/24/2009	8:18:07	0.01
4/24/2009	8:19:07	0.047
4/24/2009	8:20:07	0.011
4/24/2009	8:21:07	0.01
4/24/2009	8:22:07	0.013
4/24/2009	8:23:07	0.011
4/24/2009	8:24:07	0.01
4/24/2009	8:25:07	0.01
4/24/2009	8:26:07	0.011
4/24/2009	8:27:07	0.011
4/24/2009	8:28:07	0.01
4/24/2009	8:29:07	0.015
4/24/2009	8:30:07	0.011
4/24/2009	8:31:07	0.011
4/24/2009	8:32:07	0.015
4/24/2009	8:33:07	0.012
4/24/2009	8:34:07	0.01
4/24/2009	8:35:07	0.012
4/24/2009	8:36:07	0.01
4/24/2009	8:37:07	0.011
4/24/2009	8:38:07	0.01
4/24/2009	8:39:07	0.011
4/24/2009	8:40:07	0.011
4/24/2009	8:41:07	0.01
4/24/2009	8:42:07	0.01
4/24/2009	8:43:07	0.01
4/24/2009	8:44:07	0.011
4/24/2009	8:45:07	0.011
4/24/2009	8:46:07	0.011
4/24/2009	8:47:07	0.011
4/24/2009	8:48:07	0.011
4/24/2009	8:49:07	0.01
4/24/2009	8:50:07	0.01
4/24/2009	8:51:07	0.011
4/24/2009	8:52:07	0.015
4/24/2009	8:53:07	0.01
4/24/2009	8:54:07	0.012

4/24/2009	8:55:07	0.063
4/24/2009	8:56:07	0.011
4/24/2009	8:57:07	0.01
4/24/2009	8:58:07	0.011
4/24/2009	8:59:07	0.011
4/24/2009	9:00:07	0.01
4/24/2009	9:01:07	0.01
4/24/2009	9:02:07	0.01
4/24/2009	9:03:07	0.009
4/24/2009	9:04:07	0.01
4/24/2009	9:05:07	0.012
4/24/2009	9:06:07	0.012
4/24/2009	9:07:07	0.01
4/24/2009	9:08:07	0.01
4/24/2009	9:09:07	0.01
4/24/2009	9:10:07	0.009
4/24/2009	9:11:07	0.009
4/24/2009	9:12:07	0.009
4/24/2009	9:13:07	0.009
4/24/2009	9:14:07	0.009
4/24/2009	9:15:07	0.009
4/24/2009	9:16:07	0.009
4/24/2009	9:17:07	0.009
4/24/2009	9:18:07	0.009
4/24/2009	9:19:07	0.008
4/24/2009	9:20:07	0.009
4/24/2009	9:21:07	0.009
4/24/2009	9:22:07	0.01
4/24/2009	9:23:07	0.009
4/24/2009	9:24:07	0.008
4/24/2009	9:25:07	0.009
4/24/2009	9:26:07	0.008
4/24/2009	9:27:07	0.008
4/24/2009	9:28:07	0.009
4/24/2009	9:29:07	0.009
4/24/2009	9:30:07	0.009
4/24/2009	9:31:07	0.008
4/24/2009	9:32:07	0.009
4/24/2009	9:33:07	0.009
4/24/2009	9:34:07	0.008
4/24/2009	9:35:07	0.008
4/24/2009	9:36:07	0.009
4/24/2009	9:37:07	0.009
4/24/2009	9:38:07	0.008
4/24/2009	9:39:07	0.009

4/24/2009	9:40:07	0.008
4/24/2009	9:41:07	0.009
4/24/2009	9:42:07	0.008
4/24/2009	9:43:07	0.008
4/24/2009	9:44:07	0.007
4/24/2009	9:45:07	0.008
4/24/2009	9:46:07	0.008
4/24/2009	9:47:07	0.007
4/24/2009	9:48:07	0.007
4/24/2009	9:49:07	0.008
4/24/2009	9:50:07	0.007
4/24/2009	9:51:07	0.007
4/24/2009	9:52:07	0.007
4/24/2009	9:53:07	0.008
4/24/2009	9:54:07	0.007
4/24/2009	9:55:07	0.007
4/24/2009	9:56:07	0.007
4/24/2009	9:57:07	0.008
4/24/2009	9:58:07	0.008
4/24/2009	9:59:07	0.007
4/24/2009	10:00:07	0.007
4/24/2009	10:01:07	0.008
4/24/2009	10:02:07	0.007
4/24/2009	10:03:07	0.008
4/24/2009	10:04:07	0.007
4/24/2009	10:05:07	0.007
4/24/2009	10:06:07	0.007
4/24/2009	10:07:07	0.006
4/24/2009	10:08:07	0.007
4/24/2009	10:09:07	0.007
4/24/2009	10:10:07	0.01
4/24/2009	10:11:07	0.008
4/24/2009	10:12:07	0.008
4/24/2009	10:13:07	0.008
4/24/2009	10:14:07	0.007
4/24/2009	• 10:15:07	0.007
4/24/2009	10:16:07	0.006
4/24/2009	10:17:07	0.007
4/24/2009	10:18:07	0.008
4/24/2009	10:19:07	0.007
4/24/2009	10:20:07	0.007
4/24/2009	10:21:07	0.007
4/24/2009	10:22:07	0.007
4/24/2009	10:23:07	0.008
4/24/2009	10:24:07	0.007

4/24/2009	10:25:07	0.006
4/24/2009	10:26:07	0.006
4/24/2009	10:27:07	0.008
4/24/2009	10:28:07	0.006
4/24/2009	10:29:07	0.007
4/24/2009	10:30:07	0.007
4/24/2009	10:31:07	0.007
4/24/2009	10:32:07	0.007
4/24/2009	10:33:07	0.006
4/24/2009	10:34:07	0.006
4/24/2009	10:35:07	0.007
4/24/2009	10:36:07	0.006
4/24/2009	10:37:07	0.007
4/24/2009	10:38:07	0.006
4/24/2009	10:39:07	0.006
4/24/2009	10:40:07	0.006
4/24/2009	10:41:07	0.007
4/24/2009	10:42:07	0.006
4/24/2009	10:43:07	0.007
4/24/2009	10:44:07	0.006
4/24/2009	10:45:07	0.006
4/24/2009	10:46:07	0.007
4/24/2009	10:47:07	0.008
4/24/2009	10:48:07	0.008
4/24/2009	10:49:07	0.007
4/24/2009	10:50:07	0.007
4/24/2009	10:51:07	0.007
4/24/2009	10:52:07	0.008
4/24/2009	10:53:07	0.007
4/24/2009	10:54:07	0.007
4/24/2009	10:55:07	0.007
4/24/2009	10:56:07	0.008
4/24/2009	10:57:07	0.007
4/24/2009	10:58:07	0.007
4/24/2009	10:59:07	0.008
4/24/2009	11:00:07	0.008
4/24/2009	11:01:07	0.007
4/24/2009	11:02:07	0.01
4/24/2009	11:03:07	0.007
4/24/2009	11:04:07	0.008
4/24/2009	11:05:07	0.009
4/24/2009	11:06:07	0.008
4/24/2009	11:07:07	0.008
4/24/2009	11:08:07	0.007
4/24/2009	11:09:07	0.009

4/24/20	009	11:10:07	0.008
4/24/20	009	11:11:07	0.008
4/24/20	009	11:12:07	0.007
4/24/20	009	11:13:07	0.008
4/24/20	009	11:14:07	0.007
4/24/20	009	11:15:07	0.008
4/24/20	009	11:16:07	0.007
4/24/20	009	11:17:07	0.007
4/24/20	009	11:18:07	0.007
4/24/20	009	11:19:07	0.007
4/24/20	009	11:20:07	0.007
4/24/20	009	11:21:07	0.007
4/24/20	009	11:22:07	0.007
4/24/20	009	11:23:07	0.007
4/24/20	009	11:24:07	0.008
4/24/20	009	11:25:07	0.008
4/24/2	009	11:26:07	0.009
4/24/2	009	11:27:07	0.007
4/24/2	009	11:28:07	0.008
4/24/2	009	11:29:07	0.007
4/24/2	009	11:30:07	0.007
4/24/2	009	11:31:07	0.006
4/24/2	009	11:32:07	0.006
4/24/2	009	11:33:07	0.006
4/24/2	009	11:34:07	0.006
4/24/2		11:35:07	0.007
4/24/2		11:36:07	0.007
4/24/2		11:37:07	0.007
4/24/2		11:38:07	0.008
4/24/2		11:39:07	0.007
4/24/2		11:40:07	0.007
4/24/2	009	11:41:07	0.024

Model: Dust Trak Model Number: 8520 Serial Number: 85202243

Test ID: 2

Test Abbreviation: Start Date: 4/24/2009 Start Time: 11:44:23

Duration (dd:hh:mm:ss): 0:04:56:00

Time constant (seconds): 10 Log Interval (mm:ss): 1:00 Number of points: 296

Notes: Downwind

Statistics

Channel: Aerosol Units: mg/m³

Average: 0.009 Minimum: 0.006

Time of Minimum: 11:47:23 Date of Minimum: 4/24/2009

Maximum: 0.019

Time of Maximum: 15:24:23 Date of Maximum: 4/24/2009

Calibration

Sensor: Aerosol Cal. Date: 4/13/2009

Date (mm/dd/yyyy)	Time (hh:mm:ss)	Aerosol (mg/m³)
4/24/2009	11:45:23	0.007
4/24/2009	11:46:23	0.008
4/24/2009	11:47:23	0.006
4/24/2009	11:48:23	0.006
4/24/2009	11:49:23	0.01
4/24/2009	11:50:23	0.007
4/24/2009	11:51:23	0.007
4/24/2009	11:52:23	0.007
4/24/2009	11:53:23	0.006
4/24/2009	11:54:23	0.006
4/24/2009	11:55:23	0.006
4/24/2009	11:56:23	0.007
4/24/2009	11:57:23	0.007
4/24/2009	11:58:23	0.006
4/24/2009	11:59:23	0.008
4/24/2009	12:00:23	0.007
4/24/2009	12:01:23	0.007
4/24/2009	12:02:23	0.006
4/24/2009	12:03:23	0.007
4/24/2009	12:04:23	0.006
4/24/2009	12:05:23	0.006
4/24/2009	12:06:23	0.006
4/24/2009	12:07:23	0.006
4/24/2009	12:08:23	0.006
4/24/2009	12:09:23	0.006
4/24/2009	12:10:23	0.006

4/24/2009	12:11:23	0.007
4/24/2009	12:12:23	0.007
4/24/2009	12:13:23	0.007
4/24/2009	12:14:23	0.013
4/24/2009	12:15:23	0.011
4/24/2009	12:16:23	0.008
4/24/2009	12:17:23	0.007
4/24/2009	12:18:23	0.006
4/24/2009	12:19:23	0.007
4/24/2009	12:20:23	0.007
4/24/2009	12:21:23	0.007
4/24/2009	12:22:23	0.007
4/24/2009	12:23:23	0.006
4/24/2009	12:24:23	0.007
4/24/2009	12:25:23	0.006
4/24/2009	12:26:23	0.007
4/24/2009	12:27:23	0.007
4/24/2009	12:28:23	0.008
4/24/2009	12:29:23	0.007
4/24/2009	12:30:23	0.006
4/24/2009	12:31:23	0.007
4/24/2009	12:32:23	0.007
4/24/2009	12:33:23	0.007
4/24/2009	12:34:23	0.007
4/24/2009	12:35:23	0.007
4/24/2009	12:36:23	0.007
4/24/2009	12:37:23	0.007
4/24/2009	12:38:23	0.007
4/24/2009	12:39:23	0.007
4/24/2009	12:40:23	0.007
4/24/2009	12:41:23	0.007
4/24/2009	12:42:23	0.007
4/24/2009	12:43:23	0.007
4/24/2009	12:44:23	0.007
4/24/2009	12:45:23	0.007
4/24/2009	12:46:23	0.007
4/24/2009	12:47:23	0.007
4/24/2009	12:48:23	0.006
4/24/2009	12:49:23	0.007
4/24/2009	12:50:23	0.007
4/24/2009	12:51:23	0.008
4/24/2009	12:52:23	0.007
4/24/2009	12:53:23	0.007
4/24/2009	12:54:23	0.007
4/24/2009	12:55:23	0.007

4/24/2009	12:56:23	0.007
4/24/2009	12:57:23	0.007
4/24/2009	12:58:23	0.007
4/24/2009	12:59:23	0.007
4/24/2009	13:00:23	0.007
4/24/2009	13:01:23	0.007
4/24/2009	13:02:23	0.007
4/24/2009	13:03:23	0.007
4/24/2009	13:04:23	0.007
4/24/2009	13:05:23	0.006
4/24/2009	13:06:23	0.006
4/24/2009	13:07:23	0.007
4/24/2009	13:08:23	0.007
4/24/2009	13:09:23	0.007
4/24/2009	13:10:23	0.006
4/24/2009	13:11:23	0.006
4/24/2009	13:12:23	0.007
4/24/2009	13:13:23	0.007
4/24/2009	13:14:23	0.006
4/24/2009	13:15:23	0.007
4/24/2009	13:16:23	0.006
4/24/2009	13:17:23	0.007
4/24/2009	13:18:23	0.007
4/24/2009	13:19:23	0.006
4/24/2009	13:20:23	0.007
4/24/2009	13:21:23	0.007
4/24/2009	13:22:23	0.006
4/24/2009	13:23:23	0.007
4/24/2009	13:24:23	0.007
4/24/2009	13:25:23	0.009
4/24/2009	13:26:23	0.007
4/24/2009	13:27:23	0.007
4/24/2009	13:28:23	0.007
4/24/2009	13:29:23	0.006
4/24/2009	13:30:23	0.007
4/24/2009	13:31:23	0.006
4/24/2009	13:32:23	0.006
4/24/2009	13:33:23	0.007
4/24/2009	13:34:23	0.007
4/24/2009	13:35:23	0.006
4/24/2009	13:36:23	0.008
4/24/2009	13:37:23	0.009
4/24/2009	13:38:23	0.006
4/24/2009	13:39:23	0.006
4/24/2009	13:40:23	0.007

4/24/2009	13:41:23	0.007
4/24/2009	13:42:23	0.013
4/24/2009	13:43:23	0.015
4/24/2009	13:44:23	0.014
4/24/2009	13:45:23	0.007
4/24/2009	13:46:23	0.008
4/24/2009	13:47:23	0.008
4/24/2009	13:48:23	0.007
4/24/2009	13:49:23	0.007
4/24/2009	13:50:23	0.007
4/24/2009	13:51:23	0.008
4/24/2009	13:52:23	0.007
4/24/2009	13:53:23	0.009
4/24/2009	13:54:23	0.007
4/24/2009	13:55:23	0.007
4/24/2009	13:56:23	0.007
4/24/2009	13:57:23	0.007
4/24/2009	13:58:23	0.01
4/24/2009	13:59:23	0.01
4/24/2009	14:00:23	0.008
4/24/2009	14:01:23	0.009
4/24/2009	14:02:23	0.008
4/24/2009	14:03:23	0.007
4/24/2009	14:04:23	0.008
4/24/2009	14:05:23	0.006
4/24/2009	14:06:23	0.008
4/24/2009	14:07:23	0.008
4/24/2009	14:08:23	0.007
4/24/2009	14:09:23	0.009
4/24/2009	14:10:23	0.01
4/24/2009	14:11:23	0.007
4/24/2009	14:12:23	0.008
4/24/2009	14:13:23	0.009
4/24/2009	14:14:23	0.007
4/24/2009	14:15:23	0.007
4/24/2009	14:16:23	0.009
4/24/2009	14:17:23	0.008
4/24/2009	14:18:23	0.009
4/24/2009	14:19:23	0.008
4/24/2009	14:20:23	0.008
4/24/2009	14:21:23	0.01
4/24/2009	14:22:23	0.011
4/24/2009	14:23:23	0.01
4/24/2009	14:24:23	0.01
4/24/2009	14:25:23	0.009

4/24/2009	14:26:23	0.009
4/24/2009	14:27:23	0.012
4/24/2009	14:28:23	0.012
4/24/2009	14:29:23	0.01
4/24/2009	14:30:23	0.011
4/24/2009	14:31:23	0.009
4/24/2009	14:32:23	0.009
4/24/2009	14:33:23	0.009
4/24/2009	14:34:23	0.009
4/24/2009	14:35:23	0.009
4/24/2009	14:36:23	0.009
4/24/2009	14:37:23	0.01
4/24/2009	14:38:23	0.01
4/24/2009	14:39:23	0.009
4/24/2009	14:40:23	0.009
4/24/2009	14:41:23	0.009
4/24/2009	14:42:23	0.009
4/24/2009	14:43:23	0.01
4/24/2009	14:44:23	0.008
4/24/2009	14:45:23	0.01
4/24/2009	14:46:23	0.01
4/24/2009	14:47:23	0.01
4/24/2009	14:48:23	0.01
4/24/2009	14:49:23	0.01
4/24/2009	14:50:23	0.011
4/24/2009	14:51:23	0.009
4/24/2009	14:52:23	0.014
4/24/2009	14:53:23	0.012
4/24/2009	14:54:23	0.009
4/24/2009	14:55:23	0.01
4/24/2009	14:56:23	0.008
4/24/2009	14:57:23	0.009
4/24/2009	14:58:23	0.01
4/24/2009	14:59:23	0.009
4/24/2009	15:00:23	0.009
4/24/2009	15:01:23	0.015
4/24/2009	15:02:23	0.008
4/24/2009	15:03:23	0.011
4/24/2009	15:04:23	0.009
4/24/2009	15:05:23	0.012
4/24/2009	15:06:23	0.008
4/24/2009	15:07:23	0.008
4/24/2009	15:08:23	0.009
4/24/2009	15:09:23	0.008
4/24/2009	15:10:23	0.008

404000	17 11 02	0.000
4/24/2009	15:11:23	0.009
4/24/2009	15:12:23	0.009
4/24/2009	15:13:23	0.01
4/24/2009	15:14:23	0.008
4/24/2009	15:15:23	0.01
4/24/2009	15:16:23	0.01
4/24/2009	15:17:23	0.009
4/24/2009	15:18:23	0.009
4/24/2009	15:19:23	0.01
4/24/2009	15:20:23	0.01
4/24/2009	15:21:23	0.009
4/24/2009	15:22:23	0.012
4/24/2009	15:23:23	0.012
4/24/2009	15:24:23	0.019
4/24/2009	15:25:23	0.014
4/24/2009	15:26:23	0.014
4/24/2009	15:27:23	0.013
4/24/2009	15:28:23	0.01
4/24/2009	15:29:23	0.011
4/24/2009	15:30:23	0.013
4/24/2009	15:31:23	0.01
4/24/2009	15:32:23	0.012
4/24/2009	15:33:23	0.01
4/24/2009	15:34:23	0.009
4/24/2009	15:35:23	0.009
4/24/2009	15:36:23	0.009
4/24/2009	15:37:23	0.01
4/24/2009	15:38:23	0.012
4/24/2009	15:39:23	0.012
4/24/2009	15:40:23	0.012
4/24/2009	15:41:23	0.017
4/24/2009	15:42:23	0.011
4/24/2009	15:43:23	0.01
4/24/2009	15:44:23	0.009
4/24/2009	15:45:23	0.009
4/24/2009	15:46:23	0.009
4/24/2009	15:47:23	0.014
4/24/2009	15:48:23	0.01
4/24/2009	15:49:23	0.018
4/24/2009	15:50:23	0.009
4/24/2009	15:51:23	0.009
4/24/2009	15:52:23	0.009
4/24/2009	15:53:23	0.011
4/24/2009	15:54:23	0.011
4/24/2009	15:55:23	0.01
1 12412007	10.00.60	0.01

4/24/2009	15:56:23	0.011
4/24/2009	15:57:23	0.011
4/24/2009	15:58:23	0.009
4/24/2009	15:59:23	0.009
4/24/2009	16:00:23	0.009
4/24/2009	16:01:23	0.009
4/24/2009	16:02:23	0.01
4/24/2009	16:03:23	0.011
4/24/2009	16:04:23	0.009
4/24/2009	16:05:23	0.009
4/24/2009	16:06:23	0.009
4/24/2009	16:07:23	0.009
4/24/2009	16:08:23	0.01
4/24/2009	16:09:23	0.011
4/24/2009	16:10:23	0.009
4/24/2009	16:11:23	0.01
4/24/2009	16:12:23	0.009
4/24/2009	16:13:23	0.009
4/24/2009	16:14:23	0.009
4/24/2009	16:15:23	0.01
4/24/2009	16:16:23	0.009
4/24/2009	16:17:23	0.009
4/24/2009	16:18:23	0.011
4/24/2009	16:19:23	0.012
4/24/2009	16:20:23	0.013
4/24/2009	16:21:23	0.017
4/24/2009	16:22:23	0.017
4/24/2009	16:23:23	0.012
4/24/2009	16:24:23	0.011
4/24/2009	16:25:23	0.009
4/24/2009	16:26:23	0.01
4/24/2009	16:27:23	0.016
4/24/2009	16:28:23	0.013
4/24/2009	16:29:23	0.012
4/24/2009	16:30:23	0.011
4/24/2009	16:31:23	0.012
4/24/2009	16:32:23	0.011
4/24/2009	16:33:23	0.01
4/24/2009	16:34:23	0.011
4/24/2009	16:35:23	0.012
4/24/2009	16:36:23	0.011
4/24/2009	16:37:23	0.01
4/24/2009	16:38:23	0.012
4/24/2009	16:39:23	0.013
4/24/2009	16:40:23	0.015

pDR-1000 S/N: 00000

Tag Number: 03

Number of logged points: 329

Start time and date: 08:16:47 29-May

Elapsed time: 05:29:00 Logging period (sec): 60 Calibration Factor (%): 100

Max Display Concentration: 0.124 mg/m³ Time at maximum: 10:45:47 May 29 Max STEL Concentration: 0.071 mg/m³ Time at max STEL: 10:55:47 May 29 Overall Avg Conc: 0.016 mg/m³

Logged Data:

Logged Data.				
Point		Date	Time	Avg.(mg/m³)
	1	29-May	08:17:47	0.023
	2	29-May	08:18:47	0.024
	3	29-May	08:19:47	0.024
	4	29-May	08:20:47	0.022
	5	29-May	08:21:47	0.02
	6	29-May	08:22:47	0.023
	7	29-May	08:23:47	0.025
	8	29-May	08:24:47	0.021
	9	29-May	08:25:47	0.02
	10	29-May	08:26:47	0.025
	11	29-May	08:27:47	0.02
	12	29-May	08:28:47	0.024
	13	29-May	08:29:47	0.021
	14	29-May	08:30:47	0.02
	15	29-May	08:31:47	0.021
	16	29-May	08:32:47	0.023
	17	29-May	08:33:47	0.024
	18	29-May	08:34:47	0.022
	19	29-May	08:35:47	0.023
	20	29-May	08:36:47	0.021
	21	29-May	08:37:47	0.02
	22	29-May	08:38:47	0.023
	23	29-May	08:39:47	0.021
	24	29-May	08:40:47	0.025
	25	29-May	08:41:47	0.025
	26	29-May	08:42:47	0.023
	27	29-May	08:43:47	0.023
	28	29-May	08:44:47	0.025
	29	29-May	08:45:47	0.027
	30	29-May	08:46:47	0.025
	31	29-May	08:47:47	0.026

32	29-May	08:48:47	0.023
33	29-May	08:49:47	0.024
34	29-May	08:50:47	0.023
35	29-May	08:51:47	0.024
36	29-May	08:52:47	0.024
37	29-May	08:53:47	0.026
38	29-May	08:54:47	0.028
39	29-May	08:55:47	0.027
40	29-May	08:56:47	0.028
41	29-May	08:57:47	0.026
42	29-May	08:58:47	0.029
43	29-May	08:59:47	0.03
44	29-May	09:00:47	0.029
45	29-May	09:01:47	0.028
46	29-May	09:02:47	0.03
47	29-May	09:03:47	0.03
48	29-May	09:04:47	0.03
49	29-May	09:05:47	0.031
50	29-May	09:06:47	0.029
51	29-May	09:07:47	0.031
52	29-May	09:08:47	0.031
53	29-May	09:09:47	0.028
54	29-May	09:10:47	0.027
55	29-May	09:11:47	0.027
56	29-May	09:12:47	0.026
57	29-May	09:13:47	0.03
58	29-May	09:14:47	0.026
59	29-May	09:15:47	0.026
60	29-May	09:16:47	0.027
61	29-May	09:17:47	0.026
62	29-May	09:18:47	0.024
63	29-May		0.029
64	29-May		0.024
65	29-May		0.024
66	29-May		0.022
67	29-May		0.021
68	29-May		0.021
69	29-May		0.019
70	29-May		0.029
71	29-May		0.019
72	29-May		0.016
73	29-May		0.017
74	29-May		0.019
75	29-May		0.017
76	29-May	09:32:47	0.019

77	29-May	09:33:47	0.045
78	29-May	09:34:47	0.032
79	29-May	09:35:47	0.015
80	29-May	09:36:47	0.016
81	29-May	09:37:47	0.016
82	29-May	09:38:47	0.015
83	29-May	09:39:47	0.014
84	29-May	09:40:47	0.013
85	29-May	09:41:47	0.014
86	29-May	09:42:47	0.012
87	29-May	09:43:47	0.013
88	29-May	09:44:47	0.012
89	29-May	09:45:47	0.014
90	29-May	09:46:47	0.015
91	29-May	09:47:47	0.016
92	29-May	09:48:47	0.015
93	29-May	09:49:47	0.015
94	29-May	09:50:47	0.016
95	29-May	09:51:47	0.017
96	29-May	09:52:47	0.016
97	29-May	09:53:47	0.016
98	29-May	09:54:47	0.021
99	29-May	09:55:47	0.021
100	29-May	09:56:47	0.022
101	29-May	09:57:47	0.021
102	29-May	09:58:47	0.021
103	29-May	09:59:47	0.022
104	29-May	10:00:47	0.018
105	29-May	10:01:47	0.022
106	29-May	10:02:47	0.023
107	29-May	10:03:47	0.022
108	29-May	10:04:47	0.02
109	29-May	10:05:47	0.021
110	29-May	10:06:47	0.022
111	29-May	10:07:47	0.024
112	29-May	10:08:47	0.023
113	29-May	10:09:47	0.022
114	29-May		0.02
115	-	10:11:47	0.017
116	29-May	10:12:47	0.018
117	•	10:13:47	0.031
118	•	10:14:47	0.025
119	•	10:15:47	0.034
120	•	10:16:47	0.032
121	29-May	10:17:47	0.028

400	20 14 10.19.47	0.03
122	29-May 10:18:47	0.03
123	29-May 10:19:47 29-May 10:20:47	0.028
124		0.028
125	29-May 10:21:47	0.03
126	29-May 10:22:47	
127	29-May 10:23:47	0.027
128	29-May 10:24:47	0.027
129	29-May 10:25:47	0.026
130	29-May 10:26:47	0.027
131	29-May 10:27:47	0.031
132	29-May 10:28:47	0.027
133	29-May 10:29:47	0.031
134	29-May 10:30:47	0.034
135	29-May 10:31:47	0.032
136	29-May 10:32:47	0.029
137	29-May 10:33:47	0.032
138	29-May 10:34:47	0.032
139	29-May 10:35:47	0.026
140	29-May 10:36:47	0.034
141	29-May 10:37:47	0.04
142	29-May 10:38:47	0.038
143	29-May 10:39:47	0.047
144	29-May 10:40:47	0.045
145	29-May 10:41:47	0.05
146	29-May 10:42:47	0.053
147	29-May 10:43:47	0.064
148	29-May 10:44:47	0.062
149	29-May 10:45:47	0.105
150	29-May 10:46:47	0.087
151	29-May 10:47:47	0.082
152	29-May 10:48:47	0.075
153	29-May 10:49:47	0.072
154	29-May 10:50:47	0.064
155	29-May 10:51:47	0.073
156	29-May 10:52:47	0.074
157	29-May 10:53:47	0.062
158	29-May 10:54:47	0.074
159	29-May 10:55:47	0.067
160	29-May 10:56:47	0.058
161	29-May 10:57:47	0.045
162	29-May 10:58:47	0.049
163	29-May 10:59:47	0.042
164	29-May 11:00:47	0.041
165	29-May 11:01:47	0.034
166	29-May 11:02:47	0.029
	•	

167	29-May	11:03:47	0.027
168	29-May	11:04:47	0.02
169	29-May	11:05:47	0.02
170	29-May	11:06:47	0.019
171	29-May	11:07:47	0.019
172	29-May	11:08:47	0.017
173	29-May	11:09:47	0.019
174	29-May	11:10:47	0.014
175	29-May	11:11:47	0.013
176	29-May	11:12:47	0.013
177	29-May	11:13:47	0.01
178	29-May	11:14:47	0.007
179	29-May	11:15:47	0.007
180	29-May	11:16:47	0.002
181	29-May	11:17:47	0.001
182	29-May	11:18:47	0
183	29-May	11:19:47	0.003
184	29-May	11:20:47	0.005
185	29-May	11:21:47	0.002
186	29-May	11:22:47	0
187	29-May	11:23:47	0
188	29-May	11:24:47	0
189	29-May	11:25:47	0
190	29-May	11:26:47	0
191	29-May	11:27:47	O
192	29-May	11:28:47	0
193	29-May	11:29:47	O
194	29-May	11:30:47	0
195	29-May	11:31:47	0
196	29-May	11:32:47	0
197	29-May	11:33:47	0.001
198	29-May	11:34:47	0.001
199	29-May	11:35:47	0
200	29-May	11:36:47	0
201	29-May	11:37:47	0
202	29-May	11:38:47	0
203	29-May	11:39:47	0
204	29-May	11:40:47	0.001
205	29-May	11:41:47	0
206	29-May	11:42:47	0.001
207	29-May	11:43:47	0.003
208	29-May	11:44:47	0.004
209	29-May	11:45:47	0.005
210	29-May	11:46:47	0.006
211	29-May	11:47:47	0.007

212	29-May	11:48:47	0.008
213	29-May	11:49:47	0.009
214	29-May	11:50:47	0.011
215	29-May	11:51:47	0.004
216	29-May	11:52:47	0.002
217	29-May	11:53:47	0
218	29-May	11:54:47	0
219	29-May	11:55:47	0
220	29-May	11:56:47	0.001
221	29-May	11:57:47	0.001
222	29-May	11:58:47	0.004
223	29-May	11:59:47	0.004
224	29-May	12:00:47	0.009
225	29-May	12:01:47	0.008
226	29-May	12:02:47	0.012
227	29-May	12:03:47	0.014
228	29-May	12:04:47	0.005
229	29-May	12:05:47	0.006
230	29-May	12:06:47	0.002
231	29-May	12:07:47	0.002
232	29-May	12:08:47	0.005
233	29-May	12:09:47	0.007
234	29-May	12:10:47	0.004
235	29-May	12:11:47	0.001
236	29-May	12:12:47	0.001
237	29-May	12:13:47	0
238	29-May	12:14:47	0
239	29-May	12:15:47	0.002
240	29-May	12:16:47	0
241	29-May	12:17:47	0.001
242	29-May	12:18:47	0
243	29-May	12:19:47	0
244	29-May	12:20:47	0.001
245	29-May	12:21:47	0
246	29-May	12:22:47	0
247	29-May	12:23:47	0
248	29-May	12:24:47	0
249	29-May	12:25:47	0
250	29-May	12:26:47	0.001
251	29-May	12:27:47	0
252	29-May	12:28:47	0
253	29-May	12:29:47	0
254	29-May	12:30:47	0
255	29-May	12:31:47	0.001
256	29-May	12:32:47	0

257	29-May	12:33:47	0
258	29-May	12:34:47	0
259	29-May	12:35:47	0
260	29-May	12:36:47	0
261	29-May	12:37:47	0
262	29-May	12:38:47	0
263	29-May	12:39:47	0.001
264	29-May	12:40:47	0.001
265	29-May	12:41:47	0.001
266	29-May	12:42:47	0
267	29-May	12:43:47	0
268	29-May	12:44:47	0
269	29-May	12:45:47	0
270	29-May	12:46:47	0
271	29-May	12:47:47	0
272	29-May	12:48:47	0.001
273	29-May	12:49:47	0
274	29-May	12:50:47	0
275	29-May	12:51:47	0
276	29-May	12:52:47	0
277	29-May	12:53:47	0
278	29-May	12:54:47	0
279	29-May	12:55:47	0
280	29-May	12:56:47	0
281	29-May	12:57:47	0
282	29-May	12:58:47	0.001
283	29-May	12:59:47	0
284	29-May	13:00:47	0
285	29-May	13:01:47	0
286	29-May	13:02:47	0
287	29-May	13:03:47	0.001
288	29-May	13:04:47	0
289	29-May		0.002
290	•	13:06:47	0
291	29-May	13:07:47	0
292	29-May		0.001
293	•	13:09:47	0.001
294	29-May		0.003
295	•	13:11:47	0.003
296	29-May		0.005
297	29-May		0.004
298	•	13:14:47	0.004
299	•	13:15:47	0.005
300	•	13:16:47	0.003
301	29-May		0.006
~~ <u>1</u>	25 Iviay	13.17.77	0.000

302	29-May	13:18:47	0.007
303	29-May	13:19:47	0.006
304	29-May	13:20:47	0.01
305	29-May	13:21:47	0.011
306	29-May	13:22:47	0.012
307	29-May	13:23:47	0.012
308	29-May	13:24:47	0.014
309	29-May	13:25:47	0.016
310	29-May	13:26:47	0.015
311	29-May	13:27:47	0.019
312	29-May	13:28:47	0.019
313	29-May	13:29:47	0.021
314	29-May	13:30:47	0.018
315	29-May	13:31:47	0.018
316	29-May	13:32:47	0.019
317	29-May	13:33:47	0.021
318	29-May	13:34:47	0.02
319	29-May	13:35:47	0.021
320	29-May	13:36:47	0.019
321	29-May	13:37:47	0.018
322	29-May	13:38:47	0.019
323	29-May	13:39:47	0.019
324	29-May	13:40:47	0.018
325	29-May	13:41:47	0.018
326	29-May	13:42:47	0.017
327	29-May	13:43:47	0.016
328	29-May	13:44:47	0.016
329	29-May	13:45:47	0.019
3230300	0000000	00}	

00093230300000000000000

pDR-1000 S/N: 00000 Tag Number: 01

Number of logged points: 331

Start time and date: 07:06:55 29-May

Elapsed time: 05:31:00 Logging period (sec): 60 Calibration Factor (%): 100

Max Display Concentration: 0.026 mg/m³ Time at maximum: 12:38:31 May 29 Max STEL Concentration: 0.018 mg/m³ Time at max STEL: 08:03:55 May 29 Overall Avg Conc: 0.012 mg/m³

Logged Data:

-05500	·utu	•		
Point	[Date	Time	Avg.(mg/m³)
	1	29-May	07:07:55	0.017
	2	29-May	07:08:55	0.017
	3	29-May	07:09:55	0.017
	4	29-May	07:10:55	0.016
	5	29-May	07:11:55	0.015
	6	29-May	07:12:55	0.013
	7	29-May	07:13:55	0.013
	8	29-May	07:14:55	0.013
	9	29-May	07:15:55	0.012
	10	29-May	07:16:55	0.014
	11	29-May	07:17:55	0.013
;	12	29-May	07:18:55	0.013
:	13	29-May	07:19:55	0.013
	14	29-May	07:20:55	0.013
:	15	29-May	07:21:55	0.014
:	16	29-May	07:22:55	0.013
	17	29-May	07:23:55	0.012
:	18	29-May	07:24:55	0.011
:	19	29-May	07:25:55	0.012
2	20	29-May	07:26:55	0.014
:	21	29-May	07:27:55	0.012
7	22	29-May	07:28:55	0.011
2	23	29-May	07:29:55	0.012
2	24	29-May	07:30:55	0.012
2	25	29-May	07:31:55	0.013
:	26	29-May	07:32:55	0.012
2	27	29-May	07:33:55	0.013
2	28	29-May	07:34:55	0.016
2	29	29-May	07:35:55	0.014
3	30	29-May	07:36:55	0.016
3	31	29-May	07:37:55	0.017

32	29-May	07:38:55	0.016
33	29-May	07:39:55	0.016
34	29-May	07:40:55	0.016
35	29-May	07:41:55	0.016
36	29-May	07:42:55	0.015
37	29-May	07:43:55	0.013
38	29-May	07:44:55	0.014
39	29-May	07:44:55	0.014
39 40	•	07:46:55	0.013
40	29-May 29-May	07:40:55	0.013
	,	07:48:55	0.014
42	29-May	07:49:55	0.014
43	29-May	07:50:55	0.014
44 45	29-May	07:50:55	0.015
45	29-May	07:52:55	0.013
46	29-May		0.018
47	29-May	07:53:55 07:54:55	0.018
48	29-May		
49 50	29-May	07:55:55 07:56:55	0.018 0.018
50	29-May	-	0.018
51	29-May	07:57:55	
52	29-May	07:58:55	0.019
53	29-May	07:59:55	0.018
54	29-May	08:00:55	0.018 0.018
55	29-May	08:01:55	0.018
56	29-May	08:02:55	0.018
57	29-May	08:03:55 08:04:55	0.017
58	29-May		0.017
59	29-May	08:05:55	
60	29-May		0.017 0.018
61	29-May		
62	29-May		0.017
63	29-May		0.017 0.018
64	29-May		
65	29-May		0.016
66	29-May		0.017
67 68	29-May		0.017
68	29~May		0.017
69 70	29-May		0.017
70	29-May		0.017
71	29-May		0.017
72 72	29-May		0.016
73	29-May		0.017
74 75	29-May		0.016
75	29-May		0.016
76	29-May	08:22:55	0.015

29-May	08:23:55	0.016	
29-May	08:24:55	0.016	
29-May	08:25:55	0.016	
29-May	08:26:55	0.016	
29-May	08:27:55	0.015	
29-May	08:28:55	0.015	
29-May	08:29:55	0.015	
29-May	08:30:55	0.015	
29-May	08:31:55	0.015	
29-May	08:32:55	0.015	
29-May	08:33:55	0.015	
29-May	08:34:55	0.015	
29-May	08:35:55	0.015	•
29-May	08:36:55	0.015	
29-May	08:37:55	0.014	
29-May	08:38:55	0.015	
29-May	08:39:55	0.015	
29-May	08:40:55	0.015	
29-May	08:41:55	0.016	
29-May	08:42:55	0.015	
29-May	08:43:55	0.016	
29-May	08:44:55	0.016	
29-May	08:45:55	0.017	
29-May	08:46:55	0.017	
29-May	08:47:55	0.017	
29-May	08:48:55	0.016	
29-May	08:49:55	0.016	
29-May	08:50:55	0.016	
29-May	08:51:55	0.014	
29-May	08:52:55	0.015	
29-May	08:53:55	0.015	
29-May	08:54:55	0.016	
29-May	08:55:55	0.015	
29-May	08:56:55	0.015	
29-May	08:57:55	0.015	
29-May	08:58:55	0.015	
29-May	08:59:55	0.015	
29-May	09:00:55	0.015	
29-May	09:01:55	0.015	
29-May	09:02:55	0.015	
29-May	09:03:55	0.015	
29-May	09:04:55	0.016	
29-May	09:05:55	0.016	
29-May	09:06:55	0.016	
29-May	09:07:55	0.016	
	29-May 29-May	29-May 08:25:55 29-May 08:27:55 29-May 08:27:55 29-May 08:29:55 29-May 08:30:55 29-May 08:31:55 29-May 08:32:55 29-May 08:33:55 29-May 08:34:55 29-May 08:35:55 29-May 08:37:55 29-May 08:37:55 29-May 08:39:55 29-May 08:40:55 29-May 08:40:55 29-May 08:42:55 29-May 08:42:55 29-May 08:45:55	29-May 08:24:55

		00.00.55	0.015
122	29-May	09:08:55	0.015
123	29-May	09:09:55	0.015
124	29-May	09:10:55	0.016
125	29-May	09:11:55	0.015
126	29-May	09:12:55	0.015
127	29-May	09:13:55	0.014
128	29-May	09:14:55	0.015
129	29-May	09:15:55	0.014
130	29-May	09:16:55	0.014
131	29-May	09:17:55	0.015
132	29-May	09:18:55	0.014
133	29-May	09:19:55	0.014
134	29-May	09:20:55	0.014
135	29-May	09:21:55	0.013
136	29-May	09:22:55	0.014
137	29-May	09:23:55	0.013
138	29-May	09:24:55	0.013
139	29-May	09:25:55	0.013
140	29-May	09:26:55	0.012
141	29-May	09:27:55	0.012
142	29-May	09:28:55	0.011
143	29-May	09:29:55	0.011
144	29-May	09:30:55	0.013
145	29-May	09:31:55	0.012
146	29-May	09:32:55	0.01
147	29-May	09:33:55	0.011
148	29-May	09:34:55	0.012
149	29-May	09:35:55	0.013
150	29-May	09:36:55	0.014
151	29-May	09:37:55	0.012
152	29-May	09:38:55	0.015
153	29-May	09:39:55	0.014
154	29-May	09:40:55	0.014
155	29-May	09:41:55	0.012
156	29-May	09:42:55	0.011
157	29-May	09:43:55	0.013
158	29-May	09:44:55	0.011
159	29-May	09:45:55	0.009
160	29-May	09:46:55	0.012
161	29-May	09:47:55	0.009
162	29-May	09:48:55	0.008
163	29-May	09:49:55	0.006
164	29-May	09:50:55	0.006
165	29-May	09:51:55	0.004
166	29-May	09:52:55	0.003

167	29-May	09:53:55	0.002
168	29-May	09:54:55	0.001
169	29-May	09:55:55	0.003
170	29-May	09:56:55	0.004
171	29-May	09:57:55	0.003
172	29-May	09:58:55	0.004
173	29-May	09:59:55	0.003
174	29-May	10:00:55	0.004
175	29-May	10:01:55	0.003
176	29-May	10:02:55	0.006
177	29-May	10:03:55	0.007
178	29-May	10:04:55	0.006
179	29-May	10:05:55	0.005
180	29-May	10:06:55	0.005
181	29-May	10:07:55	0.005
182	29-May	10:08:55	0.007
183	29-May	10:09:55	0.007
184	29-May	10:10:55	0.008
185	29-May	10:11:55	0.008
186	29-May	10:12:55	0.008
187	29-May	10:13:55	0.008
188	29-May	10:14:55	0.008
189	29-May	10:15:55	0.007
190	29-May	10:16:55	0.009
191	29-May	10:17:55	0.009
192	29-May	10:18:55	0.007
193	29-May	10:19:55	0.008
194	29-May	10:20:55	0.007
195	29-May	10:21:55	0.008
196	29-May	10:22:55	0.01
197	29-May	10:23:55	0.01
198	29-May	10:24:55	0.01
199	29-May	10:25:55	0.009
200	29-May	10:26:55	0.01
201	29-May	10:27:55	0.008
202	29-May	10:28:55	0.009
203	29-May	10:29:55	0.008
204	29-May	10:30:55	0.007
205	29-May	10:31:55	0.007
206	29-May	10:32:55	0.006
207	29-May	10:33:55	0.007
208	29-May	10:34:55	0.006
209	29-May	10:35:55	0.006
210	29-May	10:36:55	0.007
211	29-May	10:37:55	0.007

212	29-May	10:38:55	0.006
213	29-May	10:39:55	0.005
214	29-May	10:40:55	0.003
215	29-May	10:41:55	0.003
216	29-May	10:42:55	0.003
217	29-May	10:43:55	0.003
218	29-May	10:44:55	0.003
219	29-May	10:45:55	0.002
220	29-May	10:46:55	0.002
221	29-May	10:47:55	0.003
222	29-May	10:47:55	0.003
223	29-May	10:49:55	0.003
224	29-May	10:50:55	0.004
225	29-May	10:51:55	0.006
	•	10:52:55	0.005
226	29-May	10:52:55	0.003
227	29-May	10:54:55	0.007
228	29-May	10:54:55	0.000
229	29-May		0.007
230	29-May	10:56:55	0.007
231	29-May	10:57:55	
232	29-May	10:58:55	0.007 0.005
233	29-May	10:59:55	
234	29-May	11:00:55	0.005
235	29-May	11:01:55	0.007
236	29-May	11:02:55	0.007
237	29-May		0.006
238	29-May		0.005
239	29-May		0.006
240	29-May		0.007
241	29-May	11:07:55	0.007
242	29-May		0.006
243	•	11:09:55	0.006
244		11:10:55	0.008
245	•	11:11:55	0.008
246		11:12:55	0.008
247	•	11:13:55	0.008
248	· ·	11:14:55	0.009
249		11:15:55	0.009
250	29-May	11:16:55	0.009
251	29-May	11:17:55	0.011
252	•	11:18:55	0.01
253	29-May	11:19:55	0.01
254	29-May	11:20:55	0.011
255	29-May	11:21:55	0.012
256	29-May	11:22:55	0.012

257	29-May	11:23:55	0.012
258	29-May	11:24:55	0.011
259	29-May	11:25:55	0.011
260	29-May	11:26:55	0.011
261	29-May	11:27:55	0.011
262	29-May	11:28:55	0.011
263	29-May	11:29:55	0.011
264	29-May	11:30:55	0.011
265	29-May	11:31:55	0.011
266	29-May	11:32:55	0.012
267	29-May	11:33:55	0.011
268	29-May	11:34:55	0.012
269	29-May	11:35:55	0.011
270	29-May	11:36:55	0.011
271	29-May	11:37:55	0.012
272	29-May	11:38:55	0.012
273	29-May	11:39:55	0.011
274	29-May	11:40:55	0.01
275	29-May	11:41:55	0.011
276	29-May	11:42:55	0.011
277	29-May	11:43:55	0.011
278	29-May	11:44:55	0.011
279	29-May	11:45:55	0.011
280	29-May	11:46:55	0.01
281	29-May	11:47:55	0.01
282	29-May	11:48:55	0.011
283	29-May	11:49:55	0.011
284	29-May	11:50:55	0.01
285	29-May	11:51:55	0.011
286	29-May	11:52:55	0.01
287	29-May	11:53:55	0.009
288	29-May	11:54:55	0.01
289	29-May	11:55:55	0.01
290	29-May	11:56:55	0.01
291	29-May	11:57:55	0.011
292	29-May	11:58:55	0.012
293	29-May	11:59:55	0.012
294	29-May	12:00:55	0.012
295	29-May	12:01:55	0.011
296	29-May	12:02:55	0.012
297	29-May	12:03:55	0.012
298	29-May	12:04:55	0.012
299	29-May	12:05:55	0.013
300	29-May	12:06:55	0.013
301	29-May	12:07:55	0.012

302	29-May	12:08:55	0.012
303	29-May	12:09:55	0.013
304	29-May	12:10:55	0.014
305	29-May	12:11:55	0.013
306	29-May	12:12:55	0.013
307	29-May	12:13:55	0.013
308	29-May	12:14:55	0.015
309	29-May	12:15:55	0.015
310	29-May	12:16:55	0.015
311	29-May	12:17:55	0.015
312	29-May	12:18:55	0.016
313	29-May	12:19:55	0.016
314	29-May	12:20:55	0.017
315	29-May	12:21:55	0.017
316	29-May	12:22:55	0.017
317	29-May	12:23:55	0.01,7
318	29-May	12:24:55	0.017
319	29-May	12:25:55	0.017
320	29-May	12:26:55	0.017
321	29-May	12:27:55	0.017
322	29-May	12:28:55	0.017
323	29-May	12:29:55	0.016
324	29-May	12:30:55	0.017
325	29-May	12:31:55	0.016
326	29-May	12:32:55	0.017
327	29-May	12:33:55	0.017
328	29-May	12:34:55	0.017
329	29-May	12:35:55	0.017
330	29-May	12:36:55	0.017
331	29-May	12:37:55	0.017
323030	00000000	000}	

Dust Monitoring Data - June 1, 2009 (Collected in Field) Walsh Field - Varsity Diamond New Bedford, Massachusetts

Start time and date: 08:05 01-Jun

Elapsed time: 04:45

Max Display Concentrations: 0.025 mg/m³

Time at maximum: 08:10

Overal Avg Conc: UW=0.0022 mg/m 3 DW=0.019 mg/m 3 WZ=0.016 mg/m 3

Logged Data:

		Upv	<u>vind</u>			<u>Dowr</u>	<u>rwind</u>	
Point	Date		Time	$Avg.(mg/m^3)$	Point 1	Date	Time	Avg.(mg/m ³)
	1	1-Jun	8:15	0.001	1	1-Jun	8:10	0.025
	2	1-Jun	8:30	0.002	2	1-Jun	8:25	0.021
	3	1-Jun	9:05	0.002	. 3	1-Jun	8:30	0.02
	4	1-Jun	9:15	0.002	4	1-Jun	8:45	0.02
	5	1-Jun	9:30	0.002	5	1-Jun	9:05	0.018
	6	1-Jun	9:50	0.002	6	1-Jun	9:15	0.017
	7	1-Jun	10:10	0.002	7	1-Jun	9:30	0.016
	8	1-Jun	10:25	0.002	8	1-Jun	9:50	0.018
	9	1-Jun	11:00	0.002	9	1-Jun	10:10	0.017
	10	1-Jun	12:15	0.002	10	1-Jun	10:25	0.018
	11	1-Jun	12:40	0.003	11	1-Jun	11:00	0.02
	12	1-Jun	13:00	0.004	12	1-Jun	12:15	0.02
					13	1-Jun	13:00	0.021

Workzone

Point	Date		Time	$Avg.(mg/m^3)$		
	1	1-Jun	8:20	0.026		
	2	1-Jun	10:20	0.006		

pDR-1000 S/N: 00000 Tag Number: 04

Number of logged points: 72

Start time and date: 08:09:39 02-Jun

Elapsed time: 01:12:00 Logging period (sec): 60 Calibration Factor (%): 100

Max Display Concentration: 0.234 mg/m³ Time at maximum: 08:15:27 Jun 02 Max STEL Concentration: 0.051 mg/m³ Time at max STEL: 08:42:09 Jun 02 Overall Avg Conc: 0.045 mg/m³

Logged Data:

Logged Da Point	Date	Time	Avg.(mg/m³)
1			0.051
2			0.05
3			0.048
4			0.042
5			0.045
6		08:15:39	0.078
7			0.046
8	2-Jun	08:17:39	0.041
9	2-Jun	08:18:39	0.034
10	2-Jun	08:19:39	0.061
11	2-Jun	08:20:39	0.043
12	2-Jun	08:21:39	0.039
13	2-Jun	08:22:39	0.037
14	2-Jun	08:23:39	0.053
15	2-Jun	08:24:39	0.036
16	2-Jun	08:25:39	0.04
17	2-Jun	08:26:39	0.035
18	2-Jun	08:27:39	0.041
19	2-Jun	08:28:39	0.045
20	2-Jun	08:29:39	0.063
21	2-Jun	08:30:39	0.045
22	2-Jun	08:31:39	0.044
23	2-Jun	08:32:39	0.036
24	2-Jun	08:33:39	0.031
25	2-Jun	08:34:39	0.037
26	2-Jun	08:35:39	0.045
27	2-Jun	08:36:39	0.069
28	2-Jun	08:37:39	0.05
29			0.05
30			0.056
31		08:40:39	0.049
-	. •		•

32	2-Jun 08:41:39	0.091
33	2-Jun 08:42:39	0.048
34	2-Jun 08:43:39	0.05
35	2-Jun 08:44:39	0.043
36	2-Jun 08:45:39	0.05
37	2-Jun 08:46:39	0.044
38	2-Jun 08:47:39	0.04
39	2-Jun 08:48:39	0.037
40	2-Jun 08:49:39	0.047
41	2-Jun 08:50:39	0.04
42	2-Jun 08:51:39	0.063
43	2-Jun 08:52:39	0.054
44	2-Jun 08:53:39	0.046
45	2-Jun 08:54:39	0.041
46	2-Jun 08:55:39	0.049
47	2-Jun 08:56:39	0.053
48	2-Jun 08:57:39	0.051
49	2-Jun 08:58:39	0.044
50	2-Jun 08:59:39	0.048
51	2-Jun 09:00:39	0.043
52	2-Jun 09:01:39	0.051
53	2-Jun 09:02:39	0.061
54	2-Jun 09:03:39	0.04
55	2-Jun 09:04:39	0.052
56	2-Jun 09:05:39	0.037
57	2-Jun 09:06:39	0.038
58	2-Jun 09:07:39	0.039
59	2-Jun 09:08:39	0.036
60	2-Jun 09:09:39	0.035
61	2-Jun 09:10:39	0.034
62	2-Jun 09:11:39	0.044
63	2-Jun 09:12:39	0.035
64	2-Jun 09:13:39	0.032
65	2-Jun 09:14:39	0.03
66	2-Jun 09:15:39	0.032
67	2-Jun 09:16:39	0.028
68	2-Jun 09:17:39	0.033
69	2-Jun 09:18:39	0.039
70	2-Jun 09:19:39	0.031
71	2-Jun 09:20:39	0.031
72	2-Jun 09:21:39	0.041
000932303000	(000000000	

pDR-1000 S/N: 00000 Tag Number: 02

Number of logged points: 72

Start time and date: 07:04:53 02-Jun

Elapsed time: 01:12:00 Logging period (sec): 60 Calibration Factor (%): 100

Max Display Concentration: 0.104 mg/m³ Time at maximum: 07:50:13 Jun 02 Max STEL Concentration: 0.003 mg/m³ Time at max STEL: 08:03:23 Jun 02 Overall Avg Conc: 0.001 mg/m³

Logged Data:

LUSSCU	Dutu.			
Point	D	ate	Time	Avg.(mg/m³)
	1	2-Jun	07:05:53	0.002
	2	2-Jun	07:06:53	0.001
	3	2-Jun	07:07:53	0.001
	4	2-Jun	07:08:53	0.001
	5	2-Jun	07:09:53	0.001
	6	2-Jun	07:10:53	0.001
	7	2-Jun	07:11:53	0
	8	2-Jun	07:12:53	0
	9	2-Jun	07:13:53	0.002
	10	2-Jun	07:14:53	0.002
	11	2-Jun	07:15:53	0.002
	12	2-Jun	07:16:53	0.001
	13	2-Jun	07:17:53	0.001
	14	2-Jun	07:18:53	0
	15	2-Jun	07:19:53	0.001
	16	2-Jun	07:20:53	0.001
	17	2-Jun	07:21:53	0.001
	18	2-Jun	07:22:53	0.003
	19	2-Jun	07:23:53	0
	20	2-Jun	07:24:53	0.001
	21	2-Jun	07:25:53	0
	22	2-Jun	07:26:53	0.001
	23	2-Jun	07:27:53	0
	24	2-Jun	07:28:53	0
	25	2-Jun	07:29:53	0
	26	2-Jun	07:30:53	0 .
	27	2-Jun	07:31:53	0
	28	2-Jun	07:32:53	0
	29	2-Jun	07:33:53	0
	30	2-Jun	07:34:53	0
	31	2-Jun	07:35:53	0.002

32	2-Jun 07:36:53	0
33	2-Jun 07:37:53	0.002
34	2-Jun 07:38:53	0
35	2-Jun 07:39:53	0
36	2-Jun 07:40:53	0
37	2-Jun 07:41:53	0
38	2-Jun 07:42:53	0.001
39	2-Jun 07:43:53	0.001
40	2-Jun 07:44:53	0
41	2-Jun 07:45:53	0.002
42	2-Jun 07:46:53	0.002
43	2-Jun 07:47:53	0.001
44	2-Jun 07:48:53	0
45	2-Jun 07:49:53	0.001
46	2-Jun 07:50:53	0.018
47	2-Jun 07:51:53	0.001
48	2-Jun 07:52:53	0.004
49	2-Jun 07:53:53	0.001
50	2-Jun 07:54:53	0
51	2-Jun 07:55:53	0.002
52	2-Jun 07:56:53	0.001
53	2-Jun 07:57:53	0.001
54	2-Jun 07:58:53	0
55	2-Jun 07:59:53	0
56	2-Jun 08:00:53	0
57	2-Jun 08:01:53	0.006
58	2-Jun 08:02:53	0.001
59	2-Jun 08:03:53	0.012
60	2-Jun 08:04:53	0
61	2-Jun 08:05:53	0
62	2-Jun 08:06:53	0
63	2-Jun 08:07:53	0
64	2-Jun 08:08:53	0.001
65	2-Jun 08:09:53	0.001
66	2-Jun 08:10:53	0
67	2-Jun 08:11:53	0.001
68	2-Jun 08:12:53	0
69	2-Jun 08:13:53	0.001
70	2-Jun 08:14:53	0
71	2-Jun 08:15:53	0.001
72	2-Jun 08:16:53	0.001
000932303000	000000000}	

ATTACHMENT B SELECT RESULTS OF LABORATORY ANALYSIS

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

3/27/2009

Page 3 of 39

LOWELL, MA 01852

Purchase Order No.:

Project Location: CITY OF NEW BEDFORD(WALSH)

LIMS-BAT #: LIMT-24107

Date Received:

3/20/2009

Job Number:

115058

Field Sample #: NAP-SS-01

‡Sampled: 3/19/2009

Sample ID:

09B08552

Not Specified

Sample Matrix:

SOIL

	Units	Results	Date	Analyst RL		SPEC Limit		P/ F
			Analyzed			Lo	Hi	
PCB 1016	mg/kg dry wt	ND	03/25/09	JB	0.123			
PCB-1221	mg/kg dry wt	ND	03/25/09	JB	0.123			
PCB-1232	mg/kg dry wt	ND	03/25/09	JB	0.123			
PCB-1242	mg/kg dry wt	ND	03/25/09	JB	0.123			
PCB-1248	mg/kg dry wt	ND	03/25/09	JB	0.123			
PCB-1254	mg/kg dry wt	ND	03/25/09	JB	0.123			
PCB-1260	mg/kg dry wt	ND	03/25/09	JB	0.123			
PCB 1262	mg/kg dry wt	ND	03/25/09	JB	0.123			
PCB 1268	mg/kg dry wt	ND	03/25/09	JB	0.123			
Extraction Date PCBs		03/23/2009	03/25/09	JB				

Field Sample #: NAP-SS-02

Sample ID:

09B08553

‡Sampled: 3/19/2009

Not Specified

Sample Matrix:

SOIL

	Units	Results	Date Analyzed	Analyst	RL	SPEC I Lo	_imit Hi	P/F
PCB 1016	mg/kg dry wt	ND	03/25/09	JB	0.119		3	
PCB-1221	mg/kg dry wt	ND	03/25/09	JB	0.119			
PCB-1232	mg/kg dry wt	ND	03/25/09	JB	0.119			
PCB-1242	mg/kg dry wt	ND	03/25/09	JB	0.119			
PCB-1248	mg/kg dry wt	ND	03/25/09	JB	0.119			
PCB-1254	mg/kg dry wt	ND	03/25/09	JB	0.119			
PCB-1260	mg/kg dry wt	ND	03/25/09	JB	0.119			
PCB 1262	mg/kg dry wt	ND	03/25/09	JB	0.119			
PCB 1268	mg/kg dry wt	ND	03/25/09	JB	0.119			
Extraction Date PCBs		03/23/2009	03/25/09	JB				

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{# =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET LOWELL, MA 01852

Purchase Order No.:

3/27/2009 Page 4 of 39

LIMS-BAT #: LIMT-24107 Job Number: 115058

Project Location: CITY OF NEW BEDFORD(WALSH) Date Received:

3/20/2009

Field Sample #: NAP-SS-03

09B08554

‡Sampled: 3/19/2009

Not Specified

Sample Matrix:

Sample ID:

SOIL

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/F
PCB 1016	mg/kg dry wt	ND	03/25/09	JB	0.120			
PCB-1221	mg/kg dry wt	ND	03/25/09	JB	0.120			
PCB-1232	mg/kg dry wt	ND	03/25/09	JB	0.120			
PCB-1242	mg/kg dry wt	ND	03/25/09	JB	0.120			
PCB-1248	mg/kg đry wt	ND	03/25/09	JB	0.120			
PCB-1254	mg/kg dry wt	ND	03/25/09	JB	0.120			
PCB-1260	mg/kg dry wt	ND	03/25/09	JB	0.120			
PCB 1262	mg/kg dry wt	ND	03/25/09	JB	0.120			
PCB 1268	mg/kg dry wt	ND	03/25/09	JB	0.120			
Extraction Date PCBs		03/23/2009	03/25/09	JB				

Field Sample #: NAP-SS-04

Sample ID:

09B08555

‡Sampled: 3/19/2009

Not Specified

Sample Matrix:

SOIL

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
PCB 1016	mg/kg dry wt	ND	03/25/09	JB	0.122			
PCB-1221	mg/kg dry wt	ND	03/25/09	JB	0.122			
PCB-1232	mg/kg dry wt	ND	03/25/09	JB	0.122			
PCB-1242	mg/kg dry wt	ND	03/25/09	JB	0.122			
PCB-1248	mg/kg dry wt	ND	03/25/09	JB	0.122			
PCB-1254	mg/kg dry wt	ND	03/25/09	JB	0.122			
PCB-1260	mg/kg dry wt	ND	03/25/09	JB	0.122			
PCB 1262	mg/kg dry wt	ND	03/25/09	JB	0.122			
PCB 1268	mg/kg dry wt	ND	03/25/09	JB	0.122			
Extraction Date PCBs		03/23/2009	03/25/09	JB				

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{# =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

Page 6 of 39 Purchase Order No.:

3/27/2009

LIMS-BAT #: LIMT-24107

Job Number: 115058

LOWELL, MA 01852 Pt

Project Location: CITY OF NEW BEDFORD(WALSH)

Date Received: 3/20/2009 Field Sample #: NAP-SS-01

Sample ID: 09B08552

‡Sampled: 3/19/2009

Not Specified

Sample Matrix: SOIL

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/F
Acetone	mg/kg dry wt	ND	03/23/09	MFF	0.13			•••••••••••
tert-Amylmethyl Ether	mg/kg dry wt	ND	03/23/09	MFF	0.002			
Benzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Bromobenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Bromochloromethane	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Bromodichloromethane	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Bromoform	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Bromomethane	mg/kg dry wt	ND	03/23/09	MFF	0.013			
2-Butanone (MEK)	mg/kg dry wt	ND	03/23/09	MFF	0.052			
n-Butylbenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
sec-Butylbenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
tert-Butylbenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
tert-Butylethyl Ether	mg/kg dry wt	ND	03/23/09	MFF	0.002			
Carbon Disulfide	mg/kg dry wt	ND	03/23/09	MFF	0.013			
Carbon Tetrachloride	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Chlorobenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Chlorodibromomethane	mg/kg dry wt	ND	03/23/09	MFF	0.002			
Chloroethane	mg/kg dry wt	ND	03/23/09	MFF	0.026			
Chloroform	mg/kg dry wt	ND	03/23/09	MFF	0.006			
Chloromethane	mg/kg dry wt	ND	03/23/09	MFF	0.013			
2-Chlorotoluene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
4-Chlorotoluene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,2-Dibromo-3-Chloropropane	mg/kg dry wt	ND	03/23/09	MFF	0.013			
1,2-Dibromoethane	mg/kg dry wt	ND	03/23/09	MFF	0.002			
Dibromomethane	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,2-Dichlorobenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,3-Dichlorobenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,4-Dichlorobenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Dichlorodifluoromethane	mg/kg dry wt	ND	03/23/09	MFF	0.026			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

LOWELL, MA 01852

Purchase Order No.:

3/27/2009

LIMS-BAT#: LIMT-24107 Job Number: 115058

Page 7 of 39

Project Location: CITY OF NEW BEDFORD(WALSH)

Date Received: 3/20/2009 Field Sample #: NAP-SS-01

Sample ID:

09B08552

‡Sampled: 3/19/2009

Not Specified

Sample Matrix:

SOIL

	Units	Results	Date Analyzed	Analyst	RL.	SPEC Lo	Limit Hi	P/F
1,1-Dichloroethane	mg/kg dry wt	ND	03/23/09	MFF	0.003			_
1,2-Dichloroethane	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,1-Dichloroethylene	mg/kg dry wt	ND	03/23/09	MFF	0.006			
cis-1,2-Dichloroethylene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
trans-1,2-Dichloroethylene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,2-Dichloropropane	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,3-Dichloropropane	mg/kg dry wt	ND	03/23/09	MFF	0.002			
2,2-Dichloropropane	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,1-Dichloropropene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
cis-1,3-Dichloropropene	mg/kg dry wt	ND	03/23/09	MFF	0.002			
trans-1,3-Dichloropropene	mg/kg dry wt	ND	03/23/09	MFF	0.002			
Diethyl Ether	mg/kg dry wt	ND	03/23/09	MFF	0.026			
Diisopropyl Ether	mg/kg dry wt	ND	03/23/09	MFF	0.002			
1,4-Dioxane	mg/kg dry wt	ND	03/23/09	MFF	0.13			
Ethyl Benzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Hexachlorobutadiene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
2-Hexanone	mg/kg dry wt	ND	03/23/09	MFF	0.026			
Isopropylbenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
p-Isopropyltoluene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
MTBE	mg/kg dry wt	ND	03/23/09	MFF	0.006			
Methylene Chloride	mg/kg dry wt	ND	03/23/09	MFF	0.026			
MIBK	mg/kg dry wt	ND	03/23/09	MFF	0.026			
Naphthalene	mg/kg dry wt	ND	03/23/09	MFF	0.013			
n-Propylbenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Styrene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,1,1,2-Tetrachloroethane	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,1,2,2-Tetrachloroethane	mg/kg dry wt	ND	03/23/09	MFF	0.002			
Tetrachloroethylene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Tetrahydrofuran	mg/kg dry wt	ND	03/23/09	MFF	0.013			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

3/27/2009

Page 8 of 39

LOWELL, MA 01852

Purchase Order No .:

Project Location:

CITY OF NEW BEDFORD(WALSH)

LIMS-BAT #: LIMT-24107

Date Received:

3/20/2009

Job Number: 115058

Field Sample #: NAP-SS-01

Sample ID:

09B08552

‡Sampled: 3/19/2009

Not Specified

Sample Matrix:

SOIL

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/F
Toluene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,2,3-Trichlorobenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,2,4-Trichlorobenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,1,1-Trichloroethane	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,1,2-Trichloroethane	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Trichloroethylene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Trichlorofluoromethane	mg/kg dry wt	ND	03/23/09	MFF	0.013			
1,2,3-Trichloropropane	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,2,4-Trimethylbenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,3,5-Trimethylbenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Vinyl Chloride	mg/kg dry wt	ND	03/23/09	MFF	0.013			
m + p Xylene	mg/kg dry wt	ND	03/23/09	MFF	0.006			
o-Xylene	mg/kg dry wt	ND	03/23/09	MFF	0.003			

Analytical Method:

SW846 8260

SAMPLES ARE CONCENTRATED BY PURGE & TRAP, FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

3/27/2009 Page 9 of 39

LOWELL, MA 01852

Purchase Order No.:

Project Location: CITY OF NEW BEDFORD(WALSH)

LIMS-BAT #: LIMT-24107

Date Received:

3/20/2009

115058

Job Number:

Field Sample #: NAP-SS-02

09B08553

‡Sampled: 3/19/2009

Not Specified

Sample ID: Sample Matrix

COLL

	Units	Results	Date	Analyst	RL	SPEC	Limit	P/F
			Analyzed			Lo	Hi	
cetone	mg/kg dry wt	ND	03/23/09	MFF	0.12			
ert-Amylmethyl Ether	mg/kg dry wt	ND	03/23/09	MFF	0.002			
lenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
romobenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
romochloromethane	mg/kg dry wt	ND	03/23/09	MFF	0.003			
romodichloromethane	mg/kg dry wt	ND	03/23/09	MFF	0.003			
romoform	mg/kg dry wt	ND	03/23/09	MFF	0.003			
romomethane	mg/kg dry wt	ND	03/23/09	MFF	0.012			
-Butanone (MEK)	mg/kg dry wt	ND	03/23/09	MFF	0.047			
-Butylbenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
ec-Butylbenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
ert-Butylbenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
ert-Butylethyl Ether	mg/kg dry wt	ND	03/23/09	MFF	0.002			
Carbon Disulfide	mg/kg dry wt	ND	03/23/09	MFF	0.012			
Carbon Tetrachloride	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Chlorobenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Chlorodibromomethane	mg/kg dry wt	ND	03/23/09	MFF	0.002			
Chloroethane	mg/kg dry wt	ND	03/23/09	MFF	0.024			
Chloroform	mg/kg dry wt	ND	03/23/09	MFF	0.005			
Chloromethane	mg/kg dry wt	ND	03/23/09	MFF	0.012			
-Chlorotoluene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
-Chlorotoluene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
,2-Dibromo-3-Chloropropane	mg/kg dry wt	ND	03/23/09	MFF	0.012			
,2-Dibromoethane	mg/kg dry wt	ND	03/23/09	MFF	0.002			
ibromomethane	mg/kg dry wt	ND	03/23/09	MFF	0.003			
,2-Dichlorobenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
,3-Dichlorobenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
,4-Dichlorobenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Dichlorodifluoromethane	mg/kg dry wt	ND	03/23/09	MFF	0.024			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{# =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

LOWELL, MA 01852

Purchase Order No.:

3/27/2009

LIMS-BAT #: LIMT-24107

Job Number: 115058

Page 10 of 39

Project Location: CITY OF NEW BEDFORD(WALSH)

3/20/2009 Date Received:

Field Sample #: NAP-SS-02

Sample ID:

09B08553

\$Sampled: 3/19/2009

Not Specified

Sample Matrix:

SOIL

	Units	Results	Date Analyzed	Analyst	RL.	SPEC Limit Lo Hi	P/ F
1,1-Dichloroethane	mg/kg dry wt	ND	03/23/09	MFF	0.003		
1,2-Dichloroethane	mg/kg dry wt	ND	03/23/09	MFF	0.003		
1,1-Dichloroethylene	mg/kg dry wt	ND	03/23/09	MFF	0.005		
cis-1,2-Dichloroethylene	mg/kg dry wt	ND	03/23/09	MFF	0.003		
trans-1,2-Dichloroethylene	mg/kg dry wt	ND	03/23/09	MFF	0.003		
1,2-Dichloropropane	mg/kg dry wt	ND	03/23/09	MFF	0.003		
1,3-Dichloropropane	mg/kg dry wt	ND	03/23/09	MFF	0.002		
2,2-Dichloropropane	mg/kg dry wt	ND	03/23/09	MFF	0.003		
1,1-Dichloropropene	mg/kg dry wt	ND	03/23/09	MFF	0.003		
cis-1,3-Dichloropropene	mg/kg dry wt	ND	03/23/09	MFF	0.002		
trans-1,3-Dichloropropene	mg/kg dry wt	ND	03/23/09	MFF	0.002		
Diethyl Ether	mg/kg dry wt	ND	03/23/09	MFF	0.024		
Diisopropyl Ether	mg/kg dry wt	ND	03/23/09	MFF	0.002		
1,4-Dioxane	mg/kg dry wt	ND	03/23/09	MFF	0.12		
Ethyl Benzene	mg/kg dry wt	ND	03/23/09	MFF	0.003		
Hexachlorobutadiene	mg/kg dry wt	ND	03/23/09	MFF	0.003		
2-Hexanone	mg/kg dry wt	ND	03/23/09	MFF	0.024		
Isopropylbenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003		
p-Isopropyltoluene	mg/kg dry wt	ND	03/23/09	MFF	0.003		
МТВЕ	mg/kg dry wt	ND	03/23/09	MFF	0.005		
Methylene Chloride	mg/kg dry wt	ND	03/23/09	MFF	0.024		
MIBK	mg/kg đry wt	ND	03/23/09	MFF	0.024		
Naphthalene	mg/kg dry wt	ND	03/23/09	MFF	0.012		
n-Propylbenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003		
Styrene	mg/kg dry wt	ND	03/23/09	MFF	0.003		
1,1,1,2-Tetrachloroethane	mg/kg dry wt	ND	03/23/09	MFF	0.003		Í
1,1,2,2-Tetrachloroethane	mg/kg dry wt	ND	03/23/09	MFF	0.002		
Tetrachloroethylene	mg/kg dry wt	ND	03/23/09	MFF	0.003		
Tetrahydrofuran	mg/kg dry wt	ND	03/23/09	MFF	0.012		

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

3/27/2009

Page 11 of 39

LOWELL, MA 01852

Purchase Order No.:

Project Location: CITY OF NEW BEDFORD(WALSH)

LIMS-BAT #: LIMT-24107

Date Received:

3/20/2009

Job Number:

115058

Field Sample #: NAP-SS-02

09B08553

‡Sampled: 3/19/2009

Not Specified

Sample Matrix:

Sample ID:

SOIL

	Units	Results	Date	Analyst	RL	SPEC	Limit	P/F
			Analyzed		_	Lo	Hi	
Toluene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,2,3-Trichlorobenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,2,4-Trichlorobenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,1,1-Trichloroethane	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,1,2-Trichloroethane	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Trichloroethylene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Trichlorofluoromethane	mg/kg dry wt	ND	03/23/09	MFF	0.012			
1,2,3-Trichloropropane	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,2,4-Trimethylbenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,3,5-Trimethylbenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Vinyl Chloride	mg/kg dry wt	ND	03/23/09	MFF	0.012			
m + p Xylene	mg/kg dry wt	ND	03/23/09	MFF	0.005			
o-Xylene	mg/kg dry wt	ND	03/23/09	MFF	0.003			

Analytical Method:

SW846 8260

SAMPLES ARE CONCENTRATED BY PURGE & TRAP, FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

3/27/2009

Page 12 of 39

LOWELL, MA 01852

Purchase Order No.:

Project Location: CITY OF NEW BEDFORD(WALSH)

LIMS-BAT #: LIMT-24107

Date Received:

3/20/2009

Job Number: 115058

Field Sample #: NAP-SS-03

09B08554

Sample ID:

‡Sampled: 3/19/2009

Not Specified

Sample Matrix: SOIL

	Units	Results	Date Analyzed	Analyst	RL.	SPEC Lo	Limit Hi	P/F
Acetone	mg/kg dry wt	ND	03/23/09	MFF	0.14			
tert-Amylmethyl Ether	mg/kg dry wt	ND	03/23/09	MFF	0.002			
Benzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Bromobenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Bromochloromethane	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Bromodichloromethane	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Bromoform	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Bromomethane	mg/kg dry wt	ND	03/23/09	MFF	0.014			
2-Butanone (MEK)	mg/kg dry wt	ND	03/23/09	MFF	0.054			
n-Butylbenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
sec-Butylbenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
tert-Butylbenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
tert-Butylethyl Ether	mg/kg dry wt	ND	03/23/09	MFF	0.002			
Carbon Disulfide	mg/kg dry wt	ND	03/23/09	MFF	0.014			
Carbon Tetrachloride	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Chlorobenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Chlorodibromomethane	mg/kg dry wt	ND	03/23/09	MFF	0.002			
Chloroethane	mg/kg dry wt	ND	03/23/09	MFF	0.027			
Chioroform	mg/kg dry wt	ND	03/23/09	MFF	0.006			
Chloromethane	mg/kg dry wt	ND	03/23/09	MFF	0.014			
2-Chlorotoluene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
4-Chlorotoluene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,2-Dibromo-3-Chloropropane	mg/kg dry wt	ND	03/23/09	MFF	0.014			
1,2-Dibromoethane	mg/kg dry wt	ND	03/23/09	MFF	0.002			
Dibromomethane	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,2-Dichlorobenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,3-Dichlorobenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,4-Dichlorobenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Dichlorodifluoromethane	mg/kg dry wt	ND	03/23/09	MFF	0.027			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{# =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

Purchase Order No.:

3/27/2009

LIMS-BAT #: LIMT-24107

Job Number: 115058

Page 13 of 39

LOWELL, MA 01852

Project Location: CITY OF NEW BEDFORD(WALSH)

Date Received:

3/20/2009

Field Sample #: NAP-SS-03 Sample ID:

09B08554

‡Sampled: 3/19/2009

Not Specified

Sample Matrix:

SOIL

	Units	Results	Date Analyzed	Analyst	RL	SPEC Limit Lo Hi	P/F
1,1-Dichloroethane	mg/kg dry wt	ND	03/23/09	MFF	0.003		
1,2-Dichloroethane	mg/kg dry wt	ND	03/23/09	MFF	0.003		
1,1-Dichloroethylene	mg/kg dry wt	ND	03/23/09	MFF	0.006		
cis-1,2-Dichloroethylene	mg/kg dry wt	ND	03/23/09	MFF	0.003		
trans-1,2-Dichloroethylene	mg/kg dry wt	ND	03/23/09	MFF	0.003		
1,2-Dichloropropane	mg/kg dry wt	ND	03/23/09	MFF	0.003		
1,3-Dichloropropane	mg/kg dry wt	ND	03/23/09	MFF	0.002		
2,2-Dichloropropane	mg/kg dry wt	ND	03/23/09	MFF	0.003		
1,1-Dichloropropene	mg/kg dry wt	ND	03/23/09	MFF	0.003		
cis-1,3-Dichloropropene	mg/kg dry wt	ND	03/23/09	MFF	0.002		
trans-1,3-Dichloropropene	mg/kg dry wt	ND	03/23/09	MFF	0.002		
Diethyl Ether	mg/kg dry wt	ND	03/23/09	MFF	0.027		
Diisopropyl Ether	mg/kg dry wt	ND	03/23/09	MFF	0.002		
1,4-Dioxane	mg/kg dry wt	ND	03/23/09	MFF	0.14		
Ethyl Benzene	mg/kg dry wt	ND	03/23/09	MFF	0.003		
Hexachlorobutadiene	mg/kg dry wt	ND	03/23/09	MFF	0.003		
2-Hexanone	mg/kg dry wt	ND	03/23/09	MFF	0.027		
Isopropylbenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003		
p-Isopropyltoluene	mg/kg dry wt	ND	03/23/09	MFF	0.003		
MTBE	mg/kg dry wt	ND	03/23/09	MFF	0.006		
Methylene Chloride	mg/kg dry wt	ND	03/23/09	MFF	0.027		
MIBK	mg/kg dry wt	ND	03/23/09	MFF	0.027		
Naphthalene	mg/kg dry wt	ND	03/23/09	MFF	0.014		
n-Propylbenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003		
Styrene	mg/kg dry wt	ND	03/23/09	MFF	0.003		
1,1,1,2-Tetrachloroethane	mg/kg dry wt	ND	03/23/09	MFF	0.003		
1,1,2,2-Tetrachloroethane	mg/kg dry wt	ND	03/23/09	MFF	0.002		
Tetrachloroethylene	mg/kg dry wt	ND	03/23/09	MFF	0.003		
Tetrahydrofuran	mg/kg dry wt	ND	03/23/09	MFF	0.014		

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

3/27/2009 Page 14 of 39

Purchase Order No.:

LOWELL, MA 01852

Project Location: CITY OF NEW BEDFORD(WALSH)

LIMS-BAT #: LIMT-24107

Date Received:

3/20/2009

Job Number: 115058

Field Sample #: NAP-SS-03

Sample ID:

09B08554

‡Sampled: 3/19/2009

Not Specified

Sample Matrix:

SOIL

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Límit Hi	P/F
Toluene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,2,3-Trichlorobenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,2,4-Trichlorobenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,1,1-Trichloroethane	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,1,2-Trichloroethane	mg/kg đry wt	ND	03/23/09	MFF	0.003			
Trichloroethylene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Trichlorofluoromethane	mg/kg dry wt	ND	03/23/09	MFF	0.014			
1,2,3-Trichloropropane	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,2,4-Trimethylbenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,3,5-Trimethylbenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Vinyl Chloride	mg/kg dry wt	ND	03/23/09	MFF	0.014			
m + p Xylene	mg/kg dry wt	ND	03/23/09	MFF	0.006			
o-Xylene	mg/kg dry wt	ND	03/23/09	MFF	0.003			

Analytical Method:

SW846 8260

SAMPLES ARE CONCENTRATED BY PURGE & TRAP, FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{# =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

3/27/2009

Page 15 of 39

LOWELL, MA 01852

Purchase Order No.:

Project Location: CITY OF NEW BEDFORD(WALSH)

LIMS-BAT #: LIMT-24107

Date Received:

3/20/2009

Job Number: 115058

Field Sample #: NAP-SS-04

09B08555

‡Sampled: 3/19/2009

Not Specified

Sample Matrix:

Sample ID:

SOIL

	Units	Results	Date Analyzed	Analyst	RL.	SPEC Limit Lo Hi	P/ F
Acetone	mg/kg dry wt	ND	03/23/09	MFF	0.12		
tert-Amylmethyl Ether	mg/kg dry wt	ND	03/23/09	MFF	0.002		
Benzene	mg/kg dry wt	ND	03/23/09	MFF	0.003		
Bromobenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003		
Bromochloromethane	mg/kg dry wt	ND	03/23/09	MFF	0.003		
Bromodichloromethane	mg/kg dry wt	ND	03/23/09	MFF	0.003		
Bromoform	mg/kg dry wt	ND	03/23/09	MFF	0.003		
Bromomethane	mg/kg dry wt	ND	03/23/09	MFF	0.012		
2-Butanone (MEK)	mg/kg dry wt	ND	03/23/09	MFF	0.047		
n-Butylbenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003		
sec-Butylbenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003		
tert-Butylbenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003		
tert-Butylethyl Ether	mg/kg dry wt	ND	03/23/09	MFF	0.002		
Carbon Disulfide	mg/kg dry wt	ND	03/23/09	MFF	0.012		
Carbon Tetrachloride	mg/kg dry wt	ND	03/23/09	MFF	0.003		
Chlorobenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003		
Chlorodibromomethane	mg/kg dry wt	ND	03/23/09	MFF	0.002		
Chloroethane	mg/kg dry wt	ND	03/23/09	MFF	0.024		
Chloroform	mg/kg dry wt	ND	03/23/09	MFF	0.005		
Chloromethane	mg/kg dry wt	ND	03/23/09	MFF	0.012		
2-Chlorotoluene	mg/kg dry wt	ND	03/23/09	MFF	0.003		
4-Chlorotoluene	mg/kg dry wt	ND	03/23/09	MFF	0.003		
1,2-Dibromo-3-Chloropropane	mg/kg dry wt	ND	03/23/09	MFF	0.012		
1,2-Dibromoethane	mg/kg dry wt	ND	03/23/09	MFF	0.002		
Dibromomethane	mg/kg dry wt	ND	03/23/09	MFF	0.003		
1,2-Dichlorobenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003		
1,3-Dichlorobenzeпe	mg/kg dry wt	ND	03/23/09	MFF	0.003		
1,4-Dichlorobenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003		
Dichlorodifluoromethane	mg/kg dry wt	ND	03/23/09	MFF	0.024		

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

Purchase Order No.:

3/27/2009 Page 16 of 39

LOWELL, MA 01852

Project Location: CITY OF NEW BEDFORD(WALSH)

LIMS-BAT #: LIMT-24107

Date Received:

3/20/2009

Job Number:

115058

Field Sample #: NAP-SS-04

09B08555

‡Sampled: 3/19/2009

Not Specified

Sample Matrix:

Sample ID:

SOIL

	Units	Results	Date	Analyst	RL	SPEC		P/ F
			Analyzed			Lo	Hi 	
1,1-Dichloroethane	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,2-Dichloroethane	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,1-Dichloroethylene	mg/kg dry wt	ND	03/23/09	MFF	0.005			
cis-1,2-Dichloroethylene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
trans-1,2-Dichloroethylene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,2-Dichloropropane	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,3-Dichloropropane	mg/kg dry wt	ND	03/23/09	MFF	0.002			
2,2-Dichloropropane	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,1-Dichloropropene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
cis-1,3-Dichloropropene	mg/kg dry wt	ND	03/23/09	MFF	0.002			
trans-1,3-Dichloropropene	mg/kg dry wt	ND	03/23/09	MFF	0.002			
Diethyl Ether	mg/kg dry wt	ND	03/23/09	MFF	0.024			
Diisopropyl Ether	mg/kg dry wt	ND	03/23/09	MFF	0.002			
1,4-Dioxane	mg/kg dry wt	ND	03/23/09	MFF	0.12			
Ethyl Benzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Hexachlorobutadiene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
2-Hexanone	mg/kg dry wt	ND	03/23/09	MFF	0.024			
Isopropylbenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
p-Isopropyltoluene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
мтве	mg/kg dry wt	ND	03/23/09	MFF	0.005			
Methylene Chloride	mg/kg dry wt	ND	03/23/09	MFF	0.024			
MIBK	mg/kg dry wt	ND	03/23/09	MFF	0.024			
Naphthalene	mg/kg dry wt	ND	03/23/09	MFF	0.012			
n-Propylbenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Styrene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,1,1,2-Tetrachloroethane	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,1,2,2-Tetrachioroethane	mg/kg dry wt	ND	03/23/09	MFF	0.002			
Tetrachloroethylene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
			00/00/00		0.040			

RL = Reporting Limit

Tetrahydrofuran

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

0.012

03/23/09 MFF

NM = Not Measured

mg/kg dry wt

ND

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

3/27/2009 Page 17 of 39

Purchase Order No.: LOWELL, MA 01852

Project Location: CITY OF NEW BEDFORD(WALSH)

Job Number: 115058

LIMS-BAT #: LIMT-24107

Date Received: Field Sample #: NAP-SS-04

3/20/2009

Sample ID:

09B08555

‡Sampled: 3/19/2009

Not Specified

Sample Matrix: SOIL

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/F
Toluene	mg/kg dry wt	ND	03/23/09	MFF	0.003	- To 1 del		
1,2,3-Trichlorobenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,2,4-Trichlorobenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,1,1-Trichloroethane	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,1,2-Trichloroethane	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Trichloroethylene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Trichlorofluoromethane	mg/kg dry wt	ND	03/23/09	MFF	0.012			
1,2,3-Trichloropropane	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,2,4-Trimethylbenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
1,3,5-Trimethylbenzene	mg/kg dry wt	ND	03/23/09	MFF	0.003			
Vinyl Chloride	mg/kg dry wt	ND	03/23/09	MFF	0.012			
m + p Xylene	mg/kg dry wt	ND	03/23/09	MFF	0.005			
o-Xylene	mg/kg dry wt	ND	03/23/09	MFF	0.003			

Analytical Method:

SW846 8260

SAMPLES ARE CONCENTRATED BY PURGE & TRAP, FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

Purchase Order No.:

LIMS-BAT #: LIMT-24107

Job Number: 115058

Page 18 of 39

3/27/2009

Date Received:

Project Location: CITY OF NEW BEDFORD(WALSH) 3/20/2009

Field Sample #: NAP-SS-01

LOWELL, MA 01852

09B08552

‡Sampled: 3/19/2009

Not Specified

Sample Matrix:

Sample ID:

SOIL

	Units	Results	Date Analyzed	Analyst	RL	SPEC Limit Lo Hi	P/F
Acenaphthene	mg/kg dry wt	ND	03/25/09	BGL	0.205		
Acenaphthylene	mg/kg dry wt	ND	03/25/09	BGL	0.205		
Acetophenone	mg/kg dry wt	ND	03/25/09	BGL	0.41		
Aniline	mg/kg dry wt	ND	03/25/09	BGL	0.41		
Anthracene	mg/kg dry wt	ND	03/25/09	BGL	0.205		
Benzo(a)anthracene	mg/kg dry wt	ND	03/25/09	BGL	0.205		
Benzo(a)pyrene	mg/kg dry wt	ND	03/25/09	BGL	0.205		
Benzo(b)fluoranthene	mg/kg dry wt	ND	03/25/09	BGL	0.205		
Benzo(g,h,i)perylene	mg/kg dry wt	ND	03/25/09	BGL	0.205		
Benzo(k)fluoranthene	mg/kg dry wt	ND	03/25/09	BGL	0.205		
Bis(2-chloroethoxy)methane	mg/kg dry wt	ND	03/25/09	BGL	0.41		
Bis(2-chloroethyl)ether	mg/kg dry wt	ND	03/25/09	BGL	0.41		
Bis(2-chloroisopropyl)ether	mg/kg dry wt	ND	03/25/09	BGL	0.41		
Bis(2-ethylhexyl)phthalate	mg/kg dry wt	ND	03/25/09	BGL	0.41		
4-Bromophenyl phenyl ether	mg/kg dry wt	ND	03/25/09	BGL	0.41		
Butylbenzylphthalate	mg/kg dry wt	ND	03/25/09	BGL	0.82		
4-Chloroaniline	mg/kg dry wt	ND	03/25/09	BGL	0.82		
2-Chloronaphthalene	mg/kg dry wt	ND	03/25/09	BGL	0.41		
2-Chlorophenol	mg/kg dry wt	ND	03/25/09	BGL	0.41		
Chrysene	mg/kg dry wt	ND	03/25/09	BGL	0.205		
Dibenzofuran	mg/kg dry wt	ND	03/25/09	BGL	0.41		
Dibenz(a,h)anthracene	mg/kg dry wt	ND	03/25/09	BGL	0.205		
1,2-Dichlorobenzene	mg/kg dry wt	ND	03/25/09	BGL	0.41		
1,3-Dichlorobenzene	mg/kg dry wt	ND	03/25/09	BGL.	0.41		
1,4-Dichlorobenzene	mg/kg dry wt	ND	03/25/09	BGL	0.41		
3,3'-Dichlorobenzidine	mg/kg dry wt	ND	03/25/09	BGL	0.21		
2,4-Dichlorophenol	mg/kg dry wt	ND	03/25/09	BGL	0.41		
Diethylphthalate	mg/kg dry wt	ND	03/25/09	BGL	0.41		
2,4-Dimethylphenol	mg/kg dry wt	ND	03/25/09	BGL	0.41		

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

3/27/2009

Page 19 of 39

LOWELL, MA 01852

Purchase Order No.:

Project Location: CITY OF NEW BEDFORD(WALSH)

LIMS-BAT #: LIMT-24107

Date Received:

3/20/2009

Job Number: 115058

Field Sample #: NAP-SS-01 09B08552

‡Sampled: 3/19/2009

Not Specified

Sample ID:

Sample Matrix:

SOIL

	Units	Results	Date Analyzed	Analyst	RL	SPEC Limit Lo Hi	P/F
Dimethylphthalate	mg/kg dry wt	ND	03/25/09	BGL	0.82		
Di-n-butylphthalate	mg/kg dry wt	ND	03/25/09	BGL.	0.41		
Di-n-octylphthalate	mg/kg dry wt	ND	03/25/09	BGL	0.82		
2,4-Dinitrophenol	mg/kg dry wt	ND	03/25/09	BGL	0.82		
2,4-Dinitrotoluene	mg/kg dry wt	ND	03/25/09	BGL	0.41		
2,6-Dinitrotoluene	mg/kg dry wt	ND	03/25/09	BGL	0.41		
1,2-Diphenylhydrazine (as Azobenzene)	mg/kg dry wt	ND	03/25/09	BGL	0.41		
Fluoranthene	mg/kg dry wt	ND	03/25/09	BGL	0.205		
Fluorene	mg/kg dry wt	ND	03/25/09	BGL	0.205		
Hexachlorobenzene	mg/kg dry wt	ND	03/25/09	BGL	0.41		
Hexachlorobutadiene	mg/kg dry wt	ND	03/25/09	BGL	0.41		
Hexachloroethane	mg/kg dry wt	ND	03/25/09	BGL	0.41		
Indeno(1,2,3-cd)pyrene	mg/kg dry wt	ND	03/25/09	BGL	0.205		
Isophorone	mg/kg dry wt	ND	03/25/09	BGL	0.41		
o-cresol	mg/kg dry wt	ND	03/25/09	BGL	0.41		
m & p-cresol(s)	mg/kg dry wt	ND	03/25/09	BGL	0.41		
2-Methylnaphthalene	mg/kg dry wt	ND	03/25/09	BGL	0.205		
Naphthalene	mg/kg dry wt	ND	03/25/09	BGL	0.205		
Nitrobenzene	mg/kg dry wt	ND	03/25/09	BGL	0.41		
2-Nitrophenol	mg/kg dry wt	ND	03/25/09	BGL	0.41		
4-Nitrophenol	mg/kg dry wt	ND	03/25/09	BGL	0.82		
Pentachlorophenol	mg/kg dry wt	ND	03/25/09	BGL	0.41		
Phenanthrene	mg/kg dry wt	ND	03/25/09	BGL	0.205		
Phenol	mg/kg dry wt	ND	03/25/09	BGL	0.41		
Pyrene	mg/kg dry wt	ND	03/25/09	BGL	0.205		
1,2,4-Trichlorobenzene	mg/kg dry wt	ND	03/25/09	BGL.	0.41		
2,4,5-Trichlorophenol	mg/kg dry wt	ND	03/25/09	BGL	0.41		
2,4,6-Trichlorophenol	mg/kg dry wt	ND	03/25/09	BGL.	0.41		

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

^{* =} See end of report for comments and notes applying to this sample

^{# =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

LOWELL, MA 01852

Purchase Order No.:

3/27/2009

LIMS-BAT #: LIMT-24107

Job Number: 115058

Page 21 of 39

Project Location: CITY OF NEW BEDFORD(WALSH)

Date Received:

3/20/2009

Field Sample #: NAP-SS-02

09B08553

‡Sampled: 3/19/2009

Not Specified

Sample Matrix:

Sample ID:

SOIL

·	Units	Results	Date Analyzed	Analyst	RL	SPEC Lim Lo H	nit F ⊣ii	P/ F
Acenaphthene	mg/kg dry wt	ND	03/25/09	BGL	0.198			
Acenaphthylene	mg/kg dry wt	ND	03/25/09	BGL	0.198			
Acetophenone	mg/kg dry wt	ND	03/25/09	BGL	0.40			
Aniline	mg/kg dry wt	ND	03/25/09	BGL	0.40			
Anthracene	mg/kg dry wt	0.252	03/25/09	BGL	0.198			
Benzo(a)anthracene	mg/kg dry wt	0.445	03/25/09	BGL	0.198			
Benzo(a)pyrene	mg/kg dry wt	0.356	03/25/09	BGL	0.198			
Benzo(b)fluoranthene	mg/kg dry wt	0.400	03/25/09	BGL	0.198			
Benzo(g,h,i)perylene	mg/kg dry wt	0.239	03/25/09	BGL	0.198			
Benzo(k)fluoranthene	mg/kg dry wt	ND	03/25/09	BGL	0.198			
Bis(2-chloroethoxy)methane	mg/kg dry wt	ND	03/25/09	BGL	0.40			
Bis(2-chloroethyl)ether	mg/kg dry wt	ND	03/25/09	BGL	0.40			
Bis(2-chloroisopropyl)ether	mg/kg dry wt	ND	03/25/09	BGL	0.40			
Bis(2-ethylhexyl)phthalate	mg/kg dry wt	ND	03/25/09	BGL	0.40			
4-Bromophenyl phenyl ether	mg/kg dry wt	ND	03/25/09	BGL	0.40			
Butylbenzylphthalate	mg/kg dry wt	ND	03/25/09	BGL	0.79			
4-Chloroaniline	mg/kg dry wt	ND	03/25/09	BGL	0.79			
2-Chloronaphthalene	mg/kg dry wt	ND	03/25/09	BGL	0.40			
2-Chlorophenol	mg/kg dry wt	ND	03/25/09	BGL	0.40			
Chrysene	mg/kg dry wt	0.460	03/25/09	BGL	0.198			
Dibenzofuran	mg/kg dry wt	ND	03/25/09	BGL	0.40			
Dibenz(a,h)anthracene	mg/kg dry wt	ND	03/25/09	BGL	0.198			
1,2-Dichlorobenzene	mg/kg đry wt	ND	03/25/09	BGL	0.40			
1,3-Dichlorobenzene	mg/kg dry wt	ND	03/25/09	BGL.	0.40			
1,4-Dichlorobenzene	mg/kg dry wt	ND	03/25/09	BGL	0.40			
3,3'-Dichlorobenzidine	mg/kg dry wt	ND	03/25/09	BGL	0.20			
2,4-Dichlorophenol	mg/kg dry wt	ND	03/25/09	BGL	0.40			
Diethylphthalate	mg/kg dry wt	ND	03/25/09	BGL	0.40			
2,4-Dimethylphenol	mg/kg dry wt	ND	03/25/09	BGL	0.40			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

^{* =} See end of report for comments and notes applying to this sample

^{# =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

Purchase Order No.:

3/27/2009 Page 22 of 39

LOWELL, MA 01852

Project Location: CITY OF NEW BEDFORD(WALSH)

LIMS-BAT#: LIMT-24107

Date Received:

3/20/2009

Job Number: 115058

Field Sample #: NAP-SS-02

Sample ID:

09B08553

‡Sampled: 3/19/2009

Not Specified

Sample Matrix:

SOIL

	Units	Results	Date	Analyst	RL	SPEC Limit		P/F
			Analyzed			Lo	Hi	
Dimethylphthalate	mg/kg dry wt	ND	03/25/09	BGL	0.79			
Di-n-butylphthalate	mg/kg dry wt	ND	03/25/09	BGL	0.40			
Di-n-octylphthalate	mg/kg dry wt	ND	03/25/09	BGL	0.79			
2,4-Dinitrophenol	mg/kg dry wt	ND	03/25/09	BGL	0.79			
2,4-Dinitrotoluene	mg/kg dry wt	ND	03/25/09	BGL	0.40			
2,6-Dinitrotoluene	mg/kg dry wt	ND	03/25/09	BGL.	0.40			
1,2-Diphenylhydrazine (as Azobenzene)	mg/kg dry wt	ND	03/25/09	BGL	0.40			
Fluoranthene	mg/kg dry wt	0.755	03/25/09	BGL	0.198			
Fluorene	mg/kg dry wt	ND	03/25/09	BGL	0.198			
Hexachlorobenzene	mg/kg dry wt	ND	03/25/09	BGL	0.40			
Hexachlorobutadiene	mg/kg dry wt	ND	03/25/09	BGL	0.40			
Hexachloroethane	mg/kg dry wt	ND	03/25/09	BGL	0.40			
Indeno(1,2,3-cd)pyrene	mg/kg dry wt	0.292	03/25/09	BGL	0.198			
Isophorone	mg/kg dry wt	ND	03/25/09	BGL	0.40			
o-cresol	mg/kg dry wt	ND	03/25/09	BGL.	0.40			
m & p-cresol(s)	mg/kg dry wt	ND	03/25/09	BGL	0.40			
2-Methylnaphthalene	mg/kg dry wt	ND	03/25/09	BGL	0.198			
Naphthalene	mg/kg dry wt	ND	03/25/09	BGL	0.198			
Nitrobenzene	mg/kg dry wt	ND	03/25/09	BGL	0.40			
2-Nitrophenol	mg/kg dry wt	ND	03/25/09	BGL	0.40			
4-Nitrophenol	mg/kg dry wt	ND	03/25/09	BGL	0.79			
Pentachlorophenol	mg/kg dry wt	ND	03/25/09	BGL	0.40			
Phenanthrene	mg/kg dry wt	1.02	03/25/09	BGL	0.198			
Phenol	mg/kg dry wt	ND	03/25/09	BGL	0.40			
Pyrene	mg/kg dry wt	1.02	03/25/09	BGL	0.198			
1,2,4-Trichlorobenzene	mg/kg dry wt	ND	03/25/09	BGL	0.40			
2,4,5-Trichlorophenol	mg/kg dry wt	ND	03/25/09	BGL	0.40			
2,4,6-Trichlorophenol	mg/kg dry wt	ND	03/25/09	BGL.	0.40			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{# =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

3/27/2009 Page 24 of 39

LIMS-BAT#: LIMT-24107 Job Number: 115058

LOWELL, MA 01852

Purchase Order No.:

Project Location: CITY OF NEW BEDFORD(WALSH)

Date Received:

3/20/2009

Field Sample #: NAP-SS-03 Sample ID:

09B08554

‡Sampled: 3/19/2009

Not Specified

Sample Matrix:

SOIL

	Units	Results	Date Analyzed	Analyst	RL	SPEC I Lo	Limit Hi	P/ F
Acenaphthene	mg/kg dry wt	ND	03/25/09	BGL	0.200			
Acenaphthylene	mg/kg dry wt	ND	03/25/09	BGL	0.200			
Acetophenone	mg/kg dry wt	ND	03/25/09	BGL	0.40			
Aniline	mg/kg dry wt	ND	03/25/09	BGL.	0.40			
Anthracene	mg/kg dry wt	ND	03/25/09	BGL	0.200			
Benzo(a)anthracene	mg/kg dry wt	ND	03/25/09	BGL	0.200			
Benzo(a)pyrene	mg/kg dry wt	ND	03/25/09	BGL	0.200			
Benzo(b)fluoranthene	mg/kg dry wt	ND	03/25/09	BGL	0.200			
Benzo(g,h,i)perylene	mg/kg dry wt	ND	03/25/09	BGL	0.200			
Benzo(k)fluoranthene	mg/kg dry wt	ND	03/25/09	BGL	0.200			
Bis(2-chloroethoxy)methane	mg/kg dry wt	ND	03/25/09	BGL	0.40			
Bis(2-chloroethyl)ether	mg/kg dry wt	ND	03/25/09	BGL	0.40			
Bis(2-chloroisopropyl)ether	mg/kg dry wt	ND	03/25/09	BGL	0.40			
Bis(2-ethylhexyl)phthalate	mg/kg dry wt	ND	03/25/09	BGL	0.40			
4-Bromophenyl phenyl ether	mg/kg dry wt	ND	03/25/09	BGL	0.40			
Butylbenzylphthalate	mg/kg dry wt	ND	03/25/09	BGL	08.0			
4-Chloroaniline	mg/kg dry wt	ND	03/25/09	BGL	08.0			
2-Chloronaphthalene	mg/kg dry wt	ND	03/25/09	BGL	0.40			
2-Chlorophenol	mg/kg dry wt	ND	03/25/09	BGL	0.40			
Chrysene	mg/kg dry wt	ND	03/25/09	BGL	0.200			
Dibenzofuran	mg/kg dry wt	ND	03/25/09	BGL	0.40			
Dibenz(a,h)anthracene	mg/kg dry wt	ND	03/25/09	BGL	0.200			
1,2-Dichlorobenzene	mg/kg dry wt	ND	03/25/09	BGL	0.40			
1,3-Dichlorobenzene	mg/kg dry wt	ND	03/25/09	BGL.	0.40			
1,4-Dichlorobenzene	mg/kg dry wt	ND	03/25/09	BGL	0.40			
3,3'-Dichlorobenzidine	mg/kg dry wt	ND	03/25/09	BGL	0.20			
2,4-Dichlorophenol	mg/kg dry wt	ND	03/25/09	BGL.	0.40			
Diethylphthalate	mg/kg dry wt	ND	03/25/09	BGL	0.40			
2,4-Dimethylphenol	mg/kg dry wt	ND	03/25/09	BGL	0.40			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

LOWELL, MA 01852

Purchase Order No.:

3/27/2009

LIMS-BAT #: LIMT-24107 Job Number: 115058

Page 25 of 39

Project Location: CITY OF NEW BEDFORD(WALSH)

Date Received: Field Sample #: NAP-SS-03

3/20/2009

Sample ID:

09B08554

‡Sampled: 3/19/2009

Not Specified

Sample Matrix: SOIL

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/F
Dimethylphthalate	mg/kg dry wt	ND	03/25/09	BGL.	0.80			
Di-n-butylphthalate	mg/kg dry wt	ND	03/25/09	BGL	0.40			
Di-n-octylphthalate	mg/kg dry wt	ND	03/25/09	BGL	0.80			
2,4-Dinitrophenol	mg/kg dry wt	ND	03/25/09	BGL	0.80			
2,4-Dinitrotoluene	mg/kg dry wt	ND	03/25/09	BGL	0.40			
2,6-Dinitrotoluene	mg/kg dry wt	ND	03/25/09	BGL	0.40			
1,2-Diphenylhydrazine (as Azobenzene)	mg/kg dry wt	ND	03/25/09	BGL	0.40			
Fluoranthene	mg/kg dry wt	ND	03/25/09	BGL	0.200			
Fluorene	mg/kg dry wt	ND	03/25/09	BGL	0.200			
Hexachlorobenzene	mg/kg dry wt	ND	03/25/09	BGL	0.40			
Hexachlorobutadiene	mg/kg dry wt	ND	03/25/09	BGL	0.40			
Hexachloroethane	mg/kg dry wt	ND	03/25/09	BGL	0.40			
Indeno(1,2,3-cd)pyrene	mg/kg dry wt	ND	03/25/09	BGL	0.200			
Isophorone	mg/kg dry wt	ND	03/25/09	BGL	0.40			
o-cresol	mg/kg dry wt	ND	03/25/09	BGL	0.40			
m & p-cresol(s)	mg/kg dry wt	ND	03/25/09	BGL	0.40			
2-Methylnaphthalene	mg/kg dry wt	ND	03/25/09	BGL	0.200			
Naphthalene	mg/kg dry wt	ND	03/25/09	BGL	0.200			
Nitrobenzene	mg/kg dry wt	ND	03/25/09	BGL	0.40			
2-Nitrophenol	mg/kg dry wt	ND	03/25/09	BGL	0.40			
4-Nitrophenol	mg/kg dry wt	ND	03/25/09	BGL	0.80			
Pentachlorophenol	mg/kg dry wt	ND	03/25/09	BGL.	0.40			
Phenanthrene	mg/kg dry wt	ND	03/25/09	BGL	0.200			
Phenol	mg/kg dry wt	ND	03/25/09	BGL	0.40			
Pyrene	mg/kg dry wt	0.269	03/25/09	BGL	0.200			
1,2,4-Trichlorobenzene	mg/kg dry wt	ND	03/25/09	BGL	0.40			
2,4,5-Trichlorophenol	mg/kg dry wt	ND	03/25/09	BGL.	0.40			
2,4,6-Trichlorophenol	mg/kg dry wt	ND	03/25/09	BGL	0.40			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

3/27/2009 Page 27 of 39

LIMS-BAT #: LIMT-24107

Job Number: 115058

LOWELL, MA 01852 Purchase Order No.:

Project Location: CITY OF NEW BEDFORD(WALSH)

Date Received: 3/20/2009

Field Sample #: NAP-SS-04

Sample ID: 09B08555

‡Sampled: 3/19/2009

Not Specified

Sample Matrix: SOIL

	Units	Results	Date Analyst		RL.	SPEC Limit		P/F
			Analyzed			Lo	Hi	
Acenaphthene	mg/kg dry wt	ND	03/25/09	BGL	0.203			
Acenaphthylene	mg/kg dry wt	ND	03/25/09	BGL	0.203			
Acetophenone	mg/kg dry wt	ND	03/25/09	BGL	0.41			
Aniline	mg/kg dry wt	ND	03/25/09	BGL	0.41			
Anthracene	mg/kg dry wt	ND	03/25/09	BGL	0.203			
Benzo(a)anthracene	mg/kg dry wt	ND	03/25/09	BGL	0.203			
Benzo(a)pyrene	mg/kg dry wt	ND	03/25/09	BGL	0.203			
Benzo(b)fluoranthene	mg/kg dry wt	ND	03/25/09	BGL	0.203			
Benzo(g,h,i)perylene	mg/kg dry wt	ND	03/25/09	BGL	0.203			
Benzo(k)fluoranthene	mg/kg dry wt	ND	03/25/09	BGL	0.203			
Bis(2-chloroethoxy)methane	mg/kg dry wt	ND	03/25/09	BGL	0.41			
Bis(2-chloroethyl)ether	mg/kg dry wt	ND	03/25/09	BGL	0.41			
Bis(2-chloroisopropyl)ether	mg/kg dry wt	ND	03/25/09	BGL.	0.41			
Bis(2-ethylhexyl)phthalate	mg/kg dry wt	ND	03/25/09	BGL	0.41			
4-Bromophenyl phenyl ether	mg/kg dry wt	ND	03/25/09	BGL	0.41			
Butylbenzylphthalate	mg/kg dry wt	ND	03/25/09	BGL	0.81			
1-Chloroaniline	mg/kg dry wt	ND	03/25/09	BGL.	0.81			
2-Chloronaphthalene	mg/kg dry wt	ND	03/25/09	BGL	0.41			
2-Chlorophenol	mg/kg dry wt	ND	03/25/09	BGL	0.41			
Chrysene	mg/kg dry wt	ND	03/25/09	BGL	0.203			
Dibenzofuran	mg/kg dry wt	ND	03/25/09	BGL	0.41			
Dibenz(a,h)anthracene	mg/kg đry wt	ND	03/25/09	BGL	0.203			
1,2-Dichlorobenzene	mg/kg dry wt	ND	03/25/09	BGL	0.41			
1,3-Dichlorobenzene	mg/kg dry wt	ND	03/25/09	BGL	0.41			
1,4-Dichlorobenzene	mg/kg dry wt	ND	03/25/09	BGL	0.41			
3,3'-Dichlorobenzidine	mg/kg dry wt	ND	03/25/09	BGL	0.21			
2,4-Dichlorophenol	mg/kg dry wt	ND	03/25/09	BGL	0.41			
Diethylphthalate	mg/kg dry wt	ND	03/25/09	BGL	0.41			
2,4-Dimethylphenol	mg/kg dry wt	ND	03/25/09	BGL	0.41			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

3/27/2009 Page 28 of 39

LOWELL, MA 01852

Purchase Order No.:

Project Location: CITY OF NEW BEDFORD(WALSH)

LIMS-BAT #: LIMT-24107

Date Received:

3/20/2009

Job Number: 115058

Sample ID:

Field Sample #: NAP-SS-04 09B08555

‡Sampled: 3/19/2009

Not Specified

Sample Matrix: SOIL

	Units	Results	Date	Analyst	Analyst RL	SPEC Limit		P/ F
			Analyzed			Lo	Hi 	
Dimethylphthalate	mg/kg dry wt	ND	03/25/09	BGL	0.81			
Di-n-butylphthalate	mg/kg dry wt	ND	03/25/09	BGL	0.41			
Di-n-octylphthalate	mg/kg dry wt	ND	03/25/09	BGL	0.81			
2,4-Dinitrophenol	mg/kg dry wt	ND	03/25/09	BGL	0.81			
2,4-Dinitrotoluene	mg/kg dry wt	ND	03/25/09	BGL	0.41			
2,6-Dinitrotoluene	mg/kg dry wt	ND	03/25/09	BGL	0.41			
1,2-Diphenylhydrazine (as Azobenzene)	mg/kg dry wt	ND '	03/25/09	BGL.	0.41			
Fluoranthene	mg/kg dry wt	ND	03/25/09	BGL.	0.203			
Fluorene	mg/kg dry wt	ND	03/25/09	BGL	0.203			
Hexachlorobenzene	mg/kg dry wt	ND	03/25/09	BGL	0.41			
Hexachlorobutadiene	mg/kg dry wt	ND	03/25/09	BGL	0.41			
Hexachloroethane	mg/kg dry wt	ND	03/25/09	BGL	0.41			
Indeno(1,2,3-cd)pyrene	mg/kg dry wt	ND	03/25/09	BGL	0.203			
Isophorone	mg/kg dry wt	ND	03/25/09	BGL.	0.41			
o-cresol	mg/kg dry wt	ND	03/25/09	BGL	0.41			
m & p-cresol(s)	mg/kg dry wt	ND	03/25/09	BGL	0.41			
2-Methylnaphthalene	mg/kg dry wt	ND	03/25/09	BGL	0.203			
Naphthalene	mg/kg dry wt	ND	03/25/09	BGL	0.203			
Nitrobenzene	mg/kg dry wt	ND	03/25/09	BGL	0.41			
2-Nitrophenol	mg/kg dry wt	ND	03/25/09	BGL	0.41			
4-Nitrophenol	mg/kg dry wt	ND	03/25/09	BGL	0.81			
Pentachlorophenol	mg/kg dry wt	ND	03/25/09	BGL	0.41			
Phenanthrene	mg/kg dry wt	ND	03/25/09	BGL	0.203			
Phenol	mg/kg dry wt	ND	03/25/09	BGL.	0.41			
Pyrene	mg/kg dry wt	ND	03/25/09	BGL	0.203			
1,2,4-Trichlorobenzene	mg/kg dry wt	ND	03/25/09	BGL	0.41			
2,4,5-Trichlorophenol	mg/kg dry wt	ND	03/25/09	BGL	0.41			
2,4,6-Trichlorophenol	mg/kg dry wt	ND	03/25/09	BGL	0.41			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{# =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

3/27/2009

Page 30 of 39

LOWELL, MA 01852

Purchase Order No.:

Project Location:

CITY OF NEW BEDFORD(WALSH)

LIMS-BAT #:

LIMT-24107

Date Received:

3/20/2009

Job Number:

115058

Field Sample #:

09B08552

NAP-SS-01

‡Sampled: 3/19/2009

Not Specified

Sample ID: Sample Matrix:

SOIL

Units

Results

Date

Analyst RL SPEC Limit

Hi

P/F

Analyzed

Arsenic

mg/kg dry wt

5.49

03/26/09 OP

3.07

Lo

Field Sample #: NAP-SS-02 Sample ID:

09B08553

‡Sampled: 3/19/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

Date

Analyst

SPEC Limit

Lo

P/F

Analyzed

Hi

Arsenic

mg/kg dry wt

7.34

03/26/09 OP 2.96

RL

3.00

RL

NAP-\$S-03

Field Sample #: Sample ID:

09B08554

‡Sampled: 3/19/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

Date

Analyzed

03/26/09

Analyst .

SPEC Limit

Lo

P/F

Hi

Arsenic

Field Sample #: NAP-SS-04 09B08555

mg/kg dry wt 4.80

‡Sampled: 3/19/2009

Not Specified

Sample ID: Sample Matrix:

SOIL

Units

mg/kg dry wt

Results

6.51

Date Analyzed

03/26/09

Analyst

OP

OP

RL

3.04

SPEC Limit

Lo

P/F

Hi

Arsenic

Analytical Method: SW846 3050/6010

SAMPLES ARE DIGESTED WITH NITRIC ACID AND THEN ANALYZED BY INDUCTIVELY COUPLED PLASMA EMISSION SPECTROSCOPY.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

* = See end of report for comments and notes applying to this sample

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

3/27/2009

Page 31 of 39

LOWELL, MA 01852

Purchase Order No.:

Project Location:

CITY OF NEW BEDFORD(WALSH)

LIMS-BAT #:

LIMT-24107

Date Received:

3/20/2009

Job Number:

115058

NAP-SS-01 Field Sample #:

09B08552

‡Sampled: 3/19/2009

Not Specified

Sample Matrix:

Sample ID:

SOIL

Units	

mg/kg dry wt

Results

Date Analyzed Analyst RL **SPEC Limit**

Ηi

P/F

Cadmium

0.32

03/26/09

OP

0.31

Lo

Field Sample #: NAP-SS-02

Sample ID:

09B08553

‡Sampled: 3/19/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

Date Analyzed Analyst

SPEC Limit

Lo

Hi

P/F

Cadmium

mg/kg dry wt

ND

03/26/09 QP. 0.30

RL

Field Sample #:

NAP-SS-03

Sample ID:

09B08554

‡Sampled: 3/19/2009

Not Specified

Sample Matrix:

SOIL

Units

mg/kg dry wt

mg/kg dry wt

Results

Date Analyzed

03/26/09

Analyst

OP

RL.

0.30

SPEC Limit

Hi

P/F

L.o

Cadmium

Field Sample #: NAP-SS-04

Sample ID:

09B08555

‡Sampled: 3/19/2009

ND

Not Specified

Sample Matrix:

SOIL

Units

Results

ND

Date Analyzed

03/26/09

Analyst

OP

RL

0.31

SPEC Limit

Lo

P/F

Hi

Cadmium

Analytical Method:

SW846 3050/6010

SAMPLES ARE DIGESTED WITH NITRIC ACID AND THEN ANALYZED BY INDUCTIVELY COUPLED PLASMA EMISSION SPECTROSCOPY.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

* = See end of report for comments and notes applying to this sample

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

3/27/2009

Page 32 of 39

LOWELL, MA 01852

Purchase Order No.:

Project Location:

CITY OF NEW BEDFORD(WALSH)

LIMS-BAT #:

LIMT-24107

Date Received:

3/20/2009

Job Number:

115058

Field Sample #:

NAP-SS-01 09B08552

‡Sampled: 3/19/2009

Not Specified

Sample Matrix:

Sample ID:

SOIL

Unit

mg/kg dry wt

Results

Date

RL Analyst

SPEC Limit

Hi

P/F

12.7

Analyzed 03/26/09

OP

Lo

0.62

RL

Chromium

Field Sample #: NAP-SS-02

Sample ID:

09B08553

‡Sampled: 3/19/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

Date Analyzed Analyst

SPEC Limit

Hi

Lo

P/F

Chromium

mg/kg dry wt

11.9

03/26/09 QР 0.60

Field Sample #:

NAP-SS-03

Sample ID:

09B08554

‡Sampled: 3/19/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

Date

Analyzed

Analyzed

03/26/09

Analyst

SPEC Limit

P/F

mg/kg dry wt

8.18

03/26/09 OP

RL

0.60

Lo

Chromium

Field Sample #: NAP-SS-04

Sample ID:

09B08555

‡Sampled: 3/19/2009

Not Specified

Sample Matrix:

SOIL

Units

mg/kg dry wt

Results

9.58

Date

Analyst

OP

ŔL

0.61

SPEC Limit

Lo

Hi

P/F

Chromium

Analytical Method: SW846 3050/6010

SAMPLES ARE DIGESTED WITH NITRIC ACID AND THEN ANALYZED BY INDUCTIVELY COUPLED PLASMA EMISSION SPECTROSCOPY.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

3/27/2009

Page 33 of 39

LOWELL, MA 01852

Purchase Order No.:

Project Location:

CITY OF NEW BEDFORD(WALSH)

LIMS-BAT#:

Lo

LIMT-24107

Date Received:

3/20/2009

Job Number:

115058

Field Sample #:

‡Sampled: 3/20/2009

Not Specified

Sample Matrix:

Sample ID:

SOIL

U	n	i	t	¢
v	1 1	ı	١,	٠

Results

Analyst

SPEC Limit

P/F

Analyzed 03/24/09

Date

KM

0.070

ŔL

Hi

Field Sample #:

Mercury

Sample ID:

‡Sampled: 3/20/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

Date Analyzed Analyst

SPEC Limit

Lo

Lo

Ηi

P/F

Mercury

mg/kg dry wt

mg/kg dry wt

03/24/09 KM 0.058

RL

Field Sample #:

Sample ID:

NAP-SS-01

09B08552

‡Sampled: 3/19/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

0.102

Date Analyzed

03/24/09

Analyst

KM

RL

0.011

SPEC Limit

Hi

P/F

Mercury

mg/kg dry wt

Field Sample #: NAP-SS-02

09B08553

‡Sampled: 3/19/2009

Not Specified

Sample Matrix:

Sample ID:

SOIL

Units

mg/kg dry wt

mg/kg dry wt

Results

0.162

Date Analyzed Analyst

RL

SPEC Limit

P/F

Lo

03/24/09 KM 0.011

Hi

Mercury

NAP-SS-03

Field Sample #: Sample ID:

09B08554

‡Sampled: 3/19/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

Analyst Analyzed

RL

SPEC Limit

Hi

Lo

P/F

Mercury

0.138

03/24/09

Date

ΚM

0.013

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

* = See end of report for comments and notes applying to this sample

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

3/27/2009

Page 34 of 39

LOWELL, MA 01852

Purchase Order No.:

Project Location: CITY OF NEW BEDFORD(WALSH)

LIMS-BAT #:

LIMT-24107

Date Received:

3/20/2009

Job Number:

115058

Field Sample #: Sample ID:

NAP-SS-04

09B08555

‡Sampled: 3/19/2009

Not Specified

RL.

Sample Matrix:

Results

Date

Analyst

SPEC Limit

Hi

P/F

SOIL

Units

Analyzed

Lo

Mercury

mg/kg dry wt

0.154

03/24/09

ΚM

0.012

Analytical Method:

SAMPLES ARE DIGESTED WITH ACIDS AND THEN ANALYZED BY COLD VAPOR (FLAMELESS) ATOMIC ABSORPTION SPECTROPHOTOMETRY

SW846 3050/7471

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

3/27/2009

Page 35 of 39

LOWELL, MA 01852

Purchase Order No.:

Project Location:

CITY OF NEW BEDFORD(WALSH)

LIMS-BAT #:

LIMT-24107

Date Received:

3/20/2009

Job Number:

115058

Field Sample #:

NAP-SS-01 09B08552

‡Sampled: 3/19/2009

Not Specified

Sample Matrix:

Sample ID:

Units

Results

Date Analyzed Analyst

SPEC Limit

P/F

Lead

SOIL

mg/kg dry wt

73.5

03/26/09

0.92

RL

0.89

RL

0.90

RL

Lo Hi

Field Sample #: NAP-SS-02

Sample ID:

09B08553

‡Sampled: 3/19/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

Analyst

OP

SPEC Limit

Hi

P/F

mg/kg dry wt

03/26/09 OP Lo

Lead Field Sample #:

NAP-SS-03

Sample ID:

09B08554

‡Sampled: 3/19/2009

99.7

Not Specified

Sample Matrix:

SOIL

Units

Results

Date

Date

Analyzed

Analyst

SPEC Limit

P/F

Lo Ηi

Lead

123 mg/kg dry wt

Analyzed 03/26/09

OP

Field Sample #: NAP-SS-04

Sample ID:

09B08555

‡Sampled: 3/19/2009

Not Specified

Sample Matrix:

SOIL

Units

mg/kg dry wt

Results

52.9

Date Analyzed

03/26/09

Analyst

OP

RL

0.91

SPEC Limit Lo

Hi

P/F

Analytical Method:

SW846 3050/6010

Lead

SAMPLES ARE DIGESTED WITH NITRIC ACID AND THEN ANALYZED BY INDUCTIVELY COUPLED PLASMA EMISSION SPECTROSCOPY.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

* = See end of report for comments and notes applying to this sample

DAVID SULLIVAN

Date Received:

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

3/27/2009 Page 36 of 39

Purchase Order No.: LOWELL, MA 01852

CITY OF NEW BEDFORD(WALSH) Project Location:

LIMS-BAT#: 3/20/2009

115058 Job Number:

LIMT-24107

Field Sample #:

‡Sampled: 3/20/2009 Sample ID:

Not Specified

Sample Matrix: SOIL

SPEC Limit P/F Units Results Date Analyst RL Analyzed Lo Hi

% 03/25/09 FD Solids, total

Field Sample #:

Sample ID:

‡Sampled: 3/20/2009

Not Specified

Sample Matrix: SOIL

SPEC Limit Units Results Date Analyst RL P/F Hi Analyzed Lo

% 03/25/09 FD Solids, total

Field Sample #: NAP-SS-01

Sample ID: 09B08552

‡Sampled: 3/19/2009

Not Specified

Sample Matrix: SOIL

P/F Units Results RL **SPEC Limit** Date Analyst Analyzed Lo Ηi Solids, total % 81.6 03/25/09 FD

Field Sample #: NAP-SS-02

Sample ID:

09B08553

‡Sampled: 3/19/2009

Not Specified

SOIL Sample Matrix:

P/F Units Results Date Analyst RL SPEC Limit Hi Analyzed Lo Solids, total % 84.6 03/25/09 FD

Field Sample #: NAP-SS-03

Sample ID:

09B08554

‡Sampled: 3/19/2009

Not Specified

Sample Matrix:

SOIL

RL **SPEC Limit** P/F Units Results Date Analyst Analyzed Lo Hi 03/25/09 % 83.5 FD

RL = Reporting Limit

Solids, total

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{# =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

3/27/2009

Page 37 of 39

LOWELL, MA 01852

Purchase Order No.:

Project Location: CITY OF NEW BEDFORD(WALSH)

LIMS-BAT #: LIMT-24107

Date Received:

3/20/2009

Job Number:

115058

Field Sample #: NAP-SS-04

09B08555

‡Sampled: 3/19/2009

Not Specified

Sample Matrix:

Sample ID:

SOIL

Units

RL

SPEC Limit

P/F

Results

Date Analyzed Analyst

Ηi

Solids, total

%

82.5

03/25/09

FD

Lo

Analytical Method:

SM 2540G

PERCENT OF SAMPLE REMAINING AFTER DRYING OVERNIGHT AT 103-105 DEGREES CENTIGRADE.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

* = See end of report for comments and notes applying to this sample

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

3/27/2009

Page 38 of 39

LOWELL, MA 01852

Purchase Order No.:

Project Location:

CITY OF NEW BEDFORD(WALSH)

LIMS-BAT #:

LIMT-24107

Date Received:

Job Number:

115058

Field Sample #:

3/20/2009

NAP-SS-01

09B08552

‡Sampled: 3/19/2009

Not Specified

Sample ID: Sample Matrix:

SOIL

Results

Date

RL Analyst

SPEC Limit

P/F

Analyzed

CJM

Lo Hi

Unknown Hydrocarbons

mg/kg dry wt

Units

24

03/25/09

11

Field Sample #: NAP-SS-02

09B08553

‡Sampled: 3/19/2009

Not Specified

Sample Matrix:

Sample ID:

SOIL

Units

Results

Date

Analyst

SPEC Limit

Lo

P/F

mg/kg dry wt

Analyzed 03/25/09

CJM

9.9

RL

RL

10.0

Hi

Unknown Hydrocarbons

Field Sample #: NAP-SS-03

09B08554

‡Sampled: 3/19/2009

22

Not Specified

Sample Matrix:

Sample ID:

SOIL

Units

Results

Date Analyzed

03/25/09

Analyst

CJM

CJM

SPEC Limit Lo

Lo

P/F

Unknown Hydrocarbons

mg/kg dry wt Field Sample #: NAP-SS-04

Sample ID:

09B08555

‡Sampled: 3/19/2009

35

Not Specified

Sample Matrix:

SOIL

Units

Results

51

Date Analyzed

03/25/09

Analyst

RL.

51

SPEC Limit

P/F

Hi

Unknown Hydrocarbons

Analytical Method: MODIFIED SW846 8100

SAMPLES ARE EXTRACTED INTO METHYLENE CHLORIDE AND ANALYZED BY GAS CHROMATOGRAPHY WITH FLAME IONIZATION DETECTION (FID). ALL PEAKS ELUTING IN THE PETROLEUM FUEL REGION ARE QUANTITATED AS #2 FUEL OIL.

mg/kg dry wt

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

* = See end of report for comments and notes applying to this sample

Project Location: City Of New Bedford

Sample Description:

Work Order: 09D0010

Date Received: 4/24/2009

Sample Matrix: Soil

Field Sample #: Fence DSP-1 Sample ID: 09D0010-01 Sampled: 4/24/2009 10:00

Volatile Organic Compounds by GC/MS

			Volatile Organic Con	apounds by GO	C/MS				
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Fime Analyzed	Analyst
Acetone	ND	0.085	mg/Kg dry	1	1 lug	SW-846 8260B	4/28/09	4/28/09 8:59	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.00085	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
Benzene	ND	0.0017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
Bromobenzene	ND	0.0017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
Bromochloromethane	ND	0.0017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
Bromodichloromethane	ND	0.0017	mg/Kg dry	1		 SW-846 8260B 	4/28/09	4/28/09 8:59	MFF
Bromoform	ND	0.0085	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
Bromomethane	ND	0.0085	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
2-Butanone (MEK)	ND	0.034	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
n-Butylbenzene	0.0021	0.0017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
sec-Butylbenzene	ND	0.0017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
tert-Butylbenzene	ND	0.0017	mg/Kg dry	l		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.00085	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
Carbon Disulfide	ND	0.0051	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
Carbon Tetrachloride	ND	0.0017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
Chlorobenzene	ND	0.0017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
Chlorodibromomethane	ND	0.0042	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
Chloroethane	ND	0.017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
Chloroform	ND	0,0034	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
Chloromethane	ND	0.0085	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
2-Chlorotoluene	ND	0.0017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
4-Chlorotoluene	ND	0.0017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
1,2-Dibromoethane (EDB)	ND	0.00085	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
Dibromomethane	ND	0,0017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
1,2-Dichlorobenzene	ND	0.0017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
1,3-Dichlorobenzene	ND	0.0017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
1,4-Dichlorobenzene	ND	0.0017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
1,1-Dichloroethane	ND	0.0017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
1,2-Dichloroethane	ND	0.0017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
1,1-Dichloroethylene	ND	0.0034	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
cis-1,2-Dichloroethylene	ND	0.0017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
trans-1,2-Dichloroethylene	ND	0.0017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
1,2-Dichloropropane	ND	0.0017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
1,3-Dichloropropane	ND	0.00085	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
2,2-Dichloropropane	ND	0.0017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
1,1-Dichloropropene	ND	0.0017	mg/Kg dry	I		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
cis-1,3-Dichloropropene	ND	0.0042	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
trans-1,3-Dichloropropene	ND	0.0042	mg/Kg dry	Į		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
Diethyl Ether	ND	0.017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
Diisopropyl Ether (DIPE)	ND	0.00085	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
1,4-Dioxane	ND	0.085	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
Ethylbenzene	ND	0.0017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
-			0 0 0						

Project Location: City Of New Bedford

Sample Description:

Work Order: 09D0010

Date Received: 4/24/2009
Field Sample #: Fence DSP-1

Sampled: 4/24/2009 10:00

Sample ID: 09D0010-01
Sample Matrix: Soil

		Vol	atile Organic Comp	pounds by GC	C/MS				
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.0017	mg/Kg dry	i		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
2-Hexanone (MBK)	ND	0.017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
Isopropylbenzene (Cumene)	ND	0.0017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0017	mg/Kg dry	l		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0034	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
Methylene Chloride	ND	0.017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.017	mg/Kg dry	í		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
Naphthalene	ND	0.0085	mg/Kg dry	i		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
n-Propylbenzene	ND	0.0017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
Styrene	ND	0.0085	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
1,1,1,2-Tetrachlorocthane	ND	0.0017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
1,1,2,2-Tetrachloroethane	ND	0.00085	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
Tetrachloroethylene	ND	0.0017	mg/Kg dry	ì		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
Tetrahydrofuran	ND	0.0085	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
Toluene	ND	0.0017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
1,2,3-Trichlorobenzene	ND	0.0085	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
1,2,4-Trichlorobenzenc	ND	0.0085	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
1,1,1-Trichloroethane	ND	0.0017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
1,1,2-Trichloroethane	ND	0.0017	mg/Kg dry	Į		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
Trichloroethylene	ND	0.0017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
Trichlorofluoromethane (Freon 11)	ND	0.0085	mg/Kg dry	I		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
1,2,3-Trichloropropane	ND	0.0017	mg/Kg dry	.1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
1,2,4-Trimethylbenzene	ND	0.0017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
1,3,5-Trimethylbenzene	ND	0.0017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
Vinyl Chloride	ND	0.0085	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
m+p Xylene	ND	0.0034	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
o-Xylene	0.0017	0.0017	mg/Kg dry	1		SW-846 8260B	4/28/09	4/28/09 8:59	MFF
Surrogates		% Recovery	Recovery Limits	3	Flag				
1,2-Dichloroethane-d4		81.7	70-130					4/28/09 8:59	
Toluene-d8 4-Bromofluorobenzene		95.8 99.3	70-130 70-130					4/28/09 8:59 4/28/09 8:59	
4-ргопюниогодениепе		77.3	10-130					120007 0.37	

Project Location: City Of New Bedford

Sample Description:

Work Order: 09D0010

Date Received: 4/24/2009
Field Sample #: Fence DSP-1

Sampled: 4/24/2009 10:00

Sample ID: 09D0010-01
Sample Matrix: Soil

Semivolatile Organic Con	npounds by GC/MS
--------------------------	------------------

			Semivolatile Organic C	ompounds by C	GC/MS				
	,						Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Acenaphthene	ND	0.19	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
Acenaphthylene	ND	0.19	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
Acetophenone	ND	0.39	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
Aniline	ND	0.39	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
Anthracene	ND	0.19	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
Benzo(a)anthracene	0.24	0.19	mg/Kg dry	1	,	SW-846 8270C	4/28/09	4/29/09 18:02	BGL
Benzo(a)pyrene	0.27	0.19	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
Benzo(b)fluoranthene	0.28	0.19	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
Benzo(g,h,i)perylene	0.24	0.19	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
Benzo(k)fluoranthene	ND	0.19	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
Bis(2-chloroethoxy)methane	ND	0.39	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
Bis(2-chloroethyl)ether	ND	0.39	mg/Kg dry	Į.		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
Bis(2-chloroisopropyl)ether	ND	0.39	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
Bis(2-Ethylhexyl)phthalate	ND	0.39	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
4-Bromophenylphenylether	ND	0.39	mg/Kg dry	I		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
Butylbenzyiphthalate	ND	0.76	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
4-Chloroaniline	ND	0.76	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
2-Chloronaphthalene	ND	0.39	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
2-Chlorophenol	ND	0.39	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
Chrysene	0.26	0.19	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
Dibenz(a,h)anthracene	ND	0.19	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
Dibenzofuran	ND	0.39	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
Di-n-butylphthalate	ND	0.39	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
1,2-Dichlorobenzene	ND	0.39	mg/Kg dry	ı		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
1,3-Dichlorobenzene	ND	0.39	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
1,4-Dichlorobenzene	ND	0.39	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
3,3-Dichlorobenzidine	ND	0.19	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
2,4-Dichlorophenol	ND	0.39	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
Diethylphthalate	ND	0.39	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
2,4-Dimethylphenol	ND	0.39	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
Dimethylphthalate	ND	0.76	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
2,4-Dinitrophenol	ND	0.76	mg/Kg dry	ì		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
2,4-Dinitrotoluene	ND	0.39	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
2,6-Dinitrotoluene	ND	0.39	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
Di-n-octylphthalate	ND	0.76	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	
1,2-Diphenylhydrazine (as Azobenzene)	ND	0.39	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	
Fluoranthene	0.46	0.19	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	
Fluorene	0.40 ND	0.19	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	
						SW-846 8270C	4/28/09	4/29/09 18:02	
Hexachlorobenzene	ND	0.39	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	
Hexachlorobutadiene	ND	0.39	mg/Kg dry				4/28/09	4/29/09 18:02	
Hexachloroethane	ND	0.39	mg/Kg dry	1		SW-846 8270C			
Indeno(1,2,3-cd)pyrene	0.24	0.19	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	
Isophorone	ND	0.39	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	
2-Methylnaphthalene	ND	0.19	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL

Project Location: City Of New Bedford

Sample Description:

76.1

Work Order: 09D0010

4/29/09 18:02

Date Received: 4/24/2009

Field Sample #: Fence DSP-1

Sampled: 4/24/2009 10:00

Sample ID: 09D0010-01
Sample Matrix: Soil

Terphenyl-d14

Sample Matrix. Son		Semi	volatile Organic Co	mpounds by (GC/MS				
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
2-Methylphenol	ND	0.39	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
3/4-Methylphenol	ND	0.39	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
Naphthalene	ND	0.19	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
Nitrobenzene	ND	0.39	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
2-Nitrophenol	ND	0.39	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
4-Nitrophenol	ND	0.76	mg/Kg dry	1		× SW-846 8270C	4/28/09	4/29/09 18:02	BGL
Pentachlorophenol	ND	0.39	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
Phenanthrene	0.37	0.19	mg/Kg đry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
Phenol	ND	0.39	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
Pyrene	0.62	0.19	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
1,2,4-Trichlorobenzene	ND	0.39	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
2,4,5-Trichlorophenol	ND	0.39	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
2,4,6-Trichlorophenol	ND	0.39	mg/Kg dry	1		SW-846 8270C	4/28/09	4/29/09 18:02	BGL
Surrogates		% Recovery	Recovery Limits	;	Flag				
2-Fluorophenol		99.5	30-130					4/29/09 18:02	
Phenol-d6		97.9	30-130					4/29/09 18:02	
Nitrobenzene-d5		69.5	30-130					4/29/09 18:02	
2-Fluorobiphenyl		66.2	30-130					4/29/09 18:02	
2,4,6-Tribromophenol		83.6	30-130					4/29/09 18:02	

30-130

Project Location: City Of New Bedford

Sample Description:

Work Order: 09D0010

Date Received: 4/24/2009

Field Sample #: Fence DSP-1

Sampled: 4/24/2009 10:00

Sample ID: 09D0010-01 Samole Matrix: Soil

		Po	lychlorinated Biph	enyls By GC/F	ECD				
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016	ND	0.11	mg/Kg dry	1		SW-846 8082	4/28/09	4/29/09 13:59	JB
Aroclor-1221	ND	0.11	mg/Kg dry	1		SW-846 8082	4/28/09	4/29/09 13:59	JB
Aroclor-1232	ND	0.11	mg/Kg dry	1		SW-846 8082	4/28/09	4/29/09 13:59	JB
Aroclor-1242	ND	0.11	mg/Kg dry	1		SW-846 8082	4/28/09	4/29/09 13:59	JB
Arocior-1248	ND	0.11	mg/Kg dry	1		SW-846 8082	4/28/09	4/29/09 13:59	JB
Aroclor-1254	ND	0.11	mg/Kg dry	1		SW-846 8082	4/28/09	4/29/09 13:59	JB
Aroclor-1260	ND	0.11	mg/Kg dry	1		SW-846 8082	4/28/09	4/29/09 13:59	JB
Aroclor-1262	ND	0,11	mg/Kg dry	1		SW-846 8082	4/28/09	4/29/09 13:59	JB
Aroclor-1268	ND	0.11	mg/Kg dry	1		SW-846 8082	4/28/09	4/29/09 13:59	JB
Surrogates		% Recovery	Recovery Limit	s	Flag				
Decachlorobiphenyl [1]		81.8	30-150					4/29/09 13:59	
Decachlorobiphenyl [2]		94.0	30-150					4/29/09 13:59	
Tetrachloro-m-xylene [1]		87.0	30-150					4/29/09 13:59	
Tetrachloro-m-xylene [2]		89.2	30-150					4/29/09 13:59	

Project Location: City Of New Bedford

Sample Description:

Work Order: 09D0010

Date Received: 4/24/2009

Field Sample #: Fence DSP-1

Sampled: 4/24/2009 10:00

Sample ID: 09D0010-01
Sample Matrix: Soil

Datualanus	Hydrocarbons	Amalyzana
retroieum	nvarocaupons	Amaryscs

	Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
TPH as Diesel		21	9.5	mg/Kg dry	l		SW-846 8100 Modified	4/28/09	4/29/09 8:37	CJM
	Surrogates		% Recovery	Recovery Limits	······································	Flag				
o-Terphenyl			56.0	40-140					4/29/09 8:37	

£ 3 ∪ ~ t

Project Location: City Of New Bedford

Sample Description:

Work Order: 09D0010

Date Received: 4/24/2009

Field Sample #: Fence DSP-1

Sampled: 4/24/2009 10:00

Sample ID: 09D0010-01
Sample Matrix: Soil

Samble Matrix: Son									
			Metals Analy	ses (Total)					
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Arsenic	5.0	2.9	mg/Kg dry	l		SW-846 6010B	4/28/09	4/29/09 1:48	KSH
Barium	54	5.7	mg/Kg dry	1		SW-846 6010B	4/28/09	4/29/09 11:44	OP
Cadmium	0.41	0.29	mg/Kg dry	1		SW-846 6010B	4/28/09	4/29/09 11:45	OP
Chromium	26	0.57	mg/Kg dry	1		SW-846 6010B	4/28/09	4/29/09 11:44	OP
Lead	33	0.86	mg/Kg dry	i		SW-846 6010B	4/28/09	4/29/09 11:45	OP
Mercury	0.84	0.017	mg/Kg dry	1	,	SW-846 7471A	4/28/09	4/29/09 9:43	MPF
Selenium	ND	5.7	mg/Kg dry	1		SW-846 6010B	4/28/09	4/30/09 9:35	ICP
Silver	ND	0.57	mg/Kg dry	1		SW-846 6010B	4/28/09	4/29/09 11:44	OP

Project Location: City Of New Bedford

Sample Description:

Work Order: 09D0010

Date Received: 4/24/2009

Field Sample #: Fence DSP-1

Sampled: 4/24/2009 10:00

Sample ID: 09D0010-01
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

						Date	Date/Time	
Analyte	Results RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
% Solids	87	% Wt	1		SM 2540G	4/29/09	4/30/09 8:30	FWD

カーー ココ した つん

Project Location: City Of New Bedford

Sample Description:

Work Order: 09D0010

Date Received: 4/24/2009

Field Sample #: Fence DSP-1

Sampled: 4/24/2009 10:00

Sample ID: 09D0010-01
Sample Matrix: Soil

TCLP - Metals Analyses (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Arsenic	ND	0.010	mg/L	l		SW-846 6010B	4/29/09	4/30/09 9:35	ICP
Barium	0.84	0.10	mg/L	1		SW-846 6010B	4/29/09	4/30/09 9:35	ICP
Cadmium	0.0074	0.0050	mg/L	1		SW-846 6010B	4/29/09	4/30/09 9:35	ICP
Chromium	ND	0.010	mg/L	1		SW-846 6010B	4/29/09	4/30/09 9:35	ICP
Lead	1.5	0.015	mg/L	1		SW-846 6010B	4/29/09	4/30/09 9:35	ICP
Mercury	ND	0.00010	mg/L	1		SW-846 7470A	4/29/09	4/29/09 14:58	MPF
Selenium	ND	0.050	mg/L	1		SW-846 6010B	4/29/09	4/30/09 9:35	ICP
Silver	ND	0.0050	mg/L	1		SW-846 6010B	4/30/09	4/30/09 15:08	KSH