REPORT

Phase II Comprehensive Site Assessment/Partial Response Action Outcome (RAO-P) Report

Liberty Street Parcel New Bedford, Massachusetts RTN 4-15685

> City of New Bedford New Bedford, Massachusetts

June 2013

Table of Contents

Section 1 Introduction	1-1
1.1 Person Undertaking the Phase II CSA/RAO-P	
1.2 Site Background	
1.3 Regulatory Status	1-1
Section 2 Physical and Chemical Site Characteristics	2-1
2.1 Geology and Hydrogeology	
2.1.1 Geology	
2.1.2 Hydrogeology	
2.2 Data Summary	
2.2.1 Data Collected by Others	
2.2.2 Test Pit Program (November 2011)	
2.2.3 Test Pit Program (May 2012)	
2.3 Nature and Extent of Contamination	
2.4 Fate and Transport of Site Contaminants	2-4
Section 3 Data Representativeness Evaluation and Usability Assessment	3-1
3.1 Representativeness Evaluation	
3.1.1 Conceptual Site Model	
3.1.2 Sample Rationale	
3.1.3 Handling of Samples and the Number and Spatial Distribution	
3.1.4 Temporal Distribution of Samples	
3.1.5 Critical Samples	
3.1.6 Completeness	
3.1.7 Inconsistency and Uncertainty	
3.1.8 Information Considered Unrepresentative	
3.2 Data Usability Assessment	
3.2.1 Analytical Data Usability	
3.2.2 Field Quality Control Data Usability Assessment	
3.2.3 Rejection of Analytical Data	
3.3 Conclusions	
Section 4 Method 1 Risk Characterization	4-1
4.1 Method 1 Applicability	
4.2 Current and Foreseeable Land Use	
4.3 Soil and Groundwater Classification	
4.4 Site Characterization	
4.5 Selection of Compounds of Concern and Identification of Exposure Point Con	
4.6 Comparison to Method 1 Standards	
4.7 Risk of Harm to Safety	
4.8 Conclusion	
4.9 Uncertainty Analysis	

4.10 References	4-6
Section 5 Phase II Completion Statement	5-1
5.1 Phase II CSA Summary and Completion Statement	
5.2 LSP Opinion	
Section 6 Justification for Class B-2 Partial Response Action Outcome	

Appendices

Appendix A – Letters
Appendix B – Existing Data
Appendix C – Coal Ash Data
Appendix D – Laboratory Reports
Appendix E – Toxicity Profiles
Appendix F – AUL

Tables

Table 2-1 Nov. 2011 Test Pit Data2-7
Table 2-2 May 2012 Test Pit Data
Table 4-1 Summary of PCB Analytical Results Included in the Surface Soil Data Set
Table 4-2 Summary of the Metals Analytical Results Included in the Surface Soil Data Set
Table 4-3 Summary of EPH, PAH, SVOC Analytical Results Included in the Surface Soil Data
Set
Table 4-4 Summary of PCB Analytical Results Included in the Sitewide Soil Data Set 4-20
Table 4-5 Summary of the Metals Analytical Data Included in the Sitewide Soil Data Set. 4-27
Table 4-6 Summary of EPH, PAH, SVOV Analytical Results Included in the Sitewide Soil Data
Set
Table 4-7 Summary of VOC Analytical Results Included in the Surface and Sitewide Soil Data
Set
Table 4-8 Summary of Detected Chemicals and Selection of Chemicals of Concern for Surface
Soil
Table 4-9 Summary of Detected Chemicals of Concern for Sitewide Soil 4-45
Table 4-10 Averaging Criteria Check for Surface Soil Using Risk-Based Concentrations 4-46
Table 4-11 Averaging Criteria Check for Sitewide Soil Using Risk-Based Concentrations

Figures

Figure 1-1 Locus Plan	1-3
Figure 2-1 Test Pit Locations	2-6
Figure 4-1 Sensitive Receptors	4-7
Figure 4-1 Insert Title Here	4-1
Figure 5-1 Insert Title Here	5-1

Section 1 Introduction

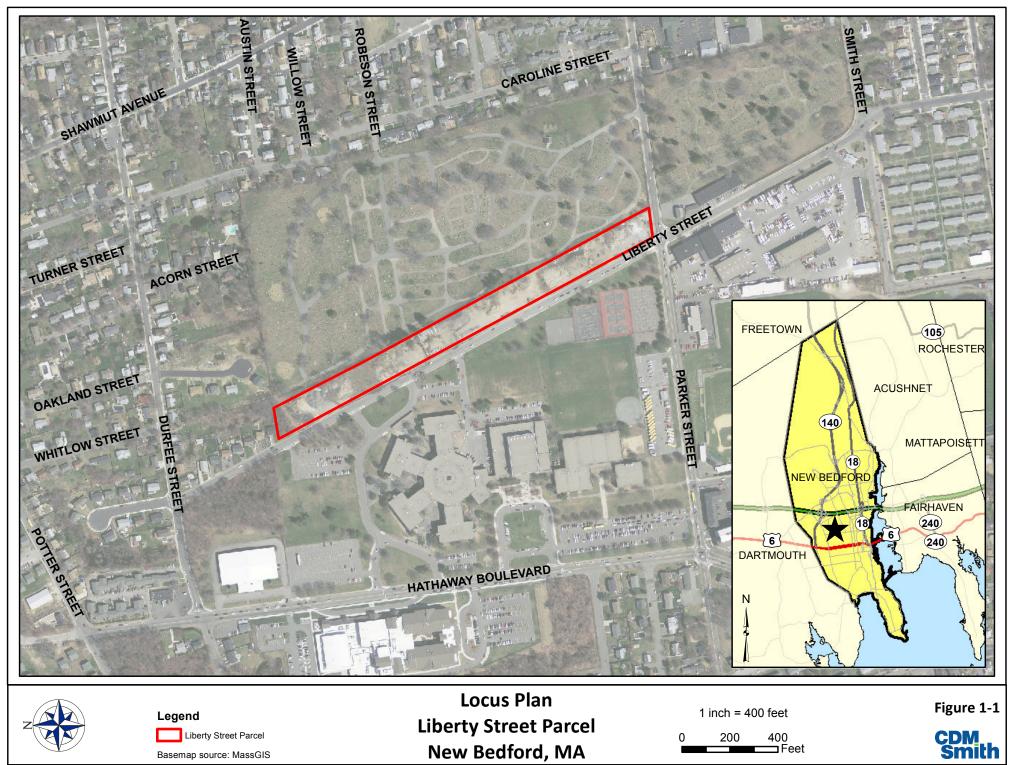
This combined Phase II Comprehensive Site Assessment (CSA) and Partial Response Action Outcome (RAO-P) has been prepared for the City of New Bedford (the City) for the Liberty Street Parcel (also referred to as the Slim Parcel or "the Parcel"). **Figure 1-1** shows the location of the Liberty Street Parcel. This Phase II CSA/RAO-P documents the presence of coal/coal ash across the site where impacted historic fill soils were observed to contain coal, coal ash, and clinkers. Microscopic analysis confirmed the presence of coal ash, signifying fill typical of urbanized locations where historical use of coal was the primary fuel source for heat and power.

This Phase II CSA/RAO-P Report has been prepared in accordance with the provisions set forth in 310 CMR 40.0830 and 310 CMR 40.1056, which present the requirements for conducting a Phase II CSA and content of an RAO, respectively. A Class B-2 RAO-P has been achieved for the Liberty Street Parcel portion of RTN 4-15685. In accordance with 40.1403, the Chief Municipal Officer and Board of Health Commission were notified of the submission of the Phase II/RAO-P Report. Copies of the letters sent to these officials are provided in **Appendix A**.

1.1 Person Undertaking the Phase II CSA/RAO-P

Responsible Party	City of New Bedford – Department of Environmental Stewardship 133 William Street New Bedford, Massachusetts 02740 Attn: Michele S.W. Paul, LSP Director Telephone: (508) 991-6188
Licensed Site Professional (LSP)	Ms. Kathleen G. Murphy, P.E., LSP LSP Registration No. 8744 CDM Smith 50 Hampshire Street Cambridge, Massachusetts 02139 Telephone: (617) 452-6203

1.2 Site Background


The Liberty Street Parcel is located in New Bedford, Massachusetts and currently operated by the City as a maintenance and storage yard for the Departments of Public Infrastructure (DPI) and Public Facilities (DPF). The parcel is being considered for installation of solar panels, which will be maintained by others. When the solar panels are installed, the parcel will be fenced, thereby restricting access to authorized personnel for solar panel maintenance. This approach is also consistent with Massachusetts Department of Environmental Protection's (MassDEP's) encouragement of the use of Brownfields parcels for alternative energy sites. Site data collected throughout investigations supports that historic fill is the sole source of compounds of concern on the Liberty Street parcel.

1.3 Regulatory Status

The Liberty Street Parcel is managed under a larger site of release by MassDEP under Release Tracking Number (RTN) 4-15685. The RTN 4-15685 Parker Street Waste site consists of multiple properties owned by the City. The RTN has a Special Project Designation by the MassDEP. The compounds of concern for RTN 4-15685 are polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and metals related to impacted fill material.

Field investigations have been conducted on the Liberty Street Parcel by TRC Environmental Corporation (TRC) and CDM Smith. This data is summarized in Section 2 of this report. The data collected to date indicates the historic fill compounds at the Liberty Street Parcel are mainly related to coal/coal ash and clinkers. A review of the data as well as historical records signifies that the ash and urban fill identified at the Liberty Street Parcel is unrelated to the Parker Street Waste Site, although response actions described herein were required to be undertaken in relation to RTN 4-15685. This is further discussed in the Section 3 Conceptual Site Model. This conclusion is consistent with earlier investigations supporting the Parker Street Waste Site boundaries to be Liberty Street to the east and Parker Street to the south. Furthermore, under Massachusetts General Law, fly ash, bottom ash, clinkers, and flue gas emission control waste generated primarily from the combustion of coal or other fossil fuels are exempt from regulation as hazardous waste. Additionally, ash produced from combustion of coal is exempt from regulation as solid waste if beneficially reused for select applications.

A separate RTN (4-22269) was also assigned to a portion of the site due to three 55-gallon drums which were deposited on the City's property by an unknown party. One of the drums was leaking a material that appeared to be asphalt emulsifier. An Immediate Response Action (IRA) was conducted by TRC for the City and this RTN was closed-out with a Class A-1 RAO in March 2010.

Tuckercl C:\Projects\NewBedford_SlimParcel\LocusMap.mxd 7/26/2012

Section 2

Physical and Chemical Site Characteristics

This section summarizes the subsurface conditions and soil sampling and analysis and related data collected on the Liberty Street Parcel. Data was collected by others in 2008, 2009 and 2010. CDM Smith then conducted 2 test pit programs in 2011 and 2012.

2.1 Geology and Hydrogeology

2.1.1 Geology

CDM Smith oversaw two test pit exploration programs in November 2011 and May 2012, respectively. Eleven test pits were excavated in November 2011 (TP-1 through TP-11) and six test pits (TP-A through TP-F) were excavated in May 2012. During both test pit programs fill material consisting of brown well-graded sand and gravel with brick, glass, wood, clay pipes and ash was observed from approximately one to six feet below ground surface. The top 12 inches above the fill material were generally a brown topsoil material consisting of well-graded sand and silt. Groundwater was observed in TP-E at approximately five feet below ground surface. Test pits were excavated to a maximum depth of six feet below ground surface during the test pit programs. Given that the test pit exploration programs were limited to the top six feet in order to observe the fill conditions at the site, subsurface geology below this depth was not encountered or observed.

The surficial geology of the Liberty Street area of New Bedford, Massachusetts is described by Stone et al. as thin glacial till or moraine deposits. These deposits consist of a non-sorted, non-stratified matrix of sand, some silt, and little clay with gravel and trace boulders. The material is loose to moderately compact and is generally less than ten to 15 feet thick (Stone et al., 2011). It is expected that glacial till material lies below the fill material at the site; however, the depth to the top of till is unknown since exploration activities did not extend to that depth.

2.1.2 Hydrogeology

As noted above, groundwater was observed at the parcel at a depth of five feet below ground surface in TP-E. Groundwater flowed into the bottom of TP-E at a slow to moderate rate of approximately 1-2 gallons per minute. A 2011 Comprehensive Site Assessment completed by TRC for the New Bedford High School campus documented groundwater flow in a southeasterly direction. The New Bedford High school is located directly to the west of the parcel across Liberty Street. The Liberty Street Parcel is located approximately 1.2 miles from the Acushnet River, which is connected directly to Buzzards Bay. According to the United States Geological Survey (USGS) topographic map, the topography of the area is relatively flat and then descends steeply to the east near the river (USGS, 2012). Given the proximity to the river and bay it is likely that groundwater generally flows from the parcel to the east towards the Acushnet River.

2.2 Data Summary

2.2.1 Data Collected by Others

Three available data sets were identified for the Slim Parcel: 1) soil boring data collected along the edge of the property along Liberty Street and identified as "Transect B" data; 2) soil data associated

with a URAM on the parcel; and 3) soil data collected following remediation of soil after three 55gallon drums were deposited by "person or persons unknown" on the parcel. In total, 43 soil samples were collected and analyzed as part of the three data sets evaluated below. **Appendix B** contains the Figures and Tables showing the sampling locations and the results.

Based on site characteristics and receptors, applicable Method 1 standards for the site are S-1/GW-3 for the top 3 feet and S-2/GW-3 for material below 3 feet.

Data Set 1: Transect B Data

TRC Environmental Corporation (TRC) installed 11 soil borings for the City of New Bedford in June 2008. The TRC data set consists of analytical results for a total of 23 soil samples. Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs), PCBs and metals. All samples were collected at depths below 3 feet.

Lead was detected at concentrations ranging from 2.5 ppm to 5580 ppm.

Data Set 2: URAM Data

A Utility-Related Abatement Measure (URAM) was conducted on the property under RTN 4-15685 by TRC for the City of New Bedford. This data set consists of 15 soil samples from 5 site locations (SB-LSD-4 through SB-LSD-8) analyzed for PCB Aroclors. The sampling depths were consistently 0-1, 1-3 and 3.5-4.5 feet below ground surface proximate to the trench. Total PCBs calculated by summing the Aroclor results in one sample (SB-LSD-5; 1-3 feet) was 3.9 mg/kg, while the results from the remaining samples ranged from non-detect to less than 1 mg/kg.

The bill of lading (BOL) identifies the excess trench material as historic fill. The stockpile characterization data identifies individual PAHs present at concentrations of 1 mg/kg or less, PCBs (Aroclor 1254) at 0.13 mg/kg, and lead at 510 mg/kg. The data indicate consistency with the related historic fill soil concentrations.

Data Set 3: The Drums deposited on the City Property by Others (Spill Data)

Three 55-gallon drums were deposited on the City's property by an unknown party. One of the drums was leaking a material that appeared to be asphalt emulsifier. An Immediate Response Action (IRA) was conducted by TRC for the City of New Bedford under RTN 4-22269. Five soil samples were collected from this area and submitted for laboratory analysis of volatile organic compounds (VOCs), extractable petroleum hydrocarbons (EPH) and PAHs. VOCs were not present above detection limits. EPH and PAHs were detected at concentrations that supported a Class A-1 RAO for the release, signifying that response actions achieved conditions consistent with background.

2.2.2 Test Pit Program (November 2011)

On November 9, 2011, CDM Smith collected samples from 11 test pits which were advanced approximately every 100 feet along the center of the parcel. **Figure 2-1** shows the locations of the test pits.

Test pits were generally advanced to approximately 4 to 6 feet below ground surface. Samples were collected as composite samples from 0-3 feet from each test pit and analyzed for semi-volatile organic compounds (SVOCs) and RCRA metals. Two samples were collected from the coal ash material found in TP-02, which is located approximately 100 feet north of Parker Street.

On-Site Monitoring and Observations

During test pit operations, CDM Smith used a photo ionization detector (PID) to detect volatile compounds (VOCs), and a dust meter. No VOCs were recorded above detection limits and dust measurements ranged from 0 mg/m³ to 0.055 mg/m³, below the respirable dust criteria of 3 mg/m³. The dust readings were collected directly over the test pit locations; no sustained readings of dust were observed over 0 mg/m³.

Material in the top 5 feet was sand and gravel. For most of the test pits, no debris was observed. Some debris (brick, clay pipe) was observed in TP-02. This was the only location were coal ash was observed at approximately 4 feet below ground surface. Small amounts of debris (brick) were observed in TP-03 and TP-08. No odors were noted in any of the test pits.

Analytical Data

Table 2-1 provides a summary of the analytical data. Metals including arsenic, chromium, lead and mercury and some SVOCs were detected. With the exception of lead, metal concentrations were consistent with DEP's established natural soil concentrations.

Appendix C contains the results of the two samples which were analyzed for coal ash at TP-2. The analysis confirms the presence of coal and coal ash in these samples.

2.2.3 Test Pit Program (May 2012)

On May 24, 2012, CDM Smith conducted additional test pitting to further characterize the lead concentration previously identified at location SB-212, which was installed by TRC in July 2008. The sample collected at 4' from this location contained 2420 ppm and 5580 ppm in the duplicate sample (a large relative percent difference between the results).

One test pit (TP-A 4') was completed near the original location SB-212 and five test pits were installed approximately 10' from the original location. Figure 2-1 shows the locations of these test pits along with the original SB-212 location. Lead concentrations ranged from 67 ppm at location TP-A 4' to 550 ppm at location TP-E 5'. **Table 2-2** provides the lead results for these test pits.

2.3 Nature and Extent of Contamination

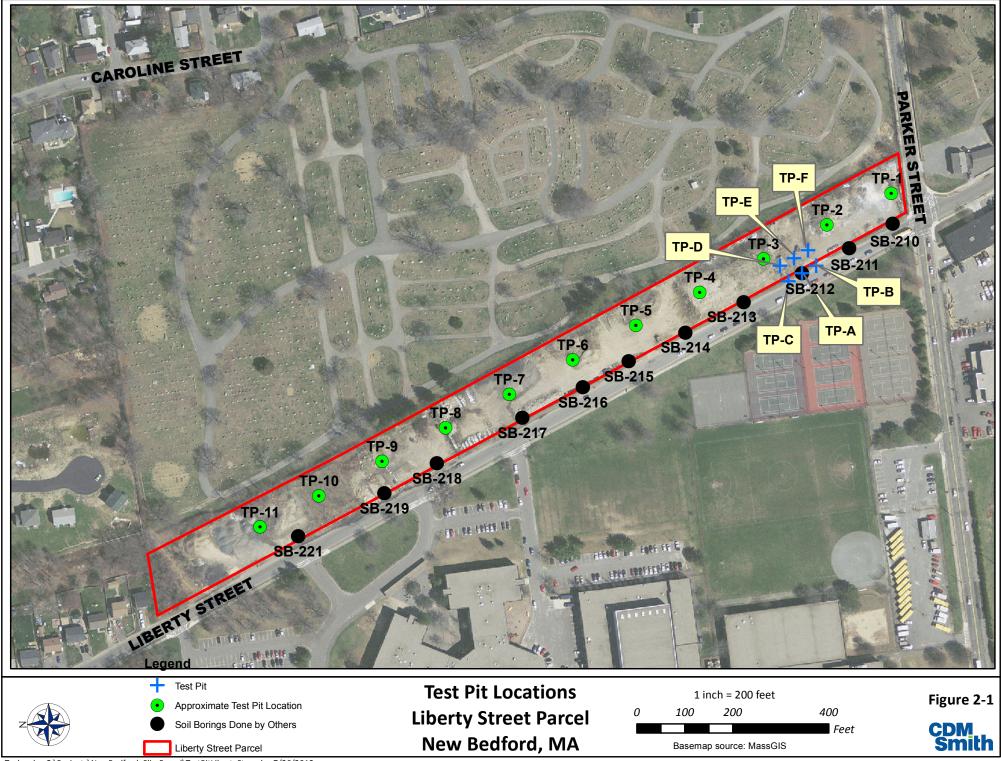
The parcel is a relatively narrow parcel of land located between Liberty Street and Oak Grove Cemetery in New Bedford, Massachusetts. Based on the data collected at the parcel and a review of the historical records, the source of impacted soil at the parcel is historic urban fill material that contains coal ash, as confirmed by two samples collected during the November 2011 test pit program that were analyzed using microscopy techniques. The historical record suggests that historic fill was present at the base of Liberty Street and additional relatively clean fill was subsequently added. The parcel eventually used by the City as a storage area. The most recent test pit logs from May 2012 indicate that fill soil is located to a depth of at least four to five feet below ground surface. Historic fill material was also observed in the subsurface material by CDM Smith and TRC during previous site investigations. The material was described as soil with debris, including brick, cinders, glass, and clinkers along with a layer of ash material containing combusted and uncombusted coal and wood fragments. Thus, the site investigations indicate that the fill material is widely distributed across the site, both horizontally within the boundary of the parcel and vertically to depths of approximately five feet.

The compounds identified in the soil support the conclusion that impacts are associated with fill material. Compounds detected in the site surface soil (zero to 3 feet) and site-wide data set (zero to

15 feet) include metals, EPH ranges, PAH target analytes, and PCBs. The concentrations of metals and PAHs were below typical background concentrations associated with coal or wood ash. The data and historical record indicate that soil impact is likely associated with wide distribution of fill material across the site. However, due to the chemical properties and nature of metals, PAHs, and PCBs identified in soil within the parcel, they are likely to remain in the soil matrix. Due to their low solubility in water, metals, PAHs, and PCBs found in soil are not likely to impact groundwater. Thus, groundwater, which is located approximately five to seven feet below ground surface, is not a medium of concern for the Liberty Street Parcel.

2.4 Fate and Transport of Site Contaminants

Fate and transport information describes how chemicals degrade and where they travel in the environment, whether naturally occurring or released. Chemicals in the environment are analyzed in terms of a modeling system that indicates not only how the chemicals move through air, water, and soil (transport), but also how the chemicals change in the presence of other chemicals and particles (fate). The primary constituents identified in soil within the parcel include metals, PAHs, and PCBs.


Metals vary widely in chemical form and properties; however, none degrade in the environment, many exist naturally in soil, and a few (e.g., copper and zinc) are essential nutrients. The fate of metals in the environment is primarily dependent on sorption, chemical speciation, complexation, biotransformation, and bioaccumulation. Metals occurring in soil may be sorbed to particles (silt- and clay-size), bound in a complex molecule, bound in a precipitate (e.g., sulfides), or may exist in a free ionic state. They tend to be stable, persistent, and not volatile. Some metals, like mercury, are bioaccumulative. Metals at concentrations present within the parcel are expected to remain limited to soil, since they tend to bind to particulate matter.

PAHs include a wide variety of chemicals that are ubiquitous in the environment. Included in this category are low and high molecular weight PAHs. Similar to metals, they tend to bind to particulate matter and are not likely to leach to groundwater at concentrations present within the parcel. They are also generally stable, persistent, and not volatile. In spite of the high lipid solubility of some PAHs, they have low bioaccumulation potential because these compounds are rapidly metabolized.

PCBs are a group of synthetic organic chemicals that contain many individual congeners with varying potential harmful effects. They are persistent in the environment and degradation by biological and other means is minimal. Most of these compounds are lipophilic, with a tendency to accumulate in the liver and other fatty tissues and bioaccumulate within the food chain. There are no known natural sources of PCBs in the environment. Before 1977, PCBs entered the air, water, and soil during their manufacture and use. PCBs also entered the environment from accidental spills and leaks during the transport of the chemicals, or from leaks or fires in transformers, capacitors, or other products containing PCBs. In water, a small amount of PCBs may remain dissolved but most tend to adhere to particles and sediments. PCBs bind strongly to soil and may remain there for several years. PCBs partially evaporate from soil surfaces to air. In general, the breakdown of PCBs in the water and soil occurs over several years, or even decades. PCBs are likely tightly bound to soil particles and will not migrate significantly. Thus, at the parcel they are expected to remain in soil and not leach to groundwater.

The parcel is currently undeveloped and unpaved, with exposed soil; however; the proposed future use of the property is to house solar panels and is to be surrounded by a fence, limiting access. As described above, it is unlikely that the constituents will migrate, as they are stable in nature and are

unlikely to leach to groundwater. The nearest water body is the Acushnet River, which is located approximately 1.2 miles to the east of the parcel. Since the river is more than a mile from the parcel and impact is limited to soil given the chemical and physical properties of chemicals of concern soil impact is not expected to migrate to surface water or sediment in the river.

Tuckercl C:\Projects\NewBedford_SlimParcel\TestPitLibertySt.mxd 7/26/2012

LOCATION			TP-01		TP-02		TP-03		TP-04		TP-05		TP-06
SAMPLING DATE			09-NOV-11		09-NOV-11		09-NOV-11		09-NOV-11		09-NOV-11		09-NOV-11
LAB SAMPLE ID			L1118751-01		L1118751-02		L1118751-03		L1118751-04		L1118751-05		L1118751-06
Depth			0-3'		0-3'		0-3'		0-3'		0-3'		0-3'
	S-1/GW-3	Units		Qual		Qual		Qual		Qual	ļ	Qual	ļ
MCP Total Metals - Westborough La	ab												
Arsenic, Total	20	mg/kg	4.4		4.6		2.1		2		1.6	<u> </u>	1.2
Cadmium. Total	2	mg/kg	0.42	U	0.42	U	0.42	U	0.4	U	0.41	U	0.4
Chromium, Total	30	mg/kg	9.7		10		14		10		15		12
Lead. Total	300	mg/kg	190		43		180		47		260	-	38
Mercury, Total	20	mg/kg	0.18		0.08		0.13		0.12		0.09		0.1
MCP Semivolatile Organics - Westbo		mg/ Kg	0.10		0.00		0.15		0.12		0.09	+	0.1
Wei Semivolatile Organies - Westow													
1,2,4-Trichlorobenzene	500	mg/kg	1.8	U	0.36	U	1.8	U	0.34	U	3.3	U	1.6
1,2-Dichlorobenzene	300	mg/kg	1.8	U	0.36	U	1.8	U	0.34	U	3.3	U	1.6
1,3-Dichlorobenzene	100	mg/kg	1.8	U	0.36	U	1.8	U	0.34	U	3.3	U	1.6
1,4-Dichlorobenzene	50	mg/kg	1.8	U	0.36	U	1.8	U	0.34	U	3.3	U	1.6
2,4,5-Trichlorophenol	600	mg/kg	1.8	U	0.36	U	1.8	U	0.34	U	3.3	U	1.6
2,4,6-Trichlorophenol	20	mg/kg	1.1	U	0.21	U	1.1	U	0.2	U	2	U	0.98
2,4-Dichlorophenol	40	mg/kg	1.6	U	0.32	U	1.6	U	0.31	U	3	U	1.5
2,4-Dimethylphenol	500	mg/kg	1.8	U	0.36	U	1.8	U	0.34	U	3.3	U	1.6
2,4-Dinitrophenol	50	mg/kg	8.6	U	1.7	U	8.5	U	1.6	U	16	U	7.8
2.4-Dinitrotoluene	2	mg/kg	1.8	U	0.36	U	1.8	U	0.34	U	3.3	U	1.6
2,6-Dinitrotoluene	-	mg/kg	1.8	U	0.36	U	1.8	U	0.34	U	3.3	U	1.6
2-Chloronaphthalene	-	mg/kg	1.8	U	0.36	U	1.8	U	0.34	U	3.3	U	1.6
2-Chlorophenol	100	mg/kg	1.8	U	0.36	U	1.8	U	0.34	U	3.3	U	1.6
2-Methylnaphthalene	300	mg/kg	2.2	U	0.43	U	2.1	U	0.41	U	4	U	2
2-Methylphenol		mg/kg	1.8	U	0.36	U	1.8	U	0.34	U	3.3	U	1.6
2-Nitrophenol	-	mg/kg	3.9	U	0.77	U	3.8	U	0.74	U	7.2	U	3.5
3,3'-Dichlorobenzidine	1	mg/kg	1.8	U	0.36	U	1.8	U	0.34	U	3.3	U	1.6
3-Methylphenol/4-Methylphenol	-	mg/kg	2.6	U	0.51	U	2.6	U	0.49	U	4.8	U	2.4
4-Bromophenyl phenyl ether	-	mg/kg	1.8	U	0.36	U	1.8	U	0.34	U	3.3	U	1.6
4-Chloroaniline	3	mg/kg	1.8	U	0.36	U	1.8	U	0.34	U	3.3	U	1.6
4-Nitrophenol	-	mg/kg	2.5	U	0.5	U	2.5	U	0.48	U	4.7	U	2.3
Acenaphthene	1000	mg/kg	1.4	U	0.28	U	1.4	U	0.27	U	2.7	U	1.3
Acenaphthylene	10	mg/kg	1.4	U	0.32		1.4	U	0.27	U	2.7	U	1.3
Acetophenone	-	mg/kg	1.8	U	0.36	U	1.8	U	0.34	U	3.3	U	1.6
Aniline	-	mg/kg	2.2	U	0.43	U	2.1	U	0.41	U	4	U	2
Anthracene	1000	mg/kg	1.1	U	0.48	-	1.1	U	0.37	-	2	U	0.98
Azobenzene	-	mg/kg	1.8	U	0.36	U	1.8	U	0.34	U	3.3	U	1.6
Benzo(a)anthracene	7	mg/kg	1.1	U	0.91	-	1.6	-	1.4	-	2	U	0.98

LOCATION			TP-01		TP-02		TP-03		TP-04		TP-05		TP-06
SAMPLING DATE			09-NOV-11		09-NOV-11		09-NOV-11		09-NOV-11		09-NOV-11		09-NOV-11
LAB SAMPLE ID			L1118751-01		L1118751-02		L1118751-03		L1118751-04		L1118751-05		L1118751-06
Depth			0-3'		0-3'		0-3'		0-3'		0-3'		0-3'
F	S-1/GW-3	Units		Oual		Oual		Oual		Qual		Qual	
Benzo(a)pyrene	2	mg/kg	1.4	U	0.77		1.4		1.1		2.7	U	1.3
Benzo(b)fluoranthene	7	mg/kg	1.1	Ū	0.58		1.2		1.3		2	Ŭ	0.98
Benzo(ghi)perylene	1000	mg/kg	1.4	U	0.43		1.4	U	0.69		2.7	U	1.3
Benzo(k)fluoranthene	70	mg/kg	1.1	U	0.72		1.2		0.48		2	U	0.98
Bis(2-chloroethoxy)methane	-	mg/kg	1.9	U	0.38	U	1.9	U	0.37	U	3.6	U	1.8
Bis(2-chloroethyl)ether	0.7	mg/kg	1.6	Ū	0.32	U	1.6	U	0.31	U	3	U	1.5
Bis(2-chloroisopropyl)ether	3	mg/kg	2.2	U	0.43	U	2.1	U	0.41	U	4	U	2
Bis(2-Ethylhexyl)phthalate	200	mg/kg	1.8	U	0.36	U	1.8	U	0.34	U	3.3	U	1.6
Butyl benzyl phthalate	-	mg/kg	1.8	U	0.36	U	1.8	U	0.34	U	3.3	U	1.6
Chrysene	70	mg/kg	1.1	U	0.96		1.6		1.4		2	U	0.98
Di-n-butylphthalate	-	mg/kg	1.8	U	0.36	U	1.8	U	0.34	U	3.3	U	1.6
Di-n-octylphthalate	-	mg/kg	1.8	U	0.36	U	1.8	U	0.34	U	3.3	U	1.6
Dibenzo(a,h)anthracene	0.7	mg/kg	1.1	U	0.21	U	1.1	U	0.2	U	2	U	0.98
Dibenzofuran	-	mg/kg	1.8	U	0.36	U	1.8	U	0.34	U	3.3	U	1.6
Diethyl phthalate	300	mg/kg	1.8	U	0.36	U	1.8	U	0.34	U	3.3	U	1.6
Dimethyl phthalate	600	mg/kg	1.8	U	0.36	U	1.8	U	0.34	U	3.3	U	1.6
Fluoranthene	1000	mg/kg	1.4		1.5		2.8		2.5		2.1		0.98
Fluorene	1000	mg/kg	1.8	U	0.36		1.8	U	0.37		3.3	U	1.6
Hexachlorobenzene	0.7	mg/kg	1.1	U	0.21	U	1.1	U	0.2	U	2	U	0.98
Hexachlorobutadiene	6	mg/kg	1.8	U	0.36	U	1.8	U	0.34	U	3.3	U	1.6
Hexachloroethane	9	mg/kg	1.4	U	0.28	U	1.4	U	0.27	U	2.7	U	1.3
Indeno(1,2,3-cd)Pyrene	7	mg/kg	1.4	U	0.4		1.4	U	0.73		2.7	U	1.3
Isophorone	-	mg/kg	1.6	U	0.32	U	1.6	U	0.31	U	3	U	1.5
Naphthalene	500	mg/kg	1.8	U	0.36	U	1.8	U	0.34	U	3.3	U	1.6
Nitrobenzene	-	mg/kg	1.6	U	0.32	U	1.6	U	0.31	U	3	U	1.5
Pentachlorophenol	10	mg/kg	3.6	U	0.71	U	3.6	U	0.68	U	6.7	U	3.3
Phenanthrene	500	mg/kg	1.1	U	1.6		2.1		3.6		2	U	0.98
Phenol	20	mg/kg	1.8	U	0.36	U	1.8	U	0.34	U	3.3	U	1.6
Pyrene	1000	mg/kg	1.2		1.7		3		3.1		2.2		1
U = Below Detection Limits													
	II. I			1	1	1		I				1	

													_
LOCATION				TP-07		TP-08		TP-09		TP-10		TP-11	_
SAMPLING DATE				09-NOV-11									
LAB SAMPLE ID				L1118751-07		L1118751-08		L1118751-09		L1118751-10		L1118751-11	
Depth				0-3'		0-3'		0-3'		0-3'		0-3'	
	S-1/GW-3	Units	Qual		Qual								
MCP Total Metals - Westborough La	h												
Wei Totai Weias - Westborougi La													-
Arsenic, Total	20	mg/kg		1.6		1.6		7.3		1.5		0.72	-
Cadmium, Total	2	mg/kg	U	0.4	U	0.41	U	0.47	U	0.45	U	0.44	U
Chromium, Total	30	mg/kg		12		16		10		11		9.5	
Lead, Total	300	mg/kg		47		57		240		26		6.3	
Mercury, Total	20	mg/kg	U	0.07		0.12	U	0.15		0.09	U	0.09	U
MCP Semivolatile Organics - Westbo		8/8		0.07				VILL		0.02		0.02	+ -
file semivolatile organics westoo													1
1,2,4-Trichlorobenzene	500	mg/kg	U	3.4	U	7	U	1.9	U	0.38	U	0.36	U
1,2-Dichlorobenzene	300	mg/kg	U	3.4	U	7	U	1.9	U	0.38	U	0.36	U
1,3-Dichlorobenzene	100	mg/kg	U	3.4	U	7	U	1.9	U	0.38	U	0.36	U
1,4-Dichlorobenzene	50	mg/kg	U	3.4	U	7	U	1.9	U	0.38	U	0.36	U
2,4,5-Trichlorophenol	600	mg/kg	U	3.4	U	7	U	1.9	U	0.38	U	0.36	U
2,4,6-Trichlorophenol	20	mg/kg	U	2	U	4.2	U	1.2	U	0.23	U	0.22	U
2,4-Dichlorophenol	40	mg/kg	U	3	U	6.3	U	1.7	U	0.34	U	0.33	U
2,4-Dimethylphenol	500	mg/kg	U	3.4	U	7	U	1.9	U	0.38	U	0.36	U
2,4-Dinitrophenol	50	mg/kg	U	16	U	33	U	9.2	U	1.8	U	1.8	U
2,4-Dinitrotoluene	2	mg/kg	U	3.4	U	7	U	1.9	U	0.38	U	0.36	U
2,6-Dinitrotoluene	-	mg/kg	U	3.4	U	7	U	1.9	U	0.38	U	0.36	U
2-Chloronaphthalene	-	mg/kg	U	3.4	U	7	U	1.9	U	0.38	U	0.36	U
2-Chlorophenol	100	mg/kg	U	3.4	U	7	U	1.9	U	0.38	U	0.36	U
2-Methylnaphthalene	300	mg/kg	U	4	U	8.4	U	2.3	U	0.46	U	0.44	U
2-Methylphenol	-	mg/kg	U	3.4	U	7	U	1.9	U	0.38	U	0.36	U
2-Nitrophenol	-	mg/kg	U	7.2	U	15	U	4.2	U	0.82	U	0.79	U
3,3'-Dichlorobenzidine	1	mg/kg	U	3.4	U	7	U	1.9	U	0.38	U	0.36	U
3-Methylphenol/4-Methylphenol	-	mg/kg	U	4.8	U	10	U	2.8	U	0.55	U	0.53	U
4-Bromophenyl phenyl ether	-	mg/kg	U	3.4	U	7	U	1.9	U	0.38	U	0.36	U
4-Chloroaniline	3	mg/kg	U	3.4	U	7	U	1.9	U	0.38	U	0.36	U
4-Nitrophenol	-	mg/kg	U	4.7	U	9.7	U	2.7	U	0.53	U	0.51	U
Acenaphthene	1000	mg/kg	U	2.7	U	5.6	U	1.5	U	0.3	U	0.29	U
Acenaphthylene	10	mg/kg	U	2.7	U	5.6	U	1.5	U	0.3	U	0.29	U
Acetophenone	-	mg/kg	U	3.4	U	7	U	1.9	U	0.38	U	0.36	U
Aniline	-	mg/kg	U	4	U	8.4	U	2.3	U	0.46	U	0.44	U
Anthracene	1000	mg/kg	U	2	U	4.2	U	1.2	U	0.23	U	0.22	U
Azobenzene	-	mg/kg	U	3.4	U	7	U	1.9	U	0.38	U	0.36	U
Benzo(a)anthracene	7	mg/kg	U	2.4		4.2	U	1.2	U	0.23	U	0.22	U

													-
LOCATION				TP-07		TP-08		TP-09		TP-10		TP-11	-
SAMPLING DATE				09-NOV-11		09-NOV-11		09-NOV-11		09-NOV-11		09-NOV-11	
LAB SAMPLE ID				L1118751-07		L1118751-08		L1118751-09		L1118751-10		L1118751-11	
Depth				0-3'		0-3'		0-3'		0-3'		0-3'	-
2 (pm	S-1/GW-3	Units	Oual		Oual		Oual		Oual		Oual		Oual
			2		2		2				C		
Benzo(a)pyrene	2	mg/kg	U	2.7	U	5.6	U	1.5	U	0.3	U	0.29	U
Benzo(b)fluoranthene	7	mg/kg	Ū	2	Ŭ	4.2	Ū	1.2	Ŭ	0.23	Ū	0.22	U
Benzo(ghi)perylene	1000	mg/kg	U	2.7	U	5.6	U	1.5	U	0.3	U	0.29	U
Benzo(k)fluoranthene	70	mg/kg	U	2	U	4.2	U	1.2	U	0.23	U	0.22	U
Bis(2-chloroethoxy)methane	-	mg/kg	U	3.6	U	7.5	U	2.1	U	0.41	U	0.39	U
Bis(2-chloroethyl)ether	0.7	mg/kg	U	3	U	6.3	U	1.7	U	0.34	U	0.33	U
Bis(2-chloroisopropyl)ether	3	mg/kg	U	4	U	8.4	U	2.3	U	0.46	U	0.44	U
Bis(2-Ethylhexyl)phthalate	200	mg/kg	U	3.4	U	7	U	1.9	U	0.38	U	0.36	U
Butyl benzyl phthalate	-	mg/kg	U	3.4	U	7	U	1.9	U	0.38	U	0.36	U
Chrysene	70	mg/kg	U	2.6		4.2	U	1.2	U	0.23	U	0.22	U
Di-n-butylphthalate	-	mg/kg	U	3.4	U	7	U	1.9	U	0.38	U	0.36	U
Di-n-octylphthalate	-	mg/kg	U	3.4	U	7	U	1.9	U	0.38	U	0.36	U
Dibenzo(a,h)anthracene	0.7	mg/kg	U	2	U	4.2	U	1.2	U	0.23	U	0.22	U
Dibenzofuran	-	mg/kg	U	3.4	U	7	U	1.9	U	0.38	U	0.36	U
Diethyl phthalate	300	mg/kg	U	3.4	U	7	U	1.9	U	0.38	U	0.36	U
Dimethyl phthalate	600	mg/kg	U	3.4	U	7	U	1.9	U	0.38	U	0.36	U
Fluoranthene	1000	mg/kg	U	3.5		5.2		1.2		0.23	U	0.22	U
Fluorene	1000	mg/kg	U	3.4	U	7	U	1.9	U	0.38	U	0.36	U
Hexachlorobenzene	0.7	mg/kg	U	2	U	4.2	U	1.2	U	0.23	U	0.22	U
Hexachlorobutadiene	6	mg/kg	U	3.4	U	7	U	1.9	U	0.38	U	0.36	U
Hexachloroethane	9	mg/kg	U	2.7	U	5.6	U	1.5	U	0.3	U	0.29	U
Indeno(1,2,3-cd)Pyrene	7	mg/kg	U	2.7	U	5.6	U	1.5	U	0.3	U	0.29	U
Isophorone	-	mg/kg	U	3	U	6.3	U	1.7	U	0.34	U	0.33	U
Naphthalene	500	mg/kg	U	3.4	U	7	U	1.9	U	0.38	U	0.36	U
Nitrobenzene	-	mg/kg	U	3	U	6.3	U	1.7	U	0.34	U	0.33	U
Pentachlorophenol	10	mg/kg	U	6.7	U	14	U	3.8	U	0.76	U	0.73	U
Phenanthrene	500	mg/kg	U	2.6		4.2	U	1.2	U	0.23	U	0.22	U
Phenol	20	mg/kg	U	3.4	U	7	U	1.9	U	0.38	U	0.36	U
Pyrene	1000	mg/kg		4.4		5.6		1.2		0.23		0.22	U
U = Below Detection Limits													

Table 2-2 May 2012 Test Pit Data Liberty Street Parcel

LOCATION				TP-A 4'	ТР-В 4'	TP-C 4'	TP-D 4'	ТР-Е 5'	TP-F 4.5'
SAMPLING DATE				24-MAY-12	24-MAY-12	24-MAY-12	24-MAY-12	24-MAY-12	24-MAY-12
LAB SAMPLE ID				L1209261-01	L1209261-02	L1209261-03	L1209261-04	L1209261-05	L1209261-06
Depth				4'	4'	4'	4'	5'	5'
	S-3/GW-3	UCL	Units						
MCP Total Metals - W	estborough L	ab							
Lead, Total	300	3000	mg/kg	67	210	400	240	550	380

Section 3

Data Representativeness Evaluation and Usability Assessment

Pursuant to 310 CMR 40.1056(2)(k) and in accordance with the MassDEP Policy #WSC-07-350 Massachusetts Contingency Plan (MCP) Representativeness Evaluations and Data Usability Assessments Guidance (MassDEP, September 2007), an evaluation of representativeness and an assessment of the data quality have been conducted for the data collected at this site. The Representativeness Evaluation is an evaluation and demonstration of the adequacy of the data sets used to support the conclusions of this Phase II CSA/Class B-2 Partial Response Action Outcome (RAO-P). In evaluating the adequacy of such data, information such as the site's historical use, hydrogeological and physical characteristics, and field observations are considered in addition to the analytical data. The Representativeness Evaluation determines whether the data set in total sufficiently characterizes conditions at the disposal site and supports a coherent Conceptual Site Model (CSM). An Analytical Data Usability Assessment is used to evaluate whether analytical data points are scientifically valid and defensible and of a sufficient level of precision, accuracy and sensitivity to support the RAO. A Data Usability Assessment has both a laboratory analytical component and a field sampling component.

Data were used from previously generated reports prepared by TRC as discussed in Section 2. Data representativeness and usability discussions from previous reports were incorporated into this discussion where appropriate.

3.1 Representativeness Evaluation

The Representativeness Evaluation includes analysis of the CSM; field screening data; data collection approach; number and spatial distribution of sampling locations; handling of samples; temporal distribution of data points; critical samples; completeness; and the inconsistencies and uncertainties. A discussion of the adequacy of these aspects is included in the following subsections.

3.1.1 Conceptual Site Model

The parcel is a relatively narrow strip of land located along and between Liberty Street and a cemetery in New Bedford, Massachusetts. The parcel is currently owned by the City of New Bedford and operated by the Department of Public Infrastructure (DPI) as a storage area. The proposed future use of the parcel is for solar panels.

The parcel is managed under the Site Release Tracking Number (RTN) 4-15685 which consists of multiple properties owned by the City. The RTN has a Special Project Designation by the Massachusetts Department of Environmental Protection (MassDEP).

The compounds of concern for the overall Site, RTN 4-15685, are polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and metals related to impacted fill material. The data collected within the Liberty Street Parcel indicate that PCBs are not a compound of concern for this portion of the site. The highest concentration of PCBs detected on-site was 3.9 ppm (collected from 1-

3' as part of the URAM data set). All other PCB data were below the S-1/GW-3 standard of 2 ppm. The average PCB concentration at the 1-3' depth using the URAM data set was 1.1 ppm.

The presence of coal/coal ash has been observed in both the TRC borings and the CDM Smith test pits. During the November 2011 test pit program, 2 samples were collected for analysis of coal/coal ash. The data from the suspect coal ash material collected at a depth of approximately 4 feet confirmed the presence of coal ash using microscopy techniques. PAHs were detected below the applicable Method 1 standards.

In the surficial samples collected by CDM Smith, metals were detected below the S-1/GW-3 standards and with the exception of lead, below DEP accepted background concentrations for natural soil. In the Transect B data set (sub-surface samples), lead was detected at concentrations in excess of the S-2/GW-3 standard (300 ppm). All other metals were below the S-2/GW-3 standard. Lead concentrations ranged from 2.5 ppm to 5580 ppm. One sample collected by TRC at location SB-212 contained a concentration of lead of 5580 ppm. The hot spot analysis of this location included averaging the original sample and the duplicate along with the new data collected by CDM Smith in May 2012. Only data above 300 ppm were considered to be part of the hot spot and used in the average. The resulting average concentration of the hot spot was 1333 ppm which is below the lead UCL (3000 ppm).

Groundwater is not a media of concern for the Liberty Street Parcel. The proposed use of this parcel is for solar panels whose installation will not encounter groundwater which is located at approximately 5-7 feet below ground surface.

Historic Fill Material

Based on the data collected at the parcel and a review of the historic records, the source of impacted soil at the Liberty Street Parcel is historic urban fill material and no point sources are known to exist at the Liberty Street Parcel. In addition, based on a review of historic records and photographs as described below, it was concluded that filling at the Parker Street Waste Site occurred after placement of the historic urban fill at the Liberty Street Parcel.

A review of the historical records and aerial photographs suggests the following:

- Liberty Street was laid out in a manner to potentially compensate the cemetery for loss of space. An approximately 130 foot wide strip was present between Oak Grove Cemetery and Liberty Street. The layout of Liberty Street was shown on a 1911 historic map.
- The Liberty Street Parcel appears as an area of open land adjacent to a low lying wetland area when New Bedford was surveyed in 1936 to produce the USGS topographic map.
- The Liberty Street Parcel was established as City property and Liberty Street was then constructed. Historic fill soil was present at the base of Liberty Street. Then more and relatively clean fill was added and the space to the east, i.e., the Liberty Street Parcel, eventually was used by the City public works as a storage area. Potentially, as public property, it could also be viewed as part of the public way of Liberty Street. Filling that took place was likely considered suitable for road base.
- Filling of the Parker Street Waste Site occurred post Liberty Street construction and did not likely impact the Liberty Street Parcel.

According to the MassDEP's Technical Update – *Background Levels of Polycyclic Aromatic Hydrocarbons and Metals in Soil*, PAHs are ubiquitous and consistently present in the environment and are typically formed during the incomplete burning of organic material including wood, coal, oil, gasoline and garbage. PAHs are also found in crude oil, coal tar, creosote and asphalt. Historically, PAHs have been associated with human activities such as cooking, heating homes and industries and fuel for operating automobiles, although low levels of PAHs are also present in the environment from natural sources, such as forest fires. Their presence in the environment at higher concentrations is an artifact of habitation and is due to the widespread practice of emptying fireplaces, stoves, boilers, garbage, etc. in rural and urban areas over the past several hundred years. As a result, it is very common to detect "background" levels of PAHs in soils. Metals are both naturally occurring and found in man-made materials (such as paint, fuel, fertilizers and pesticides) widely distributed in the environment. Naturally occurring metals present in wood and coal are often found concentrated in ash residue. The MassDEP has established values for background concentrations for PAHs and metals in soil for "natural" soil and soil containing coal ash or wood ash associated with fill material.

The historic fill material was observed in the subsurface material by CDM Smith and TRC, during previous site investigations, and described as soil with debris including brick, cinders, glass and clinkers along with a layer of ash material with combusted and uncombusted coal and wood fragments. Two samples were analyzed for the presence of coal/coal ash and confirmed the presence of coal ash using microscopy techniques. Therefore, as part of the risk characterization for comparison to background concentrations, the MassDEP published values for historic fill material containing ash were used.

A relatively low percentage (11%) of soil samples collected for metals analysis at the Liberty Street Parcel exceeded the published urban fill background levels. In addition, the maximum values in the Liberty Street Parcel data set when considered as a whole were not significantly higher than those for historic urban fill. All PAH data was below the published values for historic fill material containing ash.

A review of the data collected to date indicates that the compounds of concern found at the Liberty Street Parcel are likely related to historic fill material, which has been found to contain coal/coal ash and clinkers A review of the data as well as historical records signifies that the ash and urban fill identified at the Liberty Street Parcel is unrelated to the Parker Street Waste Site. This conclusion is consistent with earlier investigations supporting the Parker Street Waste Site boundaries to be Liberty Street to the east and Parker Street to the south.

3.1.2 Sample Rationale

The purpose of the sample program was to characterize the nature and extent of the concentrations in fill material within the Liberty Street parcel. Thus, sampling locations and depths were selected appropriately to meet this objective.

The following summarizes the three previous sampling rounds conducted by TRC.

- The Transect B data set consisted of 21 samples (plus 2 duplicate samples) from 11 boring locations collected at depths ranging from 4 feet to 11 feet. All samples were analyzed for PCBs. Seven samples were also analyzed for PAHs and metals.
- The URAM data set consisted of 15 samples from 5 locations collected from 0-1', 1-3', 3.5-4.5'. Samples were analyzed for PCBs.

• The Spill data set consisted of 5 samples from 5 locations collected from the top 1 foot. Samples were analyzed for VOCs, EPH carbon ranges and PAHs.

These three additional data sets were considered generally sufficient to characterize the subsurface material. CDM Smith identified the following data gaps: the surficial soil across the site and the extent of the material exceeding the UCL for lead at location SB-212.

CDM Smith collected 11 soil samples within the top 3 feet of material in order to evaluate the exposure to surficial soil. Samples were analyzed for SVOCs and metals. In order to define the extent of material associated with UCL exceedance for lead (SB-212), 5 additional samples were collected and analyzed for lead.

3.1.3 Handling of Samples and the Number and Spatial Distribution

Proper sample collection, handling, and preservation techniques were executed in the field by TRC and CDM Smith. Samples collected by TRC were submitted for laboratory analysis and transported under chain-of-custody to Con-Test Analytical Laboratory (Contest) of East Longmeadow, MA and Groundwater Analytical of Framingham, MA. Samples collected by CDM Smith were submitted for laboratory analysis and transported under chain-of-custody to Alpha Analytical of Westborough, MA.

As discussed above, 43 samples were collected by TRC and 17 additional samples were collected by CDM Smith for a total of 60 samples. The number and spatial distribution of sampling locations is appropriate to define the nature and extent of the compounds of concern, i.e., metals, PAHs and PCBs in fill material.

3.1.4 Temporal Distribution of Samples

Temporal distribution of soil sample collection is not critical for soil due to the stable nature and chemical properties of the primary compound of concern in this medium at this parcel, i.e., metals, PAHs and PCBs in soil.

3.1.5 Critical Samples

Critical samples are those necessary to support site closure. At this site, the critical samples are those that are used in the Method 1 Risk Characterization presented in Section 4 of this report.

3.1.6 Completeness

Soil samples were collected to determine the nature and extent of compounds of concern related to the historic fill at the parcel, i.e., PCB, PAHs and metals. As discussed above, 60 samples were collected. There are no data gaps at the parcel.

3.1.7 Inconsistency and Uncertainty

None of the data was inconsistent with the conceptual site model of historically impacted fill material. One data point (collected by TRC in 2008) exceeded the UCL for lead and the duplicate of this sample was below the UCL. The relative percent difference (RPD) of these two data points (5580 ppm and 2420 ppm) is 79% which exceeds the generally acceptable RPD of 50% in soil. In addition, during the May 2012 test pitting program CDM Smith attempted to re-sample this location and obtained a lead result of 67 ppm with the highest nearby concentration of 550 ppm. Therefore it appears that the lead result of 5580 ppm is an anomaly due to inconsistencies with urban fill material and is not representative of the overall site conditions. Data greater than 300 ppm was considered to be within the lead "hot spot" and used to determine an average concentration representative of this area. The

average concentration for this area was calculated to be 1333 ppm. The uncertainty associated with these data, which is considered to be biased high, does not impact the outcome of this RAO.

3.1.8 Information Considered Unrepresentative

None of the data collected on the Liberty Street Parcel was considered unrepresentative or inconsistent with the conceptual site model. As discussed above one data point (SB-212) was high for lead and could not be replicated with subsequent sampling however, in order to be conservative in the representation of the fill material, this data was included in the risk evaluation.

3.2 Data Usability Assessment

3.2.1 Analytical Data Usability Assessment

Soil data analyzed after August 1, 2003 should be able to be considered Compendium of Analytical Methods (CAM) data and meet the prescribed usability requirements of MassDEP (MassDEP, 2007). CAM is a MassDEP publication that provides (a) information and guidance to all parties on analytical and data quality issues, and (b) requirements and specifications for those parties who wish to obtain "Presumptive Certainty" for satisfying the data quality requirements of the MCP at 310 CMR 40.0017 and 310 CMR 40.0191(2)(c).

Data included to support the RAO were collected by TRC and CDM Smith between June 2008 and May 2012. Samples were collected and analyzed in accordance with the current MassDEP CAM. All samples were submitted for laboratory analysis and transported under chain-of-custody to Con-Test Analytical Laboratory (Contest) of East Longmeadow, MA; Groundwater Analytical of Framingham, MA; or Alpha Analytical of Westborough, MA. Samples were analyzed using CAM Methods. **Appendix D** contains the available lab packages which include the applicable laboratory narratives. The data used to support this RAO is considered to have met the Presumptive Certainty requirements.

TRC conducted data usability on their 3 data sets, i.e., Transect B data, URAM data and drum spill data. Their assessments conclude that the analytical data are usable for MCP decisions based on the CAM requirements for acceptable accuracy, precision and sensitivity. In general, the data are valid as reported and may be used for decision-making purposes.

As reported in the laboratory narrative (Appendix D), data collected by CDM Smith and analyzed by Alpha Analytical had some elevated detection limits due to dilutions required by the sample matrix. In addition, some surrogate recoveries were outside of the individual acceptance criteria for certain SVOCs however they were generally within the overall method allowances. The data is considered usable for MCP decisions.

3.2.2 Field Quality Control Data Usability Assessment

The purpose of the field quality control program is to document that the data are of a quality suitable for the intended uses. Proper sampling techniques and procedures, sampling containers, holding times, and handling procedures were employed by TRC and CDM Smith when sampling, as indicated on each available data package's laboratory data report narrative. All samples were noted to be analyzed within the proper holding time.

3.2.3 Rejection of Analytical Data

No data was rejected based on the Data Usability Assessment.

3.3 Conclusions

Data quality objectives established for this project were to provide data of adequate quality and quantity to characterize the site as part of a Phase II CSA and to achieve site closure with a Class B-2 RAO-P. Data were collected as part of the site investigation to define the horizontal and vertical extent of compounds present in urban fill. This objective was met with the sampling that was conducted at the parcel.

Section 4

Method 1 Risk Characterization

On behalf of the City of New Bedford (the City), CDM Smith has prepared this Method 1 Risk Characterization for a parcel along Liberty Street in New Bedford, Massachusetts. The parcel is a relatively narrow strip of land located along Liberty Street. The source of soil impacts is documented herein to be associated with historical fill consisting of coal, coal ash, and slag typical of urbanized locations where historic use of coal was the primary fuel source for heat and power. Although the impacts are demonstrably unrelated to those at the nearby Parker Street Waste Site it has been managed under RTN 4-15685. This Method 1 Risk Characterization was completed to support the submittal of a Phase II CSA/Class B-2 Partial RAO Statement.

This risk characterization is based on current risk assessment guidance provided by MassDEP in *Guidance for Disposal Site Risk Characterization – In Support of the Massachusetts Contingency Plan* (MCP) (MassDEP, 1995). The risk characterization evaluates:

- soil boring data identified as "Transect B" data collected in June 2008 by TRC along the edge of the property bordering Liberty Street;
- soil data collected in May 2010 that were associated with a URAM completed at the parcel;
- soil data collected in November and December 2009 following remediation of soil after three 55-gallon drums, one of which was leaking a material that appeared to be asphalt emulsifier, were deposited on the City's property by an unknown party; and
- soil data collected by CDM Smith in November 2011 and May 2012 from test pit field programs, the latter of which was conducted to further evaluate an anomalous concentration of lead identified at boring location SB-212.

These data are employed in this risk characterization to characterize risk to health, public welfare, and the environment. Risks to public safety are evaluated separately in Section 4.7.

4.1 Method 1 Applicability

Three methods for risk characterization, as described in 310 CMR 40.0942, have been developed to provide a range of approaches to risk characterization. Method 1 was developed to streamline the risk characterization process by providing a comparison of site conditions to promulgated conservative standards to evaluate the risk of harm to health, public welfare, and the environment. Method 1 may only be used, however, if impacts are limited to soil and groundwater and there are no compounds detected in the top two feet of soil that bioaccumulate. For Method 2, site-specific fate and transport factors and considerations may be used to modify certain Method 1 Standards. When GW-2 Standards have been exceeded, a multi-level screening program may be used to determine if an impact to indoor air is likely. Modification of groundwater exposure point concentrations (EPCs) also is acceptable using a Method 2 approach if GW-3 Standards have been exceeded. Method 3 quantitatively estimates cancer and non-cancer health risks to determine the need for remedial action or to demonstrate that a condition of No Significant Risk exists or has been achieved at a site.

The Method 1 approach is applicable for this site based on the following criteria (MassDEP, 1995):

- 1) Impacts are limited to soil; there is no on-site surface water or sediment, no expected impact to groundwater, and no impacts to indoor air, since there are no permanent structures at the site.
- 2) A Method 1 Soil Standard is available for each compound selected as a compound of concern (COC).
- 3) The third criterion for a Method 1 to be an applicable method for evaluating risk was intended to be protective of ecological receptors, since they are most susceptible to bioaccumulative compounds. PCBs, which are bioaccumulative, are detected in 22 of 45 samples; however, only one result was above the S-1/GW-3 soil standard of 2 mg/kg. The area being evaluated is a narrow parcel of land enclosed by a fence with no suitable habitat for ecological receptors, given its small size and location along a busy road. Thus, although PCBs are present in the top two feet of soil at this site, upper trophic level receptors are not expected to be significantly impacted by the presence of PCBs in the surface soil, since exposure is expected to be very limited in frequency and duration and only one result is above the Method 1 Soil Standard.

Thus, a Method 1 risk characterization has been completed for the site.

4.2 Current and Foreseeable Land Use

The parcel is a relatively narrow strip of land located between Liberty Street, a cemetery, Parker Street, and a residential property. The parcel is currently owned by the City of New Bedford and operated by the DPI and DPF as a storage area. The parcel is currently undeveloped and unpaved, with exposed soil. The proposed future use of the property is to house solar panels and be surrounded by a fence.

4.3 Soil and Groundwater Classification

The MCP establishes categories of soil and groundwater that should be utilized in selecting the appropriate Method 1 standards for characterizing risk (MassDEP, 2008). In accordance with MassDEP regulations, soil and groundwater categories should be determined as described in 310 CMR 40.0933 and 310 CMR 40.0932, respectively. The three soil categories (S-1, S-2, and S-3) were derived based on the potential for exposure. Factors such as the type of receptor, frequency of use, intensity of use, and the accessibility of soil are considered in soil classification. Category S-1 is associated with the highest potential for exposure and Category S-3 is associated with the lowest potential for exposure. Currently at this parcel, the surficial soil is unpaved and accessible to adult workers walking around the parcel at a high frequency but at a low intensity activity or use. Additionally, given the proximity to residential properties, children may be able to access the parcel. Thus, the surficial soil from zero to three feet below ground surface (bgs) is considered to be Category S-1. The soil located between three and 15 feet bgs is potentially accessible and is, therefore, considered to be Category S-2.

The MCP recognizes three categories of groundwater as identified in 310 CMR 40.0932: GW-1, GW-2, and GW-3. The groundwater categories are associated with three distinct types of exposures including: (1) potential use of groundwater as a drinking water source (GW-1), (2) groundwater as a source of indoor air impacts (GW-2), and (3) groundwater as a source of surface water impacts (GW-3). Groundwater at this site is not considered GW-1, since the parcel is not located within a Zone II or

Zone A of a drinking water supply area, an Interim Wellhead Protection Area (IWPA), or a potentially productive aquifer (PPA), as shown on **Figure 4-1**. Additionally, there are no private wells located within 500 feet of the site. Groundwater at this parcel is not considered GW-2 as there are no occupied buildings on the parcel. All groundwater is classified as GW-3 based upon its potential to eventually discharge to surface water. Areas of forested wetlands are located north and northwest of the parcel with the closest being located about 400'northwest of the parcel. There is also an area subject to flooding located immediately north of the parcel. The nearest water body is the Acushnet River, which is located approximately 1.2 miles to the east of the parcel.

4.4 Site Characterization

<u>Soil</u>

The soil analytical data employed in the Method 1 Risk Characterization are described in Section 2. To evaluate soil at the site, the soil data were segregated into two data sets: 1) a surface soil data set that included any soil sample collected from zero to three feet bgs, and 2) a site-wide soil data set, including all soils collected from the surface down to a depth of 15 feet bgs. These data sets were derived to evaluate current exposure to surface soil and potential future exposure to site-wide soil, including deeper soils, if the future use of the parcel as a location for solar panels leads to exposure by utility or construction workers during installation of the solar panels or maintenance of utilities beneath the surface. The data included in the surface soil data set are provided in **Tables 4-1** (PCBs), **4-2** (metals), and **4-3** (PAH/EPH/SVOC). The data included in the site-wide soil data set are provided in **Tables 4-4** (PCBs), **4-5** (metals), and **4-6** (PAH/EPH/SVOC). The VOC results, which are included in both data sets, are summarized in **Tables 4-7**.

For both data sets, when a sample was analyzed for individual xylene isomers, the detected results were summed and presented as total xylenes for purposes of completing a comparison to standards. Several laboratory methods were requested to obtain PAH results. For the surface and site-wide soil data sets, the results from the PAH, EPH, and SVOC analytical methods were combined to identify the number of detected PAH results and the total number of samples included in each data set. No sample was analyzed by multiple methods, so selection of the most appropriate laboratory result was not required.

For both data sets, the maximum detected concentration or lowest detection limit for non-detects between a parent and duplicate sample was used for each analysis with the exception of the "hot spot" evaluation at location SB-212, as discussed below.

A parent and duplicate sample were collected from soil boring SB-212 for metals analysis. The lead results were 2,420 mg/kg and 5,580 mg/kg, respectively. To further evaluate the lead concentration, CDM Smith installed test pits TP-A through TP-F in May 2012 to collect samples for lead analysis. For the comparison of standards, an average lead concentration was calculated between the parent and duplicate. As part of the "hot spot" evaluation, the resultant concentration from SB-212 was then averaged with the test pit sample results with concentrations greater than 300 ppm to determine an average lead concentration for the hot spot. Table 4-5 shows these average lead results. A site-wide lead exposure concentration was then calculated.

Five samples (BTM-1, BTM-2, BTM-3, ESW, and "under stockpile surface") were collected following remediation of soil that was impacted by a release from one of three 55-gallon drums deposited at the parcel by an unknown party. These samples were submitted for laboratory analysis of EPH ranges and target analytes in November 2009. For each set of analyses, an average concentration was calculated

to create one EPC for these samples to avoid over-representing that part of the parcel, since the area represented by those data points is a relatively small portion of the parcel.

<u>Groundwater</u>

As described in Section 3.1.1, groundwater is not a media of concern for this parcel. Therefore, groundwater has not been evaluated further in this Method 1 risk characterization.

4.5 Selection of Compounds of Concern and Identification of Exposure Point Concentrations

In order to identify COCs for soil, the following criteria were used to exclude compounds independently from the list of detected compounds for each data set:

- 1) Frequency of detection a compound was eliminated from the risk characterization if detected at a frequency of less than or equal to 10%.
- 2) Background concentrations a compound was eliminated from the risk characterization if its maximum detected concentration was below its respective MassDEP background concentration for soil containing coal or wood ash. The background levels for soil are presented in the MassDEP Technical Update *Background Levels of Polycyclic Aromatic Hydrocarbons and Metals in Soil* (MassDEP, 2002).

For the surface soil data set, arsenic, chromium, lead, mercury, and each of the 13 detected PAHs were eliminated as COCs based on the comparison to background. Acenaphthylene was also eliminated based on a low frequency of detection. Thus, the compounds included as COCs for this data set included PCBs, the C_9 - C_{18} aliphatic hydrocarbon range, C_{19} - C_{36} aliphatic hydrocarbon range, and the C_{11} - C_{22} aromatic hydrocarbon range, as shown in **Table 4-8**.

For the site-wide soil data set, arsenic, beryllium, cadmium, chromium, and each of the 13 detected PAHs were eliminated as COCs based on a comparison to background. Acenaphthylene also was eliminated based on a low frequency of detection. Therefore, the COCs for the site-wide data set included barium, lead, nickel, silver, vanadium, zinc, mercury, PCBs, the C_9 - C_{18} aliphatic hydrocarbon range, C_{19} - C_{36} aliphatic hydrocarbon range, and the C_{11} - C_{22} aromatic hydrocarbon range, as shown in **Table 4-9**.

EPCs are the concentrations of oil or hazardous material in soil that a receptor may contact at a point of exposure. Generally, EPCs are arithmetic mean concentrations, which represent the average concentration that a receptor may contact over a period of exposure. As shown in **Table 4-10**, average concentrations were appropriate for the surface soil data set, as the following criteria were met for each COC in accordance with 310 CMR 40.0926(3)(b)1: (1) the arithmetic average concentration was less than or equal to the applicable standard; (2) seventy-five percent of the data points used in the averaging procedure were equal to or less than the applicable standard; and (3) no data point used in the averaging was ten times greater than the applicable standard. The applicable S-1/GW-3 standard was selected and used in the averaging assessment and one half the reporting limit was used for non-detects in the calculation of average concentrations. It should be noted that only one result was included in the data set for each of the EPH ranges; thus, the detected concentration was used as the EPC for each hydrocarbon range.

As shown in **Table 4-11**, average concentrations were appropriate for the site-wide soil data set, as the following criteria were met for each COC in accordance with 310 CMR 40.0926(3)(b)1: (1) the arithmetic average concentration was less than or equal to the applicable standard; (2) seventy-five percent of the data points used in the averaging procedure were equal to or less than the applicable standard; and (3) no data point used in the averaging was ten times greater than the applicable standard. The applicable S-2/GW-3 standard was selected and used in the averaging assessment and one half the reporting limit was used for non-detects in the calculation of average concentrations. Only one result was included in the data set for each of the EPH ranges; thus, the detected concentration was used as the EPC for each hydrocarbon range.

A toxicity profile was developed for each COC and is presented in Appendix E.

4.6 Comparison to Method 1 Standards

The EPCs for compounds selected as COCs for each data set were compared to the applicable Method 1 Soil Standards. As presented in Table 4-10, the surface soil EPCs were below the applicable S-1/GW-3 Standard, indicating that the surface soil data set, collected from grade to a depth of three feet, has achieved a condition of no significant risk of harm to human health, public welfare, and the environment. Since the EPCs are less than the most stringent S-1 soil standards, the surface soil is considered acceptable for unrestricted future use.

As presented in Table 4-11, the site-wide soil EPCs were below the applicable S-2/GW-3 Standard, indicating that the site-wide soil data set has achieved a condition of no significant risk of harm to human health, public welfare and the environment. However, the EPC for nickel is not less than the most stringent S-1 soil standard of 20 mg/kg, so the site-wide soil is not considered acceptable for unrestricted future use.

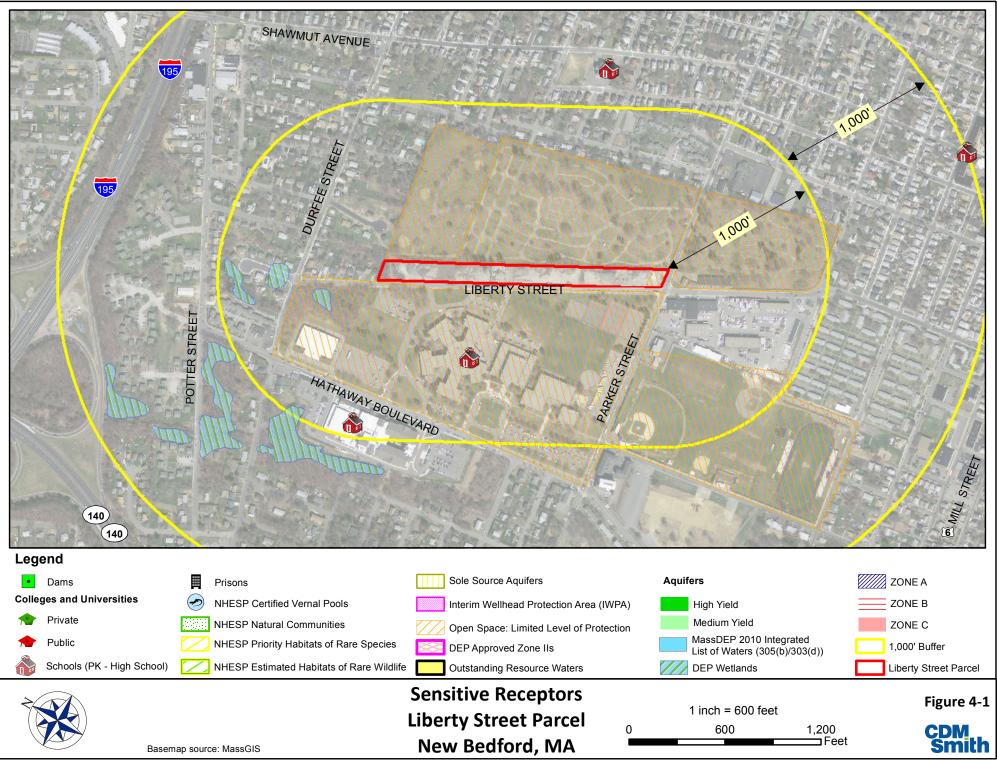
4.7 Risk of Harm to Safety

The purpose of evaluating the risk of harm to safety is to identify conditions that have resulted in or may result in the release of compounds that may pose a threat of physical harm or bodily injury to people presently or in the foreseeable future. In accordance with 310 CMR 40.0960 of the MCP, there are no conditions currently at the parcel that would constitute a risk of harm to public safety, such as the presence of uncontained materials that exhibit the characteristics of corrosivity, reactivity, flammability, or are considered infectious materials. Therefore, in accordance with 310 CMR 40.0960 of the MCP, a level of no significant risk to safety exists at the parcel.

4.8 Conclusion

The EPCs for COCs in surface soil are below the most stringent Method 1 Soil Standards, indicating a condition of no significant risk of harm to health, public welfare, and the environment exists at the parcel for current exposure to surface soil. A level of no significant risk exists for safety as well. The EPCs for COCs in site-wide soil are below the applicable S-2/GW-3 soil standards; however, the EPC for nickel is above the most stringent S-1/GW-3 soil standard. Thus, the parcel is not acceptable for unrestricted future use and an Activity and Use Limitation (AUL) is required to maintain a condition of no significant risk at the parcel.

4.9 Uncertainty Analysis


For a Method 1 Risk Characterization, possible sources of uncertainty generally relate to the adequacy of field sampling and characterization of the parcel. When considering impacts to soil, an appropriate number of samples should be collected to be representative of the parcel. Numerous samples were collected during several site investigations conducted between 2008 and 2012 and each sample was submitted for laboratory analyses based on the known source of impacts or to assess initial impacts. Given the small size of the parcel, known or suspected sources of impacts, the number and distribution of samples, and associated laboratory analyses, the parcel was adequately characterized spatially and temporally.

4.10 References

MassDEP, 2008. The Massachusetts Contingency Plan - 310 CMR 40.0000. Bureau of Waste Site Cleanup. February.

MassDEP, 2002. Technical Update: *Background Levels of Polycyclic Aromatic Hydrocarbons and Metals in Soil*. Office of Research and Standards. May.

MassDEP, 1995. Guidance for Disposal Site Risk Characterization - in Support of the Massachusetts Contingency Plan. Bureau of Waste Site Cleanup and Office of Research & Standards. July.

tuckercl C:\Projects\NewBedford_SlimParcel\SensitiveReceptors.mxd 7/26/2012

Table 4-1
Summary of PCB Analytical Results Included in the Surface Soil Data Set

					N	lew Bedford,	Massaci	luseus									
Analysis	Analyte		Sample Location:		SB-I	LSD-1				SB-LS	D-2				SB-l	LSD-3	
, ,	-	S	ample Depth (ft.):	0-1		1-3	3	0-1		1-3		1-3		0-1		1-3	3
			Sample Date:	5/12/20	010	5/12/2	010	5/12/20	010	5/12/20	010	5/12/2	010	5/12/2	010	5/12/2	.010
			S-2/GW-3														
		S-1/GW-3 Method	Method 1 Soil														
		1 Soil Standards	Standards									Field I	Dup				
PCBs																	
(mg/kg)	Aroclor 1016	NS	NS	0.0544	U	0.0521	U	0.0569	U	0.0570	U	0.0560	U	0.0551	U	0.0555	U
	Aroclor 1221	NS	NS	0.0544	U	0.0521	U	0.0569	U	0.0570	U	0.0560	U	0.0551	U	0.0555	U
	Aroclor 1232	NS	NS	0.0544	U	0.0521	U	0.0569	U	0.0570	U	0.0560	U	0.0551	U	0.0555	U
	Aroclor 1242	NS	NS	0.0544	U	0.0521	U	0.0569	U	0.0570	U	0.0560	U	0.0551	U	0.0555	U
	Aroclor 1248	NS	NS	0.0544	U	0.0521	U	0.0569	U	0.0570	U	0.0560	U	0.0551	U	0.0555	U
	Aroclor 1254	NS	NS	0.0685	J	0.0521	U	0.131	J	0.510	J	0.478	J	0.0615	J	0.0555	U
	Aroclor 1260	NS	NS	0.0544	U	0.0521	U	0.0569	U	0.221	J	0.210	J	0.0551	U	0.0607	J
	Total PCBs	2	3	0.0685	J	0.0521	U	0.131	J	0.731	J	0.688	J	0.0615	J	0.0607	J
PCB Ho	nologs																
(mg/kg)	Monochlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA	
	Dichlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA	
	Trichlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA	
	Tetrachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA	
	Pentachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA	
	Hexachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA	
	Heptachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA	
	Octachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA	
	Nonachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA	
	Decachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA	
	Total PCBs	2	3	NA		NA		NA		NA		NA		NA		NA	

Liberty Street							
New Bedford Massachusetts							

Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm)

J - Estimated value

U - Compound was not detected at specified quantitation limit

NA - Not analyzed

NS - No Method 1 soil standard

Values in **Bold** indicate the compound was detected above one or more of the

Method 1 Soil Standards

Method 1 Soil Standards from 310 CMR 40.0975(6)(a): Table 2 and

310 CMR 40.0975(6)(b): Table 3

PCBs - Polychlorinated Biphenyls

Total PCBs is the sum of the detected concentrations or the highest reporting limit for non-detects

The surface soil data set includes samples collected from 0 to 3 feet below ground surface (bgs)

The maximum detected concentration between a parent and duplicate was used to represent that sample.

115058_Liberty St_New Bedford, MA

 Table 4-1

 Summary of PCB Analytical Results Included in the Surface Soil Data Set

Analysis	Analyte		Sample Location:		SB-I	LSD-4			SB-	LSD-5		SB-LSD-6			
			ample Depth (ft.):	0-1		1-3		0-1		1-3		0-1		1-3	
			Sample Date:	5/12/2	010	5/12/20	010	5/12/20	010	5/12/2	010	5/12/20	010	5/12/2	010
			S-2/GW-3												
		S-1/GW-3 Method	Method 1 Soil												
		1 Soil Standards	Standards												
PCBs															
(mg/kg)	Aroclor 1016	NS	NS	0.0559	U	0.0564	U	0.0588	U	0.0540	U	0.0540	U	0.0623	U
	Aroclor 1221	NS	NS	0.0559	U	0.0564	U	0.0588	U	0.0540	U	0.0540	U	0.0623	U
	Aroclor 1232	NS	NS	0.0559	U	0.0564	U	0.0588	U	0.0540	U	0.0540	U	0.0623	U
	Aroclor 1242	NS	NS	0.0559	U	0.0564	U	0.0588	U	0.0540	U	0.0540	U	0.0623	U
	Aroclor 1248	NS	NS	0.0559	U	0.0564	U	0.0588	U	0.0540	U	0.0540	U	0.0623	U
	Aroclor 1254	NS	NS	0.0759	J	0.163	J	0.458	J	3.01	J	0.117	J	0.277	J
	Aroclor 1260	NS	NS	0.0559	U	0.109	J	0.252	J	0.908	J	0.096	J	0.146	J
	Total PCBs	2	3	0.0759	J	0.272	J	0.710	J	3.918	J	0.213	J	0.423	J
PCB Hor	nologs														
(mg/kg)	Monochlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA	
	Dichlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA	
	Trichlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA	
	Tetrachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA	
	Pentachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA	
	Hexachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA	
	Heptachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA	
	Octachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA	
	Nonachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA	
	Decachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA	
	Total PCBs	2	3	NA		NA		NA		NA		NA		NA	

Liberty Street
New Bedford, Massachusetts

Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm)

J - Estimated value

U - Compound was not detected at specified quantitation limit

NA - Not analyzed

NS - No Method 1 soil standard

Values in **Bold** indicate the compound was detected above one or more of the

Method 1 Soil Standards

Method 1 Soil Standards from 310 CMR 40.0975(6)(a): Table 2 and

310 CMR 40.0975(6)(b): Table 3

PCBs - Polychlorinated Biphenyls

Total PCBs is the sum of the detected concentrations or the highest reporting limit for non-detects

The surface soil data set includes samples collected from 0 to 3 feet below ground surface (bgs)

The maximum detected concentration between a parent and duplicate was used to

represent that sample.

 Table 4-1

 Summary of PCB Analytical Results Included in the Surface Soil Data Set

Analysis	Analyte		Sample Location:			SB-LSD-7				SB-LSD-8					
		Sample Depth (ft.):		0-1		1-3		1-3		0-1		1-3			
			Sample Date:	5/12/2010		5/12/2010		5/12/2	010	5/12/20	010	5/12/2	010		
			S-2/GW-3												
		S-1/GW-3 Method	Method 1 Soil												
		1 Soil Standards	Standards					Field I	Dup						
PCBs															
(mg/kg)	Aroclor 1016	NS	NS	0.0610	U	0.0585	U	0.0581	U	0.0563	U	0.0569	U		
	Aroclor 1221	NS	NS	0.0610	U	0.0585	U	0.0581	U	0.0563	U	0.0569	U		
	Aroclor 1232	NS	NS	0.0610	U	0.0585	U	0.0581	U	0.0563	U	0.0569	U		
	Aroclor 1242	NS	NS	0.0610	U	0.0585	U	0.0581	U	0.0563	U	0.0569	U		
	Aroclor 1248	NS	NS	0.0610	U	0.0585	U	0.0581	U	0.0563	U	0.0569	U		
	Aroclor 1254	NS	NS	0.365	J	0.676	J	0.676	J	0.256	J	0.105	J		
	Aroclor 1260	NS	NS	0.129	J	0.243	J	0.221	J	0.102	J	0.0569	U		
	Total PCBs	2	3	0.494	J	0.919	J	0.897	J	0.358	J	0.105	J		
PCB Hor	nologs														
(mg/kg)	Monochlorobiphenyl	NS	NS	NA		NA		NA		NA		NA			
	Dichlorobiphenyl	NS	NS	NA		NA		NA		NA		NA			
	Trichlorobiphenyl	NS	NS	NA		NA		NA		NA		NA			
	Tetrachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA			
	Pentachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA			
	Hexachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA			
	Heptachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA			
	Octachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA			
	Nonachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA			
	Decachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA			
	Total PCBs	2	3	NA		NA		NA		NA		NA			

Liberty Street New Bedford, Massachusetts

Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm)

J - Estimated value

U - Compound was not detected at specified quantitation limit

NA - Not analyzed

NS - No Method 1 soil standard

Values in Bold indicate the compound was detected above one or more of the

Method 1 Soil Standards

Method 1 Soil Standards from 310 CMR 40.0975(6)(a): Table 2 and

310 CMR 40.0975(6)(b): Table 3

PCBs - Polychlorinated Biphenyls

Total PCBs is the sum of the detected concentrations or the highest reporting

limit for non-detects

The surface soil data set includes samples collected from 0 to 3 feet below ground

surface (bgs)

The maximum detected concentration between a parent and duplicate was used to

represent that sample.

Table 4-2 Summary of the Metals Analytical Results Included in the Surface Soil Data Set

Liberty Street New Bedford, Massachusetts

			Sample Location:	TP-01		TP-02		TP-03		TP-04		TP-05		TP-06		TP-07	
Analysis	Analyte	Sa	ample Depth (ft.):	0-3		0-3		0-3		0-3		0-3		0-3		0-3	
•			Sample Date:	11/9/2011		11/9/2011		11/9/2011		11/9/2011		11/9/2011		11/9/2011		11/9/2011	ľ
		S-1/GW-3	S-2/GW-3														ł
		Method 1 Soil	Method 1 Soil														ł
		Standards	Standards														ł
Metals																	
(mg/kg)	Antimony	20	30	NA		NA	ł										
	Arsenic	20	20	4.4		4.6		2.1		2		1.6		1.2		1.6	ł
	Barium	1,000	3,000	NA		NA	ł										
	Beryllium	100	200	NA		NA	ł										
	Cadmium	2	30	0.42	U	0.42	U	0.42	U	0.4	U	0.41	U	0.4	U	0.4	U
	Chromium	30	200	9.7		10		14		10		15		12		12	ł
	Lead	300	300	190		43		180		47		260		38		47	ł
	Nickel	20	700	NA		NA	ł										
	Selenium	400	800	NA		NA	ł										
	Silver	100	200	NA		NA	ł										
	Thallium	8	60	NA		NA	ł										
	Vanadium	600	1,000	NA		NA	ł										
	Zinc	2,500	3,000	NA		NA	ł										
	Mercury	20	30	0.18		0.08		0.13		0.12		0.09		0.1	U	0.07	ł

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm)

U - Compound was not detected at specified quantitation limit

NA - Not analyzed

Values in Bold indicate the compound was detected above one

or more of the Method 1 Soil Standards

Method 1 Soil Standards from 310 CMR 40.0975(6)(a): Table 2

and 310 CMR 40.0975(6)(b): Table 3

The surface soil data set includes samples collected from 0 to 3 $\,$

feet below ground surface (bgs)

Table 4-2 Summary of the Metals Analytical Results Included in the Surface Soil Data Set

Liberty Street New Bedford, Massachusetts

			Sample Location:	TP-08		TP-09		TP-10		TP-11	
Analysis	Analyte	Sa	ample Depth (ft.):	0-3		0-3		0-3		0-3	
			Sample Date:	11/9/2011		11/9/2011		11/9/2011		11/9/2011	
		S-1/GW-3	S-2/GW-3								
		Method 1 Soil	Method 1 Soil								
		Standards	Standards								
Metals											
(mg/kg)	Antimony	20	30	NA		NA		NA		NA	
	Arsenic	20	20	1.6		7.3		1.5		0.72	
	Barium	1,000	3,000	NA		NA		NA		NA	
	Beryllium	100	200	NA		NA	U	NA		NA	
	Cadmium	2	30	0.41	U	0.47		0.45	U	0.44	U
	Chromium	30	200	16		10		11		9.5	
	Lead	300	300	57		240		26		6.3	
	Nickel	20	700	NA		NA		NA		NA	
	Selenium	400	800	NA		NA		NA		NA	
	Silver	100	200	NA		NA		NA		NA	
	Thallium	8	60	NA		NA		NA		NA	
	Vanadium	600	1,000	NA		NA		NA		NA	
	Zinc	2,500	3,000	NA		NA		NA		NA	
	Mercury	20	30	0.12	U	0.15		0.09	U	0.09	U

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm)

U - Compound was not detected at specified quantitation limit

NA - Not analyzed

Values in **Bold** indicate the compound was detected above one

or more of the Method 1 Soil Standards

Method 1 Soil Standards from 310 CMR 40.0975(6)(a): Table 2 and 310 CMR 40.0975(6)(b): Table 3

The surface soil data set includes samples collected from 0 to 3

feet below ground surface (bgs)

Table 4-3 Summary of EPH, PAH, SVOC Analytical Results Included in the Surface Soil Data Set

Liberty Street New Bedford, Massachusetts

Analysis Analyte	Sample ID:		BTM-1	BTM-2	BTM-3	ESW	Under Stockpile	
		Sample Depth(ft.): Sample Date:	1 11/3/2009	1 11/3/2009	0.5 11/3/2009	0-1 11/3/2009	Surface 11/3/2009	Average Concentration of
	S-1/GW-3 Method 1	S-2/GW-3 Method 1	11/5/2007	11/5/2007	11/5/2009	11/3/2007	11/5/2007	BTM, ESW and Under
	Soil Standards	Soil Standards						Stockpile Samples
EPH (mg/kg) C ₉ -C ₁₈ Aliphatic hydrocarbons	s 1,000	3,000	35 U	36 U	35	35 U	35 U	21
C_{19} - C_{36} Aliphatic hydrocarbons C_{19} - C_{36} Aliphatic hydrocarbons		5,000	35 U	73	110	69	280	110
C_{11} - C_{22} Aromatic hydrocarbons		3,000	64	52	150	100	280	129
Naphthalene	500	1,000	0.59 U	0.60 U	0.56 U	0.58 U		0.56 U
2-Methylnaphthalene		500	0.59 U	0.60 U	0.56 U	0.58 U		
Phenanthrene Acenaphthene		1,000 3,000	0.92 0.59 U	0.83 0.60 U	1.9 0.56 U	2.0 0.58 U	1.5 0.58 U	1.4 0.56 U
Acenaphthylene		10	0.59 U	0.60 U	0.56 U	0.58 U		
Fluorene	· · · · · · · · · · · · · · · · · · ·	3,000	0.59 U	0.60 U	0.56 U	0.58 U		
Anthracene Fluoranthene		3,000	0.59 U	0.60 U 1.2	0.56 U 2.7	0.58 U 3.9	0.58 U 2.2	0.56 U 2.3
Pyrene		3,000 3,000	1.6 1.5	1.2	2.7	3.9	2.2	2.3
Benzo(a)anthracene		40	0.60	0.60 U	1.1	1.4	0.95	0.87
Chrysene		400	0.81	0.71	1.4	1.7	1.3	1.2
Benzo(b)fluoranthene Benzo(k)fluoranthene		40 400	0.70 0.65	0.63 0.60 U	1.4 0.91	1.7 1.4	1.1 0.77	1.1 0.81
Benzo(k)nuorannien Benzo(a)pyrene		400	0.83	0.80 0	1.3	1.4	1.0	1.1
Indeno(1,2,3-cd)pyrene	e 7	40	0.59 U	0.60 U	0.88	1.3	0.58 U	0.61
Dibenzo(a,h)anthracene		4	0.59 U	0.60 U	0.56 U	0.58 U		
Benzo(g,h,i)perylene PAHs	1,000	3,000	0.65	0.66	0.65	1.6	0.87	0.89
Naphthalene		1,000	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene		500	NA	NA	NA	NA	NA	NA
Phenanthrene		1,000	NA	NA	NA	NA	NA	NA
Acenaphthene Acenaphthylene		3,000 10	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Fluorene		3,000	NA	NA	NA	NA	NA	NA
Anthracene	· · · · · · · · · · · · · · · · · · ·	3,000	NA	NA	NA	NA	NA	NA
Fluoranthene Pyrene		3,000 3,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(a)anthracene		40	NA	NA	NA	NA	NA	NA
Chrysene		400	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene		40	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene Benzo(a)pyrene		400 4	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Indeno(1,2,3-cd)pyrene		40	NA	NA	NA	NA	NA	NA
Dibenzo(a,h)anthracene	0.7	4	NA	NA	NA	NA	NA	NA
Benzo(g,h,i)perylene	e 1,000	3,000	NA	NA	NA	NA	NA	NA
SVOCs Naphthalene	e 500	1,000	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene		500	NA	NA	NA	NA	NA	NA
Phenanthrene		1,000	NA	NA	NA	NA	NA	NA
Acenaphthene		3,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA
Acenaphthylene Fluorene		10 3,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Anthracene		3,000	NA	NA	NA	NA	NA	NA
Fluoranthene		3,000	NA	NA	NA	NA	NA	NA
Pyrene Benzo(a)anthracana		3,000 40	NA NA	NA NA	NA	NA NA	NA	NA
Benzo(a)anthracene Chrysene		40 400	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(b)fluoranthene		40	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene		400	NA	NA	NA	NA	NA	NA
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene		4 40	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Dibenzo(a,h)anthracene		40	NA	NA NA	NA	NA	NA	NA
Benzo(g,h,i)perylene		3,000	NA	NA	NA	NA	NA	NA
1,2,4-Trichlorobenzene		900	NA	NA	NA	NA	NA	NA
1,2-Dichlorobenzene 1,3-Dichlorobenzene		300 500	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,3-Dichlorobenzene 1,4-Dichlorobenzene		300	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
2,4,5-Trichloropheno		600	NA	NA	NA	NA	NA	NA
2,4,6-Trichloropheno		20	NA	NA	NA	NA	NA	NA
2,4-Dichloropheno 2,4 Dimethylpheno		40	NA NA	NA NA	NA NA	NA NA	NA NA	NA
2,4-Dimethylpheno	1 500	1,000	NA	NA	NA	NA	NA	NA

Liberty Street New Bedford, Massachusetts

Analysis	Analyte		Sample ID:	BTM-1	BTM-2	BTM-3	ESW	Under Stockpile	
-	-		Sample Depth(ft.):	1	1	0.5	0-1	Surface	
			Sample Date:	11/3/2009	11/3/2009	11/3/2009	11/3/2009	11/3/2009	Average Concentration of
		S-1/GW-3 Method 1	S-2/GW-3 Method 1						BTM, ESW and Under
		Soil Standards	Soil Standards						Stockpile Samples
	2,4-Dinitrophenol	50	990	NA	NA	NA	NA	NA	NA
	2,4-Dinitrotoluene	2	10	NA	NA	NA	NA	NA	NA
	2,6-Dinitrotoluene	NS	NS	NA	NA	NA	NA	NA	NA
	2-Chloronaphthalene	NS	NS	NA	NA	NA	NA	NA	NA
	2-Chlorophenol	100	300	NA	NA	NA	NA	NA	NA
	2-Methylphenol	NS	NS	NA	NA	NA	NA	NA	NA
	2-Nitrophenol	NS	NS	NA	NA	NA	NA	NA	NA
	3,3'-Dichlorobenzidine	1	10	NA	NA	NA	NA	NA	NA
	3-Methylphenol/4-Methylphenol	NS	NS	NA	NA	NA	NA	NA	NA
	4-Bromophenyl phenyl ether	NS	NS	NA	NA	NA	NA	NA	NA
	4-Chloroaniline	NS	NS	NA	NA	NA	NA	NA	NA
	4-Nitrophenol	NS	NS	NA	NA	NA	NA	NA	NA
	Acetophenone	NS	NS	NA	NA	NA	NA	NA	NA
	Aniline	NS	NS	NA	NA	NA	NA	NA	NA
	Azobenzene	NS	NS	NA	NA	NA	NA	NA	NA
	Bis(2-chloroethoxy)methane	NS	NS	NA	NA	NA	NA	NA	NA
	Bis(2-chloroethyl)ether	0.7	3	NA	NA	NA	NA	NA	NA
	Bis(2-chloroisopropyl)ether	3	50	NA	NA	NA	NA	NA	NA
	Bis(2-Ethylhexyl)phthalate	200	700	NA	NA	NA	NA	NA	NA
	Butyl benzyl phthalate	NS	NS	NA	NA	NA	NA	NA	NA
	Di-n-butylphthalate	NS	NS	NA	NA	NA	NA	NA	NA
	Di-n-octylphthalate	NS	NS	NA	NA	NA	NA	NA	NA
	Dibenzofuran	NS	NS	NA	NA	NA	NA	NA	NA
	Diethyl phthalate	300	300	NA	NA	NA	NA	NA	NA
	Dimethyl phthalate	600	600	NA	NA	NA	NA	NA	NA
	Hexachlorobenzene	0.7	5	NA	NA	NA	NA	NA	NA
	Hexachlorobutadiene	6	90	NA	NA	NA	NA	NA	NA
	Hexachloroethane	9	100	NA	NA	NA	NA	NA	NA
	Isophorone	NS	NS	NA	NA	NA	NA	NA	NA
	Nitrobenzene	NS	NS	NA	NA	NA	NA	NA	NA
	Pentachlorophenol	10	10	NA	NA	NA	NA	NA	NA
	Phenol	20	20	NA	NA	NA	NA	NA	NA

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm)

U - Compound was not detected at specified quantitation limit.

Values in **Bold** indicate the compound was detected above one or more of the Method 1 Soil Standards

or elevated reporting limits for non-detects

NS - No Method 1 soil standard

EPH - Extractable Petroleum Hydrocarbons

PAH - Polycyclic Aromatic Hydrocarbons

SVOC - Semi-volatile Organic Compounds

Method 1 Soil Standards from 310 CMR 40.0975(6)(a): Table 2 and 310 CMR 40.0975(6)(b): Table 3

The surface soil data set includes samples collected from 0 to 3 feet below ground surface (bgs)

NA - Not analyzed

The average concentration of the BTM-1, BTM-2, BTM-3, ESW, and Under Stockpile Surface samples or the lowest reporting limit for non-detects were used in the data set to represent these locations.

Analysis	Analyte		Sample ID:	TP-01	TP-02	TP-03	TP-04
			Sample Depth(ft.): Sample Date:	0-3 11/9/2011	0-3 11/9/2011	0-3 11/9/2011	0-3 11/9/2011
		S-1/GW-3 Method 1	S-2/GW-3 Method 1				
EDV		Soil Standards	Soil Standards				
EPH (mg/kg)	C_9 - C_{18} Aliphatic hydrocarbons	1,000	3,000	NA	NA	NA	NA
(mg/kg)	C_{9} - C_{18} Aliphatic hydrocarbons C_{19} - C_{36} Aliphatic hydrocarbons	3,000	5,000	NA	NA	NA	NA
	C_{11} - C_{22} Aromatic hydrocarbons	1,000	3,000	NA	NA	NA	NA
	Naphthalene	500	1,000	NA	NA	NA	NA
	2-Methylnaphthalene	300	500	NA	NA	NA	NA
	Phenanthrene	500	1,000	NA	NA	NA	NA
	Acenaphthene Acenaphthylene	1,000 10	3,000 10	NA NA	NA NA	NA NA	NA NA
	Fluorene	1,000	3,000	NA	NA	NA	NA
	Anthracene	1,000	3,000	NA	NA	NA	NA
	Fluoranthene	1,000	3,000	NA	NA	NA	NA
	Pyrene	1,000	3,000	NA	NA	NA	NA
	Benzo(a)anthracene Chrysene	7 70	40 400	NA NA	NA NA	NA NA	NA NA
	Benzo(b)fluoranthene	70	400	NA	NA	NA	NA
	Benzo(k)fluoranthene	70	400	NA	NA	NA	NA
	Benzo(a)pyrene	2	4	NA	NA	NA	NA
	Indeno(1,2,3-cd)pyrene	7	40	NA	NA	NA	NA
	Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	0.7 1,000	4 3,000	NA NA	NA NA	NA NA	NA NA
PAHs	Denizo(G,ii,i)pergrene	1,000	2,000				
	Naphthalene	500	1,000	NA	NA	NA	NA
	2-Methylnaphthalene	300	500	NA	NA	NA	NA
	Phenanthrene Acenaphthene	500	1,000	NA NA	NA	NA	NA
	Acenaphthylene	1,000 10	3,000 10	NA NA	NA NA	NA NA	NA NA
	Fluorene	1,000	3,000	NA	NA	NA	NA
	Anthracene	1,000	3,000	NA	NA	NA	NA
	Fluoranthene	1,000	3,000	NA	NA	NA	NA
	Pyrene Benzo(a)anthracene	1,000 7	3,000 40	NA NA	NA NA	NA NA	NA NA
	Chrysene	70	40	NA	NA	NA	NA
	Benzo(b)fluoranthene	7	40	NA	NA	NA	NA
	Benzo(k)fluoranthene	70	400	NA	NA	NA	NA
	Benzo(a)pyrene	2	4	NA	NA	NA	NA
	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	7 0.7	40 4	NA NA	NA NA	NA NA	NA NA
	Benzo(g,h,i)perylene	1,000	3,000	NA	NA	NA	NA
SVOCs		,	,				
	Naphthalene	500	1,000				U 0.34 U
	2-Methylnaphthalene	300	500				U 0.41 U
	Phenanthrene Acenaphthene	500 1,000	1,000 3,000		U 1.6 U 0.28 I	2.1 J 1.4	3.6 U 0.27
	Acenaphthylene	10	10		U 0.32		U 0.27
	Fluorene	1,000	3,000	1.8	U 0.36	1.8	U 0.37
	Anthracene	1,000	3,000		U 0.48		U 0.37
	Fluoranthene	1,000	3,000	1.4	1.5 1.7	2.8 3	2.5
	Pyrene Benzo(a)anthracene	1,000 7	3,000 40	1.2 1.1	U 0.91	3 1.6	3.1 1.4
	Chrysene	70	40		U 0.96	1.6	1.4
	Benzo(b)fluoranthene	7	40	1.1	U 0.58	1.2	1.3
	Benzo(k)fluoranthene	70	400		U 0.72	1.2	0.48
	Benzo(a)pyrene	2 7	4 40		U 0.77 U 0.4	1.4	1.1 U 0.73
	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	0.7	40				U 0.73
	Benzo(g,h,i)perylene	1,000	3,000		U 0.43		U 0.69
	1,2,4-Trichlorobenzene	500	900	1.8	U 0.36 U	J 1.8	U 0.34
	1,2-Dichlorobenzene	300	300				U 0.34
	1,3-Dichlorobenzene	100	500 200				U 0.34 U 0.34
	1,4-Dichlorobenzene 2,4,5-Trichlorophenol	50 600	300 600				U 0.34 U 0.34
		20	20		U 0.21 U		U 0.2
	2,4,6-Trichlorophenol	20	20				
	2,4,6- Inchlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol	40 500	40 1,000	1.6	U 0.32 U	J 1.6	U 0.31 U 0.34 U

Liberty Street New Bedford, Massachusetts

Analysis	Analyte		Sample ID:	TP-01		TP-02		TP-03		TP-04	
-	-		Sample Depth(ft.):	0-3		0-3		0-3		0-3	
			Sample Date:	11/9/2011		11/9/2011		11/9/2011		11/9/2011	
		S-1/GW-3 Method 1	S-2/GW-3 Method 1								
		Soil Standards	Soil Standards								
	2,4-Dinitrophenol	50	990	8.6	U	1.7	U	8.5	U	1.6	U
	2,4-Dinitrotoluene	2	10	1.8	U	0.36	U	1.8	U	0.34	U
	2,6-Dinitrotoluene	NS	NS	1.8	U	0.36	U	1.8	U	0.34	U
	2-Chloronaphthalene	NS	NS	1.8	U	0.36	U	1.8	U	0.34	U
	2-Chlorophenol	100	300	1.8	U	0.36	U	1.8	U	0.34	U
	2-Methylphenol	NS	NS	1.8	U	0.36	U	1.8	U	0.34	U
	2-Nitrophenol	NS	NS	3.9	U	0.77	U	3.8	U	0.74	U
	3,3'-Dichlorobenzidine	1	10	1.8	U	0.36	U	1.8	U	0.34	U
	3-Methylphenol/4-Methylphenol	NS	NS	2.6	U	0.51	U	2.6	U	0.49	U
	4-Bromophenyl phenyl ether	NS	NS	1.8	U	0.36	U	1.8	U	0.34	U
	4-Chloroaniline	NS	NS	1.8	U	0.36	U	1.8	U	0.34	U
	4-Nitrophenol	NS	NS	2.5	U	0.5	U	2.5	U	0.48	U
	Acetophenone	NS	NS	1.8	U	0.36	U	1.8	U	0.34	U
	Aniline	NS	NS	2.2	U	0.43	U	2.1	U	0.41	U
	Azobenzene	NS	NS	1.8	U	0.36	U	1.8	U	0.34	U
	Bis(2-chloroethoxy)methane	NS	NS	1.9	U	0.38	U	1.9	U	0.37	U
	Bis(2-chloroethyl)ether	0.7	3	1.6	U	0.32	U	1.6	U	0.31	U
	Bis(2-chloroisopropyl)ether	3	50	2.2	U	0.43	U	2.1	U	0.41	U
	Bis(2-Ethylhexyl)phthalate	200	700	1.8	U	0.36	U	1.8	U	0.34	U
	Butyl benzyl phthalate	NS	NS	1.8	U	0.36	U	1.8	U	0.34	U
	Di-n-butylphthalate	NS	NS	1.8	U	0.36	U	1.8	U	0.34	U
	Di-n-octylphthalate	NS	NS	1.8	U	0.36	U	1.8	U	0.34	U
	Dibenzofuran	NS	NS	1.8	U	0.36	U	1.8	U	0.34	U
	Diethyl phthalate	300	300	1.8	U	0.36	U	1.8	U	0.34	U
	Dimethyl phthalate	600	600	1.8	U	0.36	U	1.8	U	0.34	U
	Hexachlorobenzene	0.7	5	1.1	U	0.21	U	1.1	U	0.2	U
	Hexachlorobutadiene	6	90	1.8	U	0.36	U	1.8	U	0.34	U
	Hexachloroethane	9	100	1.4	U	0.28	U	1.4	U	0.27	U
	Isophorone	NS	NS	1.6	U	0.32	U	1.6	U	0.31	U
	Nitrobenzene	NS	NS	1.6	U	0.32	U	1.6	U	0.31	U
	Pentachlorophenol	10	10	3.6	U	0.71	U	3.6	U	0.68	U
	Phenol	20	20	1.8	U	0.36	U	1.8	U	0.34	U

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm)

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected above one or more of the Method 1 Soil Standards

or elevated reporting limits for non-detects

NS - No Method 1 soil standard

EPH - Extractable Petroleum Hydrocarbons

PAH - Polycyclic Aromatic Hydrocarbons

SVOC - Semi-volatile Organic Compounds

Method 1 Soil Standards from 310 CMR 40.0975(6)(a): Table 2 and 310 CMR 40.0975(6)(b): Table 3

The surface soil data set includes samples collected from 0 to 3 feet below ground surface (bgs)

NA - Not analyzed

The average concentration of the BTM-1, BTM-2, BTM-3, ESW, and Under Stockpile Surface samples or the lowest reporting limit for non-detects were used in the data set to represent these locations.

Analysis	Analyte		Sample ID: Sample Depth(ft.):	TP-05 0-3	TP-06 0-3	TP-07 0-3	TP-08 0-3
		S-1/GW-3 Method 1	Sample Date: S-2/GW-3 Method 1	11/9/2011	11/9/2011	11/9/2011	11/9/2011
EPH		Soil Standards	Soil Standards				
(mg/kg)	C ₉ -C ₁₈ Aliphatic hydrocarbons	1,000	3,000	NA	NA	NA	NA
	C ₁₉ -C ₃₆ Aliphatic hydrocarbons		5,000	NA	NA	NA	NA
	C_{11} - C_{22} Aromatic hydrocarbons		3,000	NA	NA	NA	NA
	Naphthalene		1,000	NA	NA	NA	NA
	2-Methylnaphthalene	300	500	NA	NA	NA	NA
	Phenanthrene	500	1,000	NA	NA	NA	NA
	Acenaphthene	1,000	3,000	NA NA	NA	NA	NA
	Acenaphthylene Fluorene	10 1,000	10 3,000	NA	NA NA	NA NA	NA NA
	Anthracene	1,000	3,000	NA	NA	NA	NA
	Fluoranthene	1,000	3,000	NA	NA	NA	NA
	Pyrene	1,000	3,000	NA	NA	NA	NA
	Benzo(a)anthracene	7	40	NA	NA	NA	NA
	Chrysene Dearer (h) flag and the second	70	400	NA	NA	NA	NA
	Benzo(b)fluoranthene Benzo(k)fluoranthene	7 70	40 400	NA NA	NA NA	NA NA	NA NA
	Benzo(k)Huorantnene Benzo(a)pyrene	70 2	400	NA	NA NA	NA NA	NA NA
	Indeno(1,2,3-cd)pyrene	7	40	NA	NA	NA	NA
	Dibenzo(a,h)anthracene	0.7	4	NA	NA	NA	NA
	Benzo(g,h,i)perylene	1,000	3,000	NA	NA	NA	NA
PAHs							
	Naphthalene		1,000	NA	NA	NA	NA
	2-Methylnaphthalene Phenanthrene	300 500	500 1,000	NA NA	NA NA	NA NA	NA NA
	Acenaphthene	1,000	3,000	NA	NA	NA	NA
	Acenaphthylene	10	10	NA	NA	NA	NA
	Fluorene	1,000	3,000	NA	NA	NA	NA
	Anthracene	1,000	3,000	NA	NA	NA	NA
	Fluoranthene	1,000	3,000	NA	NA	NA	NA
	Pyrene	1,000	3,000 40	NA NA	NA	NA	NA
	Benzo(a)anthracene Chrysene	7 70	40 400	NA	NA NA	NA NA	NA NA
	Benzo(b)fluoranthene	70	400	NA	NA	NA	NA
	Benzo(k)fluoranthene	70	400	NA	NA	NA	NA
	Benzo(a)pyrene	2	4	NA	NA	NA	NA
	Indeno(1,2,3-cd)pyrene	7	40	NA	NA	NA	NA
	Dibenzo(a,h)anthracene	0.7	4	NA	NA	NA	NA
SVOCs	Benzo(g,h,i)perylene	1,000	3,000	NA	NA	NA	NA
37003	Naphthalene	500	1,000	3.3	U 1.6 U	J 3.4 U	J 7 I
	2-Methylnaphthalene	300	500		U 2 U		J 8.4
	Phenanthrene	500	1,000	2 1	U 0.98 U		4.2
	Acenaphthene	1,000	3,000		U 1.3 U		J 5.6
	Acenaphthylene	10	10		U 1.3 U		J 5.6
	Fluorene Anthracene		3,000 3,000		U 1.6 U U 0.98 U		J 7 J 4.2
	Fluoranthene	1,000	3,000	2.1	0.98 U 0.98 U		5.2
	Pyrene	1,000	3,000	2.2	1	4.4	5.6
	Benzo(a)anthracene	7	40		U 0.98 U		4.2
	Chrysene	70	400	2	U 0.98 U		4.2
	Benzo(b)fluoranthene	7	40		U 0.98 U		J 4.2
	Benzo(k)fluoranthene	70	400		U 0.98 U		J 4.2
	Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	2 7	4 40		U 1.3 U U 1.3 U		J 5.6 J 5.6
	Dibenzo(a,h)anthracene	0.7	40		U 0.98 U		J 3.6 J 4.2
	Benzo(g,h,i)perylene	1,000	3,000		U 1.3 U		J 5.6
	1,2,4-Trichlorobenzene		900		U 1.6 U		J 7
	1,2-Dichlorobenzene	300	300		U 1.6 U		J 7
	1,3-Dichlorobenzene	100	500		U 1.6 U		J 7
						. 24 1	. 7
	1,4-Dichlorobenzene	50	300		U 1.6 U		J 7
	2,4,5-Trichlorophenol	600	600	3.3 1	U 1.6 U	J 3.4 U	J 7
	-			3.3		J 3.4 U J 2 U	

Liberty Street New Bedford, Massachusetts

Analysis	Analyte		Sample ID:	TP-05		TP-06		TP-07		TP-08	
•	2		Sample Depth(ft.):	0-3		0-3		0-3		0-3	
			Sample Date:	11/9/2011		11/9/2011		11/9/2011		11/9/2011	
		S-1/GW-3 Method 1	S-2/GW-3 Method 1								
		Soil Standards	Soil Standards								
	2,4-Dinitrophenol	50	990	16	U	7.8	U	16	U	33	U
	2,4-Dinitrotoluene	2	10	3.3	U	1.6	U	3.4	U	7	U
	2,6-Dinitrotoluene	NS	NS	3.3	U	1.6	U	3.4	U	7	U
	2-Chloronaphthalene	NS	NS	3.3	U	1.6	U	3.4	U	7	U
	2-Chlorophenol	100	300	3.3	U	1.6	U	3.4	U	7	U
	2-Methylphenol	NS	NS	3.3	U	1.6	U	3.4	U	7	U
	2-Nitrophenol	NS	NS	7.2	U	3.5	U	7.2	U	15	U
	3,3'-Dichlorobenzidine	1	10	3.3	U	1.6	U	3.4	U	7	U
	3-Methylphenol/4-Methylphenol	NS	NS	4.8	U	2.4	U	4.8	U	10	U
	4-Bromophenyl phenyl ether	NS	NS	3.3	U	1.6	U	3.4	U	7	U
	4-Chloroaniline	NS	NS	3.3	U	1.6	U	3.4	U	7	U
	4-Nitrophenol	NS	NS	4.7	U	2.3	U	4.7	U	9.7	U
	Acetophenone	NS	NS	3.3	U	1.6	U	3.4	U	7	U
	Aniline	NS	NS	4	U	2	U	4	U	8.4	U
	Azobenzene	NS	NS	3.3	U	1.6	U	3.4	U	7	U
	Bis(2-chloroethoxy)methane	NS	NS	3.6	U	1.8	U	3.6	U	7.5	U
	Bis(2-chloroethyl)ether	0.7	3	3	U	1.5	U	3	U	6.3	U
	Bis(2-chloroisopropyl)ether	3	50	4	U	2	U	4	U	8.4	U
	Bis(2-Ethylhexyl)phthalate	200	700	3.3	U	1.6	U	3.4	U	7	U
	Butyl benzyl phthalate	NS	NS	3.3	U	1.6	U	3.4	U	7	U
	Di-n-butylphthalate	NS	NS	3.3	U	1.6	U	3.4	U	7	U
	Di-n-octylphthalate	NS	NS	3.3	U	1.6	U	3.4	U	7	U
	Dibenzofuran	NS	NS	3.3	U	1.6	U	3.4	U	7	U
	Diethyl phthalate	300	300	3.3	U	1.6	U	3.4	U	7	U
	Dimethyl phthalate	600	600	3.3	U	1.6	U	3.4	U	7	U
	Hexachlorobenzene	0.7	5	2	U	0.98	U	2	U	4.2	U
	Hexachlorobutadiene	6	90	3.3	U	1.6	U	3.4	U	7	U
	Hexachloroethane		100	2.7	U	1.3	U	2.7	U	5.6	U
	Isophorone		NS	3	U	1.5	U	3	U	6.3	U
	Nitrobenzene	NS	NS	3	U	1.5	U	3	U	6.3	U
	Pentachlorophenol	10	10	6.7	U	3.3	U	6.7	U	14	U
	Phenol	20	20	3.3	U	1.6	U	3.4	U	7	U

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm)

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected above one or more of the Method 1 Soil Standards

or elevated reporting limits for non-detects

NS - No Method 1 soil standard

EPH - Extractable Petroleum Hydrocarbons

PAH - Polycyclic Aromatic Hydrocarbons

SVOC - Semi-volatile Organic Compounds

Method 1 Soil Standards from 310 CMR 40.0975(6)(a): Table 2 and 310 CMR 40.0975(6)(b): Table 3

The surface soil data set includes samples collected from 0 to 3 feet below ground surface (bgs)

NA - Not analyzed

The average concentration of the BTM-1, BTM-2, BTM-3, ESW, and Under Stockpile Surface samples or the lowest reporting limit for non-detects were used in the data set to represent these locations.

Analysis	Analyte		Sample ID: Sample Depth(ft.):	TP-09 0-3	TP-10 0-3	TP-11 0-3
			Sample Date:	11/9/2011	11/9/2011	11/9/2011
		S-1/GW-3 Method 1	S-2/GW-3 Method 1			
EPH		Soil Standards	Soil Standards			
(mg/kg)	C ₉ -C ₁₈ Aliphatic hydrocarbons	1,000	3,000	NA	NA	NA
	C ₁₉ -C ₃₆ Aliphatic hydrocarbons	3,000	5,000	NA	NA	NA
	C11-C22 Aromatic hydrocarbons	1,000	3,000	NA	NA	NA
	Naphthalene	500	1,000	NA	NA	NA
	2-Methylnaphthalene Phenanthrene	300 500	500 1,000	NA NA	NA NA	NA NA
	Acenaphthene	1,000	3,000	NA NA	NA NA	NA
	Acenaphthylene	10	10	NA	NA	NA
	Fluorene	1,000	3,000	NA	NA	NA
	Anthracene	1,000	3,000	NA	NA	NA
	Fluoranthene	1,000	3,000	NA NA	NA NA	NA
	Pyrene Benzo(a)anthracene	1,000 7	3,000 40	NA	NA	NA NA
	Chrysene	70	400	NA	NA	NA
	Benzo(b)fluoranthene	7	40	NA	NA	NA
	Benzo(k)fluoranthene	70	400	NA	NA	NA
	Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	2 7	4 40	NA NA	NA NA	NA NA
	Dibenzo(a,h)anthracene	0.7	40	NA	NA	NA
	Benzo(g,h,i)perylene	1,000	3,000	NA	NA	NA
PAHs						
	Naphthalene	500	1,000	NA	NA	NA
	2-Methylnaphthalene	300	500	NA	NA	NA
	Phenanthrene Acenaphthene	500 1,000	1,000 3,000	NA NA	NA NA	NA NA
	Acenaphthylene	10	10	NA	NA	NA
	Fluorene	1,000	3,000	NA	NA	NA
	Anthracene	1,000	3,000	NA	NA	NA
	Fluoranthene	1,000	3,000	NA	NA	NA
	Pyrene	1,000	3,000	NA	NA	NA
	Benzo(a)anthracene Chrysene	7 70	40 400	NA NA	NA NA	NA NA
	Benzo(b)fluoranthene	7	40	NA	NA	NA
	Benzo(k)fluoranthene	70	400	NA	NA	NA
	Benzo(a)pyrene	2	4	NA	NA	NA
	Indeno(1,2,3-cd)pyrene	7	40	NA	NA	NA
	Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	0.7 1,000	4 3,000	NA NA	NA NA	NA NA
SVOCs	Denzo(g,n,r)peryrene	1,000	5,000	1011	1111	1111
	Naphthalene	500	1,000	1.9 U	U 0.38 U	0.36
	2-Methylnaphthalene	300	500	2.3 U		U 0.44 U
	Phenanthrene	500	1,000	1.2 U		0.22
	Acenaphthene Acenaphthylene	1,000 10	3,000 10	1.5 U 1.5 U		
	Fluorene	1,000	3,000	1.9 U		
	Anthracene	1,000	3,000	1.2 U		0.22
	Fluoranthene	1,000	3,000	1.2	0.23 U	0.22
	Pyrene	1,000	3,000	1.2	0.23	0.22
	Benzo(a)anthracene	7 70	40 400	1.2 U 1.2 U		
	Chrysene Benzo(b)fluoranthene	70 7	400 40	1.2 U 1.2 U		
	Benzo(k)fluoranthene	70	400	1.2 U		U 0.22 U
	Benzo(a)pyrene	2	4	1.5 U	U 0.3 U	0.29
	Indeno(1,2,3-cd)pyrene	7	40	1.5 U		
	Dibenzo(a,h)anthracene	0.7	4	1.2 U		
	Benzo(g,h,i)perylene 1,2,4-Trichlorobenzene	1,000 500	3,000 900	1.5 U 1.9 U		
	1,2-Dichlorobenzene	300	300	1.9 U 1.9 U		
	1,3-Dichlorobenzene	100	500	1.9 U		0.36
	1,4-Dichlorobenzene	50	300	1.9 L	U 0.38 U	0.36
	0 4 5 T · 1 1 1 1	600	600	1.9 U	J 0.38 L	
	2,4,5-Trichlorophenol					
	2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol	20 40	20 40	1.2 U 1.7 U	J 0.23 L	0.22

Liberty Street New Bedford, Massachusetts

Analysis	Analyte		Sample ID:	TP-09		TP-10		TP-11	
			Sample Depth(ft.):	0-3		0-3		0-3	
			Sample Date:	11/9/2011		11/9/2011		11/9/2011	
		S-1/GW-3 Method 1	S-2/GW-3 Method 1						
		Soil Standards	Soil Standards						
	2,4-Dinitrophenol	50	990	9.2	U	1.8	U	1.8	τ
	2,4-Dinitrotoluene	2	10	1.9	U	0.38	U	0.36	τ
	2,6-Dinitrotoluene	NS	NS	1.9	U	0.38	U	0.36	τ
	2-Chloronaphthalene	NS	NS	1.9	U	0.38	U	0.36	τ
	2-Chlorophenol	100	300	1.9	U	0.38	U	0.36	ι
	2-Methylphenol	NS	NS	1.9	U	0.38	U	0.36	ι
	2-Nitrophenol	NS	NS	4.2	U	0.82	U	0.79	τ
	3,3'-Dichlorobenzidine	1	10	1.9	U	0.38	U	0.36	τ
	3-Methylphenol/4-Methylphenol	NS	NS	2.8	U	0.55	U	0.53	τ
	4-Bromophenyl phenyl ether	NS	NS	1.9	U	0.38	U	0.36	ι
	4-Chloroaniline	NS	NS	1.9	U	0.38	U	0.36	U
	4-Nitrophenol	NS	NS	2.7	U	0.53	U	0.51	ι
	Acetophenone	NS	NS	1.9	U	0.38	U	0.36	τ
	Aniline	NS	NS	2.3	U	0.46	U	0.44	τ
	Azobenzene	NS	NS	1.9	U	0.38	U	0.36	ι
	Bis(2-chloroethoxy)methane	NS	NS	2.1	U	0.41	U	0.39	ι
	Bis(2-chloroethyl)ether	0.7	3	1.7	U	0.34	U	0.33	ι
	Bis(2-chloroisopropyl)ether	3	50	2.3	U	0.46	U	0.44	ι
	Bis(2-Ethylhexyl)phthalate	200	700	1.9	U	0.38	U	0.36	τ
	Butyl benzyl phthalate	NS	NS	1.9	U	0.38	U	0.36	τ
	Di-n-butylphthalate	NS	NS	1.9	U	0.38	U	0.36	τ
	Di-n-octylphthalate	NS	NS	1.9	U	0.38	U	0.36	τ
	Dibenzofuran	NS	NS	1.9	U	0.38	U	0.36	τ
	Diethyl phthalate	300	300	1.9	U	0.38	U	0.36	τ
	Dimethyl phthalate	600	600	1.9	U	0.38	U	0.36	τ
	Hexachlorobenzene	0.7	5	1.2	U	0.23	U	0.22	τ
	Hexachlorobutadiene	6	90	1.9	U	0.38	U	0.36	τ
	Hexachloroethane	9	100	1.5	U	0.3	U	0.29	τ
	Isophorone	NS	NS	1.7	U	0.34	U	0.33	τ
	Nitrobenzene	NS	NS	1.7	U	0.34	U	0.33	τ
	Pentachlorophenol	10	10	3.8	Ū	0.76	Ū	0.73	τ
	Phenol	20	20	1.9	Ū	0.38	Ū	0.36	τ

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm)

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected above one or more of the Method 1 Soil Standards

or elevated reporting limits for non-detects

NS - No Method 1 soil standard

EPH - Extractable Petroleum Hydrocarbons

PAH - Polycyclic Aromatic Hydrocarbons

SVOC - Semi-volatile Organic Compounds

Method 1 Soil Standards from 310 CMR 40.0975(6)(a): Table 2 and 310 CMR 40.0975(6)(b): Table 3

The surface soil data set includes samples collected from 0 to 3 feet below ground surface (bgs)

NA - Not analyzed

The average concentration of the BTM-1, BTM-2, BTM-3, ESW, and Under Stockpile Surface samples or the lowest reporting limit for non-detects were used in the data set to represent these locations.

Liberty Street
New Bedford, Massachusetts

Analysis	Analyte		Sample Location:			SB-LS	D-1						SB-l	LSD-2			
		Sa	ample Depth (ft.):	0-1		1-3		3-4		0-1		1-3		1-3		3-4	
			Sample Date:	5/12/2	010	5/12/2	2/2010 5/12/2010		5/12/20	5/12/2010		010	5/12/2	010	5/12/2	010	
		Method 1 S-	Method 1 S-														
		1/GW-3 Soil	2/GW-3 Soil														
		Standards	Standards											Field I	Dup		
PCBs																	
(mg/kg)	Aroclor 1016	NS	NS	0.0544	U	0.0521	U	0.0567	U	0.0569	U	0.0570	U	0.0560	U	0.0563	U
	Aroclor 1221	NS	NS	0.0544	U	0.0521	U	0.0567	U	0.0569	U	0.0570	U	0.0560	U	0.0563	U
	Aroclor 1232	NS	NS	0.0544	U	0.0521	U	0.0567	U	0.0569	U	0.0570	U	0.0560	U	0.0563	U
	Aroclor 1242	NS	NS	0.0544	U	0.0521	U	0.0567	U	0.0569	U	0.0570	U	0.0560	U	0.0563	U
	Aroclor 1248	NS	NS	0.0544	U	0.0521	U	0.0567	U	0.0569	U	0.0570	U	0.0560	U	0.0563	U
	Aroclor 1254	NS	NS	0.0685	J	0.0521	U	0.611	J	0.131	J	0.510	J	0.478	J	0.523	J
	Aroclor 1260	NS	NS	0.0544	U	0.0521	U	0.227	J	0.0569	U	0.221	J	0.210	J	0.215	J
	Total PCBs	2	3	0.0685	J	0.0521	U	0.838	J	0.131	J	0.731	J	0.688	J	0.738	J
PCB Ho	mologs																
(mg/kg)	Monochlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA	
	Dichlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA	
	Trichlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA	
	Tetrachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA	
	Pentachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA	
	Hexachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA	
	Heptachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA	
	Octachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA	
	Nonachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA	
	Decachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA	
	Total PCBs	2	3	NA		NA		NA		NA		NA		NA		NA	

Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm)

J - Estimated value

U - Compound was not detected at specified quantitation limit

NA - Not analyzed

NS - No Method 1 soil standard

Values in \boldsymbol{Bold} indicate the compound was detected above one or more of the

Method 1 Soil Standards

Method 1 Soil Standards from 310 CMR 40.0975(6)(a): Table 2 and

310 CMR 40.0975(6)(b): Table 3

PCBs - Polychlorinated Biphenyls

Total PCBs is the sum of the detected concentrations or the highest reporting

limit for non-detects

The sitewide soil data set includes samples collected from 0 to 15 feet below ground surface (bgs)

The maximum detected concentration or highest reporting limit for non-detects

Liberty Street
New Bedford, Massachusetts

Analysis	Analyte		Sample Location:			SB-LS	D-3					SB-LS	D-4		
		Sa	ample Depth (ft.):	0-1		1-3		4-5		0-1		1-3		3.5-4.5	
			Sample Date:	5/12/2	5/12/2010 5/12/20		010	5/12/2	010	5/12/2010		5/12/2010		5/12/2	010
		Method 1 S-	Method 1 S-												
		1/GW-3 Soil	2/GW-3 Soil												
		Standards	Standards												
PCBs															
(mg/kg)	Aroclor 1016	NS	NS	0.0551	U	0.0555	U	0.0599	U	0.0559	U	0.0564	U	0.0608	U
	Aroclor 1221	NS	NS	0.0551	U	0.0555	U	0.0599	U	0.0559	U	0.0564	U	0.0608	U
	Aroclor 1232	NS	NS	0.0551	U	0.0555	U	0.0599	U	0.0559	U	0.0564	U	0.0608	U
	Aroclor 1242	NS	NS	0.0551	U	0.0555	U	0.0599	U	0.0559	U	0.0564	U	0.0608	U
	Aroclor 1248	NS	NS	0.0551	U	0.0555	U	0.0599	U	0.0559	U	0.0564	U	0.0608	U
	Aroclor 1254	NS	NS	0.0615	J	0.0555	U	0.0599	U	0.0759	J	0.163	J	0.0608	U
	Aroclor 1260	NS	NS	0.0551	U	0.0607	J	0.0599	U	0.0559	U	0.109	J	0.0608	U
	Total PCBs	2	3	0.0615	J	0.0607	J	0.0599	U	0.0759	J	0.272	J	0.0608	U
PCB Hor	nologs														
(mg/kg)	Monochlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA	
	Dichlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA	
	Trichlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA	
	Tetrachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA	
	Pentachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA	
	Hexachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA	
	Heptachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA	
	Octachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA	
	Nonachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA	
	Decachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA	
	Total PCBs	2	3	NA		NA		NA		NA		NA		NA	

Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm)

J - Estimated value

U - Compound was not detected at specified quantitation limit

NA - Not analyzed

NS - No Method 1 soil standard

Values in Bold indicate the compound was detected above one or more of the

Method 1 Soil Standards

Method 1 Soil Standards from 310 CMR 40.0975(6)(a): Table 2 and

310 CMR 40.0975(6)(b): Table 3

PCBs - Polychlorinated Biphenyls

Total PCBs is the sum of the detected concentrations or the highest reporting

limit for non-detects

The sitewide soil data set includes samples collected from 0 to 15 feet below ground

surface (bgs)

The maximum detected concentration or highest reporting limit for non-detects

Liberty Street
New Bedford, Massachusetts

Analysis	Analyte		Sample Location:			SB-LS	D-5					SB-LS	D-6		
		Sa	ample Depth (ft.):	0-1		1-3		3.5-4	.5	0-1		1-3		3.5-	5
			Sample Date:	5/12/2	010	5/12/2	010	5/12/2	010	5/12/2	010	5/12/2	010	5/12/2	010
		Method 1 S-	Method 1 S-												
		1/GW-3 Soil	2/GW-3 Soil												
		Standards	Standards												
PCBs															
(mg/kg)	Aroclor 1016	NS	NS	0.0588	U	0.0540	U	0.0517	U	0.0540	U	0.0623	U	0.0582	U
	Aroclor 1221	NS	NS	0.0588	U	0.0540	U	0.0517	U	0.0540	U	0.0623	U	0.0582	U
	Aroclor 1232	NS	NS	0.0588	U	0.0540	U	0.0517	U	0.0540	U	0.0623	U	0.0582	U
	Aroclor 1242	NS	NS	0.0588	U	0.0540	U	0.0517	U	0.0540	U	0.0623	U	0.0582	U
	Aroclor 1248	NS	NS	0.0588	U	0.0540	U	0.0517	U	0.0540	U	0.0623	U	0.0582	U
	Aroclor 1254	NS	NS	0.458	J	3.01	J	0.0645	J	0.117	J	0.277	J	0.0582	U
	Aroclor 1260	NS	NS	0.252	J	0.908	J	0.0517	U	0.096	J	0.146	J	0.0582	U
	Total PCBs	2	3	0.710	J	3.918	J	0.0645	J	0.213	J	0.423	J	0.0582	U
PCB Hor	nologs														
(mg/kg)	Monochlorobiphenyl	NS	NS	NA											
	Dichlorobiphenyl	NS	NS	NA											
	Trichlorobiphenyl	NS	NS	NA											
	Tetrachlorobiphenyl	NS	NS	NA											
	Pentachlorobiphenyl	NS	NS	NA											
	Hexachlorobiphenyl	NS	NS	NA											
	Heptachlorobiphenyl	NS	NS	NA											
	Octachlorobiphenyl	NS	NS	NA											
	Nonachlorobiphenyl	NS	NS	NA											
	Decachlorobiphenyl	NS	NS	NA											
	Total PCBs	2	3	NA											

Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm)

J - Estimated value

U - Compound was not detected at specified quantitation limit

NA - Not analyzed

NS - No Method 1 soil standard

Values in Bold indicate the compound was detected above one or more of the

Method 1 Soil Standards

Method 1 Soil Standards from 310 CMR 40.0975(6)(a): Table 2 and

310 CMR 40.0975(6)(b): Table 3

PCBs - Polychlorinated Biphenyls

Total PCBs is the sum of the detected concentrations or the highest reporting

limit for non-detects

The sitewide soil data set includes samples collected from 0 to 15 feet below ground

surface (bgs)

The maximum detected concentration or highest reporting limit for non-detects

Liberty Street
New Bedford, Massachusetts

Analysis	Analyte		Sample Location:				SB-	LSD-7						SB-LS	D-8		
		S	ample Depth (ft.):	0-1		1-3		1-3		3.5-4	.5	0-1		1-3		3.5-4	1.5
			Sample Date:	5/12/2	010	5/12/20	010	5/12/2	010	5/12/20	010	5/12/2	010	5/12/2	010	5/12/2	010
		Method 1 S-	Method 1 S-														
		1/GW-3 Soil	2/GW-3 Soil														
		Standards	Standards					Field I	Dup								
PCBs																	
(mg/kg)	Aroclor 1016	NS	NS	0.0610	U	0.0585	U	0.0581	U	0.0500	U	0.0563	U	0.0569	U	0.0551	U
	Aroclor 1221	NS	NS	0.0610	U	0.0585	U	0.0581	U	0.0500	U	0.0563	U	0.0569	U	0.0551	U
	Aroclor 1232	NS	NS	0.0610	U	0.0585	U	0.0581	U	0.0500	U	0.0563	U	0.0569	U	0.0551	U
	Aroclor 1242	NS	NS	0.0610	U	0.0585	U	0.0581	U	0.0500	U	0.0563	U	0.0569	U	0.0551	U
	Aroclor 1248	NS	NS	0.0610	U	0.0585	U	0.0581	U	0.0500	U	0.0563	U	0.0569	U	0.0551	U
	Aroclor 1254	NS	NS	0.365	J	0.676	J	0.676	J	0.0819	J	0.256	J	0.105	J	0.150	J
	Aroclor 1260	NS	NS	0.129	J	0.243	J	0.221	J	0.0500	U	0.102	J	0.0569	U	0.0944	J
	Total PCBs	2	3	0.494	J	0.919	J	0.897	J	0.0819	J	0.358	J	0.105	J	0.2444	J
PCB Ho	mologs																
(mg/kg)	Monochlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA	
	Dichlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA	
	Trichlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA	
	Tetrachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA	
	Pentachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA	
	Hexachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA	
	Heptachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA	
	Octachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA	
	Nonachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA	
	Decachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA	
	Total PCBs	2	3	NA		NA		NA		NA		NA		NA		NA	

Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm)

J - Estimated value

U - Compound was not detected at specified quantitation limit

NA - Not analyzed

NS - No Method 1 soil standard

Values in \boldsymbol{Bold} indicate the compound was detected above one or more of the

Method 1 Soil Standards

Method 1 Soil Standards from 310 CMR 40.0975(6)(a): Table 2 and

310 CMR 40.0975(6)(b): Table 3

PCBs - Polychlorinated Biphenyls

Total PCBs is the sum of the detected concentrations or the highest reporting

limit for non-detects

The sitewide soil data set includes samples collected from 0 to 15 feet below ground surface (bgs)

The maximum detected concentration or highest reporting limit for non-detects

Liberty Street
New Bedford, Massachusetts

Analysis	Analyte		Sample Location:		SB	-210			SI	B-211				SB-2	12				SB	-213	
		S	ample Depth (ft.):	5		11		5		11		4		4		10		5		12	2
			Sample Date:	6/16/20	008	6/16/2	008	6/16/2	008	6/16/20	008	6/16/20	008	6/16/20	008	6/16/2	008	6/17/2	008	6/17/2	.008
		Method 1 S-	Method 1 S-																		
		1/GW-3 Soil	2/GW-3 Soil																		
		Standards	Standards											Field I	Dup						
PCBs																					
(mg/kg)	Aroclor 1016	NS	NS	0.0591	U	0.0584	U	0.0662	U	0.0545	U	0.0655	U	0.0635	U	0.0541	U	0.0555	U	0.0549	U
	Aroclor 1221	NS	NS	0.0591	U	0.0584	U	0.0662	U	0.0545	U	0.0655	U	0.0635	U	0.0541	U	0.0555	U	0.0549	U
	Aroclor 1232	NS	NS	0.0591	U	0.0584	U	0.0662	U	0.0545	U	0.0655	U	0.0635	U	0.0541	U	0.0555	U	0.0549	U
	Aroclor 1242	NS	NS	0.0591	U	0.0584	U	0.0662	U	0.0545	U	0.0655	U	0.0635	U	0.0541	U	0.0555	U	0.0549	U
	Aroclor 1248	NS	NS	0.0591	U	0.0584	U	0.0662	U	0.0545	U	0.0655	U	0.0635	U	0.0541	U	0.0555	U	0.0549	U
	Aroclor 1254	NS	NS	0.0591	U	0.0584	U	0.0662	U	0.0545	U	0.0655	U	0.0635	U	0.0541	U	0.0555	U	0.0549	U
	Aroclor 1260	NS	NS	0.0591	U	0.0584	U	0.0662	U	0.0545	U	0.0655	U	0.0635	U	0.0541	U	0.0555	U	0.0549	U
	Total PCBs	2	3	0.0591	U	0.0584	U	0.0662	U	0.0545	U	0.0655	U	0.0635	U	0.0541	U	0.0555	U	0.0549	U
PCB Ho	mologs																				
(mg/kg)	Monochlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA		NA		NA	
	Dichlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA		NA		NA	
	Trichlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA		NA		NA	
	Tetrachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA		NA		NA	
	Pentachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA		NA		NA	
	Hexachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA		NA		NA	
	Heptachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA		NA		NA	
	Octachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA		NA		NA	
	Nonachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA		NA		NA	
	Decachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		NA		NA		NA		NA	
	Total PCBs	2	3	NA		NA		NA		NA		NA		NA		NA		NA		NA	

Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm)

J - Estimated value

U - Compound was not detected at specified quantitation limit

NA - Not analyzed

NS - No Method 1 soil standard

Values in Bold indicate the compound was detected above one or more of the

Method 1 Soil Standards

Method 1 Soil Standards from 310 CMR 40.0975(6)(a): Table 2 and

310 CMR 40.0975(6)(b): Table 3

PCBs - Polychlorinated Biphenyls

Total PCBs is the sum of the detected concentrations or the highest reporting

limit for non-detects

The sitewide soil data set includes samples collected from 0 to 15 feet below ground surface (bgs)

The maximum detected concentration or highest reporting limit for non-detects

Liberty Street
New Bedford, Massachusetts

Analysis	Analyte		Sample Location:		SB	-214			SI	B-215		SB-2	16		SB	-217			SB	-218	
		S	ample Depth (ft.):	4		10		7.5		9		4		5		11		4.5		10	l.
			Sample Date:	6/17/20	008	6/17/2	008	6/17/2	008	6/17/2	008	6/17/2	008	6/17/20	008	6/17/2	800	6/17/2	008	6/17/2	.008
		Method 1 S- 1/GW-3 Soil Standards	Method 1 S- 2/GW-3 Soil Standards																		
PCBs																					
(mg/kg)	Aroclor 1016	NS	NS	0.0604	U	0.131	UJ	0.0611	U	0.138	UJ	0.0525	U	0.0653	U	0.0530	U	0.0581	U	0.0534	U
	Aroclor 1221	NS	NS	0.0604	U	0.131	UJ	0.0611	U	0.138	UJ	0.0525	U	0.0653	U	0.0530	U	0.0581	U	0.0534	U
	Aroclor 1232	NS	NS	0.0604	U	0.131	UJ	0.0611	U	0.138	UJ	0.0525	U	0.0653	U	0.0530	U	0.0581	U	0.0534	U
	Aroclor 1242	NS	NS	0.0604	U	0.131	UJ	0.0611	U	0.138	UJ	0.0525	U	0.0653	U	0.0530	U	0.0581	U	0.0534	U
	Aroclor 1248	NS	NS	0.0604	U	0.131	UJ	0.0611	U	0.138	UJ	0.0525	U	0.0653	U	0.0530	U	0.0581	U	0.0534	U
	Aroclor 1254	NS	NS	0.225	J	0.131	UJ	0.0611	U	0.138	UJ	0.0525	U	0.0653	U	0.0530	U	0.158	J	0.0534	U
	Aroclor 1260	NS	NS	0.0604	U	0.131	UJ	0.0611	U	0.138	UJ	0.0525	U	0.0653	U	0.0530	U	0.0843	J	0.0534	U
	Total PCBs	2	3	0.225	J	0.131	UJ	0.0611	U	0.138	UJ	0.0525	U	0.0653	U	0.0530	U	0.2423	J	0.0534	U
PCB Ho	mologs																				
(mg/kg)	Monochlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		0.017	U	NA		NA		NA	
	Dichlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		0.017	U	NA		NA		NA	
	Trichlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		0.017	U	NA		NA		NA	
	Tetrachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		0.033	U	NA		NA		NA	
	Pentachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		0.033	U	NA		NA		NA	
	Hexachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		0.033	U	NA		NA		NA	
	Heptachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		0.050	U	NA		NA		NA	
	Octachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		0.050	U	NA		NA		NA	
	Nonachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		0.083	U	NA		NA		NA	
	Decachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA		0.083	U	NA		NA		NA	
	Total PCBs	2	3	NA		NA		NA		NA		NA		0.083	U	NA		NA		NA	

Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm)

J - Estimated value

U - Compound was not detected at specified quantitation limit

NA - Not analyzed

NS - No Method 1 soil standard

Values in Bold indicate the compound was detected above one or more of the

Method 1 Soil Standards

Method 1 Soil Standards from 310 CMR 40.0975(6)(a): Table 2 and

310 CMR 40.0975(6)(b): Table 3

PCBs - Polychlorinated Biphenyls

Total PCBs is the sum of the detected concentrations or the highest reporting

limit for non-detects

The sitewide soil data set includes samples collected from 0 to 15 feet below ground surface (bgs)

The maximum detected concentration or highest reporting limit for non-detects

Liberty Street New Bedford, Massachusetts

Analysis	analyte		Sample Location:			SB-2	19				SE	3-221	
		Sa	ample Depth (ft.):	4		4		9		5		8.5	
			Sample Date:	6/17/20	008	6/17/2	008	6/17/2	008	6/17/2	008	6/17/2	008
		Method 1 S-	Method 1 S-										
		1/GW-3 Soil	2/GW-3 Soil										
		Standards	Standards			Field I	Dup						
PCBs													
(mg/kg)	Aroclor 1016	NS	NS	0.0657	U	0.0681	U	0.0537	U	0.0531	U	0.0514	U
	Aroclor 1221	NS	NS	0.0657	U	0.0681	U	0.0537	U	0.0531	U	0.0514	U
	Aroclor 1232	NS	NS	0.0657	U	0.0681	U	0.0537	U	0.0531	U	0.0514	U
	Aroclor 1242	NS	NS	0.0657	U	0.0681	U	0.0537	U	0.0531	U	0.0514	U
	Aroclor 1248	NS	NS	0.0657	U	0.0681	U	0.0537	U	0.0531	U	0.0514	U
	Aroclor 1254	NS	NS	0.0657	U	0.0681	U	0.0537	U	0.0531	U	0.0514	U
	Aroclor 1260	NS	NS	0.0657	U	0.0681	U	0.0537	U	0.0531	U	0.0514	U
	Total PCBs	2	3	0.0657	U	0.0681	U	0.0537	U	0.0531	U	0.0514	U
PCB Ho	mologs												
(mg/kg)	Monochlorobiphenyl	NS	NS	NA		NA		NA		NA		NA	
	Dichlorobiphenyl	NS	NS	NA		NA		NA		NA		NA	
	Trichlorobiphenyl	NS	NS	NA		NA		NA		NA		NA	
	Tetrachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA	
	Pentachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA	
	Hexachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA	
	Heptachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA	
	Octachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA	
	Nonachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA	
	Decachlorobiphenyl	NS	NS	NA		NA		NA		NA		NA	
	Total PCBs	2	3	NA		NA		NA		NA		NA	

Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm)

J - Estimated value

U - Compound was not detected at specified quantitation limit

NA - Not analyzed

NS - No Method 1 soil standard

Values in Bold indicate the compound was detected above one or more of the

Method 1 Soil Standards

Method 1 Soil Standards from 310 CMR 40.0975(6)(a): Table 2 and

310 CMR 40.0975(6)(b): Table 3

PCBs - Polychlorinated Biphenyls

Total PCBs is the sum of the detected concentrations or the highest reporting

limit for non-detects

The sitewide soil data set includes samples collected from 0 to 15 feet below ground

surface (bgs)

The maximum detected concentration or highest reporting limit for non-detects

Liberty Street New Bedford, Massachusetts

				SB-210)		SB-2	212		Average betw	eeen the
Analysis	Analyte			5		4		4		SB-212 pare	ent and
				6/16/200)8	6/16/200	8	6/16/200)8	duplicate sam	ples for
		Method 1 S-	Method 1 S-2							lead; maxin	mum
		1/GW-3 Soil	/GW-3 Soil							concentration	for other
		Standards	Standards					Field Du	ıp	chemica	ıls
Metals											
(mg/kg)	Antimony	20	30	5.53	U	5.23	U	5.33	U	5.23	U
	Arsenic	20	20	12.3		16.9		18.4		18.4	
	Barium	1,000	3,000	260		697		707		707	
	Beryllium	100	200	0.64		0.57		0.66		0.66	
	Cadmium	2	30	0.49		1.96		1.38		1.96	
	Chromium	30	200	16.3		16.0		17.6		17.6	
	Lead	300	300	510		2,420		5,580		4000	
	Nickel	20	700	15.8		16.1		18.3		18.3	
	Selenium	400	800	6.91	U	6.53	U	6.66	U	6.53	U
	Silver	100	200	4.13		5.82		4.30		5.82	
	Thallium	8	60	4.15	U	3.92	U	4.00	U	3.92	U
	Vanadium	600	1,000	34.5		27.3		31.4		31.4	
	Zinc	2,500	3,000	371		483		428		483	
	Mercury	20	30	0.154		0.265		2.47		2.47	

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm)

DUP - duplicate

U - Compound was not detected at specified quantitation limit

NA - Not analyzed

EPC - Exposure Point Concentration

Values in Bold indicate the compound was detected above one

or more of the Method 1 Soil Standards

Method 1 Soil Standards from 310 CMR 40.0975(6)(a): Table 2

and 310 CMR 40.0975(6)(b): Table 3

The sitewide soil data set includes samples collected from 0 to 15 feet below ground surface (bgs)

The average concentration between the SB-212 parent and duplicate was calculated for lead. That concentration was then averaged with the results of TP-A through TP-F with concentrations greater

than 300 ppm to represent the "hot spot" area.

That average concentration was included in the sitewide data set

for EPC calculations. The maximum detected concentration between

the parent and duplicate or lowest reporting limit for non-detects was

Liberty Street New Bedford, Massachusetts

Analysis	Analyte			TP-A 4' 4'	TP-B 4' 4'	TP-C 4' 4'	TP-D 4' 4'	TP-E 5' 4'	TP-F 4.5' 4'	"Hot Spot"
		Method 1 S- 1/GW-3 Soil Standards	Method 1 S-2 /GW-3 Soil Standards	5/24/2012	5/24/2012	5/24/2012	5/24/2012	5/24/2012	5/24/2012	Area Average
Metals										
(mg/kg)	Antimony	20	30	NA	NA	NA	NA	NA	NA	NA
	Arsenic	20	20	NA	NA	NA	NA	NA	NA	NA
	Barium	1,000	3,000	NA	NA	NA	NA	NA	NA	NA
	Beryllium	100	200	NA	NA	NA	NA	NA	NA	NA
	Cadmium	2	30	NA	NA	NA	NA	NA	NA	NA
	Chromium	30	200	NA	NA	NA	NA	NA	NA	NA
	Lead	300	300	67	210	400	240	550	380	1333
	Nickel	20	700	NA	NA	NA	NA	NA	NA	NA
	Selenium	400	800	NA	NA	NA	NA	NA	NA	NA
	Silver	100	200	NA	NA	NA	NA	NA	NA	NA
	Thallium	8	60	NA	NA	NA	NA	NA	NA	NA
	Vanadium	600	1,000	NA	NA	NA	NA	NA	NA	NA
	Zinc	2,500	3,000	NA	NA	NA	NA	NA	NA	NA
	Mercury	20	30	NA	NA	NA	NA	NA	NA	NA

..

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm)

DUP - duplicate

U - Compound was not detected at specified quantitation limit

NA - Not analyzed

EPC - Exposure Point Concentration

Values in Bold indicate the compound was detected above one

or more of the Method 1 Soil Standards

Method 1 Soil Standards from 310 CMR 40.0975(6)(a): Table 2

and 310 CMR 40.0975(6)(b): Table 3

The sitewide soil data set includes samples collected from 0 to 15 feet below ground surface (bgs)

The average concentration between the SB-212 parent and duplicate was calculated for lead. That concentration was then averaged with the results of TP-A through TP-F with concentrations greater than 300 ppm to represent the "hot spot" area.

That average concentration was included in the sitewide data set

for EPC calculations. The maximum detected concentration between the parent and duplicate or lowest reporting limit for non-detects was

Liberty Street New Bedford, Massachusetts

Analysis			Method 1 S-2 /GW-3 Soil Standards	SB-214 4 6/17/200		SB-21 4 6/17/20		SB-21 5 6/17/20		SB-21 4 6/17/20	
Metals											
(mg/kg)	Antimony	20	30	4.89	U	4.45	U	5.50	U	5.45	U
	Arsenic	20	20	7.20		3.51		15.3		17.3	
	Barium	1,000	3,000	211		31.9		513		337	
	Beryllium	100	200	0.36		0.28	U	0.87		0.35	U
	Cadmium	2	30	1.54		0.28	U	1.14		2.92	
	Chromium	30	200	11.7		5.27		13.5		35.9	
	Lead	300	300	561		55.3		418		1,500	
	Nickel	20	700	73.6		3.72		26.3		28.9	
	Selenium	400	800	6.11	U	5.56	U	6.87	U	6.82	U
	Silver	100	200	3.03		1.23		7.72		12.2	
	Thallium	8	60	3.67	U	3.34	U	4.13	U	4.09	U
	Vanadium	600	1,000	17.6		9.43		23.3		28.5	
	Zinc	2,500	3,000	445		43.6		560		579	
	Mercury	20	30	0.272		0.446		0.111		0.281	

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm)

DUP - duplicate

U - Compound was not detected at specified quantitation limit

NA - Not analyzed

EPC - Exposure Point Concentration

Values in \boldsymbol{Bold} indicate the compound was detected above one

or more of the Method 1 Soil Standards

Method 1 Soil Standards from 310 CMR 40.0975(6)(a): Table 2

and 310 CMR 40.0975(6)(b): Table 3

The sitewide soil data set includes samples collected from 0 to 15 feet below ground surface (bgs)

The average concentration between the SB-212 parent and duplicate was calculated for lead. That concentration was then averaged with the results of TP-A through TP-F with concentrations greater

than 300 ppm to represent the "hot spot" area.

That average concentration was included in the sitewide data set

for EPC calculations. The maximum detected concentration between

the parent and duplicate or lowest reporting limit for non-detects was

Liberty Street New Bedford, Massachusetts

Analysis	Analyte			SB-22 5	1	TP-01		TP-02		TP-03		TP-04		TP-05		TP-06	
7 mary 515	- Andry te	Method 1 S- 1/GW-3 Soil Standards	Method 1 S-2 /GW-3 Soil Standards	6/17/20	08	11/9/2011		11/9/2011		11/9/2011		11/9/2011		11/9/2011		11/9/2011	
Metals																	
(mg/kg)	Antimony	20	30	4.27	U	NA		NA	l								
	Arsenic	20	20	2.67	U	4.4		4.6		2.1		2		1.6		1.2	
	Barium	1,000	3,000	27.8		NA		NA		NA		NA		NA		NA	
	Beryllium	100	200	0.27	U	NA											
	Cadmium	2	30	0.27	U	0.42	U	0.42	U	0.42	U	0.4	U	0.41	U	0.4	U
	Chromium	30	200	8.59		9.7		10		14		10		15		12	
	Lead	300	300	2.49		190		43		180		47		260		38	
	Nickel	20	700	4.95		NA		NA		NA		NA		NA		NA	
	Selenium	400	800	5.34	U	NA											
	Silver	100	200	1.11		NA		NA		NA		NA		NA		NA	
	Thallium	8	60	3.20	U	NA											
	Vanadium	600	1,000	12.0		NA		NA		NA		NA		NA		NA	
1	Zinc	2,500	3,000	12.3		NA		NA		NA		NA		NA		NA	
1	Mercury	20	30	0.014	U	0.18		0.08		0.13		0.12		0.09		0.1	U

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm)

DUP - duplicate

U - Compound was not detected at specified quantitation limit

NA - Not analyzed

EPC - Exposure Point Concentration

Values in Bold indicate the compound was detected above one

or more of the Method 1 Soil Standards

Method 1 Soil Standards from 310 CMR 40.0975(6)(a): Table 2

and 310 CMR 40.0975(6)(b): Table 3

The sitewide soil data set includes samples collected from 0 to 15 feet below ground surface (bgs)

The average concentration between the SB-212 parent and duplicate was calculated for lead. That concentration was then averaged with

the results of TP-A through TP-F with concentrations greater

than 300 ppm to represent the "hot spot" area.

That average concentration was included in the sitewide data set

for EPC calculations. The maximum detected concentration between

the parent and duplicate or lowest reporting limit for non-detects was

Liberty Street New Bedford, Massachusetts

Analysis	Analyte			TP-07		TP-08		TP-09		TP-10		TP-11	
Anarysis	Analyte			11/9/2011		11/9/2011		11/9/2011		11/9/2011		11/9/2011	
		Method 1 S-	Method 1 S-2										
		1/GW-3 Soil	/GW-3 Soil										
		Standards	Standards										
Metals													
(mg/kg)	Antimony	20	30	NA									
	Arsenic	20	20	1.6		1.6		7.3		1.5		0.72	
	Barium	1,000	3,000	NA									
	Beryllium	100	200	NA									
	Cadmium	2	30	0.4	U	0.41	U	0.47	U	0.45	U	0.44	U
	Chromium	30	200	12		16		10		11		9.5	
	Lead	300	300	47		57		240		26		6.3	
	Nickel	20	700	NA									
	Selenium	400	800	NA									
	Silver	100	200	NA									
	Thallium	8	60	NA									
	Vanadium	600	1,000	NA									
	Zinc	2,500	3,000	NA									
	Mercury	20	30	0.07		0.12	U	0.15		0.09	U	0.09	U

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm)

DUP - duplicate

U - Compound was not detected at specified quantitation limit

NA - Not analyzed

EPC - Exposure Point Concentration

Values in Bold indicate the compound was detected above one

or more of the Method 1 Soil Standards

Method 1 Soil Standards from 310 CMR 40.0975(6)(a): Table 2

and 310 CMR 40.0975(6)(b): Table 3

The sitewide soil data set includes samples collected from 0 to 15 feet below ground surface (bgs)

The average concentration between the SB-212 parent and duplicate was calculated for lead. That concentration was then averaged with the results of TP-A through TP-F with concentrations greater than 300 ppm to represent the "hot spot" area. That average concentration was included in the sitewide data set for EPC calculations. The maximum detected concentration between

the parent and duplicate or lowest reporting limit for non-detects was

Analysis	Analyte		Sample ID:	BTM-1		BTM-2		BTM-3		ESW	ا	Under Stoc	-		
			Sample Depth(ft.): Sample Date:	1 11/3/2009)	1 11/3/2009		0.5 11/3/2009	9	0-1 11/3/200	19	Surfac 11/3/200		Average	
		S-1/GW-3	*											Concentratio BTM, ESW	
		Method 1 Soil	S-2/GW-3 Method 1 Soil Standards											Under Stock	pile
EPH		Standards												Samples	
(mg/kg)	C9-C18 Aliphatic hydrocarbons	1,000	3,000	35	U	36	U	35		35	U	35	U	21	
	C_{19} - C_{36} Aliphatic hydrocarbons	3,000	5,000	35	U	73		110		69		280		110	
	C_{11} - C_{22} Aromatic hydrocarbons	1,000	3,000	64		52		150		100		280		129	
	Naphthalene	500	1,000	0.59	U	0.60	U	0.56	U	0.58	U	0.58	U	0.56	U
	2-Methylnaphthalene	300	500	0.59	U		U	0.56	U	0.58	U	0.58	U	0.56	U
	Phenanthrene	500	1,000	0.92	••	0.83	••	1.9	••	2.0	••	1.5	••	1.4	••
	Acenaphthene	1,000 10	3,000 10	0.59 0.59	U U		U U	0.56 0.56	U U	0.58 0.58	U U	0.58 0.58	U U	0.56	U U
	Acenaphthylene Fluorene	1,000	3,000	0.59	U		U	0.56	U	0.58	U	0.58	U	0.56 0.56	U
	Anthracene	1,000	3,000	0.59	U		U	0.56	U	0.58	Ŭ	0.58	U	0.56	U
	Fluoranthene	1,000	3,000	1.6		1.2		2.7		3.9		2.2		2.3	
	Pyrene	1,000	3,000	1.5		1.1		2.2		3.4		2.0		2.0	
	Benzo(a)anthracene	7	40	0.60			U	1.1		1.4		0.95		0.87	
	Chrysene	70	400	0.81		0.71		1.4		1.7		1.3		1.2	
	Benzo(b)fluoranthene Benzo(k)fluoranthene	7 70	40 400	0.70 0.65		0.63 0.60	U	1.4 0.91		1.7 1.4		1.1 0.77		1.1 0.81	
	Benzo(k)Huoranthene Benzo(a)pyrene	2	400	0.83		0.80	U	1.3		1.4 1.9		1.0		1.1	
	Indeno(1,2,3-cd)pyrene	2 7	4 40	0.82	U		U	0.88		1.9		0.58	U	0.61	
	Dibenzo(a,h)anthracene	0.7	4	0.59	U		U	0.56	U	0.58	U	0.58	Ŭ	0.56	U
	Benzo(g,h,i)perylene	1,000	3,000	0.65		0.66		0.65		1.6		0.87		0.89	
PAHs															
	Naphthalene	500 200	1,000	NA		NA		NA		NA		NA		NA	
	2-Methylnaphthalene Phenanthrene	300 500	500 1,000	NA NA		NA NA		NA NA		NA NA		NA NA		NA NA	
	Acenaphthene	1,000	3,000	NA		NA		NA		NA		NA		NA	
	Acenaphthylene	10	10	NA		NA		NA		NA		NA		NA	
	Fluorene	1,000	3,000	NA		NA		NA		NA		NA		NA	
	Anthracene	1,000	3,000	NA		NA		NA		NA		NA		NA	
	Fluoranthene	1,000	3,000	NA		NA		NA		NA		NA		NA	
	Pyrene	1,000	3,000	NA		NA		NA		NA		NA		NA	
	Benzo(a)anthracene Chrysene	7 70	40 400	NA NA		NA NA		NA NA		NA NA		NA NA		NA NA	
	Benzo(b)fluoranthene	70	400	NA		NA		NA		NA		NA		NA	
	Benzo(k)fluoranthene	70	400	NA		NA		NA		NA		NA		NA	
	Benzo(a)pyrene	2	4	NA		NA		NA		NA		NA		NA	
	Indeno(1,2,3-cd)pyrene	7	40	NA		NA		NA		NA		NA		NA	
	Dibenzo(a,h)anthracene	0.7	4	NA		NA		NA		NA		NA		NA	
SNOC:	Benzo(g,h,i)perylene	1,000	3,000	NA		NA		NA		NA		NA		NA	
SVOCs	Naphthalene	500	1,000	NA		NA		NA		NA		NA		NA	
	2-Methylnaphthalene	300	500	NA		NA		NA		NA		NA		NA	
	Phenanthrene	500	1,000	NA		NA		NA		NA		NA		NA	
	Acenaphthene	1,000	3,000	NA		NA		NA		NA		NA		NA	
	Acenaphthylene	10	10	NA		NA		NA		NA		NA		NA	
	Fluorene	1,000	3,000	NA		NA		NA		NA		NA		NA	
	Anthracene	1,000	3,000	NA		NA		NA		NA		NA		NA	
	Fluoranthene Pyrene	1,000 1,000	3,000 3,000	NA NA		NA NA		NA NA		NA NA		NA NA		NA NA	
1	Benzo(a)anthracene	7	40	NA		NA		NA		NA		NA		NA	
	Chrysene	70	400	NA		NA		NA		NA		NA		NA	
	Benzo(b)fluoranthene	7	40	NA		NA		NA		NA		NA		NA	
	Benzo(k)fluoranthene	70	400	NA		NA		NA		NA		NA		NA	
	Benzo(a)pyrene	2	4	NA		NA		NA		NA		NA		NA	
	Indeno(1,2,3-cd)pyrene	7	40	NA		NA		NA		NA		NA		NA	
	Dibenzo(a,h)anthracene	0.7	4	NA		NA		NA		NA		NA		NA	
	Benzo(g,h,i)perylene 1,2,4-Trichlorobenzene	1,000 500	3,000 900	NA NA		NA NA		NA NA		NA NA		NA NA		NA NA	
	1,2,4-Trichlorobenzene	300	300	NA		NA		NA		NA		NA		NA	
1	1,3-Dichlorobenzene	100	500	NA		NA		NA		NA		NA		NA	
	1,4-Dichlorobenzene	50	300	NA		NA		NA		NA		NA		NA	

Liberty Street New Bedford, Massachusetts

Analysis	Analyte		Sample ID: Sample Depth(ft.):	BTM-1 1	BTM-2 1	BTM-3 0.5	ESW 0-1	Under Stockpile Surface	Average
		S-1/GW-3 Method 1 Soil Standards	Sample Date: S-2/GW-3 Method 1 Soil Standards	11/3/2009	11/3/2009	11/3/2009	11/3/2009	11/3/2009	Concentration of BTM, ESW and Under Stockpile Samples
	2,4,5-Trichlorophenol	600	600	NA	NA	NA	NA	NA	NA
	2,4,6-Trichlorophenol	20	20	NA	NA	NA	NA	NA	NA
	2,4-Dichlorophenol	40	40	NA	NA	NA	NA	NA	NA
	2,4-Dimethylphenol	500	1,000	NA	NA	NA	NA	NA	NA
	2,4-Dinitrophenol	50	990	NA	NA	NA	NA	NA	NA
	2,4-Dinitrotoluene	2	10	NA	NA	NA	NA	NA	NA
	2,6-Dinitrotoluene	NS	NS	NA	NA	NA	NA	NA	NA
	2-Chloronaphthalene	NS	NS	NA	NA	NA	NA	NA	NA
	2-Chlorophenol	100	300	NA	NA	NA	NA	NA	NA
	2-Methylphenol	NS	NS	NA	NA	NA	NA	NA	NA
	2-Nitrophenol	NS	NS	NA	NA	NA	NA	NA	NA
	3,3'-Dichlorobenzidine	1	10	NA	NA	NA	NA	NA	NA
3-N	Methylphenol/4-Methylphenol	NS	NS	NA	NA	NA	NA	NA	NA
	4-Bromophenyl phenyl ether	NS	NS	NA	NA	NA	NA	NA	NA
	4-Chloroaniline	NS	NS	NA	NA	NA	NA	NA	NA
	4-Nitrophenol	NS	NS	NA	NA	NA	NA	NA	NA
	Acetophenone	NS	NS	NA	NA	NA	NA	NA	NA
	Aniline	NS	NS	NA	NA	NA	NA	NA	NA
	Azobenzene	NS	NS	NA	NA	NA	NA	NA	NA
	Bis(2-chloroethoxy)methane	NS	NS	NA	NA	NA	NA	NA	NA
	Bis(2-chloroethyl)ether	0.7	3	NA	NA	NA	NA	NA	NA
	Bis(2-chloroisopropyl)ether	3	50	NA	NA	NA	NA	NA	NA
	Bis(2-Ethylhexyl)phthalate	200	700	NA	NA	NA	NA	NA	NA
	Butyl benzyl phthalate	NS	NS	NA	NA	NA	NA	NA	NA
	Di-n-butylphthalate	NS	NS	NA	NA	NA	NA	NA	NA
	Di-n-octylphthalate	NS	NS	NA	NA	NA	NA	NA	NA
	Dibenzofuran	NS	NS	NA	NA	NA	NA	NA	NA
	Diethyl phthalate	300	300	NA	NA	NA	NA	NA	NA
	Dimethyl phthalate	600	600	NA	NA	NA	NA	NA	NA
	Hexachlorobenzene	0.7	5	NA	NA	NA	NA	NA	NA
	Hexachlorobutadiene	6	90	NA	NA	NA	NA	NA	NA
	Hexachloroethane	9	100	NA	NA	NA	NA	NA	NA
	Isophorone	NS	NS	NA	NA	NA	NA	NA	NA
	Nitrobenzene	NS	NS	NA	NA	NA	NA	NA	NA
	Pentachlorophenol	10	10	NA	NA	NA	NA	NA	NA
	Phenol	20	20	NA	NA	NA	NA	NA	NA

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm)

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected above one or more of the Method 1 Soil

Standards or elevated reporting limits for non-detects

NS - No Method 1 soil standard

EPH - Extractable Petroleum Hydrocarbons

PAH - Polycyclic Aromatic Hydrocarbons

SVOC - Semi-volatile Organic Compounds

Method 1 Soil Standards from 310 CMR 40.0975(6)(a): Table 2 and 310 CMR 40.0975(6)(b): Table 3

The sitewide soil data set includes samples collected from 0 to 15 feet below ground surface (bgs)

NA - Not analyzed

The maximum detected concentration between a parent and duplicate or lowest reporting limit for non-detects was used to represent that sample.

Analysis	Analyte		Sample ID:	SB-210	SB-	212	SB-214	SB-216	SB-217	SB-219
			Sample Depth(ft.):	5	4	4	4	4	5	4
			Sample Date:	6/16/2008	6/16/2008	6/16/2008	6/17/2008	6/17/2008	6/17/2008	6/17/2008
		S-1/GW-3	S-2/GW-3 Method							
		Method 1 Soil Standards	1 Soil Standards			Field Dup				
EPH						Field Dup				
(mg/kg)	C9-C18 Aliphatic hydrocarbons	1,000	3,000	NA	NA	NA	NA	NA	NA	NA
	C ₁₉ -C ₃₆ Aliphatic hydrocarbons	3,000	5,000	NA	NA	NA	NA	NA	NA	NA
	C11-C22 Aromatic hydrocarbons	1,000	3,000	NA	NA	NA	NA	NA	NA	NA
	Naphthalene	500	1,000	NA	NA	NA	NA	NA	NA	NA
	2-Methylnaphthalene Phenanthrene	300 500	500 1,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Acenaphthene	1,000	3,000	NA	NA	NA	NA	NA	NA	NA
	Acenaphthylene	10	10	NA	NA	NA	NA	NA	NA	NA
	Fluorene	1,000	3,000	NA	NA	NA	NA	NA	NA	NA
	Anthracene Fluoranthene	1,000 1,000	3,000 3,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Pyrene	1,000	3,000	NA	NA	NA	NA	NA	NA	NA
	Benzo(a)anthracene	7	40	NA	NA	NA	NA	NA	NA	NA
	Chrysene	70	400	NA	NA	NA	NA	NA	NA	NA
	Benzo(b)fluoranthene Benzo(k)fluoranthene	7 70	40 400	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Benzo(k)huoranunene Benzo(a)pyrene	2	400	NA	NA	NA	NA	NA	NA	NA
	Indeno(1,2,3-cd)pyrene	7	40	NA	NA	NA	NA	NA	NA	NA
	Dibenzo(a,h)anthracene	0.7	4	NA	NA	NA	NA	NA	NA	NA
PAHs	Benzo(g,h,i)perylene	1,000	3,000	NA	NA	NA	NA	NA	NA	NA
TAIIS	Naphthalene	500	1,000	0.231 U	0.218 U	0.222 U	1.02 U	0.186 U	0.229 U	1.14 U
	2-Methylnaphthalene	300	500	0.231 U		0.222 U	1.02 U		0.229 U	1.14 U
	Phenanthrene	500	1,000	0.231 U		0.459	4.16	0.799	0.930	1.14 U
	Acenaphthene Acenaphthylene	1,000 10	3,000 10	0.231 U 0.231 U			1.02 U 1.02 U		0.229 U 0.229 U	1.14 U 1.14 U
	Fluorene	1,000	3,000	0.231 U			1.02 U		0.229 U 0.229 U	1.14 U
	Anthracene	1,000	3,000	0.231 U			1.23	0.197	0.229 U	1.14 U
	Fluoranthene	1,000	3,000	0.293	0.450	0.810	5.52	1.60	1.05	1.14 U
	Pyrene Benzo(a)anthracene	1,000 7	3,000 40	0.337 0.231 U	0.437	0.599 0.448	5.90 3.95	1.20 0.643	1.11 0.643	1.14 U 1.14 U
	Chrysene	70	40	0.231 U		0.501	3.97	0.676	0.810	1.14 U
	Benzo(b)fluoranthene	7	40	0.231 U		0.604	4.25	0.835	0.710	1.14 U
	Benzo(k)fluoranthene	70	400	0.231 U			1.81	0.339	0.243	1.14 U
	Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	2 7	4 40	0.231 U 0.231 U		0.435 0.261	3.57 1.97	0.698 0.490	0.410 0.380	1.14 U 1.14 U
	Dibenzo(a,h)anthracene	0.7	40	0.231 U			1.07 U		0.229 U	1.14 U
	Benzo(g,h,i)perylene	1,000	3,000	0.231 U			1.49	0.414	0.367	1.14 U
SVOCs	XV 4.4 4	7 00	1.000							
	Naphthalene 2-Methylnaphthalene	500 300	1,000 500	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Phenanthrene	500	1,000	NA	NA	NA	NA	NA	NA	NA
	Acenaphthene	1,000	3,000	NA	NA	NA	NA	NA	NA	NA
	Acenaphthylene	10	10	NA	NA	NA	NA	NA	NA	NA
	Fluorene Anthracene	1,000 1,000	3,000 3,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Fluoranthene	1,000	3,000	NA	NA	NA	NA	NA	NA	NA
	Pyrene	1,000	3,000	NA	NA	NA	NA	NA	NA	NA
	Benzo(a)anthracene	7	40	NA	NA	NA	NA	NA	NA	NA
	Chrysene Benzo(b)fluoranthene	70 7	400 40	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Benzo(k)fluoranthene	70	40	NA	NA	NA	NA	NA	NA	NA
	Benzo(a)pyrene	2	4	NA	NA	NA	NA	NA	NA	NA
	Indeno(1,2,3-cd)pyrene	7	40	NA	NA	NA	NA	NA	NA	NA
	Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	0.7 1,000	4 3,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	1,2,4-Trichlorobenzene	500	900	NA	NA	NA	NA	NA	NA	NA
	1,2-Dichlorobenzene	300	300	NA	NA	NA	NA	NA	NA	NA
	1,3-Dichlorobenzene	100	500	NA	NA	NA	NA	NA	NA	NA
	1,4-Dichlorobenzene	50	300	NA	NA	NA	NA	NA	NA	NA

Liberty Street New Bedford, Massachusetts

Analysis	Analyte		Sample ID:	SB-210	SB-	212	SB-214	SB-216	SB-217	SB-219
			Sample Depth(ft.):	5	4	4	4	4	5	4
			Sample Date:	6/16/2008	6/16/2008	6/16/2008	6/17/2008	6/17/2008	6/17/2008	6/17/2008
		S-1/GW-3								
		Method 1 Soil	S-2/GW-3 Method							
		Standards	1 Soil Standards			Field Dup				
	2,4,5-Trichlorophenol	600	600	NA						
	2,4,6-Trichlorophenol	20	20	NA						
	2,4-Dichlorophenol	40	40	NA						
	2,4-Dimethylphenol	500	1,000	NA						
	2,4-Dinitrophenol	50	990	NA						
	2,4-Dinitrotoluene	2	10	NA						
	2,6-Dinitrotoluene	NS	NS	NA						
	2-Chloronaphthalene	NS	NS	NA						
	2-Chlorophenol	100	300	NA						
	2-Methylphenol	NS	NS	NA						
	2-Nitrophenol	NS	NS	NA						
	3,3'-Dichlorobenzidine	1	10	NA						
3-	Methylphenol/4-Methylphenol	NS	NS	NA						
	4-Bromophenyl phenyl ether	NS	NS	NA						
	4-Chloroaniline	NS	NS	NA						
	4-Nitrophenol	NS	NS	NA						
	Acetophenone	NS	NS	NA						
	Aniline	NS	NS	NA						
	Azobenzene	NS	NS	NA						
	Bis(2-chloroethoxy)methane	NS	NS	NA						
	Bis(2-chloroethyl)ether	0.7	3	NA						
	Bis(2-chloroisopropyl)ether	3	50	NA						
	Bis(2-Ethylhexyl)phthalate	200	700	NA						
	Butyl benzyl phthalate	NS	NS	NA						
	Di-n-butylphthalate	NS	NS	NA						
	Di-n-octylphthalate	NS	NS	NA						
	Dibenzofuran	NS	NS	NA						
	Diethyl phthalate	300	300	NA						
	Dimethyl phthalate	600	600	NA						
	Hexachlorobenzene	0.7	5	NA						
	Hexachlorobutadiene	6	90	NA						
	Hexachloroethane	9	100	NA						
	Isophorone	NS	NS	NA						
	Nitrobenzene	NS	NS	NA						
	Pentachlorophenol	10	10	NA						
	Phenol	20	20	NA						

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm)

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected above one or more of the Method 1 Soil

Standards or elevated reporting limits for non-detects

NS - No Method 1 soil standard

EPH - Extractable Petroleum Hydrocarbons

PAH - Polycyclic Aromatic Hydrocarbons

SVOC - Semi-volatile Organic Compounds

Method 1 Soil Standards from 310 CMR 40.0975(6)(a): Table 2 and 310 CMR 40.0975(6)(b): Table 3

The sitewide soil data set includes samples collected from 0 to 15 feet below ground surface (bgs)

NA - Not analyzed

The maximum detected concentration between a parent and duplicate or lowest reporting limit for non-detects was used to represent that sample.

Analysis	Analyte		Sample ID:	SB-221	TP-01	TP-02	TP-03	TP-04
Analysis	Anaryte		Sample Depth(ft.):	5 5	0-3	0-3	0-3	0-3
			Sample Deput(H.): Sample Date:		11/09/11	11/09/11	11/09/11	11/09/11
		S-1/GW-3	Ŷ					
		Method 1 Soil	S-2/GW-3 Method					
		Standards	1 Soil Standards					
EPH								
(mg/kg)	C ₉ -C ₁₈ Aliphatic hydrocarbons	1,000	3,000	NA	NA	NA	NA	NA
	C19-C36 Aliphatic hydrocarbons	3,000	5,000	NA	NA	NA	NA	NA
	C11-C22 Aromatic hydrocarbons	1,000	3,000	NA	NA	NA	NA	NA
	Naphthalene	500	1,000	NA	NA	NA	NA	NA
	2-Methylnaphthalene	300	500	NA	NA	NA	NA	NA
	Phenanthrene	500	1,000	NA	NA	NA	NA	NA
	Acenaphthene Acenaphthylene	1,000 10	3,000 10	NA NA	NA NA	NA NA	NA NA	NA NA
	Fluorene	1,000	3,000	NA	NA	NA	NA	NA
	Anthracene	1,000	3,000	NA	NA	NA	NA	NA
	Fluoranthene	1,000	3,000	NA	NA	NA	NA	NA
	Pyrene	1,000	3,000	NA	NA	NA	NA	NA
	Benzo(a)anthracene	7	40	NA	NA	NA	NA	NA
	Chrysene	70	400	NA	NA	NA	NA	NA
	Benzo(b)fluoranthene	7	40	NA	NA	NA	NA	NA
	Benzo(k)fluoranthene	70 2	400 4	NA NA	NA NA	NA NA	NA NA	NA NA
	Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	2 7	4 40	NA NA	NA NA	NA	NA	NA
	Dibenzo(a,h)anthracene	0.7	40	NA	NA	NA	NA	NA
	Benzo(g,h,i)perylene	1,000	3,000	NA	NA	NA	NA	NA
PAHs								
	Naphthalene	500	1,000	0.178 U	NA	NA	NA	NA
	2-Methylnaphthalene	300	500	0.178 U	NA	NA	NA	NA
	Phenanthrene	500 1,000	1,000 3,000	0.178 U 0.178 U	NA	NA NA	NA NA	NA
	Acenaphthene Acenaphthylene	1,000	10	0.178 U 0.178 U	NA NA	NA	NA	NA NA
	Fluorene	1,000	3,000	0.178 U	NA	NA	NA	NA
	Anthracene	1,000	3,000	0.178 U	NA	NA	NA	NA
	Fluoranthene	1,000	3,000	0.178 U	NA	NA	NA	NA
	Pyrene	1,000	3,000	0.178 U	NA	NA	NA	NA
	Benzo(a)anthracene	7	40	0.178 U	NA	NA	NA	NA
	Chrysene	70	400	0.178 U	NA	NA	NA	NA
	Benzo(b)fluoranthene Benzo(k)fluoranthene	7 70	40 400	0.178 U 0.178 U	NA NA	NA NA	NA NA	NA NA
	Benzo(a)pyrene	2	400	0.178 U 0.178 U	NA	NA	NA	NA
	Indeno(1,2,3-cd)pyrene	7	40	0.178 U	NA	NA	NA	NA
	Dibenzo(a,h)anthracene	0.7	4	0.178 U	NA	NA	NA	NA
	Benzo(g,h,i)perylene	1,000	3,000	0.178 U	NA	NA	NA	NA
SVOCs		700	1 0 0 0				1.0	
	Naphthalene 2-Methylnaphthalene	500 300	1,000 500	NA NA	1.8 U 2.2 U	0.36 U 0.43 U	1.8 U 2.1 U	0.34 U 0.41 U
	Phenanthrene	500	1,000	NA	1.1 U	1.6	2.1 0	3.6
	Acenaphthene	1,000	3,000	NA	1.1 U	0.28 U	1.4 U	0.27 U
	Acenaphthylene	10	10	NA	1.4 U	0.32	1.4 U	0.27 U
	Fluorene	1,000	3,000	NA	1.8 U	0.36	1.8 U	0.37
	Anthracene	1,000	3,000	NA	1.1 U	0.48	1.1 U	0.37
	Fluoranthene	1,000	3,000	NA	1.4	1.5	2.8	2.5
	Pyrene	1,000	3,000	NA	1.2	1.7	3	3.1
	Benzo(a)anthracene Chrysene	7 70	40 400	NA NA	1.1 U 1.1 U	0.91 0.96	1.6 1.6	1.4 1.4
	Benzo(b)fluoranthene	70	400 40	NA NA	1.1 U	0.98	1.0	1.4
	Benzo(k)fluoranthene	70	400	NA	1.1 U	0.72	1.2	0.48
	Benzo(a)pyrene	2	4	NA	1.4 U	0.77	1.4	1.1
	Indeno(1,2,3-cd)pyrene	7	40	NA	1.4 U	0.4	1.4 U	0.73
	Dibenzo(a,h)anthracene	0.7	4	NA	1.1 U	0.21 U	1.1 U	0.2 U
	Benzo(g,h,i)perylene	1,000	3,000	NA	1.4 U	0.43	1.4 U	0.69
	1,2,4-Trichlorobenzene	500	900 200	NA	1.8 U	0.36 U	1.8 U	0.34 U
	1,2-Dichlorobenzene 1,3-Dichlorobenzene	300 100	300 500	NA NA	1.8 U 1.8 U	0.36 U 0.36 U	1.8 U 1.8 U	0.34 U 0.34 U
	1,3-Dichlorobenzene	50	300	NA NA	1.8 U 1.8 U	0.36 U 0.36 U		0.34 U 0.34 U
		50	500	1 1 / 1	1.0 U	0.50 U	1.0 U	0.54 0

Liberty Street New Bedford, Massachusetts

Analysis	Analyte		Sample ID:	SB-221	TP-01		TP-02		TP-03		TP-04	
			Sample Depth(ft.):	5	0-3		0-3		0-3		0-3	
			Sample Date:	6/17/2008	11/09/11		11/09/11		11/09/11		11/09/11	
		S-1/GW-3	S-2/GW-3 Method									
		Method 1 Soil	1 Soil Standards									
		Standards	1 50h Standards									
	2,4,5-Trichlorophenol	600	600	NA	1.8	U	0.36	U	1.8	U	0.34	U
	2,4,6-Trichlorophenol	20	20	NA	1.1	U	0.21	U	1.1	U	0.2	U
	2,4-Dichlorophenol	40	40	NA	1.6	U	0.32	U	1.6	U	0.31	U
	2,4-Dimethylphenol	500	1,000	NA	1.8	U	0.36	U	1.8	U	0.34	U
	2,4-Dinitrophenol	50	990	NA	8.6	U	1.7	U	8.5	U	1.6	U
	2,4-Dinitrotoluene	2	10	NA	1.8	U	0.36	U	1.8	U	0.34	U
	2,6-Dinitrotoluene	NS	NS	NA	1.8	U	0.36	U	1.8	U	0.34	U
	2-Chloronaphthalene	NS	NS	NA	1.8	U	0.36	U	1.8	U	0.34	U
	2-Chlorophenol	100	300	NA	1.8	U	0.36	U	1.8	U	0.34	U
	2-Methylphenol	NS	NS	NA	1.8	U	0.36	U	1.8	U	0.34	U
	2-Nitrophenol	NS	NS	NA	3.9	U	0.77	U	3.8	U	0.74	U
	3,3'-Dichlorobenzidine	1	10	NA	1.8	U	0.36	U	1.8	U	0.34	U
3-1	Methylphenol/4-Methylphenol	NS	NS	NA	2.6	U	0.51	U	2.6	U	0.49	U
	4-Bromophenyl phenyl ether	NS	NS	NA	1.8	U	0.36	U	1.8	U	0.34	U
	4-Chloroaniline	NS	NS	NA	1.8	U	0.36	U	1.8	U	0.34	U
	4-Nitrophenol	NS	NS	NA	2.5	U	0.5	U	2.5	U	0.48	U
	Acetophenone	NS	NS	NA	1.8	U	0.36	U	1.8	U	0.34	U
	Aniline	NS	NS	NA	2.2	U	0.43	U	2.1	U	0.41	U
	Azobenzene	NS	NS	NA	1.8	U	0.36	U	1.8	U	0.34	U
	Bis(2-chloroethoxy)methane	NS	NS	NA	1.9	U	0.38	U	1.9	U	0.37	U
	Bis(2-chloroethyl)ether	0.7	3	NA	1.6	U	0.32	U	1.6	U	0.31	U
	Bis(2-chloroisopropyl)ether	3	50	NA	2.2	U	0.43	U	2.1	U	0.41	U
	Bis(2-Ethylhexyl)phthalate	200	700	NA	1.8	U	0.36	U	1.8	U	0.34	U
	Butyl benzyl phthalate	NS	NS	NA	1.8	U	0.36	U	1.8	U	0.34	U
	Di-n-butylphthalate	NS	NS	NA	1.8	U	0.36	U	1.8	U	0.34	U
	Di-n-octylphthalate	NS	NS	NA	1.8	U	0.36	U	1.8	U	0.34	U
	Dibenzofuran	NS	NS	NA	1.8	U	0.36	U	1.8	U	0.34	U
	Diethyl phthalate	300	300	NA	1.8	U	0.36	U	1.8	U	0.34	U
	Dimethyl phthalate	600	600	NA	1.8	U	0.36	U	1.8	U	0.34	U
	Hexachlorobenzene	0.7	5	NA	1.1	U	0.21	U	1.1	U	0.2	U
	Hexachlorobutadiene	6	90	NA	1.8	U	0.36	U	1.8	U	0.34	U
	Hexachloroethane	9	100	NA	1.4	U	0.28	U	1.4	U	0.27	U
	Isophorone	NS	NS	NA	1.6	U	0.32	U	1.6	U	0.31	U
	Nitrobenzene	NS	NS	NA	1.6	U	0.32	U	1.6	U	0.31	U
	Pentachlorophenol	10	10	NA	3.6	U	0.71	U	3.6	U	0.68	U
	Phenol	20	20	NA	1.8	U	0.36	U	1.8	U	0.34	U

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm)

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected above one or more of the Method 1 Soil

Standards or elevated reporting limits for non-detects

NS - No Method 1 soil standard

EPH - Extractable Petroleum Hydrocarbons

PAH - Polycyclic Aromatic Hydrocarbons

SVOC - Semi-volatile Organic Compounds

Method 1 Soil Standards from 310 CMR 40.0975(6)(a): Table 2 and 310 CMR 40.0975(6)(b): Table 3

The sitewide soil data set includes samples collected from 0 to 15 feet below ground surface (bgs)

NA - Not analyzed

The maximum detected concentration between a parent and duplicate or lowest reporting limit for non-detects was used to represent that sample.

Sumption Sumption Sumption Particle No. 0.3	Analysis	Analyte		Sample ID:	TP-05	TP-06	TP-07	TP-08
SUGW 3 Multed 13 S-2/GW-3 Method 1500 Standards No. NA	1 11111 9 515	i indi j to						
Bethod 13 out \$2-CW-3 Method Standards \$2-CW-3 Method Standards \$2-CW-3 Method Standards (mg/kg) C _v C _v , Alphaic hydrocarbos C _v C _v , Alphaic hydrocarbos C _v C _v , Alphaic hydrocarbos C _v C _v , Alphaic hydrocarbos Standards 1000 3000 NA NA NA NA C _v C _v , Alphaic hydrocarbos C _v C _v , C _v , Anronaic hydrocarbos C _v C _v , C _v , Anronaic hydrocarbos C _v C _v , C _v , Anronaic hydrocarbos C _v C _v , C _v , Anronaic hydrocarbos C _v C _v , C _v , Anronaic hydrocarbos C _v C _v , C _v , Anronaic hydrocarbos C _v C _v , C _v , Anronaic hydrocarbos C _v C _v , C _v , Anronaic hydrocarbos C _v C _v C _v , Alphaic hydrocarbos C _v C _v C _v Alphaic hydrocarbos C _v C _v C _v Alphaic hydrocarbos C				Sample Date:	11/09/11	11/09/11	11/09/11	11/09/11
Betterne Soundarks 1. Soil Standarks imgAge C _x -C _x , Allphuik hydrocarbons 3.000 5.000 NA NA NA NA C _y -C _x , Allphuik hydrocarbons 3.000 5.000 NA NA NA NA C _y -C _x , Allphuik hydrocarbons 5.000 1.000 NA NA NA NA Patternet 500 1.000 NA NA NA NA Accamphibre 1.000 3.000 NA NA NA NA Accamphibre 1.000 3.000 NA NA NA NA Accamphibre 1.000 3.000 NA NA NA NA Brozotaband 7 400 NA NA NA NA Brozotabandracare 7 400 NA NA NA NA Brozotabandracare 7 40 NA NA NA NA Brozotabandracare 7 40 NA NA <td></td> <td></td> <td>S-1/GW-3</td> <td>S 2/GW 2 Mathad</td> <td></td> <td></td> <td></td> <td></td>			S-1/GW-3	S 2/GW 2 Mathad				
BH Sumdards June (mg/kg) C ₁ C ₂ , Alphatic hydroarbors (C ₂ , Alphatic hydroarbors Naphalane, S000 5,000 NA NA NA NA C ₁ C ₂ , C ₂ , Alphatic hydroarbors Naphalane, S000 5,000 NA NA NA NA 2-Methylanghalane, Naphalane, S000 5,000 NA NA NA NA 2-Methylanghalane, Naphalane, S000 1,000 NA NA NA NA 2-Methylanghalane, Naphalane, S000 1,000 3,000 NA NA NA Accamphthere 1,000 3,000 NA NA NA NA Phoremathylane, Prinor 1,000 3,000 NA NA NA NA Benzo(aluftacon 7 400 NA NA NA NA Benzo(aluftacon 7 400 NA NA NA NA Benzo(aluftacon 7 400 NA NA NA NA Benzo(aluftacon 77 400 NA NA			Method 1 Soil					
(ing kg) C ₁ -C ₁₂ , Allphuic hydroarboss 1.000 3.000 NA NA NA NA NA C ₁₁ -C ₂₂ , Allphuic hydroarboss 1.000 3.000 NA NA NA NA NA C ₁₁ -C ₂₂ , Annualic hydroarboss 1.000 3.000 NA NA NA NA 2-Methylanghtalace, 300 500 I.000 NA NA NA NA Accampthylace, 1.000 3.000 NA NA NA NA NA Accampthylace, 1.000 3.000 NA NA NA NA NA Pitocrae 1.000 3.000 NA NA NA NA NA Bezota/bindiracene 7 40 NA NA NA NA NA Bezota/bindiracenter 7 40 NA NA NA NA NA Bezota/bindiracenter 7 40 NA NA NA NA NA NA <			Standards	1 Son Standards				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	EPH							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(mg/kg)	C9-C18 Aliphatic hydrocarbons		3,000	NA	NA	NA	NA
Naphthalem 500 1,000 NA NA NA NA 2-Medry long thalem 500 1,000 NA NA NA NA Acceraphthem 10 10 NA NA NA NA Acceraphthem 10 10 NA NA NA NA Acceraphthem 1000 3,000 NA NA NA NA Authracene 1,000 3,000 NA NA NA NA Brocololautreene 7 40 NA NA NA NA Benzololhocrantheme 7 40 NA NA <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
22-Adethylamethane 300 500 NA NA NA NA Prenumbrene 1.000 3.000 NA NA NA NA Accenaphthylene 10 10 NA NA NA NA Pluorantene 1.000 3.000 NA NA NA NA Anithracene 1.000 3.000 NA NA NA NA Puorantene 1.000 3.000 NA NA NA NA Benzo(s)inucantinene 7 40 NA NA NA NA Benzo(s)inturantinene 500 1.000 NA NA NA NA PAtte Solu 1.000 3.000 NA		-						
Presamptinen Accampthicen 500 1.000 NA NA NA NA Accampthysen 10 10 NA NA NA NA Accampthysen 1000 3.000 NA NA NA NA Accampthysen 1.000 3.000 NA NA NA NA Authracen 1.000 3.000 NA NA NA NA Brozockintracen 7 40 NA NA NA NA Bezzockilluoranthee 7 40 NA NA NA NA Bezzockilluoranthee 70 400 NA NA NA NA Na Na NA NA NA								
Accamplithien 1.000 3.000 NA NA NA NA Flormen 1.000 3.000 NA NA NA NA Autracen 1.000 3.000 NA NA NA NA Puoranthen 1.000 3.000 NA NA NA NA Puoranthen 1.000 3.000 NA NA NA NA Benzo(a)juntracen 7 40 NA NA NA NA Benzo(a)fuoranthen 7 40 NA NA NA NA Benzo(a)fuoranthen 7 40 NA NA NA NA Benzo(a)fuoranthen 7 40 NA NA NA NA Benzo(a)prese 7 40 NA NA NA NA Benzo(a)prese 7 40 NA NA NA NA Dibenzo(a)puorfunce 500 1.000 NA NA NA <td></td> <td>, , , , , , , , , , , , , , , , , , ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		, , , , , , , , , , , , , , , , , , ,						
Acenaphtlylene 10 10 NA NA NA NA Huorene 1.000 3.000 NA NA NA NA Authracee 1.000 3.000 NA NA NA NA Burorablene 7 40 NA NA NA NA Berzok/phromthene 70 40 NA NA NA NA Berzok/phromthene 500 1.000 NA NA NA NA PAHe								
Florene 1.000 3.000 NA NA NA NA Hourattee 1.000 3.000 NA NA NA NA Pyrene 1.000 3.000 NA NA NA NA Benzo(a)authizone 7 40 NA NA NA NA Benzo(b)fluoratteen 7 40 NA NA NA NA Dibenzo(a)partheene 7 40 NA NA NA NA Datenzo(a)prene 2 4 NA NA NA NA Dibenzo(a)partheene 0.00 NA NA NA NA Andereene 0.000 NA NA NA NA		*						
Fluoranthene 1,000 3,000 NA NA NA NA NA Brazz(a)anthraczen 7 40 NA NA NA NA Chrysten 70 400 NA NA NA NA Benzo(b)fluoranthene 7 400 NA NA NA NA Benzo(b.liptyrene 7 40 NA NA NA NA Dibenzo(a)alunthrezene 0.7 4 NA NA NA NA PAHIS 500 1.000 NA NA NA NA Poicanthrezene 100 10 NA NA NA Accomphtylene 10 10 NA NA <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
Pyrne L000 3.000 NA NA NA NA NA Bezzo(a)anthracen 7 400 NA NA NA NA Bezzo(b)flooranthere 7 40 NA NA NA NA Bezzo(b)flooranthere 0.7 4 NA NA NA NA Bezzo(b)flooranthere 500 1.000 NA NA NA NA PAHs 500 1.000 NA NA NA NA PAths 10 10 NA NA NA NA Accenaphthere 1.000 3.000 NA NA NA NA Accenaphthere 1.000 3.000 NA <		Anthracene			NA	NA	NA	NA
Benzo(s)anthracene 7 40 NA NA NA NA Benzo(b)fluoranthene 7 40 NA NA NA NA Benzo(k)fluoranthene 7 40 NA NA NA NA Benzo(k)fluoranthene 7 40 NA NA NA NA Benzo(k)fluoranthene 7 40 NA NA NA NA Benzo(k)instructene 0.7 40 NA NA NA NA Diberoo(a)instructene 0.7 4 NA NA NA NA PAHs 1.00 3.000 NA NA NA NA PAHs 500 1.000 NA NA NA NA Penanthere 500 1.000 NA NA NA NA Accempthylene 10 10 NA NA NA NA Accempthylene 1000 3.000 NA NA NA								
Chrysene 70 400 NA NA NA NA Benzo(k)fluoranthene 0.7 4 NA NA NA NA Benzo(k).jperylene 1.000 3.000 NA NA NA NA PAHs Naphthalene 500 1.000 NA NA NA NA PAHs 1000 3.000 NA NA NA NA Parathene 1.000 3.000 NA NA NA NA Acenaphthylene 1.000 3.000 NA NA NA NA Benzo(k)fluoranthene 70 400 NA NA NA NA Benzo(k)fluoranthene 70 400 <td< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		-						
Benzo(b)fluoranihene 7 40 NA NA NA NA Benzo(k)fluoranihene 70 400 NA NA NA NA Benzo(k)fluoranihene 7 40 NA NA NA NA Indeno(1,23-cd)pyrne 7 40 NA NA NA NA Denzo(c),h)antracene 0.7 4 NA NA NA NA PAHs		• •						
Benzo(k)floramihane 70 400 NA NA NA NA NA Badeno(1,2,3-sch)pyree 7 40 NA NA NA NA NA Dibenzo(a,h)anthracene 0.7 4 NA NA NA NA NA Benzo(a,h)aptrijane 0.7 4 NA NA NA NA PAHIs								
Benzo(a)pyrene 2 4 NA NA NA NA Indexo(1,a)-so(b)yrene 7 40 NA NA NA NA NA Dibenzo(a,h)anthracene 0.7 4 NA NA NA NA NA NA PAHs 000 3.000 NA NA NA NA NA PAHs Stopping 500 1.000 NA NA NA NA Compathine 500 1.000 NA NA NA NA Phenanthrene 500 1.000 NA NA NA NA Accomphthylene 10 10 NA NA NA NA Authracene 1.000 3.000 NA NA NA NA Prorene 1.000 3.000 NA NA NA NA Benzo(s)thorumthene 7 40 NA NA NA NA Benzo(s)thorumthene								
Indeno(1,23-cd)prene 7 40 NA NA NA NA Benzo(g,h)perylene 1,000 3,000 NA NA NA NA PAHs								
Benzo(g.h.i)perylene 1.000 3.000 NA NA NA NA PAHs								
PAHs Southead State Southead State <td></td> <td>Dibenzo(a,h)anthracene</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Dibenzo(a,h)anthracene						
Naphthalene 500 1,000 NA NA NA NA NA NA NA 2.Methylanphthalene 300 500 I,000 NA		Benzo(g,h,i)perylene	1,000	3,000	NA	NA	NA	NA
2-Methylnaphthalene 300 500 NA NA NA NA NA NA Phenanthrene 500 1,000 NA NA NA NA NA Acenaphthylene 10 10 NA NA NA NA NA Acenaphthylene 10 10 NA NA NA NA Fluorene 1,000 3,000 NA NA NA NA Anthracene 1,000 3,000 NA NA NA NA Pyrene 1,000 3,000 NA NA NA NA Benzo(a)anthracene 7 40 NA NA NA NA Benzo(b)fluoranthene 7 40 NA NA NA NA Benzo(a)pyrene 7 40 NA NA NA NA Benzo(a)pyrene 7 40 NA NA NA NA Dibenzo(a,h)anthracene 0,07 <td>PAHs</td> <td>NY 1.4 1</td> <td>500</td> <td>1.000</td> <td>NT 4</td> <td></td> <td>NY 4</td> <td>N7.4</td>	PAHs	NY 1.4 1	500	1.000	NT 4		N Y 4	N7.4
iPh-inanthrene 500 1,000 3,000 NA NA NA NA NA Acenaphthylene 10 10 NA NA NA NA NA Fluorene 1,000 3,000 NA NA NA NA Anthracene 1,000 3,000 NA NA NA NA Fluoranthene 1,000 3,000 NA NA NA NA Prene 1,000 3,000 NA NA NA NA Benzo(a)anthracene 7 40 NA NA NA NA Benzo(b)fluoranthene 70 400 NA NA NA NA Benzo(a)pyrene 7 40 NA NA NA NA Benzo(a)pyrene 7 40 NA NA NA NA Benzo(a)pyrene 7 40 NA NA NA NA Dibenzo(a,h)anthracene 0.7 4 <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		1						
Acenaphthene 1,000 3,000 NA NA NA NA NA Acenaphthylene 10 10 10 NA NA NA NA Fluorene 1,000 3,000 NA NA NA NA NA Anthracene 1,000 3,000 NA NA NA NA Procentine 1,000 3,000 NA NA NA NA Pyrene 1,000 3,000 NA NA NA NA Benzo(a)anthracene 7 40 NA NA NA NA Benzo(b)fluoranthene 7 40 NA NA NA NA Benzo(b)prene 1,000 <td< td=""><td></td><td>, , , , , , , , , , , , , , , , , , ,</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		, , , , , , , , , , , , , , , , , , ,						
Acenaphthylene 10 10 NA NA NA NA NA Fluorene 1,000 3,000 NA NA NA NA Anthracene 1,000 3,000 NA NA NA NA Fluoranthene 1,000 3,000 NA NA NA NA Pyrene 1,000 3,000 NA NA NA NA Benzo(a)anthracene 7 40 NA NA NA NA Benzo(b)fluoranthene 70 400 NA NA NA NA Benzo(b)fluoranthene 70 400 NA NA NA NA Benzo(b)fluoranthene 70 400 NA NA NA NA Benzo(a)pyrene 2 4 NA NA NA NA Benzo(g)d),j)pyrene 7 400 NA NA NA NA Benzo(g),fluoranthene 1,000 3,000 2.1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		-			NA	NA		NA
		Fluorene		3,000	NA	NA	NA	NA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		-						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		• •						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		-						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Benzo(a)pyrene	2	4	NA	NA	NA	NA
Benzo(g,h,i)perylene 1,000 3,000 NA NA NA NA SVOCs Naphthalene 500 1,000 3.3 U 1.6 U 3.4 U 7 2-Methylnaphthalene 300 500 4 U 2 U 4 U 8.4 Phenanthrene 500 1,000 2 U 0.98 U 2.6 4.2 Acenaphthene 1,000 3,000 2.7 U 1.3 U 2.7 U 5.6 Acenaphthylene 10 10 2.7 U 1.3 U 2.7 U 5.6 Fluorene 1,000 3,000 3.3 U 1.6 U 3.4 U 7 Anthracene 1,000 3,000 2.2 U 0.98 U 2 U 4.2 Fluoranthene 1,000 3,000 2.2 1 4.4 5.6 Benzo(a)anthracene								
SVOCs Naphthalene 500 1,000 3.3 U 1.6 U 3.4 U 7 2-Methylnaphthalene 300 500 4 U 2 U 4 U 8.4 Phenanthrene 500 1,000 2 U 0.98 U 2.6 4.2 Acenaphthene 1,000 3,000 2.7 U 1.3 U 2.7 U 5.6 Acenaphtylene 10 10 2.7 U 1.3 U 2.7 U 5.6 Fluorene 1,000 3,000 2 U 0.98 U 2.0 4.2 Anthracene 1,000 3,000 2 U 0.98 U 2 U 4.2 Fluoranthene 1,000 3,000 2.2 1 4.4 5.6 Benzo(a)anthracene 7 40 2 U 0.98 U 2.4 4.2 Chrysene								
Naphthalene 500 1,000 3.3 U 1.6 U 3.4 U 7 2-Methylnaphthalene 300 500 4 U 2 U 4 U 8.4 Phenanthrene 500 1,000 2 U 0.98 U 2.6 4.2 Acenaphthene 1,000 3,000 2.7 U 1.3 U 2.7 U 5.6 Acenaphthylene 10 10 2.7 U 1.3 U 2.7 U 5.6 Acenaphthylene 10 10 2.7 U 1.3 U 2.7 U 5.6 Fluorene 1,000 3,000 2 U 0.98 U 2 U 4.2 Fluoranthene 1,000 3,000 2.1 0.98 U 2.4 4.2 Pyrene 1,000 3,000 2.2 1 4.4 5.6 Benzo(a)anthracene 7	SUOC.	Benzo(g,h,i)perylene	1,000	3,000	NA	NA	NA	NA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SVUUS	Nanhthalana	500	1 000	33 II	16 U	34 11	7 U
Phenanthrene 500 1,000 2 U 0.98 U 2.6 4.2 Acenaphthene 1,000 3,000 2.7 U 1.3 U 2.7 U 5.6 Acenaphthylene 10 10 2.7 U 1.3 U 2.7 U 5.6 Acenaphthylene 10 10 2.7 U 1.3 U 2.7 U 5.6 Acenaphthylene 1,000 3,000 3.3 U 1.6 U 3.4 U 7 Anthracene 1,000 3,000 2 U 0.98 U 2 U 4.2 Fluoranthene 1,000 3,000 2.2 1 4.4 5.6 Pyrene 1,000 3,000 2.2 U 0.98 U 2.4 4.2 Chrysene 70 400 2 U 0.98 U 2.6 4.2 Benzo(b)fluoranthene 70								
Acenaphthene 1,000 3,000 2.7 U 1.3 U 2.7 U 5.6 Acenaphthylene 10 10 2.7 U 1.3 U 2.7 U 5.6 Fluorene 1,000 3,000 3.3 U 1.6 U 3.4 U 7 Anthracene 1,000 3,000 2 U 0.98 U 2 U 4.2 Fluoranthene 1,000 3,000 2.1 0.98 U 2.5 5.2 Pyrene 1,000 3,000 2.2 1 4.4 5.6 Benzo(a)anthracene 7 40 2 U 0.98 U 2.4 4.2 Chrysene 70 400 2 U 0.98 U 2.6 4.2 Benzo(b)fluoranthene 70 400 2 U 0.98 U 2.0 4.2 Benzo(k)fluoranthene 70 400 2 U 0.98 U 2.0 4.2 Benzo(a)pyrene 2								
Flurene 1,000 3,000 3.3 U 1.6 U 3.4 U 7 Anthracene 1,000 3,000 2 U 0.98 U 2 U 4.2 Fluoranthene 1,000 3,000 2.1 0.98 U 3.5 5.2 Pyrene 1,000 3,000 2.2 1 4.4 5.6 Benzo(a)anthracene 7 40 2 U 0.98 U 2.4 4.2 Chrysene 70 400 2 U 0.98 U 2.6 4.2 Benzo(b)fluoranthene 7 40 2 U 0.98 U 2.6 4.2 Benzo(k)fluoranthene 70 400 2 U 0.98 U 2 U 4.2 Benzo(a)pyrene 2 4 2.7 U 0.98 U 2.7 U 4.2 Benzo(a)pyrene 7 40 2.7 U 1.3 U 2.7 U 5.6 Indeno(1,2,3-cd)pyrene		Acenaphthene			2.7 U	1.3 U	2.7 U	5.6 U
Anthracene 1,000 3,000 2 U 0.98 U 2 U 4.2 Fluoranthene 1,000 3,000 2.1 0.98 U 3.5 5.2 Pyrene 1,000 3,000 2.2 1 4.4 5.6 Benzo(a)anthracene 7 40 2 U 0.98 U 2.4 4.2 Chrysene 70 400 2 U 0.98 U 2.6 4.2 Benzo(b)fluoranthene 7 40 2 U 0.98 U 2.6 4.2 Benzo(k)fluoranthene 7 400 2 U 0.98 U 2 U 4.2 Benzo(k)fluoranthene 70 400 2 U 0.98 U 2 U 4.2 Benzo(a)pyrene 2 4 2.7 U 1.3 U 2.7 U 5.6 Indeno(1,2,3-cd)pyrene 7 40 2.7 U 1.3 U 2.7 U 5.6 Dibenzo(a,h)anthrac								
Fluoranthene 1,000 3,000 2.1 0.98 U 3.5 5.2 Pyrene 1,000 3,000 2.2 1 4.4 5.6 Benzo(a)anthracene 7 40 2 U 0.98 U 2.4 4.2 Chrysene 70 400 2 U 0.98 U 2.6 4.2 Benzo(b)fluoranthene 7 40 2 U 0.98 U 2.6 4.2 Benzo(k)fluoranthene 70 400 2 U 0.98 U 2 U 4.2 Benzo(k)fluoranthene 70 400 2 U 0.98 U 2 U 4.2 Benzo(a)pyrene 2 4 2.7 U 1.3 U 2.7 U 5.6 Indeno(1,2,3-cd)pyrene 7 40 2.7 U 1.3 U 2.7 U 5.6 Dibenzo(a,h)anthracene 0.7 4								
Pyrene 1,000 3,000 2.2 1 4.4 5.6 Benzo(a)anthracene 7 40 2 U 0.98 U 2.4 4.2 Chrysene 70 400 2 U 0.98 U 2.6 4.2 Benzo(b)fluoranthene 7 400 2 U 0.98 U 2.6 4.2 Benzo(k)fluoranthene 70 400 2 U 0.98 U 2 U 4.2 Benzo(k)fluoranthene 70 400 2 U 0.98 U 2 U 4.2 Benzo(a)pyrene 2 4 2.7 U 1.3 U 2.7 U 5.6 Indeno(1,2,3-cd)pyrene 7 40 2.7 U 1.3 U 2.7 U 5.6 Dibenzo(a,h)anthracene 0.7 4 2 U 0.98 U 2 U 4.2								
Benzo(a)anthracene 7 40 2 U 0.98 U 2.4 4.2 Chrysene 70 400 2 U 0.98 U 2.6 4.2 Benzo(b)fluoranthene 7 40 2 U 0.98 U 2.6 4.2 Benzo(k)fluoranthene 70 400 2 U 0.98 U 2 U 4.2 Benzo(a)pyrene 70 400 2 U 0.98 U 2 U 4.2 Benzo(a)pyrene 2 4 2.7 U 1.3 U 2.7 U 5.6 Indeno(1,2,3-cd)pyrene 7 40 2.7 U 1.3 U 2.7 U 5.6 Dibenzo(a,h)anthracene 0.7 4 2 U 0.98 U 2 U 4.2								
Chrysene 70 400 2 U 0.98 U 2.6 4.2 Benzo(b)fluoranthene 7 40 2 U 0.98 U 2 U 4.2 Benzo(k)fluoranthene 70 400 2 U 0.98 U 2 U 4.2 Benzo(a)pyrene 2 4 2.7 U 1.3 U 2.7 U 5.6 Indeno(1,2,3-cd)pyrene 7 40 2.7 U 1.3 U 2.7 U 5.6 Dibenzo(a,h)anthracene 0.7 4 2 U 0.98 U 2 U 4.2		•						
Benzo(b)fluoranthene 7 40 2 U 0.98 U 2 U 4.2 Benzo(k)fluoranthene 70 400 2 U 0.98 U 2 U 4.2 Benzo(a)pyrene 2 4 2.7 U 1.3 U 2.7 U 5.6 Indeno(1,2,3-cd)pyrene 7 40 2.7 U 1.3 U 2.7 U 5.6 Dibenzo(a,h)anthracene 0.7 4 2 U 0.98 U 2 U 4.2								
Benzo(a)pyrene 2 4 2.7 U 1.3 U 2.7 U 5.6 Indeno(1,2,3-cd)pyrene 7 40 2.7 U 1.3 U 2.7 U 5.6 Dibenzo(a,h)anthracene 0.7 4 2 U 0.98 U 2 U 4.2								4.2 U
Indeno(1,2,3-cd)pyrene 7 40 2.7 U 1.3 U 2.7 U 5.6 Dibenzo(a,h)anthracene 0.7 4 2 U 0.98 U 2 U 4.2		. ,		400				4.2 U
Dibenzo(a,h)anthracene 0.7 4 2 U 0.98 U 2 U 4.2								
		Indeno(1,2,3-cd)pyrene						
Benzo(g,h,1)perviene 1,000 3,000 II 2.7 UI 1.3 UI 2.7 UI 5.6								
1,2,4-Trichlorobenzene 500 900 3.3 U 1.6 U 3.4 U 7								
1,2,4-1 richlorobenzene 500 900 3.3 U 1.6 U 3.4 U 7 1,2-Dichlorobenzene 300 300 3.3 U 1.6 U 3.4 U 7								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
					3.3 U		3.4 U	

Liberty Street New Bedford, Massachusetts

Analysis Analyte			Sample ID: Sample Depth(ft.):	TP-05 0-3		TP-06 0-3		TP-07 0-3		TP-08 0-3	
			Sample Date:	11/09/11		11/09/11		11/09/11		11/09/11	
		S-1/GW-3 Method 1 Soil Standards	S-2/GW-3 Method 1 Soil Standards								
2,4,5-Trich	lorophenol	600	600	3.3	U	1.6	U	3.4	U	7	U
2,4,6-Trich	lorophenol	20	20	2	U	0.98	U	2	U	4.2	U
2,4-Dich	lorophenol	40	40	3	U	1.5	U	3	U	6.3	U
2,4-Dime	thylphenol	500	1,000	3.3	U	1.6	U	3.4	U	7	U
2,4-Dir	nitrophenol	50	990	16	U	7.8	U	16	U	33	U
	itrotoluene	2	10	3.3	U	1.6	U	3.4	U	7	U
2,6-Din	itrotoluene	NS	NS	3.3	U	1.6	U	3.4	U	7	U
	aphthalene	NS	NS	3.3	U	1.6	U	3.4	U	7	U
	lorophenol	100	300	3.3	U	1.6	U	3.4	U	7	U
	thylphenol	NS	NS	3.3	U	1.6	U	3.4	U	7	U
	Vitrophenol	NS	NS	7.2	U	3.5	U	7.2	U	15	U
3,3'-Dichlor		1	10	3.3	U	1.6	U	3.4	U	7	U
3-Methylphenol/4-Me		NS	NS	4.8	U	2.4	U	4.8	U	10	U
4-Bromophenyl p		NS	NS	3.3	U	1.6	U	3.4	U	7	U
	loroaniline	NS	NS	3.3	U	1.6	U	3.4	U	7	U
	Vitrophenol	NS	NS	4.7	U	2.3	U	4.7	U	9.7	U
Ace	etophenone	NS	NS	3.3	U	1.6	U	3.4	U	7	U
	Aniline	NS	NS	4	U	2	U	4	U	8.4	U
	zobenzene	NS	NS	3.3	U	1.6	U	3.4	U	7	U
Bis(2-chloroethox		NS	NS	3.6	U	1.8	U	3.6	U	7.5	U
Bis(2-chloro	<i>,</i>	0.7	3	3	U	1.5	U	3	U	6.3	U
Bis(2-chloroisop		3	50	4	U	2	U	4	U	8.4	U
Bis(2-Ethylhexy	· •	200	700	3.3	U	1.6	U	3.4	U	7	U
Butyl benzy		NS	NS	3.3	U	1.6	U	3.4	U	7	U
	ylphthalate	NS	NS	3.3	U	1.6	U	3.4	U	7	U
	ylphthalate	NS	NS	3.3	U	1.6	U	3.4	U	7	U
	benzofuran	NS	NS	3.3	U	1.6	U	3.4	U	7	U
	l phthalate	300	300	3.3	U	1.6	U	3.4	U	7	U
	l phthalate	600	600	3.3	U	1.6	U	3.4	U	7	U
	orobenzene	0.7	5	2	U	0.98	U	2	U	4.2	U
	obutadiene	6	90	3.3	U	1.6	U	3.4	U	7	U
	loroethane	9	100	2.7	U	1.3	U	2.7	U	5.6	U
	Isophorone	NS	NS	3	U	1.5	U	3	U	6.3	U
	trobenzene	NS	NS	3	U	1.5	U	3	U	6.3	U
Pentach	lorophenol	10	10	6.7	U	3.3	U	6.7	U	14	U
	Phenol	20	20	3.3	U	1.6	U	3.4	U	7	U

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm)

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected above one or more of the Method 1 Soil

Standards or elevated reporting limits for non-detects

NS - No Method 1 soil standard

EPH - Extractable Petroleum Hydrocarbons

PAH - Polycyclic Aromatic Hydrocarbons

SVOC - Semi-volatile Organic Compounds

Method 1 Soil Standards from 310 CMR 40.0975(6)(a): Table 2 and 310 CMR 40.0975(6)(b): Table 3

The sitewide soil data set includes samples collected from 0 to 15 feet below ground surface (bgs)

NA - Not analyzed

The maximum detected concentration between a parent and duplicate or lowest reporting limit for non-detects was used to represent that sample.

Analysis	Analyte		Sample ID:	TP-09	TP-10	TP-11
			Sample Depth(ft.): Sample Date:	0-3 11/09/11	0-3 11/09/11	0-3 11/09/11
		S-1/GW-3	Sample Date.	11/09/11	11/09/11	11/09/11
		Method 1 Soil	S-2/GW-3 Method			
		Standards	1 Soil Standards			
EPH						
(mg/kg)	C9-C18 Aliphatic hydrocarbons	1,000	3,000	NA	NA	NA
	C ₁₉ -C ₃₆ Aliphatic hydrocarbons	3,000	5,000	NA	NA	NA
	C ₁₁ -C ₂₂ Aromatic hydrocarbons	1,000	3,000	NA	NA	NA
	Naphthalene 2-Methylnaphthalene	500 300	1,000 500	NA NA	NA NA	NA NA
	Phenanthrene	500	1,000	NA	NA	NA
	Acenaphthene	1,000	3,000	NA	NA	NA
	Acenaphthylene	10	10	NA	NA	NA
	Fluorene	1,000	3,000	NA	NA	NA
	Anthracene	1,000	3,000	NA	NA	NA
	Fluoranthene Pyrene	1,000 1,000	3,000 3,000	NA NA	NA NA	NA NA
	Benzo(a)anthracene	7	40	NA	NA	NA
	Chrysene	70	400	NA	NA	NA
	Benzo(b)fluoranthene	7	40	NA	NA	NA
	Benzo(k)fluoranthene	70	400	NA	NA	NA
	Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	2 7	4 40	NA NA	NA NA	NA NA
	Dibenzo(a,h)anthracene	0.7	40	NA	NA NA	NA
	Benzo(g,h,i)perylene	1,000	3,000	NA	NA	NA
PAHs						
	Naphthalene	500	1,000	NA	NA	NA
	2-Methylnaphthalene Phenanthrene	300 500	500	NA NA	NA NA	NA NA
	Acenaphthene	1,000	1,000 3,000	NA	NA	NA
	Acenaphthylene	10	10	NA	NA	NA
	Fluorene	1,000	3,000	NA	NA	NA
	Anthracene	1,000	3,000	NA	NA	NA
	Fluoranthene	1,000	3,000	NA	NA	NA
	Pyrene Benzo(a)anthracene	1,000 7	3,000 40	NA NA	NA NA	NA NA
	Chrysene	70	400	NA	NA	NA
	Benzo(b)fluoranthene	7	40	NA	NA	NA
	Benzo(k)fluoranthene	70	400	NA	NA	NA
	Benzo(a)pyrene	2	4	NA	NA	NA
	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	7 0.7	40 4	NA NA	NA NA	NA NA
	Benzo(g,h,i)perylene	1,000	3,000	NA	NA	NA
SVOCs						
	Naphthalene	500	1,000	1.9 U	0.38 U	0.36 U
	2-Methylnaphthalene	300	500	2.3 U	0.46 U	0.44 U
	Phenanthrene Acenaphthene	500 1,000	1,000 3,000	1.2 U 1.5 U	0.23 U 0.3 U	0.22 U 0.29 U
	Acenaphthylene	1,000	3,000 10	1.5 U 1.5 U	0.3 U 0.3 U	0.29 U 0.29 U
	Fluorene	1,000	3,000	1.9 U	0.38 U	0.36 U
	Anthracene	1,000	3,000	1.2 U	0.23 U	0.22 U
	Fluoranthene	1,000	3,000	1.2	0.23 U	0.22 U
	Pyrene Benzo(a)anthracene	1,000	3,000 40	1.2 1.2 U	0.23 0.23	0.22 U 0.22 U
	Benzo(a)anthracene Chrysene	7 70	40 400	1.2 U 1.2 U	0.23 U 0.23 U	0.22 U 0.22 U
	Benzo(b)fluoranthene	70	400	1.2 U	0.23 U	0.22 U
	Benzo(k)fluoranthene	70	400	1.2 U	0.23 U	0.22 U
	Benzo(a)pyrene	2	4	1.5 U	0.3 U	0.29 U
	Indeno(1,2,3-cd)pyrene	7	40	1.5 U	0.3 U	0.29 U
	Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	0.7 1,000	4 3,000	1.2 U 1.5 U	0.23 U 0.3 U	0.22 U 0.29 U
	1,2,4-Trichlorobenzene	500	3,000 900	1.5 U 1.9 U	0.3 U 0.38 U	0.29 U 0.36 U
	1,2-Dichlorobenzene	300	300	1.9 U	0.38 U	0.36 U
	1,3-Dichlorobenzene	100	500	1.9 U	0.38 U	0.36 U
	1,4-Dichlorobenzene	50	300	1.9 U	0.38 U	0.36 U

Liberty Street New Bedford, Massachusetts

Analysis	Analyte		Sample ID:	TP-09		TP-10		TP-11	
			Sample Depth(ft.):	0-3		0-3		0-3	
			Sample Date:	11/09/11		11/09/11		11/09/11	
		S-1/GW-3							
		Method 1 Soil	S-2/GW-3 Method						
		Standards	1 Soil Standards						
	2,4,5-Trichlorophenol	600	600	1.9	U	0.38	U	0.36	U
	2,4,6-Trichlorophenol	20	20	1.2	U	0.23	U	0.22	U
	2,4-Dichlorophenol	40	40	1.7	U	0.34	U	0.33	U
	2,4-Dimethylphenol	500	1,000	1.9	U	0.38	U	0.36	U
	2,4-Dinitrophenol	50	990	9.2	U	1.8	U	1.8	U
	2,4-Dinitrotoluene	2	10	1.9	U	0.38	U	0.36	U
	2,6-Dinitrotoluene	NS	NS	1.9	U	0.38	U	0.36	U
	2-Chloronaphthalene	NS	NS	1.9	U	0.38	U	0.36	U
	2-Chlorophenol	100	300	1.9	U	0.38	U	0.36	U
	2-Methylphenol	NS	NS	1.9	U	0.38	U	0.36	U
	2-Nitrophenol	NS	NS	4.2	U	0.82	U	0.79	U
	3,3'-Dichlorobenzidine	1	10	1.9	U	0.38	U	0.36	U
	3-Methylphenol/4-Methylphenol	NS	NS	2.8	U	0.55	U	0.53	U
	4-Bromophenyl phenyl ether	NS	NS	1.9	U	0.38	U	0.36	U
	4-Chloroaniline	NS	NS	1.9	U	0.38	U	0.36	U
	4-Nitrophenol	NS	NS	2.7	U	0.53	U	0.51	U
	Acetophenone	NS	NS	1.9	U	0.38	U	0.36	U
	Aniline	NS	NS	2.3	U	0.46	U	0.44	U
	Azobenzene	NS	NS	1.9	U	0.38	U	0.36	U
	Bis(2-chloroethoxy)methane	NS	NS	2.1	U	0.41	U	0.39	U
	Bis(2-chloroethyl)ether	0.7	3	1.7	U	0.34	U	0.33	U
	Bis(2-chloroisopropyl)ether	3	50	2.3	U	0.46	U	0.44	U
	Bis(2-Ethylhexyl)phthalate	200	700	1.9	U	0.38	U	0.36	U
	Butyl benzyl phthalate	NS	NS	1.9	U	0.38	U	0.36	U
	Di-n-butylphthalate	NS	NS	1.9	U	0.38	U	0.36	U
	Di-n-octylphthalate	NS	NS	1.9	U	0.38	U	0.36	U
	Dibenzofuran	NS	NS	1.9	U	0.38	U	0.36	U
	Diethyl phthalate	300	300	1.9	U	0.38	U	0.36	U
	Dimethyl phthalate	600	600	1.9	U	0.38	U	0.36	U
	Hexachlorobenzene	0.7	5	1.2	U	0.23	U	0.22	U
	Hexachlorobutadiene	6	90	1.9	U	0.38	U	0.36	U
	Hexachloroethane	9	100	1.5	U	0.3	U	0.29	U
	Isophorone	NS	NS	1.7	U	0.34	U	0.33	U
	Nitrobenzene	NS	NS	1.7	U	0.34	U	0.33	U
	Pentachlorophenol	10	10	3.8	U	0.76	U	0.73	U
	Phenol	20	20	1.9	U	0.38	U	0.36	U

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm)

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected above one or more of the Method 1 Soil

Standards or elevated reporting limits for non-detects

NS - No Method 1 soil standard

EPH - Extractable Petroleum Hydrocarbons

PAH - Polycyclic Aromatic Hydrocarbons

SVOC - Semi-volatile Organic Compounds

Method 1 Soil Standards from 310 CMR 40.0975(6)(a): Table 2 and 310 CMR 40.0975(6)(b): Table 3 The sitewide soil data set includes samples collected from 0 to 15 feet below ground surface (bgs)

NA - Not analyzed

The maximum detected concentration between a parent and duplicate or lowest reporting limit for non-detects was used to represent that sample.

Table 4-7 Summary of VOC Analytical Results Included in the Surface Soil and Sitewide Soil Data Sets

Analysis	Analyte		Sample ID: Sample Date:	TRC-BTM-1 12/17/2009	TRC-BTM-2 12/17/2009	TRC-BTM-22 12/17/2009	TRC-BTM-3 12/17/2009	TRC-ESW 12/17/2009
			Sample Depth (ft):	12/17/2009	12/17/2009	12/17/2009	0.5	0-1
		S-1/GW-3 Method 1	S-2/GW-3 Method 1	-	1	1	0.5	0 1
		Soil Standards	Soil Standards			Field Dup		
VOCs								
(mg/kg)	Acetone	400	400	0.082 U	0.069 U	0.070 U	0.067 U	0.076 U
	tert-Amyl Methyl Ether (TAME)	NS	NS	0.00082 U	0.00069 U	0.00070 U	0.00067 U	0.00076 U
	Benzene Bromobenzene	30 NS	200 NS	0.0016 U 0.0016 U	0.0014 U 0.0014 U	0.0014 U 0.0014 U	0.0013 U 0.0013 U	0.0015 U 0.0015 U
	Bromochloromethane	NS	NS	0.0016 U	0.0014 U 0.0014 U	0.0014 U 0.0014 U	0.0013 U 0.0013 U	0.0015 U 0.0015 U
	Bromodichloromethane	20	100	0.0016 U	0.0014 U 0.0014 U	0.0014 U	0.0013 U	0.0015 U
	Bromoform	200	800	0.0082 U	0.0069 U	0.0070 U	0.0067 U	0.0076 U
	Bromomethane	30	300	0.0082 U	0.0069 U	0.0070 U	0.0067 U	0.0076 U
	2-Butanone (MEK)	400	400	0.033 U	0.028 U	0.028 U	0.027 U	0.030 U
	n-Butylbenzene	NS	NS	0.0016 U	0.0014 U	0.0014 U	0.0013 U	0.0015 U
	sec-Butylbenzene	NS	NS	0.0016 U	0.0014 U	0.0014 U	0.0013 U	0.0015 U
	tert-Butylbenzene	NS	NS	0.0016 U	0.0014 U	0.0014 U	0.0013 U	0.0015 U
	tert-Butyl Ethyl Ether (TBEE)	NS	NS	0.00082 U	0.00069 U	0.00070 U	0.00067 U	0.00076 U
	Carbon Disulfide	NS	NS	0.0049 U	0.0042 U	0.0042 U	0.0040 U	0.0046 U
	Carbon Tetrachloride	10	60 100	0.0082 U 0.0016 U	0.0069 U	0.0070 U	0.0067 U	0.0076 U
	Chlorobenzene Chlorodibromomethane	100 20	100 100	0.0016 U 0.00082 U	0.0014 U 0.00069 U	0.0014 U 0.00070 U	0.0013 U 0.00067 U	0.0015 U 0.00076 U
	Chloroethane	20 NS	NS	0.00082 U 0.016 U	0.00009 U 0.014 U	0.00070 U 0.014 U	0.00007 U 0.013 U	0.00076 U 0.015 U
	Chloroform	400	800	0.0033 U	0.0028 U	0.0028 U	0.0027 U	0.0030 U
	Chloromethane	NS	NS	0.0082 U	0.0069 U	0.0070 U	0.0067 U	0.0076 U
	2-Chlorotoluene	NS	NS	0.0016 U	0.0014 U	0.0014 U	0.0013 U	0.0015 U
	4-Chlorotoluene	NS	NS	0.0016 U	0.0014 U	0.0014 U	0.0013 U	0.0015 U
	1,2-Dibromo-3-chloropropane (DBCP)	NS	NS	0.0082 U	0.0069 U	0.0070 U	0.0067 U	0.0076 U
	1,2-Dibromoethane (EDB)	0.7	4	0.00082 U	0.00069 U	0.00070 U	0.00067 U	0.00076 U
	Dibromomethane	NS	NS	0.0016 U	0.0014 U	0.0014 U	0.0013 U	0.0015 U
	1,2-Dichlorobenzene	300	300	0.0016 U	0.0014 U	0.0014 U	0.0013 U	0.0015 U
	1,3-Dichlorobenzene	100	500	0.0016 U	0.0014 U	0.0014 U	0.0013 U	0.0015 U
	1,4-Dichlorobenzene	50 NS	300 NS	0.0016 U	0.0014 U	0.0014 U	0.0013 U 0.013 U	0.0015 U
	Dichlorodifluoromethane (Freon 12) 1,1-Dichloroethane	500	1,000	0.016 U 0.0016 U	0.014 U 0.0014 U	0.014 U 0.0014 U	0.013 U 0.0013 U	0.015 U 0.0015 U
	1,2-Dichloroethane	10	90	0.0016 U	0.0014 U 0.0014 U	0.0014 U	0.0013 U	0.0015 U
	1,1-Dichloroethylene	500	1,000	0.0033 U	0.0028 U	0.0028 U	0.0015 U	0.0030 U
	cis-1,2-Dichloroethylene	100	500	0.0016 U	0.0014 U	0.0014 U	0.0013 U	0.0015 U
	trans-1,2-Dichloroethylene	500	1,000	0.0016 U	0.0014 U	0.0014 U	0.0013 U	0.0015 U
	1,2-Dichloropropane	10	100	0.0016 U	0.0014 U	0.0014 U	0.0013 U	0.0015 U
	1,3-Dichloropropane	NS	NS	0.00082 U	0.00069 U	0.00070 U	0.00067 U	0.00076 U
	2,2-Dichloropropane	NS	NS	0.0016 U	0.0014 U	0.0014 U	0.0013 U	0.0015 U
	1,1-Dichloropropene	NS	NS	0.0016 U	0.0014 U	0.0014 U	0.0013 U	0.0015 U
	cis-1,3-Dichloropropene	NS	NS	0.00082 U	0.00069 U	0.00070 U	0.00067 U	0.00076 U
	trans-1,3-Dichloropropene	NS	NS	0.00082 U	0.00069 U	0.00070 U	0.00067 U	0.00076 U
	Diethyl Ether Diisopropyl Ether (DIPE)	NS NS	NS NS	0.016 U 0.00082 U	0.014 U 0.00069 U	0.014 U 0.00070 U	0.013 U 0.00067 U	0.015 U 0.00076 U
	1,4-Dioxane	70	500	0.00082 U 0.082 U	0.00069 U 0.069 U	0.00070 U 0.070 U	0.00067 U 0.067 U	0.00076 U 0.076 U
	Ethylbenzene	500	1,000	0.0016 U	0.009 U 0.0014 U	0.0014 U	0.0013 U	0.070 U
	Hexachlorobutadiene	6	90	0.0016 U	0.0014 U	0.0014 U	0.0013 U	0.0015 U
	2-Hexanone (MBK)	NS	NS	0.016 U	0.014 U	0.014 U	0.013 U	0.015 U
	Isopropylbenzene (Cumene)	NS	NS	0.0016 U	0.0014 U	0.0014 U	0.0013 U	0.0015 U
	p-Isopropyltoluene (p-Cymene)	NS	NS	0.0016 U	0.0014 U	0.0014 U	0.0013 U	0.0015 U
	Methyl tert-Butyl Ether (MTBE)	100	500	0.0033 U	0.0028 U	0.0028 U	0.0027 U	0.0030 U
	Methylene Chloride	200	900	0.016 U	0.014 U	0.014 U	0.013 U	0.015 U
	4-Methyl-2-pentanone (MIBK)	400	400	0.016 U	0.014 U	0.014 U	0.013 U	0.015 U
	Naphthalene	500	1,000	0.0033 U	0.0028 U	0.0028 U	0.0027 U	0.0030 U
	n-Propylbenzene	NS 20	NS	0.0016 U	0.0014 U	0.0014 U	0.0013 U	0.0015 U
	Styrene	30	200	0.0016 U	0.0014 U	0.0014 U	0.0013 U	0.0015 U
	1,1,1,2-Tetrachloroethane	7	100	0.0016 U	0.0014 U	0.0014 U	0.0013 U	0.0015 U
	1,1,2,2-Tetrachloroethane Tetrachloroethylene	0.8 30	10 200	0.00082 U 0.0016 U	0.00069 U 0.0014 U	0.00070 U 0.0014 U	0.00067 U 0.0013 U	0.00076 U 0.0015 U
	Tetrahydrofuran	SU NS	200 NS	0.0018 U 0.0082 U	0.0014 U 0.0069 U	0.0014 U 0.0070 U	0.0013 U 0.0067 U	0.0015 U 0.0076 U
	Toluene	500	1,000	0.0082 U 0.0016 U	0.0089 U 0.0014 U	0.0070 U 0.0014 U	0.0067 U 0.0013 U	0.0076 U 0.0015 U
	1,2,3-Trichlorobenzene	NS	NS	0.0016 U	0.0014 U 0.0014 U	0.0014 U	0.0013 U	0.0015 U
	1,2,4-Trichlorobenzene	500	900	0.0016 U	0.0014 U	0.0014 U	0.0013 U	0.0015 U

Table 4-7 Summary of VOC Analytical Results Included in the Surface Soil and Sitewide Soil Data Sets

Liberty Street New Bedford, Massachusetts

Analysis	Analyte		Sample ID:	TRC-BTM-1	TRC-BTM-2	TRC-BTM-22	TRC-BTM-3	TRC-ESW
			Sample Date:	12/17/2009	12/17/2009	12/17/2009	12/17/2009	12/17/2009
			Sample Depth (ft):	1	1	1	0.5	0-1
		S-1/GW-3 Method 1	S-2/GW-3 Method 1					
		Soil Standards	Soil Standards			Field Dup		
	1,1,1-Trichloroethane	500	1,000	0.0016 U	0.0014 U	0.0014 U	0.0013 U	0.0015 U
	1,1,2-Trichloroethane	4	60	0.0016 U	0.0014 U	0.0014 U	0.0013 U	0.0015 U
	Trichloroethylene	90	700	0.0016 U	0.0014 U	0.0014 U	0.0013 U	0.0015 U
	Trichlorofluoromethane (Freon 11)	NS	NS	0.0082 U	0.0069 U	0.0070 U	0.0067 U	0.0076 U
	1,2,3-Trichloropropane	NS	NS	0.0016 U	0.0014 U	0.0014 U	0.0013 U	0.0015 U
	1,2,4-Trimethylbenzene	NS	NS	0.0016 U	0.0014 U	0.0014 U	0.0013 U	0.0015 U
	1,3,5-Trimethylbenzene	NS	NS	0.0016 U	0.0014 U	0.0014 U	0.0013 U	0.0015 U
	Vinyl Chloride	0.6	4	0.0082 U	0.0069 U	0.0070 U	0.0067 U	0.0076 U
	m+p Xylene	NS	NS	0.0033 U	0.0028 U	0.0028 U	0.0027 U	0.0030 U
	o-Xylene	NS	NS	0.0016 U	0.0014 U	0.0014 U	0.0013 U	0.0015 U
	Total Xylenes (calculated)	500	1,000	0.0016 U	0.0014 U	0.0014 U	0.0013 U	0.0015 U

Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm)

NS - No Method 1 soil standard

U - Compound was not detected at specified quantitation limit

VOCs - Volatile Organic Compounds

Values in Bold indicate the compound was detected above one or more of the Method 1 Soil Standards

Method 1 Soil Standards from 310 CMR 40.0975(6)(a): Table 2 and 310 CMR 40.0975(6)(b): Table 3

The surface soil data set includes samples collected from 0 to 3 feet below ground surface (bgs)

The sitewide soil data set includes samples collected from 0 to 15 feet below ground surface (bgs) NA - Not analyzed

Total xylenes includes the sum of detected isomers or the lowest reporting limit for non-detects.

Table 4-8 Summary of Detected Chemicals and Selection of Chemicals of Concern for Surface Soil

D (Minimum	Maximum	MassDEP		Number of		Selected as a	Reason for
Parameter	Detected	Detected	Background	Detected	Samples	of	Chemical	Exclusion
	Concentration		Concentration ⁽¹⁾	Samples		Detection	of Concern?	
	(mg/kg)	(mg/kg)	(mg/kg)					
<u>Metals</u>								
Arsenic	0.72	7.3	20	11	11	100%	No	Background
Chromium	9.5	16	40	11	11	100%	No	Background
Lead	6.3	260	600	11	11	100%	No	Background
Mercury	0.07	0.18	1	7	11	64%	No	Background
Polychlorinated Biphenyls								
PCBs	0.061	3.92	NE	15	16	94%	Yes	
EPH/PAHs/SVOCs								
C ₉ -C ₁₈ Aliphatic hydrocarbons	21	21	NE	1	1	100%	Yes	
C ₁₉ -C ₃₆ Aliphatic hydrocarbons	110	110	NE	1	1	100%	Yes	
C ₁₁ -C ₂₂ Aromatic hydrocarbons	129	129	NE	1	1	100%	Yes	
Phenanthrene	1.4	3.6	20	5	12	42%	No	Background
Acenaphthylene	0.32	0.32	1	1	12	8%	No	Background/FOD
Fluorene	0.36	0.37	2	2	12	17%	No	Background
Anthracene	0.37	0.48	4	2	12	17%	No	Background
Fluoranthene	1.2	5.2	10	9	12	75%	No	Background
Pyrene	0.23	5.6	20	11	12	92%	No	Background
Benzo(a)anthracene	0.87	2.4	9	5	12	42%	No	Background
Chrysene	0.96	2.6	7	5	12	42%	No	Background
Benzo(b)fluoranthene	0.58	1.3	8	4	12	33%	No	Background
Benzo(k)fluoranthene	0.48	1.2	4	4	12	33%	No	Background
Benzo(a)pyrene	0.77	1.4	7	4	12	33%	No	Background
Indeno(1,2,3-cd)pyrene	0.4	0.73	3	3	12	25%	No	Background
Benzo(g,h,i)perylene	0.43	0.89	3	3	12	25%	No	Background

Liberty Street New Bedford, Massachusetts

Notes:

NA: Not applicable

ND: Not detected

NE: No background concentration established

EPH: Extractable Petroleum Hydrocarbons

PAHs: Polycyclic Aromatic Hydrocarbons

SVOCs: Semi-volatile Organic Compounds

Background: Eliminated based on background concentrations (maximum detected concentration was less than or equal to background level)

FOD: Eliminated based on a low frequency of detection of 10% or less

(1): Background levels in soil containing coal or wood ash from: Technical Update: Background Levels of Polycyclic Aromatic Hydrocarbons and Metals in Soil. MassDEP. May, 2002b.

Table 4-9 Summary of Detected Chemicals and Selection of Chemicals of Concern for Sitewide Soil

Parameter	Minimum Detected	Maximum Detected	MassDEP Background	Number of Detected	Number of Samples	Frequency of	Selected as a Chemical	Reason for Exclusion
	Concentration (mg/kg)	Concentration (mg/kg)	Concentration ⁽¹⁾ (mg/kg)	Samples		Detection	of Concern?	
<u>Metals</u>		· • •						
Arsenic	0.72	18.4	20	17	18	94%	No	Background
Barium	27.8	707	50	7	7	100%	Yes	-
Beryllium	0.36	0.87	0.9	4	7	57%	No	Background
Cadmium	0.49	2.92	3	5	18	28%	No	Background
Chromium	5.27	35.9	40	18	18	100%	No	Background
Lead	2.48	1,500	600	18	18	100%	Yes	-
Nickel	3.72	73.6	30	7	7	100%	Yes	
Silver	1.11	12.2	5	7	7	100%	Yes	
Vanadium	9.43	34.5	30	7	7	100%	Yes	
Zinc	12.3	579	300	7	7	100%	Yes	
Mercury	0.07	2.47	1	13	18	72%	Yes	
Polychlorinated Biphenyls								
PCBs	0.0607	3.918	NE	22	45	49%	Yes	
EPH/PAHs/SVOCs								
C ₉ -C ₁₈ Aliphatic hydrocarbons	21	21	NE	1	1	100%	Yes	
C ₁₉ -C ₃₆ Aliphatic hydrocarbons	110	110	NE	1	1	100%	Yes	
C_{11} - C_{22} Aromatic hydrocarbons	129	129	NE	1	1	100%	Yes	
Phenanthrene	0.459	4.16	20	9	19	47%	No	Background
Acenaphthylene	0.32	0.32	1	1	19	5%	No	Background/FOD
Fluorene	0.36	0.37	2	2	19	11%	No	Background
Anthracene	0.197	1.23	4	4	19	21%	No	Background
Fluoranthene	0.293	5.52	10	14	19	74%	No	Background
Pyrene	0.23	5.9	20	16	19	84%	No	Background
Benzo(a)anthracene	0.448	3.95	9	9	19	47%	No	Background
Chrysene	0.501	3.97	7	9	19	47%	No	Background
Benzo(b)fluoranthene	0.58	4.25	8	8	19	42%	No	Background
Benzo(k)fluoranthene	0.237	1.81	4	8	19	42%	No	Background
Benzo(a)pyrene	0.41	3.57	7	8	19	42%	No	Background
Indeno(1,2,3-cd)pyrene	0.261	1.97	3	7	19	37%	No	Background
Benzo(g,h,i)perylene	0.367	1.49	3	6	19	32%	No	Background

Liberty Street New Bedford, Massachusetts

Notes:

NE: No background concentration established

EPH: Extractable Petroleum Hydrocarbons

PAHs: Polycyclic Aromatic Hydrocarbons

SVOCs: Semi-volatile Organic Compounds

Background: Eliminated based on background concentrations (maximum detected concentration was less than or equal to background level)

FOD: Eliminated based on a low frequency of detection of 10% or less

(1): Background levels in soil containing coal or wood ash from: Technical Update: Background Levels of Polycyclic Aromatic Hydrocarbons and Metals in Soil. MassDEP. May, 2002b.

Table 4-10 Averaging Criteria Check for Surface Soil Using Risk-Based Concentrations $^{\left(1\right)}$

Chemical	RBC (mg/kg)	EPC ⁽²⁾ (mg/kg)	Number of Samples Above RBC	Number of Samples	Percentage of Samples Above RBC	Percentage of Samples Below RBC	Number of Samples 10 Times Greater than RBC
Polychlorinated Biphenyls							
PCBs	2	0.54	1	16	6%	94%	0
EPH/PAHs/SVOCs							
C ₉ -C ₁₈ Aliphatic hydrocarbons	3,000	21	0	1	0%	100%	0
C ₁₉ -C ₃₆ Aliphatic hydrocarbons	3,000	110	0	1	0%	100%	0
C ₁₁ -C ₂₂ Aromatic hydrocarbons	1,000	129	0	1	0%	100%	0

Liberty Street New Bedford, Massachusetts

Notes:

mg/kg: milligrams per kilogram

RBC: Risk Based Concentration based on the S-1/GW-3 soil standard

EPC: Exposure Point Concentration

(1): Average concentrations are below RBCs; 75% of the data points are below RBCs; and no result is 10 times greater than an RBC. Therefore, it is appropriate to use average concentrations for EPCs.

(2): Since only one sample was included in the data set for the EPH ranges, the detected concentration of each was used as the EPC.

${\bf Table \ 4-11}$ Averaging Criteria Check for Sitewide Soil Using Risk-Based Concentrations $^{(1)}$

Chemical	RBC (mg/kg)	EPC ⁽²⁾ (mg/kg)	Number of Samples Above RBC	Number of Samples	Percentage of Samples Above RBC	Percentage of Samples Below RBC	Number of Samples 10 Times Greater than RBC
<u>Metals</u>							
Barium	3,000	298	0	7	0%	100%	0
Lead	300	287	5	21	24%	76%	0
Nickel	700	25	0	7	0%	100%	0
Silver	200	5.0	0	7	0%	100%	0
Vanadium	1,000	22	0	7	0%	100%	0
Zinc	3,000	356	0	7	0%	100%	0
Mercury	30	0.26	0	18	0%	100%	0
<u>Polychlorinated Biphenyls</u>	2	0.20	1	45	20/	0.00/	0
PCBs	3	0.29	1	45	2%	98%	0
EPH/PAHs/SVOCs							
C ₉ -C ₁₈ Aliphatic hydrocarbons	3,000	21	0	1	0%	100%	0
C ₁₉ -C ₃₆ Aliphatic hydrocarbons	5,000	110	0	1	0%	100%	0
C_{11} - C_{22} Aromatic hydrocarbons	3,000	129	0	1	0%	100%	0

Liberty Street New Bedford, Massachusetts

Notes:

mg/kg: milligrams per kilogram

RBC: Risk Based Concentration based on the S-2/GW-3 soil standard

EPC: Exposure Point Concentration

(1): Average concentrations are below RBCs; 75% of the data points are below RBCs; and no result is 10 times greater than an RBC. Therefore, it is appropriate to use average concentrations for EPCs.

(2): Since only one sample was included in the data set for the EPH ranges, the detected concentration of each was used as the EPC.

Section 5

Phase II Completion Statement

This section presents a summary of the Phase II CSA. Public involvement documentation, as required by 310 CMR 40.1403(3)(e), is included as **Appendix A** of this report. The Phase II CSA portion of this Phase II CSA/RAO-P Statement covers the nature and extent of impacts of the parcel, addresses the potential current and future risks to human health and the environment, and provides recommendations for closure at the site.

5.1 Phase II CSA Summary and Completion Statement

A total of 60 soil samples were collected and analyzed during site investigation activities completed to support the Phase II CSA. CDM Smith collected a total of 17 samples during two test pit programs conducted in November 2011 and May 2012. These samples supplemented a total of 43 samples collected by TRC to characterize the edge of the property along Liberty Street, support a URAM, and to conduct post-remedial characterization of a portion of the parcel from which 55-gallon drums were removed. These data identified lead and other metals, PCBs, and PAHs in soil at locations across the site. The 11 soil samples collected during the November 2011 test pit program from depths of approximately 0-3 feet identified select metals and PAHs across the parcel as well as coal ash and debris at one location (TP-2). The six samples collected during the May 2012 test pit program further characterized lead concentrations in the vicinity of a location (SB-212) previously identified to warrant additional evaluation for lead. Lead concentrations from samples collected at these test pits ranged from 67 ppm to 550 ppm. Collectively, the data supporting the Phase II CSA and the historical record indicate that soil conditions are likely associated with wide distribution of fill material across the parcel. Compounds detected in the site surface soil (zero to 3 feet) and site-wide data set (zero to 15 feet) include metals, EPH ranges, PAH target analytes, and PCBs. The concentrations of metals and PAHs were below typical background concentrations associated with coal or wood ash. Historically impacted soil/ fill material across the parcel is generally within the top five feet of the surface.

Due to the properties and nature of metals, PAHs, and PCBs identified in soil at the parcel, they are likely to remain in the soil matrix. Due to their low solubility in water, metals, PAHs, and PCBs found in soil are not likely to impact groundwater. Thus, groundwater, which is located approximately five to seven feet below ground surface, is not a medium of concern for the Liberty Street Parcel. Thus, CDM Smith has completed the Phase II CSA for the parcel. The affected medium at the parcel has been identified as soil, which has been adequately characterized as to the nature and extent of impact from releases at the parcel.

A condition of no significant risk of harm to health, public welfare, and the environment exists at the parcel for current exposure to surface soil based on the results of a Method 1 risk characterization. A level of no significant risk exists for safety as well. The EPCs for COCs in site-wide soil are below the applicable S-2/GW-3 soil standards; however, the EPC for nickel is above the most stringent S-1/GW-3 soil standard. Since a condition of no significant risk exists at the parcel, no remedial actions are required and, therefore, a Phase III is not required. However, the parcel is not acceptable for unrestricted future use and an Activity and Use Limitation (AUL) is required to maintain a condition of no significant risk at the parcel. The AUL, which has been implemented for this parcel to support the RAO-P described in this combined submittal, restricts the use of the property, e.g., prohibiting

unrestricted future residential use of the property. The AUL requires a soil management plan for any future excavations of soil at the parcel.

5.2 LSP Opinion

The response actions that are the subject of this submittal (i) have been developed in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) are appropriate and reasonable to accomplish the purposes of such response actions as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply with the identified provisions of all orders, permits, and approvals identified in this submittal.

Section 6

Justification for Class B-2 Partial Response Action Outcome

This section provides the necessary information to demonstrate that the requirements of a Class B-2 RAO-P pursuant to 310 CMR 40.1000 have been met for the Liberty Street Parcel portion of RTN 4-15685. The boundary of this portion of the disposal site subject to this RAO-P is illustrated on Figure 1-2. The Class B-2 RAO-P is applicable if the following applies:

- Disposal sites where remedial actions have not been conducted because a level of No Significant Risk exists but such a level of No Significant Risk is contingent upon an Activity and Use Limitation (AUL); and
- No concentration of oil or hazardous material exceeds an Upper Concentration Limit (UCL) in soil or groundwater.

Based on the outcome of the site investigation for the Liberty Street Parcel, the parcel is eligible for a Class B-2 RAO-P for the following reasons:

- 1. A level of No Significant Risk exists at the parcel for current and all reasonably foreseeable future uses, based on the results of a Method 1 Risk Characterization.
- 2. Based on the site evaluation, the Liberty Street Parcel data does not exceed the UCLs.
- 3. An AUL has been placed on the parcel. The AUL area has been set as the limits of the property that will be used for future development for solar panels. The AUL restricts future residential use of the property and requires a soil management plan for future excavations at the parcel. A copy of the AUL is presented in **Appendix F**.

Appendix A Letters

June 18, 2013

Mayor Jonathan Mitchell City of New Bedford 133 William Street New Bedford, Massachusetts 02740

Subject: Notification of Comprehensive Site Assessment (CSA)/RAO-P Statement Liberty Street Parcel New Bedford, Massachusetts Release Tracking Number (RTN) 4-15685

Dear Mayor Mitchell:

On behalf of the New Bedford Department of Environmental Stewardship, CDM Smith Inc., serving as environmental consultant, has prepared this letter in accordance with the provisions set forth in 310 CMR 40.1403 of the Massachusetts Contingency Plan (MCP). This letter serves as notification that a Phase II Comprehensive Site Assessment (CSA)/Partial Response Action Outcome (RAO-P) Statement was submitted to the Massachusetts Department of Environmental Protection (MassDEP) in May 2013. Attached is a copy of the summary of findings and statement of conclusions for the Phase II CSA. A Class B-2 RAO-P has been achieved at this site with no remedial actions required.

If you have any questions regarding this submittal or would like a copy of the RAO-P Statement, please contact me at 617-452-6000.

Very truly yours,

Kath Much

Kathleen G. Murphy, P.E., LSP CDM Smith Inc.

cc: MassDEP – Bureau of Waste Site Cleanup City of New Bedford, Michele Paul, Cheryl Henlin

Phase II CSA Summary

A total of 60 soil samples were collected and analyzed during site investigation activities completed to support the Phase II CSA. CDM Smith collected a total of 17 samples during two test pit programs conducted in November 2011 and May 2012. These samples supplemented a total of 43 samples collected by TRC to characterize the edge of the property along Liberty Street, support a URAM, and to conduct post-remedial characterization of a portion of the site from which 55-gallon drums were removed. These data identified lead and other metals, PCBs, and PAHs in soil at locations across the site. The 11 soil samples collected during the November 2011 test pit program from depths of approximately 0-3 feet identified select metals and PAHs across the site as well as coal ash and debris at one location (TP-2). The six samples collected during the May 2012 test pit program further characterized lead concentrations in the vicinity of a location (SB-212) previously identified require additional evaluation for lead. Lead concentrations from samples collected at these test pits ranged from 67 ppm to 550 ppm. Collectively, the data supporting the Phase II CSA and the historical record indicate that contamination in soil is likely associated with wide distribution of fill material across the site. Chemicals detected in the site surface soil (zero to 3 feet) and sitewide data set (zero to 15 feet) include metals, EPH ranges, PAH target analytes, and PCBs. The concentrations of metals and PAHs were below typical background concentrations associated with coal or wood ash. Historically impacted soil/ fill material across the site is generally within the top five feet of the surface.

Due to the properties and nature of metals, PAHs, and PCBs identified in soil at the site, they are likely to remain in the soil matrix. Due to their low solubility in water, metals, PAHs, and PCBs found in soil are not likely to impact groundwater. Thus, groundwater, which is located approximately five to seven feet below ground surface, is not a medium of concern for the Liberty Street Parcel.

A condition of no significant risk of harm to health, public welfare, and the environment exists at the site for current exposure to surface soil based on the results of a Method 1 risk characterization. A level of no significant risk exists for safety as well. The EPCs for COCs in site-wide soil are below the applicable S-2/GW-3 soil standards; however, the EPC for nickel is above the most stringent S-1/GW-3 soil standard. Since a condition of no significant risk exists at the site, no remedial actions are required and, therefore, a Phase III is not required. However, the site is not acceptable for unrestricted future use and an Activity and Use Limitation (AUL) is required to maintain a condition of no significant risk at the site. The AUL, which has been implemented at this site to support the Partial Response Action Outcome (RAO-P) Statement, restricts the use of the property, e.g., prohibiting unrestricted future residential use of the property.

June 18, 2013

Dr. Brenda Weis, Director New Bedford Board of Health 1213 Purchase Street New Bedford, Massachusetts 02740

Subject: Notification of Phase II Comprehensive Site Assessment/RAO-P Statement Liberty Street Parcel New Bedford, Massachusetts Release Tracking Number (RTN) 4-15685

Dr. Weis:

On behalf of the New Bedford Department of Environmental Stewardship, CDM Smith Inc., serving as environmental consultant, has prepared this letter in accordance with the provisions set forth in 310 CMR 40.1403 of the Massachusetts Contingency Plan (MCP). This letter serves as notification that a Phase II Comprehensive Site Assessment (CSA)/Partial Response Action Outcome (RAO-P) Statement was submitted to the Massachusetts Department of Environmental Protection (MassDEP) in May 2013. Attached is a copy of the summary of findings and statement of conclusions for the Phase II CSA. A Class B-2 RAO-P has been achieved at this site with no remedial actions required.

If you have any questions regarding this submittal or would like a copy of the RAO-P Statement, please contact me at 617-452-6000.

Very truly yours,

Kath Mul

Kathleen G. Murphy, P.E., LSP CDM Smith Inc.

cc: MassDEP – Bureau of Waste Site Cleanup City of New Bedford, Michele Paul, Cheryl Henlin

Phase II CSA Summary

A total of 60 soil samples were collected and analyzed during site investigation activities completed to support the Phase II CSA. CDM Smith collected a total of 17 samples during two test pit programs conducted in November 2011 and May 2012. These samples supplemented a total of 43 samples collected by TRC to characterize the edge of the property along Liberty Street, support a URAM, and to conduct post-remedial characterization of a portion of the site from which 55-gallon drums were removed. These data identified lead and other metals, PCBs, and PAHs in soil at locations across the site. The 11 soil samples collected during the November 2011 test pit program from depths of approximately 0-3 feet identified select metals and PAHs across the site as well as coal ash and debris at one location (TP-2). The six samples collected during the May 2012 test pit program further characterized lead concentrations in the vicinity of a location (SB-212) previously identified require additional evaluation for lead. Lead concentrations from samples collected at these test pits ranged from 67 ppm to 550 ppm. Collectively, the data supporting the Phase II CSA and the historical record indicate that contamination in soil is likely associated with wide distribution of fill material across the site. Chemicals detected in the site surface soil (zero to 3 feet) and sitewide data set (zero to 15 feet) include metals, EPH ranges, PAH target analytes, and PCBs. The concentrations of metals and PAHs were below typical background concentrations associated with coal or wood ash. Historically impacted soil/ fill material across the site is generally within the top five feet of the surface.

Due to the properties and nature of metals, PAHs, and PCBs identified in soil at the site, they are likely to remain in the soil matrix. Due to their low solubility in water, metals, PAHs, and PCBs found in soil are not likely to impact groundwater. Thus, groundwater, which is located approximately five to seven feet below ground surface, is not a medium of concern for the Liberty Street Parcel.

A condition of no significant risk of harm to health, public welfare, and the environment exists at the site for current exposure to surface soil based on the results of a Method 1 risk characterization. A level of no significant risk exists for safety as well. The EPCs for COCs in site-wide soil are below the applicable S-2/GW-3 soil standards; however, the EPC for nickel is above the most stringent S-1/GW-3 soil standard. Since a condition of no significant risk exists at the site, no remedial actions are required and, therefore, a Phase III is not required. However, the site is not acceptable for unrestricted future use and an Activity and Use Limitation (AUL) is required to maintain a condition of no significant risk at the site. The AUL, which has been implemented at this site to support the Partial Response Action Outcome (RAO-P) Statement, restricts the use of the property, e.g., prohibiting unrestricted future residential use of the property.

Appendix B Existing Data

TABLE 2 Summary of TRC VOC Analytical Results for Soil Samples Liberty Street City Yard Release New Bedford, Massachusetts

inarysis	Analyte	Sample ID:	TRC-BTM-	_	TRC-BTM-			TRC-BT		TRC-E	-
		Sample Date:	12/17/2009)	12/17/2009	12/17/2	2009	12/17/2	009	12/17/2	00
		S-1/GW-3									
OCs											
ng/kg)	Acetone	400	0.082 U	J	0.069 U	0.070	U	0.067	U	0.076	
	tert-Amyl Methyl Ether (TAME)	NS	0.00082 U	J	0.00069 U	0.00070	U	0.00067	U	0.00076	
	Benzene	30	0.0016 U	J	0.0014 U	0.0014	U	0.0013	U	0.0015	
	Bromobenzene	NS	0.0016 U		0.0014 U			0.0013	U	0.0015	
	Bromochloromethane	NS	0.0016 U		0.0014 U			0.0013	U	0.0015	
									U		
	Bromodichloromethane	20			0.0014 U			0.0013		0.0015	
	Bromoform	200	0.0082 U		0.0069 U			0.0067	U	0.0076	
	Bromomethane	30	0.0082 U		0.0069 U			0.0067	U	0.0076	
	2-Butanone (MEK)	400	0.033 U	J	0.028 U	0.028	U	0.027	U	0.030	
	n-Butylbenzene	100(1)	0.0016 U	J	0.0014 U	0.0014	U	0.0013	U	0.0015	
	sec-Butylbenzene	100(1)	0.0016 U	J	0.0014 U	0.0014	U	0.0013	U	0.0015	
	tert-Butylbenzene	100(1)	0.0016 U	J	0.0014 U	0.0014	U	0.0013	U	0.0015	
	tert-Butyl Ethyl Ether (TBEE)	NS	0.00082 U	J	0.00069 U	0.00070		0.00067	U	0.00076	
	Carbon Disulfide	NS	0.0049 U		0.0042 U			0.0040	Ū	0.0046	
	Carbon Tetrachloride	10	0.0049 U		0.0069 U			0.0067	U	0.0076	
	Chlorobenzene	100			0.0009 C			0.0007	U	0.0015	
	Chlorodibromomethane	20	0.00082 U		0.00069 U	0.00070		0.00067	U	0.00076	
	Chloroethane	NS	0.016 U		0.014 U			0.013	U	0.015	
	Chloroform	400	0.0033 U	J	0.0028 U			0.0027	U	0.0030	
	Chloromethane	NS	0.0082 U	J	0.0069 U	0.0070	U	0.0067	U	0.0076	
	2-Chlorotoluene	NS	0.0016 U	J	0.0014 U	0.0014	U	0.0013	U	0.0015	
	4-Chlorotoluene	NS	0.0016 U	J	0.0014 U	0.0014	U	0.0013	U	0.0015	
	1,2-Dibromo-3-chloropropane (DBCP)	NS	0.0082 U		0.0069 U			0.0067	Ū	0.0076	
	1,2-Dibromoethane (EDB)	0.7	0.00082 U		0.00069 U			0.00067	U	0.00076	
	Dibromomethane	NS	0.0016 U		0.0014 U			0.00007	U	0.0015	
		300			0.0014 U			0.0013	U	0.0015	
	1,2-Dichlorobenzene										
	1,3-Dichlorobenzene	100	0.0016 U		0.0014 U			0.0013	U	0.0015	
	1,4-Dichlorobenzene	50	0.0016 U		0.0014 U			0.0013	U	0.0015	
	Dichlorodifluoromethane (Freon 12)	NS	0.016 U	J	0.014 U	0.014	U	0.013	U	0.015	
	1,1-Dichloroethane	500	0.0016 U	J	0.0014 U	0.0014	U	0.0013	U	0.0015	
	1,2-Dichloroethane	10	0.0016 U	J	0.0014 U	0.0014	U	0.0013	U	0.0015	
	1,1-Dichloroethylene	500	0.0033 U	J	0.0028 U	0.0028	U	0.0027	U	0.0030)
	cis-1,2-Dichloroethylene	100	0.0016 U		0.0014 U			0.0013	U	0.0015	
	trans-1,2-Dichloroethylene	500	0.0016 U		0.0014 U			0.0013	U	0.0015	
	1,2-Dichloropropane	10	0.0016 U		0.0014 U			0.0013	U	0.0015	
	1,3-Dichloropropane	NS	0.00082 U		0.00069 U			0.00067	U	0.00076	
	2,2-Dichloropropane	NS	0.0016 U		0.0014 U			0.0013	U	0.0015	
	1,1-Dichloropropene	NS	0.0016 U		0.0014 U			0.0013	U	0.0015	
	cis-1,3-Dichloropropene	9 ⁽²⁾	0.00082 U		0.00069 U			0.00067	U	0.00076	
	trans-1,3-Dichloropropene	9 ⁽²⁾	0.00082 U	J	0.00069 U	0.00070	U	0.00067	U	0.00076	
	Diethyl Ether	NS	0.016 U	J	0.014 U	0.014	U	0.013	U	0.015	
	Diisopropyl Ether (DIPE)	NS	0.00082 U	J	0.00069 U	0.00070	U	0.00067	U	0.00076	
	1,4-Dioxane	70	0.082 U	J	0.069 U	0.070	U	0.067	U	0.076	
	Ethylbenzene	500	0.0016 U		0.0014 U			0.0013	U	0.0015	
	Hexachlorobutadiene	6	0.0016 U		0.0014 U			0.0013	U	0.0015	
	2-Hexanone (MBK)	NS	0.016 U		0.014 U			0.013	U	0.015	
	Isopropylbenzene (Cumene)	100 ⁽¹⁾	0.0016 U		0.0014 U			0.0013	U	0.0015	
	p-Isopropyltoluene (p-Cymene)	100(1)	0.0016 U		0.0014 U			0.0013	U	0.0015	
	Methyl tert-Butyl Ether (MTBE)	100	0.0033 U		0.0028 U			0.0027	U	0.0030	
	Methylene Chloride	200	0.016 U	J	0.014 U	0.014	U	0.013	U	0.015	
	4-Methyl-2-pentanone (MIBK)	400	0.016 U	J	0.014 U	0.014	U	0.013	U	0.015	
	Naphthalene	500	0.0033 U		0.0028 U			0.0027	U	0.0030	
	n-Propylbenzene	100(1)	0.0016 U		0.0014 U			0.0013	U	0.0015	
	Styrene	30	0.0016 U		0.0014 U			0.0013	U	0.0015	
	1,1,1,2-Tetrachloroethane	30 7	0.0016 U 0.0016 U		0.0014 U			0.0013	U	0.0013	
	1,1,2,2-Tetrachloroethane	0.8	0.00082 U		0.00069 U			0.00067	U	0.00076	
	Tetrachloroethylene	30	0.0016 U		0.0014 U			0.0013	U	0.0015	
	Tetrahydrofuran	NS	0.0082 U		0.0069 U			0.0067	U	0.0076	
	Toluene	500	0.0016 U	J	0.0014 U	0.0014		0.0013	U	0.0015	
	1,2,3-Trichlorobenzene	NS	0.0016 U	J	0.0014 U	0.0014	U	0.0013	U	0.0015	
	1,2,4-Trichlorobenzene	500	0.0016 U	J	0.0014 U	0.0014	U	0.0013	U	0.0015	
	1,1,1-Trichloroethane	500	0.0016 U		0.0014 U			0.0013	Ū	0.0015	
	1,1,2-Trichloroethane	4	0.0016 U		0.0014 U			0.0013	U	0.0015	
		4 90	0.0016 U 0.0016 U					0.0013		0.0013	
	Trichloroethylene								U		
	Trichlorofluoromethane (Freon 11)	NS	0.0082 U		0.0069 U			0.0067	U	0.0076	
	1,2,3-Trichloropropane	NS	0.0016 U		0.0014 U			0.0013	U	0.0015	
	1,2,4-Trimethylbenzene	100(1)	0.0016 U	J	0.0014 U	0.0014	U	0.0013	U	0.0015	
	1,3,5-Trimethylbenzene	100(1)	0.0016 U	J	0.0014 U	0.0014	U	0.0013	U	0.0015	
	Vinyl Chloride	0.6	0.0082 U		0.0069 U			0.0067	U	0.0076	
	m+p Xylene	500	0.0032 U		0.0009 U			0.0007	U	0.0070	
	o-Xylene	500	0.0033 U 0.0016 U		0.0028 U 0.0014 U			0.0027	U	0.0030	

Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

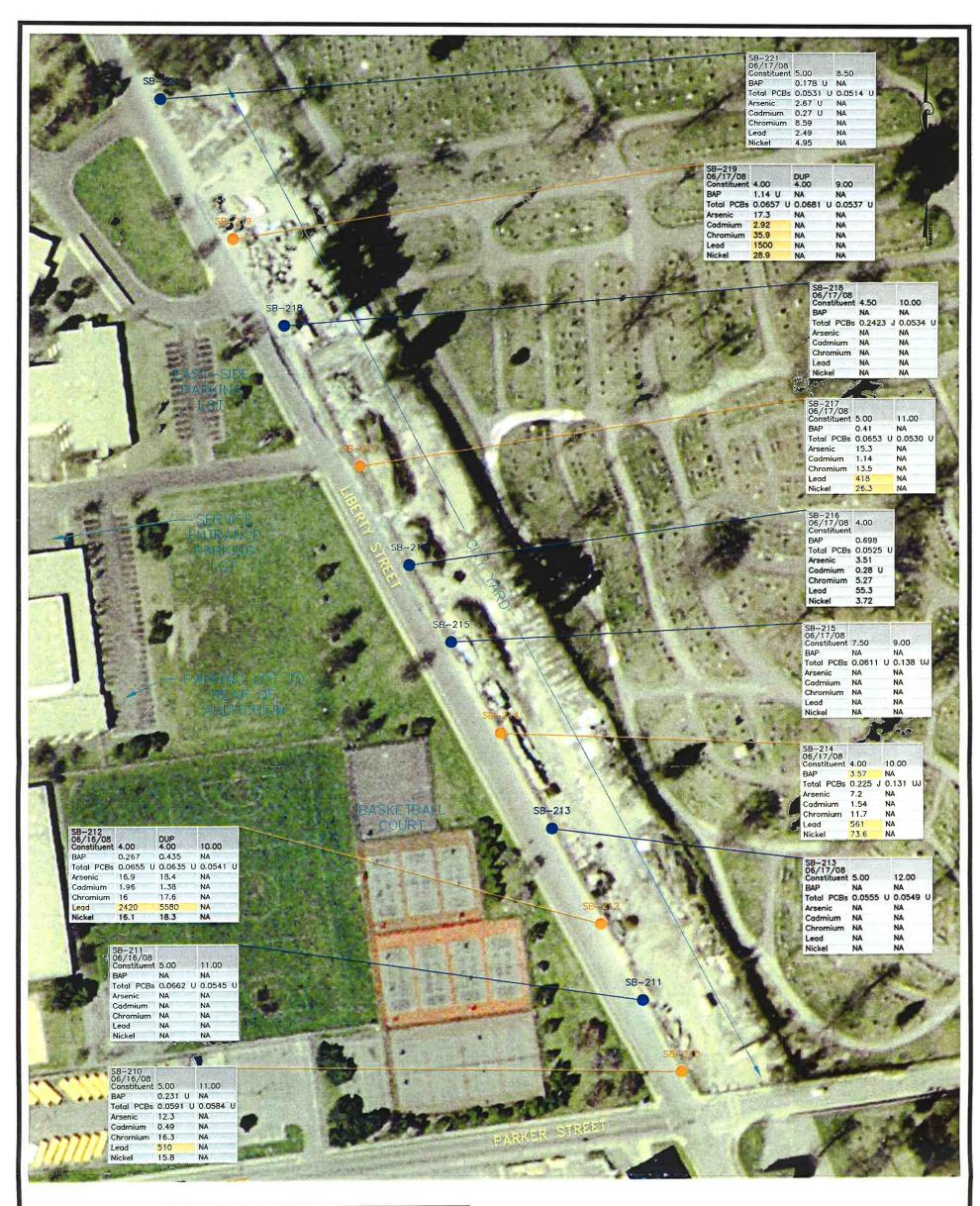
- NS No MassDEP standards exist for this compound.
- U Compound was not detected at specified quantitation limit.
- VOCs Volatile Organic Compounds.
- (1) MassDEP Method 1 standards for C9-C10 aromatics used.
- (2) MassDEP Method 1 standards for 1,3-Dichloropropene used.
- * Background Concentration for natural soil.

TABLE 1 Summary of TRC EPH and target PAH Analytical Results for Soil Samples Liberty Street City Yard Release Across from 230 Hathaway Boulevard New Bedford, Massachusetts

Analysis	Analyte	Sample ID:	BTM-1	BTM-2	BTM-3	ESW	Under Stockpile
		Sample Depth(ft.):	1	1	0.5	0-1	Surface
		Sample Date:	11/3/2009	11/3/2009	11/3/2009	11/3/2009	11/3/2009
		S-1/GW-3					
EPH							
(mg/kg)	C9-C18 Aliphatics	1,000	35 U	36 U	35	35 U	35 U
	C19-C36 Aliphatics	3,000	35 U	73	110	69	280
	C11-C22 Aromatics	1,000	64	52	150	100	280
	Naphthalene	500	0.59 U	0.60 U	0.56 U	0.58 U	0.58 U
	2-Methylnaphthalene	300	0.59 U	0.60 U	0.56 U	0.58 U	0.58 U
	Phenanthrene	500	0.92	0.83	1.9	2.0	1.5
	Acenaphthene	1,000	0.59 U	0.60 U	0.56 U	0.58 U	0.58 U
	Acenaphthylene	10	0.59 U	0.60 U	0.56 U	0.58 U	0.58 U
	Fluorene	1,000	0.59 U	0.60 U	0.56 U	0.58 U	0.58 U
	Anthracene	1,000	0.59 U	0.60 U	0.56 U	0.58 U	0.58 U
	Fluoranthene	1,000	1.6	1.2	2.7	3.9	2.2
	Pyrene	1,000	1.5	1.1	2.2	3.4	2.0
	Benzo(a)anthracene	7	0.60	0.60 U	1.1	1.4	0.95
	Chrysene	70	0.81	0.71	1.4	1.7	1.3
	Benzo(b)fluoranthene	7	0.70	0.63	1.4	1.7	1.1
	Benzo(k)fluoranthene	70	0.65	0.60 U	0.91	1.4	0.77
	Benzo(a)pyrene	2	0.82	0.72	1.3	1.9	1.0
	Indeno(1,2,3-cd)pyrene	7	0.59 U	0.60 U	0.88	1.3	0.58 U
	Dibenz(a,h)anthracene	0.7	0.59 U	0.60 U	0.56 U	0.58 U	0.58 U
	Benzo(g,h,i)perylene	1,000	0.65	0.66	0.65	1.6	0.87

Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).


NS - No MassDEP standards exist for this compound.

U - Compound was not detected at specified quantitation limit.

Values in **Bold** indicate the compound was detected.

EPH - Extractable Petroleum Hydrocarbons.

B.DWG	
ransect E	
_Results_T	
Soi	
FILE: Q:\GEOSCI\GISKEYProjects\NewBedford\	
<pre>YProjects</pre>	
GISKEYF	
\GEOSCI	
ä	
FILE	-

Summary o	f Regulatory Com	parison Ci	riteria for i	Soil (mg/kg	<u>z)</u>	
Contaminant	S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1	TSCA
Names						
Benzo(a)pyrene (BAP)	2	2	4	4	2	N/A
Total PCBs	2	2	3	3	2	1
Arsenic	20	20	_20	20	20	N/A
Cadmium	2	2	30	30	2	N/A
Chromium	30	30	200	200	30	N/A
Lead	300	300	300	300	300	N/A
Nickel	20	20	700	700	20	N/A

NOTES: ALL UNITS IN MG/KG UNLESS OTHERWISE SPECIFIED. MG/KG - MILLIGRAMS PER KILOGRAM (DRY WEIGHT). J - ESTIMATED VALUE. NA - SAMPLE NOT ANALYZED FOR THE LISTED ANALYTE. N/A - NOT APPLICABLE. N/A - NO I APPLICABLE. PCBS - POLYCHLORINATED BIPHENYLS. RCS - REPORTABLE CONCENTRATIONS. TSCA - TOXIC SUBSTANCES CONTROL ACT. U - COMPOUND WAS NOT DETECTED AT SPECIFIED QUANTITATION LIMIT. ULL SETURATED NYDROTECT.

UJ - ESTIMATED NONDETECT.

VALUES SHOWN IN PEACH BACKGROUND EXCEED ONE OR MORE OF THE LISTED MASSDEP METHOD 1 STANDARDS.

SOIL BORING SOIL BORING THAT HAS CONCENTRATION WITH EXCEEDANCE

 SB-211
 III.00
 SAMPLE DEPTH IN FEET

 05/16/08
 Constituent 5.00
 11.00
 SAMPLE DEPTH IN FEET

 BAP
 NA
 NA
 Total PCBs
 0.0622
 U
 0.0545
 U

 Arsenic
 NA
 NA
 Codmium
 NA
 NA

 Cadmium
 NA
 NA
 Lead
 NA
 NA

 Nickel
 NA
 NA
 NA
 NA
 NA
 SAMPLE LOCATION SAMPLE DATE CONTAMINANT NAME

APPROXIMATE GRAPHIC SCALE 0' 120' 240' 60 **TRANSECT B** NEW BEDFORD, MASSACHUSETTS ANALYTICAL RESULTS SUMMARY MAP Wannalancit Mills 650 Suffolk Street Lowell, MA 01854 (978) 970–5600 FIGURE 3 DRAWN BY: PZ DATE: **JULY 2008** CHECKED BY: DMS

Table 1 Summary of TRC Analytical Results for Soil Samples - June 2008 Transect B New Bedford, Massachusetts

		Sample Location	SB-	-210	SB	-211		SB-212		SB	-213
Analysis	Analyte	Sample Depth (ft)	5	11	5	11	4	4	10	5	12
1 11111 9 515	i illarij to	Sample Depth (it)	6/16/2008	6/16/2008	6/16/2008	6/16/2008	6/16/2008	6/16/2008	6/16/2008	6/17/2008	6/17/2008
		S-2/GW-3						Field Dup			
PAHs								-			
(mg/kg)	Acenaphthene	3,000	0.231 U	NA	NA	NA	0.218 U	0.222 U	NA	NA	NA
	Acenaphthylene	10	0.231 U	NA	NA	NA	0.218 U	0.222 U	NA	NA	NA
	Anthracene	3,000	0.231 U	NA	NA	NA	0.218 U	0.222 U	NA	NA	NA
	Benzo(a)anthracene	40	0.231 U	NA	NA	NA	0.284	0.448	NA	NA	NA
	Benzo(a)pyrene	4	0.231 U	NA	NA	NA	0.267	0.435	NA	NA	NA
	Benzo(b)fluoranthene	40	0.231 U	NA	NA	NA	0.363	0.604	NA	NA	NA
	Benzo(g,h,i)perylene	3,000	0.231 U	NA	NA	NA	0.218 U	0.222 U	NA	NA	NA
	Benzo(k)fluoranthene	400	0.231 U	NA	NA	NA	0.218 U	0.237	NA	NA	NA
	Chrysene	400	0.231 U	NA	NA	NA	0.314	0.501	NA	NA	NA
	Dibenz(a,h)anthracene	4	0.231 U	NA	NA	NA	0.218 U	0.222 U	NA	NA	NA
	Fluoranthene	3,000	0.293	NA	NA	NA	0.450	0.810	NA	NA	NA
	Fluorene	3,000	0.231 U	NA	NA	NA	0.218 U	0.222 U	NA	NA	NA
	Indeno(1,2,3-cd)pyrene	40	0.231 U	NA	NA	NA	0.218 U	0.261	NA	NA	NA
	2-Methylnaphthalene	500	0.231 U	NA	NA	NA	0.218 U	0.222 U	NA	NA	NA
	Naphthalene	1,000	0.231 U	NA	NA	NA	0.218 U	0.222 U	NA	NA	NA
	Phenanthrene	1,000	0.231 U	NA	NA	NA	0.326	0.459	NA	NA	NA
	Pyrene	3,000	0.337	NA	NA	NA	0.437	0.599	NA	NA	NA
PCBs											
(mg/kg)	Aroclor 1016	3	0.0591 U	0.0584 U	0.0662 U	0.0545 U	0.0655 U	0.0635 U	0.0541 U	0.0555 U	0.0549 U
	Aroclor 1221	3	0.0591 U	0.0584 U	0.0662 U	0.0545 U	0.0655 U	0.0635 U	0.0541 U	0.0555 U	0.0549 U
	Aroclor 1232	3	0.0591 U	0.0584 U	0.0662 U	0.0545 U	0.0655 U	0.0635 U	0.0541 U	0.0555 U	0.0549 U
	Aroclor 1242	3	0.0591 U	0.0584 U	0.0662 U	0.0545 U	0.0655 U	0.0635 U	0.0541 U	0.0555 U	0.0549 U
	Aroclor 1248	3	0.0591 U	0.0584 U	0.0662 U	0.0545 U	0.0655 U	0.0635 U	0.0541 U	0.0555 U	0.0549 U
	Aroclor 1254	3	0.0591 U	0.0584 U	0.0662 U	0.0545 U	0.0655 U	0.0635 U	0.0541 U	0.0555 U	0.0549 U
	Aroclor 1260	3	0.0591 U	0.0584 U	0.0662 U	0.0545 U	0.0655 U	0.0635 U	0.0541 U	0.0555 U	0.0549 U
	Total PCBs	3	0.0591 U	0.0584 U	0.0662 U	0.0545 U	0.0655 U	0.0635 U	0.0541 U	0.0555 U	0.0549 U
PCB Hon	nologs										
(mg/kg)	Monochlorobiphenyl	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Dichlorobiphenyl	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Trichlorobiphenyl	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Tetrachlorobiphenyl	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Pentachlorobiphenyl	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Hexachlorobiphenyl	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Heptachlorobiphenyl	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Octachlorobiphenyl	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nonachlorobiphenyl	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Decachlorobiphenyl	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Total PCBs	3	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals		20						5 00 T			
(mg/kg)	Antimony	30	5.53 U	NA	NA	NA	5.23 U	5.33 U	NA	NA	NA
	Arsenic	20	12.3	NA	NA	NA	16.9	18.4	NA	NA	NA
	Barium	3,000	260	NA	NA	NA	697	707	NA	NA	NA
	Beryllium	200	0.64	NA	NA	NA	0.57	0.66	NA	NA	NA
	Cadmium	30 200	0.49	NA	NA	NA	1.96	1.38	NA	NA	NA
	Chromium	200	16.3	NA	NA	NA	16.0	17.6	NA	NA	NA
	Lead	300	510 15.8	NA	NA	NA	2,420	5,580	NA	NA	NA
	Nickel	700	15.8	NA	NA	NA	16.1	18.3	NA	NA	NA
	Selenium	800	6.91 U	NA	NA	NA	6.53 U	6.66 U	NA	NA	NA
	Silver	200	4.13	NA	NA	NA	5.82	4.30	NA	NA	NA
	Thallium Mana diama	60 1.000	4.15 U	NA	NA	NA	3.92 U	4.00 U	NA	NA	NA
	Vanadium Zina	1,000	34.5	NA	NA	NA	27.3	31.4	NA	NA	NA
	Zinc	3,000	371	NA	NA	NA	483	428	NA	NA	NA
	Mercury	30	0.154	NA	NA	NA	0.265	2.47	NA	NA	NA

Notes:

All units in mg/kg unless otherwise specified.

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

J - Estimated value.

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

U - Compound was not detected at specified quantitation limit.

UJ - Estimated nondetect.

Values in **Bold** indicate the compound was detected. Values shown in Bold and shaded type exceed applicable Method 1 standa

PAHs - Polynuclear Aromatic Hydrocarbons. PCBs - Polychlorinated Biphenyls.

115058_New Bedford_New Bedford, MA

Table 1 Summary of TRC Analytical Results for Soil Samples - June 2008 Transect B New Bedford, Massachusetts

		Sample Location	SB-	-214	SB-	-215	SB-216	SB-	-217	SB	-218
Analysis	Analyte	Sample Depth (ft)	4	10	7.5	9	4	5	11	4.5	10
		Sample Date S-2/GW-3	6/17/2008	6/17/2008	6/17/2008	6/17/2008	6/17/2008	6/17/2008	6/17/2008	6/17/2008	6/17/2008
PAHs		5-2/GW-5									
(mg/kg)	Acenaphthene	3,000	1.02 U	NA	NA	NA	0.186 U	0.229 U	NA	NA	NA
(1116) (116)	Acenaphthylene	10	1.02 U	NA	NA	NA	0.186 U	0.229 U	NA	NA	NA
	Anthracene	3,000	1.02 0	NA	NA	NA	0.100 0	0.229 U	NA	NA	NA
	Benzo(a)anthracene	40	3.95	NA	NA	NA	0.643	0.643	NA	NA	NA
	Benzo(a)pyrene	4	3.57	NA	NA	NA	0.698	0.410	NA	NA	NA
	Benzo(b)fluoranthene	40	4.25	NA	NA	NA	0.835	0.710	NA	NA	NA
	Benzo(g,h,i)perylene	3,000	1.49	NA	NA	NA	0.414	0.367	NA	NA	NA
	Benzo(k)fluoranthene	400	1.81	NA	NA	NA	0.339	0.243	NA	NA	NA
	Chrysene	400	3.97	NA	NA	NA	0.676	0.810	NA	NA	NA
	Dibenz(a,h)anthracene	4	1.02 U	NA	NA	NA	0.186 U	0.229 U	NA	NA	NA
	Fluoranthene	3,000	5.52	NA	NA	NA	1.60	1.05	NA	NA	NA
	Fluorene	3,000	1.02 U	NA	NA	NA	0.186 U	0.229 U	NA	NA	NA
	Indeno(1,2,3-cd)pyrene	40	1.97	NA	NA	NA	0.490	0.380	NA	NA	NA
	2-Methylnaphthalene	500	1.02 U	NA	NA	NA	0.186 U	0.229 U	NA	NA	NA
	Naphthalene	1,000	1.02 U	NA	NA	NA	0.186 U	0.229 U	NA	NA	NA
	Phenanthrene	1,000	4.16	NA	NA	NA	0.799	0.930	NA	NA	NA
	Pyrene	3,000	5.90	NA	NA	NA	1.20	1.11	NA	NA	NA
PCBs											
(mg/kg)	Aroclor 1016	3	0.0604 U	0.131 UJ	0.0611 U	0.138 UJ	0.0525 U	0.0653 U	0.0530 U	0.0581 U	0.0534 U
(8/8/	Aroclor 1221	3	0.0604 U	0.131 UJ	0.0611 U	0.138 UJ	0.0525 U	0.0653 U	0.0530 U	0.0581 U	0.0534 U
	Aroclor 1232	3	0.0604 U	0.131 UJ	0.0611 U	0.138 UJ	0.0525 U	0.0653 U	0.0530 U	0.0581 U	0.0534 U
	Aroclor 1242	3	0.0604 U	0.131 UJ	0.0611 U	0.138 UJ	0.0525 U	0.0653 U	0.0530 U	0.0581 U	0.0534 U
	Aroclor 1248	3	0.0604 U	0.131 UJ	0.0611 U	0.138 UJ	0.0525 U	0.0653 U	0.0530 U	0.0581 U	0.0534 U
	Aroclor 1254	3	0.225 J	0.131 UJ	0.0611 U	0.138 UJ	0.0525 U	0.0653 U	0.0530 U	0.158 J	0.0534 U
	Aroclor 1260	3	0.0604 U	0.131 UJ	0.0611 U	0.138 UJ	0.0525 U	0.0653 U	0.0530 U	0.0843 J	0.0534 U
	Total PCBs	3	0.225 J	0.131 UJ	0.0611 U	0.138 UJ	0.0525 U	0.0653 U	0.0530 U	0.2423 J	0.0534 U
PCB Hon	nologs										
(mg/kg)	Monochlorobiphenyl	N/A	NA	NA	NA	NA	NA	0.017 U	NA	NA	NA
	Dichlorobiphenyl	N/A	NA	NA	NA	NA	NA	0.017 U	NA	NA	NA
	Trichlorobiphenyl	N/A	NA	NA	NA	NA	NA	0.017 U	NA	NA	NA
	Tetrachlorobiphenyl	N/A	NA	NA	NA	NA	NA	0.033 U	NA	NA	NA
	Pentachlorobiphenyl	N/A	NA	NA	NA	NA	NA	0.033 U	NA	NA	NA
	Hexachlorobiphenyl	N/A	NA	NA	NA	NA	NA	0.033 U	NA	NA	NA
	Heptachlorobiphenyl	N/A	NA	NA	NA	NA	NA	0.050 U	NA	NA	NA
	Octachlorobiphenyl	N/A	NA	NA	NA	NA	NA	0.050 U	NA	NA	NA
	Nonachlorobiphenyl	N/A	NA	NA	NA	NA	NA	0.083 U	NA	NA	NA
	Decachlorobiphenyl	N/A	NA	NA	NA	NA	NA	0.083 U	NA	NA	NA
	Total PCBs	3	NA	NA	NA	NA	NA	0.083 U	NA	NA	NA
Metals											
(mg/kg)	Antimony	30	4.89 U	NA	NA	NA	4.45 U	5.50 U	NA	NA	NA
	Arsenic	20	7.20	NA	NA	NA	3.51	15.3	NA	NA	NA
	Barium	3,000	211	NA	NA	NA	31.9	513	NA	NA	NA
	Beryllium	200	0.36	NA	NA	NA	0.28 U	0.87	NA	NA	NA
	Cadmium	30	1.54	NA	NA	NA	0.28 U	1.14	NA	NA	NA
	Chromium	200	11.7	NA	NA	NA	5.27	13.5	NA	NA	NA
	Lead	300	561	NA	NA	NA	55.3	418	NA	NA	NA
	Nickel	700	73.6	NA	NA	NA	3.72	26.3	NA	NA	NA
	Selenium	800	6.11 U	NA	NA	NA	5.56 U	6.87 U	NA	NA	NA
	Silver	200	3.03	NA	NA	NA	1.23	7.72	NA	NA	NA
	Thallium	60	3.67 U	NA	NA	NA	3.34 U	4.13 U	NA	NA	NA
	Vanadium	1,000	17.6	NA	NA	NA	9.43	23.3	NA	NA	NA
	Zinc	3,000	445	NA	NA	NA	43.6	560	NA	NA	NA
	Mercury	30	0.272	NA	NA	NA	0.446	0.111	NA	NA	NA

Notes:

All units in mg/kg unless otherwise specified.

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

J - Estimated value.

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

U - Compound was not detected at specified quantitation limit.

UJ - Estimated nondetect.

Values in **Bold** indicate the compound was detected. Values shown in Bold and shaded type exceed applicable Method 1 standa

PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls.

115058_New Bedford_New Bedford, MA

Table 1 Summary of TRC Analytical Results for Soil Samples - June 2008 Transect B New Bedford, Massachusetts

		Sample Location		SB-219		SB-	221		
Analysis	Analyte	Sample Depth (ft)	4	4	9	5	8.5		
5	5	Sample Date	6/17/2008	6/17/2008	6/17/2008	6/17/2008	6/17/2008		
		S-2/GW-3		Field Dup					
PAHs				÷					
(mg/kg)	Acenaphthene	3,000	1.14 U	NA	NA	0.178 U	NA		
× 0 0/	Acenaphthylene	10	1.14 U	NA	NA	0.178 U	NA		
	Anthracene	3,000	1.14 U	NA	NA	0.178 U	NA		
	Benzo(a)anthracene	40	1.14 U	NA	NA	0.178 U	NA		
	Benzo(a)pyrene	4	1.14 U	NA	NA	0.178 U	NA		
	Benzo(b)fluoranthene	40	1.14 U	NA	NA	0.178 U	NA		
	Benzo(g,h,i)perylene	3,000	1.14 U	NA	NA	0.178 U	NA		
	Benzo(k)fluoranthene	400	1.14 U	NA	NA	0.178 U	NA		
	Chrysene	400	1.14 U	NA	NA	0.178 U	NA		
	Dibenz(a,h)anthracene	4	1.14 U	NA	NA	0.178 U	NA		
	Fluoranthene	3,000	1.14 U	NA	NA	0.178 U	NA		
	Fluorene	3,000	1.14 U	NA	NA	0.178 U	NA		
	Indeno(1,2,3-cd)pyrene	40	1.14 U	NA	NA	0.178 U	NA		
	2-Methylnaphthalene	500	1.14 U	NA	NA	0.178 U	NA		
	Naphthalene	1,000	1.14 U	NA	NA	0.178 U	NA		
	Phenanthrene	1,000	1.14 U	NA	NA	0.178 U	NA		
	Pyrene	3,000	1.14 U	NA	NA	0.178 U	NA		
PCBs									
(mg/kg)	Aroclor 1016	3	0.0657 U	0.0681 U	0.0537 U	0.0531 U	0.0514 U		
	Aroclor 1221	3	0.0657 U	0.0681 U	0.0537 U	0.0531 U	0.0514 U		
	Aroclor 1232	3	0.0657 U	0.0681 U	0.0537 U	0.0531 U	0.0514 U		
	Aroclor 1242	3	0.0657 U	0.0681 U	0.0537 U	0.0531 U	0.0514 U		
	Aroclor 1248	3	0.0657 U	0.0681 U	0.0537 U	0.0531 U	0.0514 U		
	Aroclor 1254	3	0.0657 U	0.0681 U	0.0537 U	0.0531 U	0.0514 U		
	Aroclor 1260 Total PCBs	3 3	0.0657 U 0.0657 U	0.0681 U 0.0681 U	0.0537 U 0.0537 U	0.0531 U 0.0531 U	0.0514 U 0.0514 U		
DCD II		5	0.0037 0	0.0081 0	0.0557 0	0.0551 0	0.0314 0		
PCB Hon	Monochlorobiphenyl	N/A	NA	NA	NA	NA	NA		
(mg/kg)	Dichlorobiphenyl	N/A N/A	NA	NA	NA	NA	NA		
	Trichlorobiphenyl	N/A N/A	NA	NA	NA	NA	NA		
	Tetrachlorobiphenyl	N/A N/A	NA	NA	NA	NA	NA		
	Pentachlorobiphenyl	N/A	NA	NA	NA	NA	NA		
	Hexachlorobiphenyl	N/A	NA	NA	NA	NA	NA		
	Heptachlorobiphenyl	N/A	NA	NA	NA	NA	NA		
	Octachlorobiphenyl	N/A	NA	NA	NA	NA	NA		
	Nonachlorobiphenyl	N/A	NA	NA	NA	NA	NA		
	Decachlorobiphenyl	N/A	NA	NA	NA	NA	NA		
	Total PCBs	3	NA	NA	NA	NA	NA		
Metals									
(mg/kg)	Antimony	30	5.45 U	NA	NA	4.27 U	NA		
-	Arsenic	20	17.3	NA	NA	2.67 U	NA		
	Barium	3,000	337	NA	NA	27.8	NA		
	Beryllium	200	0.35 U	NA	NA	0.27 U	NA		
	Cadmium	30	2.92	NA	NA	0.27 U	NA		
	Chromium	200	35.9	NA	NA	8.59	NA		
	Lead	300	1,500	NA	NA	2.49	NA		
	Nickel	700	28.9	NA	NA	4.95	NA		
	Selenium	800	6.82 U	NA	NA	5.34 U	NA		
	Silver	200	12.2	NA	NA	1.11	NA		
	Thallium	60	4.09 U	NA	NA	3.20 U	NA		
	Vanadium	1,000	28.5	NA	NA	12.0	NA		
	Zinc	3,000	579	NA	NA	12.3	NA		
	Mercury	30	0.281	NA	NA	0.014 U	NA		

Notes:

All units in mg/kg unless otherwise specified.

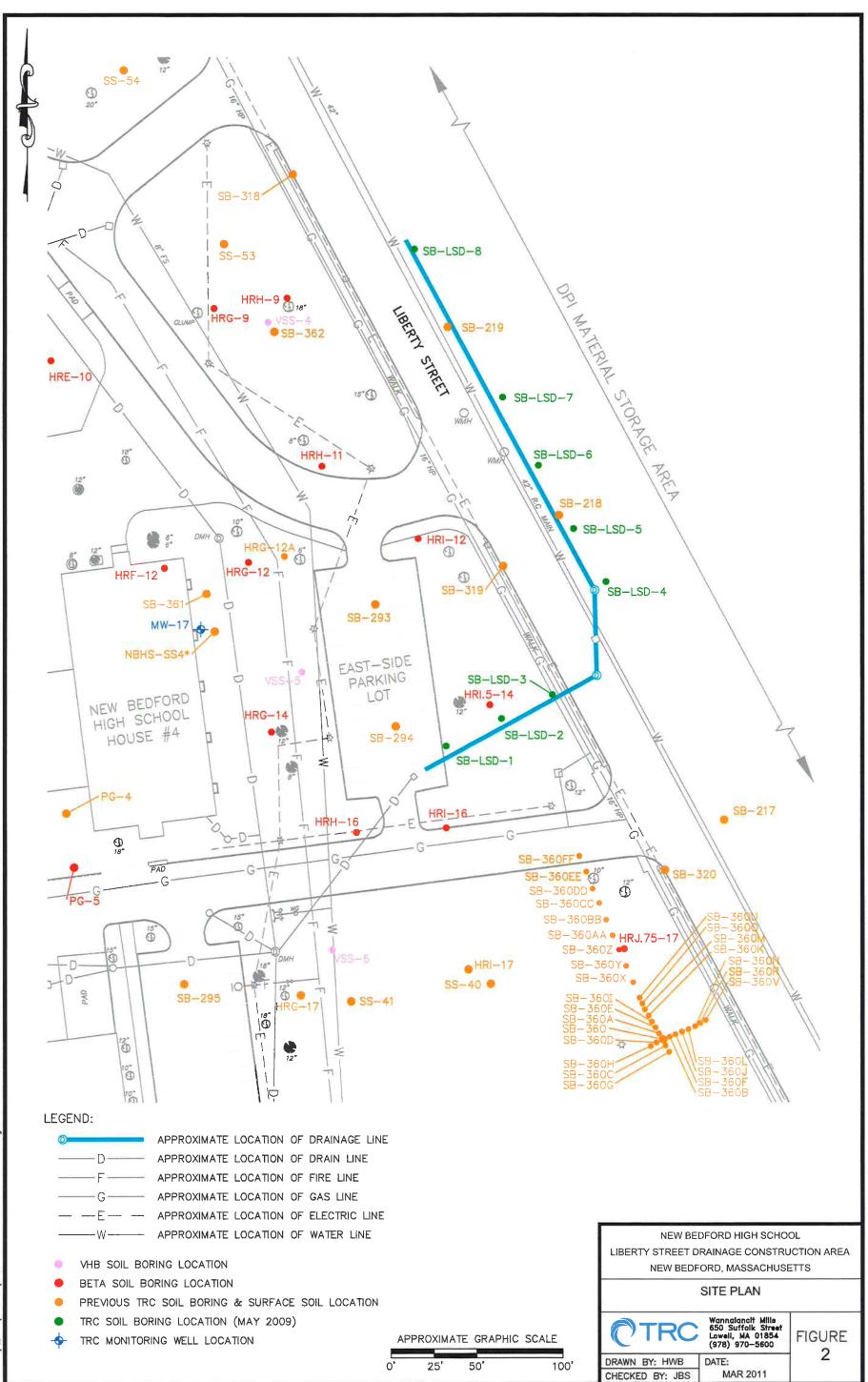
mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

J - Estimated value.

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

U - Compound was not detected at specified quantitation limit.


UJ - Estimated nondetect.

Values in **Bold** indicate the compound was detected. **Values shown in Bold and shaded type exceed applicable Method 1 stand**

PAHs - Polynuclear Aromatic Hydrocarbons. PCBs - Polychlorinated Biphenyls.

115058_New Bedford_New Bedford, MA

Summary of TRC Analytical Results for Soil Samples - May 2010 Liberty Street New Bedford, Massachusetts

Analysis	Analyte	S	ample Location:		SB-LSD-1			SB-L	.SD-2			SB-LSD-3			SB-LSD-4	
		Sar	nple Depth (ft.):	0-1	1-3	3-4	0-1	1-3	1-3	3-4	0-1	1-3	4-5	0-1	1-3	3.5-4.5
			Sample Date:	5/12/2010	5/12/2010	5/12/2010	5/12/2010	5/12/2010	5/12/2010	5/12/2010	5/12/2010	5/12/2010	5/12/2010	5/12/2010	5/12/2010	5/12/2010
		S-1/GW-3	S-1/GW-3 S-2/GW-3						Field Dup							
PCBs																
(mg/kg)	Aroclor 1016	2	3	0.0544 U	0.0521 U	0.0567 U	0.0569 U	0.0570 U	0.0560 U	0.0563 U	0.0551 U	0.0555 U	0.0599 U	0.0559 U	0.0564 U	0.0608 U
	Aroclor 1221	2	3	0.0544 U	0.0521 U	0.0567 U	0.0569 U	0.0570 U	0.0560 U	0.0563 U	0.0551 U	0.0555 U	0.0599 U	0.0559 U	0.0564 U	0.0608 U
	Aroclor 1232	2	3	0.0544 U	0.0521 U	0.0567 U	0.0569 U	0.0570 U	0.0560 U	0.0563 U	0.0551 U	0.0555 U	0.0599 U	0.0559 U	0.0564 U	0.0608 U
	Aroclor 1242	2	3	0.0544 U	0.0521 U	0.0567 U	0.0569 U	0.0570 U	0.0560 U	0.0563 U	0.0551 U	0.0555 U	0.0599 U	0.0559 U	0.0564 U	0.0608 U
	Aroclor 1248	2	3	0.0544 U	0.0521 U	0.0567 U	0.0569 U	0.0570 U	0.0560 U	0.0563 U	0.0551 U	0.0555 U	0.0599 U	0.0559 U	0.0564 U	0.0608 U
	Aroclor 1254	2	3	0.0685 J	0.0521 U	0.611 J	0.131 J	0.510 J	0.478 J	0.523 J	0.0615 J	0.0555 U	0.0599 U	0.0759 J	0.163 J	0.0608 U
	Aroclor 1260	2	3	0.0544 U	0.0521 U	0.227 J	0.0569 U	0.221 J	0.210 J	0.215 J	0.0551 U	0.0607 J	0.0599 U	0.0559 U	0.109 J	0.0608 U
	Total PCBs	2	3	0.0685 J	0.0521 U	0.838 J	0.131 J	0.731 J	0.688 J	0.738 J	0.0615 J	0.0607 J	0.0599 U	0.0759 J	0.272 J	0.0608 U

Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

J - Estimated value.

J - Estimated value.
 U - Compound was not detected at specified quantitation limit.
 Values in Bold indicate the compound was detected.
 Values shown in Bold and shaded type exceed one or more of the listed MassDEP Method 1 standards.
 PCBs - Polychlorinated Biphenyls.

115058_Liberty St_New Bedford, MA

Summary of TRC Analytical Results for Soil Samples - May 2010 Liberty Street New Bedford, Massachusetts

Analysis	Analyte	S	ample Location:		SB-LSD-5			SB-LSD-6			SB-L	SD-7			SB-LSD-8	
		Sa	nple Depth (ft.):	0-1	1-3	3.5-4.5	0-1	1-3	3.5-5	0-1	1-3	1-3	3.5-4.5	0-1	1-3	3.5-4.5
			Sample Date:	5/12/2010	5/12/2010	5/12/2010	5/12/2010	5/12/2010	5/12/2010	5/12/2010	5/12/2010	5/12/2010	5/12/2010	5/12/2010	5/12/2010	5/12/2010
		S-1/GW-3	S-2/GW-3									Field Dup				
PCBs																
(mg/kg)	Aroclor 1016	2	3	0.0588 U	0.0540 U	0.0517 U	0.0540 U	0.0623 U	0.0582 U	0.0610 U	0.0585 U	0.0581 U	0.0500 U	0.0563 U	0.0569 U	0.0551 U
	Aroclor 1221	2	3	0.0588 U	0.0540 U	0.0517 U	0.0540 U	0.0623 U	0.0582 U	0.0610 U	0.0585 U	0.0581 U	0.0500 U	0.0563 U	0.0569 U	0.0551 U
	Aroclor 1232	2	3	0.0588 U	0.0540 U	0.0517 U	0.0540 U	0.0623 U	0.0582 U	0.0610 U	0.0585 U	0.0581 U	0.0500 U	0.0563 U	0.0569 U	0.0551 U
	Aroclor 1242	2	3	0.0588 U	0.0540 U	0.0517 U	0.0540 U	0.0623 U	0.0582 U	0.0610 U	0.0585 U	0.0581 U	0.0500 U	0.0563 U	0.0569 U	0.0551 U
	Aroclor 1248	2	3	0.0588 U	0.0540 U	0.0517 U	0.0540 U	0.0623 U	0.0582 U	0.0610 U	0.0585 U	0.0581 U	0.0500 U	0.0563 U	0.0569 U	0.0551 U
	Aroclor 1254	2	3	0.458 J	3.01 J	0.0645 J	0.117 J	0.277 J	0.0582 U	0.365 J	0.676 J	0.676 J	0.0819 J	0.256 J	0.105 J	0.150 J
	Aroclor 1260	2	3	0.252 J	0.908 J	0.0517 U	0.096 J	0.146 J	0.0582 U	0.129 J	0.243 J	0.221 J	0.0500 U	0.102 J	0.0569 U	0.0944 J
	Total PCBs	2	3	0.710 J	3.918 J	0.0645 J	0.213 J	0.423 J	0.0582 U	0.494 J	0.919 J	0.897 J	0.0819 J	0.358 J	0.105 J	0.2444 J

Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

J - Estimated value.

J - Estimated value.
 U - Compound was not detected at specified quantitation limit.
 Values in Bold indicate the compound was detected.
 Values shown in Bold and shaded type exceed one or more of the listed MassDEP M PCBs - Polychlorinated Biphenyls.

Appendix C Coal Ash Data

11/18/2011

CDM 50 Hampshire Street Cambridge, MA 02139 Attn: Kate Murphy

Dear Kate:

Project#: 70514.LSP.LIBERTY Project Name: Liberty Street, New Bedford, MA Job #: 4653

This report covers the methods and findings of the Coal/Coal Ash analysis that MicroVision Laboratories, Inc. conducted on two (2) soil samples submitted for this testing from your Liberty Street, New Bedford, MA project. The purpose of this analysis was to detect and document any coal, coal ash, or wood ash that may be present in the submitted soil samples, by use of a combination of microscopy techniques including SEM/EDS, PLM, and macroscopic inspection.

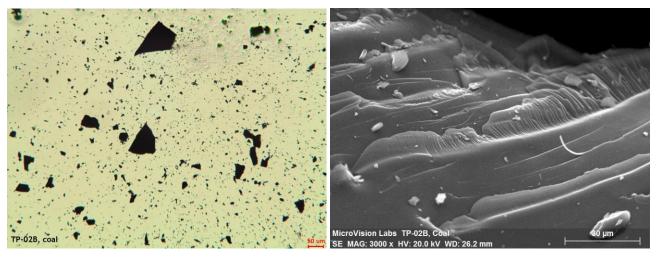
Methods:

The samples were dried and examined by eye and under the stereomicroscope for any suspect dark components to the soil. Dark suspect particles were separated from the soil samples and prepared for examination by Polarized Light Microscopy (PLM) and Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy (SEM/EDS).

For the PLM examination, the suspect particle types detected in the samples were ground in a mortar and pestle, mounted on glass slides in immersion oil (n=1.515) and covered with glass cover slips. These sample particles were then examined at various magnifications and digital images were taken.

For the SEM examination, the suspect particle types were mounted on an aluminum analysis stub with double sided adhesive tape, coated with evaporated graphite and examined under the SEM by EDS to obtain elemental data in the form of EDS spectra. Digital images were taken of the sample particles at various magnifications with the SEM.

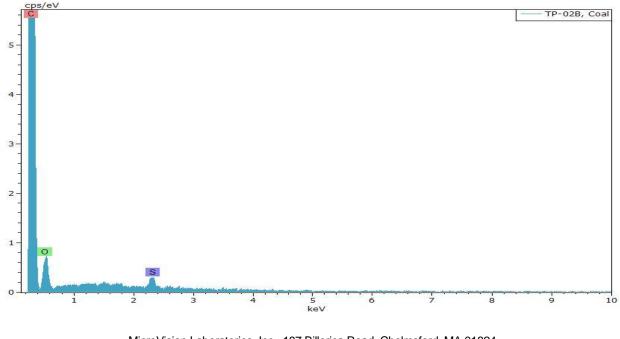
Findings:


The following pages display the data for each particle type detected in the samples for this project. Each page contains a PLM image, SEM image, and EDS spectrum for the particle types identified in each sample as well as particle type descriptions and observations.

Page 2

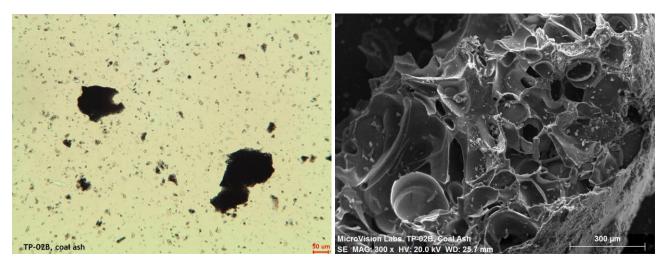
Sample: TP-02 B

Number of Suspect Particle Types: Two (2)


Particle type 1 consisted of approximately fifteen (15) shiny, black grains which were 2mm-10mm in diameter. The PLM examination indicated this particle type to be consistent with coal. The PLM and SEM images of this particle type show the angular edges and typical conchoidal fractures found in coal.

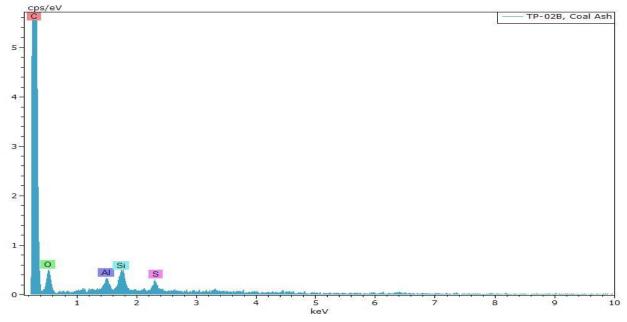
PLM Image

SEM Image


The EDS spectrum, shown below, confirms that this particle type is coal. The analysis for this particle shows a strong peak concentration of carbon, with lower peak concentrations of oxygen and sulfur.

MicroVision Laboratories, Inc. 187 Billerica Road, Chelmsford, MA 01824 Phone: (978) 250-9909 Fax: (978) 250-9901 Email: Sales@MicroVisionLabs.com www.MicroVisionLabs.com

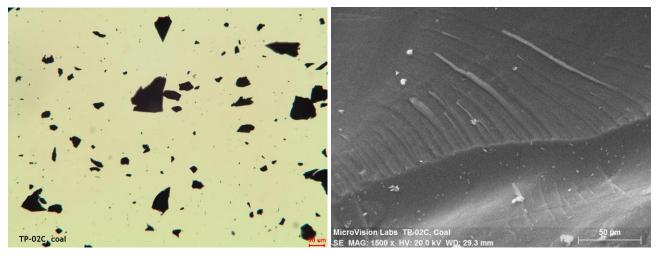
• Page 3


Particle type 2 consisted of five (5) dark, porous grains which were 3mm-50mm in diameter. The PLM examination indicated this particle type to be consistent with coal ash. The PLM and SEM images show the spherical gas voids that formed during combustion.

PLM Image

SEM Image

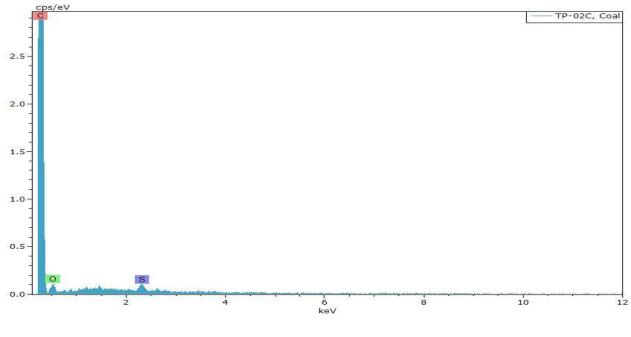
The EDS spectrum, shown below, confirms this particle type is coal ash. The analysis for this particle shows strong peak concentrations of carbon, with lower peak concentrations of oxygen, aluminum, silicon and sulfur.


MicroVision Laboratories, Inc. 187 Billerica Road, Chelmsford, MA 01824 Phone: (978) 250-9909 Fax: (978) 250-9901 Email: Sales@MicroVisionLabs.com www.MicroVisionLabs.com

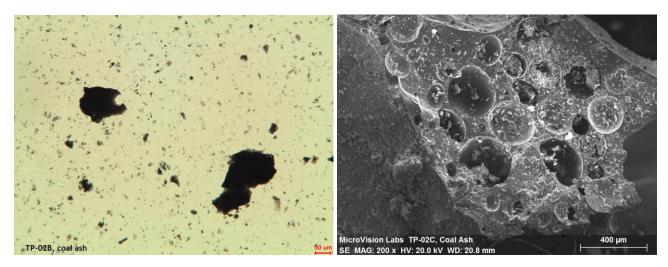
Page 4

Sample: TP-02 C

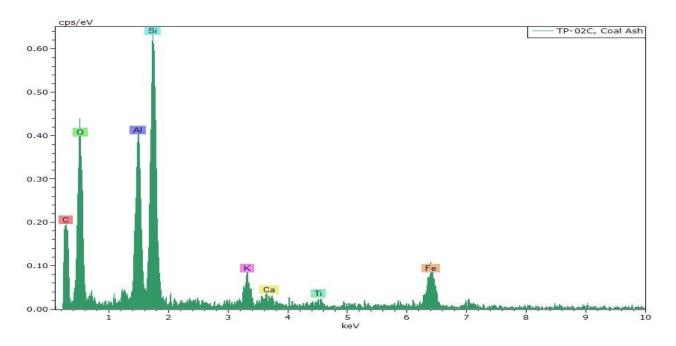
Number of Suspect Particle Types: Two (2)


Particle type 1 consisted of approximately ten (10) shiny, black grains which were 1mm-3mm in diameter. The PLM examination indicated this particle type to be consistent with coal. The PLM and SEM images of this particle type show the angular edges and typical conchoidal fractures found in coal.

PLM Image


SEM Image

The EDS spectrum, shown below, confirms that this particle type is coal. The analysis for this particle shows a strong peak concentration of carbon, with lower peak concentrations of oxygen and sulfur.


Particle type 2 consisted of ten (10) dark, porous grains approximately 3mm-40mm in diameter. The PLM examination indicated this particle type to be consistent with coal ash. The PLM and SEM images show the spherical gas voids that formed during combustion.

PLM Image

SEM Image

The EDS spectrum, shown below, confirms this particle type is coal ash. The analysis for this particle shows strong peak concentrations of carbon, oxygen, aluminum and silicon, with lower peak concentrations of potassium, calcium, titanium and iron.

MicroVision Laboratories, Inc. 187 Billerica Road, Chelmsford, MA 01824 Phone: (978) 250-9909 Fax: (978) 250-9901 Email: Sales@MicroVisionLabs.com www.MicroVisionLabs.com

Results Summary Table:

Sample Name	Material Detected
TP-02B	Coal (moderate), Coal Ash (moderate)
TP-02C	Coal (light), Coal Ash (moderate)

The concentrations of the particle types detected in these samples are listed in parenthesis in the table above and are based on the number of particles found and the relative difficultly in finding them. The concentration information is listed for informational purposes only and has no bearing on exemption status. Please let me know if you have any questions about this analysis or if there is anything else I can do for you.

Sincerely,

Robert Romano Microscopist

20

Denise Weidler Microscopist

Ph	Analytical Report Requested: YES	-	11 18 Jan 11/10/11/ 1400	111011/0800	Relinquished By Date/Time Received By:	12)	11)	10)	(6	8)	7)	6)	5)	4)	3)	2) TP-02C 10911	1) TP-02 B 10911	Collected Date		LABORATORIES, INC.)
M 187 Bill Phone 978-250-9909	<u> </u>			Nº1	Receiv										,	- 838 - 3	1200	Sampler's Initials	Email: mu	Fax: 6	Phone: 617-452-6302	Billing Address:	Client: CDM		
er ic	NO			1 (AMO	ęd By:				-							<	~	Coal Ash Test	Email: murphykg@cdm.com	617-452-6302	17-452-6302	idress: 50	M	C	Chai
oVision I ca Road, Fax 978-: microvis				0														Lead Paint	m			Hampsh		lient Info	n Of
MicroVision Laboratories, Inc. Illerica Road, Chelmsford, MA 01824 9 Fax 978-250-9901 Toll Free 1-877-250-9909 microvisionlabs.com			1 1	11/10/11 0800	Date													SEM/EDS				50 Hampshire Street Cambridge MA		Client Information	Chain Of Custody
ies, Inc. ord, MA (Toll Fr				0500	Date/Time			8										PLM/Light Microscopy			-	Cambrid		ALC: NO.	ody
11824 ee 1-877																		Soot			10		1		2
-250-990	2											~						Dust ID	2	PO#: NIA	roject Ma	roject Lo	roject Na	- 23	licroVisio
		pic																Unknow Mat'l ID	113	A	Project Manager: Kate Murphy	Project Location: New Bedford MA Project Number: 70514.LSP.LIBEF	me: Liberty S		MicroVision Labs Job#:
			ndard TAT															FTIR			e Murphy	Project Location: New Bedford MA Project Number: 70514.LSP.LIBERTY	Project Name: Liberty Street, New Bedford MA	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
																		Polished Cross Section				Υ	ord MA	Cold Wiley	4653
																		Particle Size Analysis							ω
																		Other							

MicroVision Laboratories, Inc. 187 Billerica Road, Chelmsford, MA 01824 Phone: (978) 250-9909 Fax: (978) 250-9901 Email: Sales@MicroVisionLabs.com www.MicroVisionLabs.com _

Appendix D Laboratory Reports

ANALYTICAL REPORT

Lab Number:	L1118751
Client:	Camp Dresser & McKee, Inc.
	1 Cambridge Place
	50 Hampshire Street
	Cambridge, MA 02139
ATTN:	Bill Swanson
Phone:	(617) 452-6274
Project Name:	NEW BEDFORD PITS
Project Number:	70514.LSP.LIBERTY
Report Date:	11/17/11

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), USDA (Permit #P-330-11-00240), NC (666), TX (T104704476), DOD (L2217), US Army Corps of Engineers.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Lab Number:	L1118751
Report Date:	11/17/11

Project Name:	NEW BEDFORD PITS
Project Number:	70514.LSP.LIBERTY

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1118751-01	TP-01	NEW BEDFORD, MA	11/09/11 08:35
L1118751-02	TP-02	NEW BEDFORD, MA	11/09/11 09:00
L1118751-03	TP-03	NEW BEDFORD, MA	11/09/11 09:45
L1118751-04	TP-04	NEW BEDFORD, MA	11/09/11 09:55
L1118751-05	TP-05	NEW BEDFORD, MA	11/09/11 10:10
L1118751-06	TP-06	NEW BEDFORD, MA	11/09/11 11:00
L1118751-07	TP-07	NEW BEDFORD, MA	11/09/11 11:15
L1118751-08	TP-08	NEW BEDFORD, MA	11/09/11 11:30
L1118751-09	TP-09	NEW BEDFORD, MA	11/09/11 11:50
L1118751-10	TP-10	NEW BEDFORD, MA	11/09/11 12:00
L1118751-11	TP-11	NEW BEDFORD, MA	11/09/11 12:40

Project Name: NEW BEDFORD PITS Project Number: 70514.LSP.LIBERTY
 Lab Number:
 L1118751

 Report Date:
 11/17/11

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status				
A	Were all samples received in a condition consistent with those described on the Chain-of- Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES			
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES			
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES			
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES			
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A			
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A			
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES			
A res	A response to questions G, H and I is required for "Presumptive Certainty" status				
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO			
н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO			

I Were results reported for the complete analyte list specified in the selected CAM protocol(s)? NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: NEW BEDFORD PITS Project Number: 70514.LSP.LIBERTY

Lab Number: L1118751 Report Date: 11/17/11

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.

MCP Related Narratives

Sample Receipt

In reference to question H:

A Matrix Spike was not submitted for the analysis of Metals.

Semivolatile Organics

L1118751-01, -03, -05, -06, -07 and -09 have elevated detection limits due to the dilutions required by the sample matrix (extracts were dark and viscous).

L1118751-08 has elevated detection limits due to the dilution required by the matrix interferences encountered during the concentration of the sample and the analytical dilution required by the sample matrix (extract was dark and viscous).

In reference to question G:

 Lab Number:
 L1118751

 Report Date:
 11/17/11

Case Narrative (continued)

L1118751-01, -03 and -05 through -09: One or more of the target analytes did not achieve the requested CAM reporting limits.

In reference to question H:

The surrogate recoveries for L1118751-08 are below the acceptance criteria for 2-Fluorophenol, Phenol-d6, Nitrobenzene-d5, 2-Fluorobiphenyl, 2,4,6-Tribromophenol, and 4-Terphenyl-d14 (all 0%) due to the dilution required to quantitate the sample. Re-extraction was not required; therefore, the results of the original analysis are reported.

The surrogate recovery for L1118751-10 is outside the individual acceptance criteria for 2,4,6-Tribromophenol (131%), but within the overall method allowances. The results of the original analysis are reported; however, all associated compounds are considered to have a potential bias.

The WG501641-3 LCSD recoveries, associated with L1118751-07 through -11, are below the individual acceptance criteria for Aniline (33%) and 2,4-Dinitrophenol (12%), but within the overall method allowances. The results of the associated samples are reported; however, all results are considered to have a potentially low bias for these compounds.

The WG501641-2/-3 LCS/LCSD RPD, associated with L1118751-07 through -11, is above the acceptance criteria for 2,4-Dinitrophenol (111%).

The WG501663-2 LCS recoveries, associated with L1118751-01 through -06, are below the individual acceptance criteria for Aniline (33%) and 2,4-Dinitrophenol (15%), but within the overall method allowances. The results of the associated samples are reported; however, all results are considered to have a potentially low bias for these compounds.

The WG501663-2/-3 LCS/LCSD RPDs, associated with L1118751-01 through -06, are above the acceptance criteria for Aniline (41%) and 2,4-Dinitrophenol (72%).

Metals

In reference to question I:

All samples were analyzed for a subset of MCP elements per the Chain of Custody.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Unibeth of Semmers Elizabeth Simmons

Title: Technical Director/Representative

Date: 11/17/11

ORGANICS

SEMIVOLATILES

			Serial_No:	11171112:25
Project Name:	NEW BEDFORD PITS		Lab Number:	L1118751
Project Number:	70514.LSP.LIBERTY		Report Date:	11/17/11
		SAMPLE RESULTS		
Lab ID:	L1118751-01 D		Date Collected:	11/09/11 08:35
Client ID:	TP-01		Date Received:	11/10/11
Sample Location:	NEW BEDFORD, MA		Field Prep:	Not Specified
Matrix:	Soil		Extraction Method:	EPA 3546
Analytical Method:	97,8270C		Extraction Date:	11/11/11 05:27
Analytical Date:	11/14/11 17:22			
Analyst:	JB			
Percent Solids:	90%			

1.2.4-Trichlorobenzene ND ug/kg 1800 5 Hexachlorobenzene ND ug/kg 1600 5 Bis(2-chlorobenzene ND ug/kg 1800 5 2Chloronaphthalene ND ug/kg 1800 5 1.2-Dichlorobenzene ND ug/kg 1800 5 1.4-Dichlorobenzene ND ug/kg 1800 5 1.4-Dichlorobenzene ND ug/kg 1800 5 3.3-Dichlorobenzene ND ug/kg 1800 5 2.4-Dinitrotoluene ND ug/kg 1800 5 2.4-Dinitrotoluene ND ug/kg 1800 5 Eloc-chlorostoropylether ND ug/kg 1800 5 Eloc-chlorostoropylether ND ug/kg 1800 5 Bis(2-chlorostoropylether ND ug/kg 1800 5 Isophorone ND ug/kg 1800	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,2,4-Trichlorobenzene ND ug/kg 1800 5 Hexachlorobenzene ND ug/kg 1600 5 Bis(2-chlorobenzene ND ug/kg 1800 5 2-Chlorobenzene ND ug/kg 1800 5 1,2-Dichlorobenzene ND ug/kg 1800 5 1,4-Dichlorobenzene ND ug/kg 1800 5 1,4-Dichlorobenzene ND ug/kg 1800 5 1,4-Dichlorobenzene ND ug/kg 1800 5 2,4-Dinitrobluene ND ug/kg 1800 5 2,6-Dinitrobluene ND ug/kg 1800 5 Elos/2-chlorostopopylether ND ug/kg 1800 5 Elos/2-chlorostopopylether ND ug/kg 1800 5 Bis/2-chlorostopopylether ND ug/kg 1800 5 Isophorone ND ug/kg 1800	MCP Semivolatile Organics - Westboro	ugh Lab					
HexachlorobenzeneNDug/kg11005Big(2-chloroethyl)etherNDug/kg160052-chloronaphthaleneNDug/kg180051,2-DichlorobenzeneNDug/kg180051,4-DichlorobenzeneNDug/kg180051,4-DichlorobenzeneNDug/kg180052,4-DinitrotoleneNDug/kg180052,4-DinitrotoleneNDug/kg180052,6-DinitrotoleneNDug/kg180052,6-DinitrotoleneNDug/kg180052,6-DinitrotoleneNDug/kg18005Elio(2-chlorostoropyl)etherNDug/kg18005Big(2-chlorostoropyl)etherNDug/kg18005Big(2-chlorostoropyl)etherNDug/kg18005Big(2-chlorostoropyl)etherNDug/kg18005Big(2-chlorostoropyl)etherNDug/kg18005Big(2-chlorostoropyl)etherNDug/kg18005Big(2-chlorostoropyl)etherNDug/kg18005Big(2-chlorostoropyl)etherNDug/kg18005Big(2-chlorostoropyl)phthalateNDug/kg18005Big(2-chlorostoropyl)phthalateND	Acenaphthene	ND		ug/kg	1400		5
Bis/2-chloronaphthaleneNDug/kg160052-ChloronaphthaleneNDug/kg180051,2-DichlorobenzeneNDug/kg180051,3-DichlorobenzeneNDug/kg180051,4-DichlorobenzeneNDug/kg180052,4-DinitrotolueneNDug/kg180052,4-DinitrotolueneNDug/kg180052,6-DinitrotolueneNDug/kg180052,6-DinitrotolueneNDug/kg180052,6-DinitrotolueneNDug/kg180052,6-DinitrotolueneNDug/kg18005ElucrantheneNDug/kg18005ElucrantheneNDug/kg18005ElucratheneNDug/kg18005Els(2-chlorothoxy)methaneNDug/kg18005IsophoneNDug/kg18005IsophoneNDug/kg18005Bis/2-chlorothoxy)methateNDug/kg18005Bis/2-thryhpthalateNDug/kg18005Di-n-otylpthhalateNDug/kg18005Di-n-otylpthhalateNDug/kg18005Di-n-otylpthhalateNDug/kg <t< td=""><td>1,2,4-Trichlorobenzene</td><td>ND</td><td></td><td>ug/kg</td><td>1800</td><td></td><td>5</td></t<>	1,2,4-Trichlorobenzene	ND		ug/kg	1800		5
D ug/kg 1800 5 1.2-Dichlorobenzene ND ug/kg 1800 5 1.3-Dichlorobenzene ND ug/kg 1800 5 3.3-Dichlorobenzene ND ug/kg 1800 5 3.3-Dichlorobenzidine ND ug/kg 1800 5 2.4-Dinitrotoluene ND ug/kg 1800 5 2.4-Dinitrotoluene ND ug/kg 1800 5 2.6-Dinitrotoluene ND ug/kg 1800 5 Fluoranthene ND ug/kg 1800 5 Bis(2-chlorothoxy)methane ND ug/kg 1800 5 </td <td>Hexachlorobenzene</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>1100</td> <td></td> <td>5</td>	Hexachlorobenzene	ND		ug/kg	1100		5
1,2-Dichlorobenzene ND ug/kg 1800 5 1,3-Dichlorobenzene ND ug/kg 1800 5 3,3-Dichlorobenzidine ND ug/kg 1800 5 3,3-Dichlorobenzidine ND ug/kg 1800 5 2,4-Dinitrotoluene ND ug/kg 1800 5 2,6-Dinitrotoluene ND ug/kg 1800 5 2,6-Dinitrotoluene ND ug/kg 1800 5 Fluoranthene ND ug/kg 1800 5 Elis(2-chloroisopropyl)ether ND ug/kg 1800 5 Bis(2-chlorothoxy)methane ND ug/kg 1800 5 Bis(2-chlorothoxy)methane ND ug/kg 1800 5 Bis(2-chlorothoxy)methane ND ug/kg 1800 5 ND ug/kg 1800 5 5 Sophorone ND ug/kg 1800 </td <td>Bis(2-chloroethyl)ether</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>1600</td> <td></td> <td>5</td>	Bis(2-chloroethyl)ether	ND		ug/kg	1600		5
ND ug/kg 1800 5 1,4-Dichlorobenzene ND ug/kg 1800 5 3,3-Dichlorobenzidine ND ug/kg 1800 5 2,4-Dinitrotoluene ND ug/kg 1800 5 2,6-Dinitrotoluene ND ug/kg 1800 5 Azobenzene ND ug/kg 1800 5 Fluoranthene 1400 ug/kg 1800 5 Bis(2-chlorobutylpether ND ug/kg 1800 5 Bis(2-chlorobutadiene ND ug/kg 1800 5 Sophorone ND ug/kg 1800 5 B	2-Chloronaphthalene	ND		ug/kg	1800		5
1,4-Dichlorobenzene ND ug/kg 1800 5 3,3'-Dichlorobenzidine ND ug/kg 1800 5 2,4-Dinitrotoluene ND ug/kg 1800 5 2,6-Dinitrotoluene ND ug/kg 1800 5 Azobenzene ND ug/kg 1800 5 Fluoranthene 1400 ug/kg 1800 5 Bis(2-chloroeboxy)methane ND ug/kg 1800 5 Bis(2-chloroeboxy)methane ND ug/kg 1800 5 Bis(2-chloroeboxy)methane ND ug/kg 1800 5 Hexachloroethane ND ug/kg 1800 5 Isophorone ND ug/kg 1800 5 Nitrobenzene ND ug/kg 1800 5 Bis(2-Ethylhexyl)phthalate ND ug/kg 1800 5 Din-butylphthalate ND ug/kg 1800 <td>1,2-Dichlorobenzene</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>1800</td> <td></td> <td>5</td>	1,2-Dichlorobenzene	ND		ug/kg	1800		5
3.3-Dichlorobenzidine ND ug/kg 1800 5 2,4-Dinitrotoluene ND ug/kg 1800 5 Azobenzene ND ug/kg 1800 5 Azobenzene ND ug/kg 1800 5 Fluoranthene 1400 ug/kg 1800 5 4-Bromophenyl phenyl ether ND ug/kg 1800 5 Bis(2-chloroisopropyl)ether ND ug/kg 1800 5 Bis(2-chloroisopropyl)ether ND ug/kg 1800 5 Bis(2-chloroethoxy)methane ND ug/kg 1800 5 Hexachlorobutadiene ND ug/kg 1800 5 Isophorone ND ug/kg 1800 5 Nitrobenzene ND ug/kg 1800 5 Bis(2-cthlyhexyl)phthalate ND ug/kg 1800 5 Di-n-butylphthalate ND ug/kg 1800 <t< td=""><td>1,3-Dichlorobenzene</td><td>ND</td><td></td><td>ug/kg</td><td>1800</td><td></td><td>5</td></t<>	1,3-Dichlorobenzene	ND		ug/kg	1800		5
A-Dinitrotoluene ND ug/kg 1800 5 2.4-Dinitrotoluene ND ug/kg 1800 5 Azobenzene ND ug/kg 1800 5 Fluoranthene 1400 ug/kg 1800 5 Fluoranthene 1400 ug/kg 1800 5 Bis(2-chloroisopropyl)ether ND ug/kg 1800 5 Bis(2-chloroethoxy)methane ND ug/kg 1800 5 Hexachloroethane ND ug/kg 1800 5 Isophorone ND ug/kg 1800 5 Naphthalene ND ug/kg 1800 5 Sit/benzene ND ug/kg 1800 5 Dir-butylphthalate ND ug/kg 1800 5 Dir-butylphthalate ND ug/kg 1800 5	1,4-Dichlorobenzene	ND		ug/kg	1800		5
2.6-Dinitrotoluene ND ug/kg 1800 5 Azobenzene ND ug/kg 1800 5 Fluoranthene 1400 ug/kg 1800 5 4-Bromophenyl phenyl ether ND ug/kg 1800 5 Bis(2-chloroisopropyl)ether ND ug/kg 1900 5 Bis(2-chloroethoxy)methane ND ug/kg 1800 5 Hexachloroethane ND ug/kg 1800 5 Isophorone ND ug/kg 1600 5 Nitrobenzene ND ug/kg 1600 5 Bis(2-Ethylhexyl)phthalate ND ug/kg 1800 5 Bis(2-Ethylhexyl)phthalate ND ug/kg 1800 5 Di-n-butylphthalate ND ug/kg 1800 5 Di-n-butylphthalate ND ug/kg 1800 5 Di-n-butylphthalate ND ug/kg 1800	3,3'-Dichlorobenzidine	ND		ug/kg	1800		5
Azobenzene ND ug/kg 1800 5 Fluoranthene 1400 ug/kg 1100 5 4-Bromophenyl phenyl ether ND ug/kg 1800 5 Bis(2-chloroisopropyl)ether ND ug/kg 1900 5 Bis(2-chloroisopropyl)ether ND ug/kg 1800 5 Hexachlorobutadiene ND ug/kg 1800 5 Hexachlorobutadiene ND ug/kg 1800 5 Isophorone ND ug/kg 1600 5 Nitrobenzene ND ug/kg 1800 5 Bis(2-Ethylhexyl)phthalate ND ug/kg 1800 5 Bis(2-Ethylhexyl)phthalate ND ug/kg 1800 5 Di-n-butylphthalate ND ug/kg 1800 5 Di-n-ctylphthalate ND ug/kg 1800	2,4-Dinitrotoluene	ND		ug/kg	1800		5
Idea Idea <thidea< th=""> Idea Idea <thi< td=""><td>2,6-Dinitrotoluene</td><td>ND</td><td></td><td>ug/kg</td><td>1800</td><td></td><td>5</td></thi<></thidea<>	2,6-Dinitrotoluene	ND		ug/kg	1800		5
4-Bromophenyl phenyl ether ND ug/kg 1800 5 Bis(2-chloroisopropyl)ether ND ug/kg 1900 5 Bis(2-chloroethoxy)methane ND ug/kg 1800 5 Hexachlorobutadiene ND ug/kg 1400 5 Hexachloroethane ND ug/kg 1600 5 Isophorone ND ug/kg 1600 5 Naphthalene ND ug/kg 1600 5 Nitrobenzene ND ug/kg 1800 5 Bis(2-Ethylhexyl)phthalate ND ug/kg 1800 5 Bis(2-Ethylhexyl)phthalate ND ug/kg 1800 5 Bis(2-Ethylhexyl)phthalate ND ug/kg 1800 5 Di-n-butylphthalate ND ug/kg 1800 5 Di-n-octylphthalate ND ug/kg 1800 5 Dientyl phthalate ND ug/kg 180	Azobenzene	ND		ug/kg	1800		5
Bis(2-chloroisopropyl)ether ND ug/kg 2200 5 Bis(2-chloroethoxy)methane ND ug/kg 1900 5 Hexachlorobutadiene ND ug/kg 1800 5 Hexachloroethane ND ug/kg 1400 5 Isophorone ND ug/kg 1600 5 Naphthalene ND ug/kg 1800 5 Nitrobenzene ND ug/kg 1800 5 Bis(2-Ethylhexyl)phthalate ND ug/kg 1800 5 Butyl benzyl phthalate ND ug/kg 1800 5 Di-n-butylphthalate ND ug/kg 1800 5 Di-n-butyl phthalate ND ug/kg 1800 5 Di-n-butyl phthalate ND ug/kg 1800 5 Diethyl phthalate ND ug/kg 1800 <	Fluoranthene	1400		ug/kg	1100		5
Bis(2-chloroethoxy)methane ND ug/kg 1900 5 Hexachlorobutadiene ND ug/kg 1800 5 Hexachloroethane ND ug/kg 1400 5 Isophorone ND ug/kg 1600 5 Naphthalene ND ug/kg 1800 5 Nitrobenzene ND ug/kg 1800 5 Bis(2-Ethylhexyl)phthalate ND ug/kg 1800 5 Bityl benzyl phthalate ND ug/kg 1800 5 Di-n-butylphthalate ND ug/kg 1800 5 Di-n-octylphthalate ND ug/kg 1800 5 Di-n-octylphthalate ND ug/kg 1800 5 Diethyl phthalate ND ug/kg 1800 5 Diethyl phthalate ND ug/kg 1800	4-Bromophenyl phenyl ether	ND		ug/kg	1800		5
Hexachlorobutadiene ND ug/kg 1800 5 Hexachloroethane ND ug/kg 1400 5 Isophorone ND ug/kg 1600 5 Naphthalene ND ug/kg 1800 5 Nitrobenzene ND ug/kg 1800 5 Bis(2-Ethylhexyl)phthalate ND ug/kg 1800 5 Butyl benzyl phthalate ND ug/kg 1800 5 Di-n-butylphthalate ND ug/kg 1800 5 Diethyl phthalate ND ug/kg 1800 5 Benzo(a)anthracene ND ug/kg 1400	Bis(2-chloroisopropyl)ether	ND		ug/kg	2200		5
Hexachloroethane ND ug/kg 1400 5 Isophorone ND ug/kg 1600 5 Naphthalene ND ug/kg 1800 5 Nitrobenzene ND ug/kg 1800 5 Bis(2-Ethylhexyl)phthalate ND ug/kg 1800 5 Bis(2-Ethylhexyl)phthalate ND ug/kg 1800 5 Di-n-butylphthalate ND ug/kg 1800 5 Di-n-butylphthalate ND ug/kg 1800 5 Di-n-octylphthalate ND ug/kg 1800 5 Diethyl phthalate ND ug/kg 1800 5 Diethyl phthalate ND ug/kg 1800 5 Benzo(a)anthracene ND ug/kg 1800 5 Benzo(a)pyrene ND ug/kg 1400 5 <td>Bis(2-chloroethoxy)methane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>1900</td> <td></td> <td>5</td>	Bis(2-chloroethoxy)methane	ND		ug/kg	1900		5
IsophoroneNDug/kg16005NaphthaleneNDug/kg18005NitrobenzeneNDug/kg16005Bis(2-Ethylhexyl)phthalateNDug/kg18005Butyl benzyl phthalateNDug/kg18005Di-n-butylphthalateNDug/kg18005Di-n-octylphthalateNDug/kg18005Diethyl phthalateNDug/kg18005Diethyl phthalateNDug/kg18005Diethyl phthalateNDug/kg18005Benzo(a)anthraceneNDug/kg11005Benzo(a)pyreneNDug/kg14005Benzo(b)fluorantheneNDug/kg11005	Hexachlorobutadiene	ND		ug/kg	1800		5
Naphthalene ND ug/kg 1800 5 Nitrobenzene ND ug/kg 1600 5 Bis(2-Ethylhexyl)phthalate ND ug/kg 1800 5 Bityl benzyl phthalate ND ug/kg 1800 5 Di-n-butylphthalate ND ug/kg 1800 5 Diethyl phthalate ND ug/kg 1800 5 Diethyl phthalate ND ug/kg 1800 5 Benzo(a)anthracene ND ug/kg 1400 5 Benzo(b)fluoranthene ND ug/kg 1400	Hexachloroethane	ND		ug/kg	1400		5
Nitrobenzene ND ug/kg 1600 5 Bis(2-Ethylhexyl)phthalate ND ug/kg 1800 5 Butyl benzyl phthalate ND ug/kg 1800 5 Di-n-butylphthalate ND ug/kg 1800 5 Di-n-butylphthalate ND ug/kg 1800 5 Di-n-octylphthalate ND ug/kg 1800 5 Di-n-octylphthalate ND ug/kg 1800 5 Diethyl phthalate ND ug/kg 1800 5 Dimethyl phthalate ND ug/kg 1800 5 Benzo(a)anthracene ND ug/kg 1800 5 Benzo(a)pyrene ND ug/kg 1400 5 Benzo(b)fluoranthene ND ug/kg 1400 5	Isophorone	ND		ug/kg	1600		5
Bis(2-Ethylhexyl)phthalate ND ug/kg 1800 5 Butyl benzyl phthalate ND ug/kg 1800 5 Di-n-butylphthalate ND ug/kg 1800 5 Di-n-octylphthalate ND ug/kg 1800 5 Di-n-octylphthalate ND ug/kg 1800 5 Diethyl phthalate ND ug/kg 1800 5 Diethyl phthalate ND ug/kg 1800 5 Diethyl phthalate ND ug/kg 1800 5 Benzo(a)anthracene ND ug/kg 1100 5 Benzo(a)pyrene ND ug/kg 1400 5 Benzo(b)fluoranthene ND ug/kg 1400 5	Naphthalene	ND		ug/kg	1800		5
Butyl benzyl phthalateNDug/kg18005Di-n-butylphthalateNDug/kg18005Di-n-octylphthalateNDug/kg18005Diethyl phthalateNDug/kg18005Diethyl phthalateNDug/kg18005Diethyl phthalateNDug/kg18005Benzo(a)anthraceneNDug/kg11005Benzo(a)pyreneNDug/kg14005Benzo(b)fluorantheneNDug/kg11005	Nitrobenzene	ND		ug/kg	1600		5
Di-n-butylphthalate ND ug/kg 1800 5 Di-n-octylphthalate ND ug/kg 1800 5 Diethyl phthalate ND ug/kg 1800 5 Diethyl phthalate ND ug/kg 1800 5 Dimethyl phthalate ND ug/kg 1800 5 Benzo(a)anthracene ND ug/kg 1100 5 Benzo(a)pyrene ND ug/kg 1400 5 Benzo(b)fluoranthene ND ug/kg 1100 5	Bis(2-Ethylhexyl)phthalate	ND		ug/kg	1800		5
Di-n-octylphthalateNDug/kg18005Diethyl phthalateNDug/kg18005Dimethyl phthalateNDug/kg18005Benzo(a)anthraceneNDug/kg11005Benzo(a)pyreneNDug/kg14005Benzo(b)fluorantheneNDug/kg11005	Butyl benzyl phthalate	ND		ug/kg	1800		5
Diethyl phthalate ND ug/kg 1800 5 Dimethyl phthalate ND ug/kg 1800 5 Benzo(a)anthracene ND ug/kg 1100 5 Benzo(a)pyrene ND ug/kg 1400 5 Benzo(b)fluoranthene ND ug/kg 1400 5	Di-n-butylphthalate	ND		ug/kg	1800		5
Dimethyl phthalateNDug/kg18005Benzo(a)anthraceneNDug/kg11005Benzo(a)pyreneNDug/kg14005Benzo(b)fluorantheneNDug/kg11005	Di-n-octylphthalate	ND		ug/kg	1800		5
Benzo(a)anthraceneNDug/kg11005Benzo(a)pyreneNDug/kg14005Benzo(b)fluorantheneNDug/kg11005	Diethyl phthalate	ND		ug/kg	1800		5
Benzo(a)pyreneNDug/kg14005Benzo(b)fluorantheneNDug/kg11005	Dimethyl phthalate	ND		ug/kg	1800		5
Benzo(b)fluoranthene ND ug/kg 1100 5	Benzo(a)anthracene	ND		ug/kg	1100		5
	Benzo(a)pyrene	ND		ug/kg	1400		5
Benzo(k)fluoranthene ND ug/kg 1100 5	Benzo(b)fluoranthene	ND		ug/kg	1100		5
	Benzo(k)fluoranthene	ND		ug/kg	1100		5

						Serial_N	o:11171	112:25
Project Name:	NEW BEDFORD PITS				La	ab Number:	L1	118751
Project Number:	70514.LSP.LIBERTY				R	eport Date:	11	/17/11
-			SAMPLE R	ESULTS		•		
Lab ID:	L1118751-01	D			Dat	e Collected:	11/0)9/11 08:35
Client ID:	TP-01				Dat	e Received:	11/1	0/11
Sample Location:	NEW BEDFORD, N	ΛA			Fiel	d Prep:	Not	Specified
Parameter			Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile	Organics - Westborough	Lab						
Chrysene			ND		ug/kg	1100		5
Acenaphthylene			ND		ug/kg	1400		5
Anthracene			ND		ug/kg	1100		5
Benzo(ghi)perylene			ND		ug/kg	1400		5
Fluorene			ND		ug/kg	1800		5
Phenanthrene			ND		ug/kg	1100		5
Dibenzo(a,h)anthracene	9		ND		ug/kg	1100		5
Indeno(1,2,3-cd)Pyrene			ND		ug/kg	1400		5
Pyrene			1200		ug/kg	1100		5
Aniline			ND		ug/kg	2200		5
4-Chloroaniline			ND		ug/kg	1800		5
Dibenzofuran			ND		ug/kg	1800		5
2-Methylnaphthalene			ND		ug/kg	2200		5
Acetophenone			ND		ug/kg	1800		5
2,4,6-Trichlorophenol			ND		ug/kg	1100		5
2-Chlorophenol			ND		ug/kg	1800		5
2,4-Dichlorophenol			ND		ug/kg	1600		5
2,4-Dimethylphenol			ND		ug/kg	1800		5
2-Nitrophenol			ND		ug/kg	3900		5
4-Nitrophenol			ND		ug/kg	2500		5
2,4-Dinitrophenol			ND		ug/kg	8600		5
Pentachlorophenol			ND		ug/kg	3600		5
Phenol			ND		ug/kg	1800		5
2-Methylphenol			ND		ug/kg	1800		5
3-Methylphenol/4-Methy	ylphenol		ND		ug/kg	2600		5
2,4,5-Trichlorophenol			ND		ug/kg	1800		5

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	92		30-130	
Phenol-d6	100		30-130	
Nitrobenzene-d5	91		30-130	
2-Fluorobiphenyl	96		30-130	
2,4,6-Tribromophenol	109		30-130	
4-Terphenyl-d14	103		30-130	

			Serial_No:	11171112:25
Project Name:	NEW BEDFORD PITS		Lab Number:	L1118751
Project Number:	70514.LSP.LIBERTY		Report Date:	11/17/11
		SAMPLE RESULTS		
Lab ID:	L1118751-02		Date Collected:	11/09/11 09:00
Client ID:	TP-02		Date Received:	11/10/11
Sample Location:	NEW BEDFORD, MA		Field Prep:	Not Specified
Matrix:	Soil		Extraction Method:	EPA 3546
Analytical Method:	97,8270C		Extraction Date:	11/11/11 05:27
Analytical Date:	11/14/11 17:45			
Analyst:	JB			
Percent Solids:	90%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile Organics - Westbor	ough Lab					
Acenaphthene	ND		ug/kg	280		1
1,2,4-Trichlorobenzene	ND		ug/kg	360		1
Hexachlorobenzene	ND		ug/kg	210		1
Bis(2-chloroethyl)ether	ND		ug/kg	320		1
2-Chloronaphthalene	ND		ug/kg	360		1
1,2-Dichlorobenzene	ND		ug/kg	360		1
1,3-Dichlorobenzene	ND		ug/kg	360		1
1,4-Dichlorobenzene	ND		ug/kg	360		1
3,3'-Dichlorobenzidine	ND		ug/kg	360		1
2,4-Dinitrotoluene	ND		ug/kg	360		1
2,6-Dinitrotoluene	ND		ug/kg	360		1
Azobenzene	ND		ug/kg	360		1
Fluoranthene	1500		ug/kg	210		1
4-Bromophenyl phenyl ether	ND		ug/kg	360		1
Bis(2-chloroisopropyl)ether	ND		ug/kg	430		1
Bis(2-chloroethoxy)methane	ND		ug/kg	380		1
Hexachlorobutadiene	ND		ug/kg	360		1
Hexachloroethane	ND		ug/kg	280		1
Isophorone	ND		ug/kg	320		1
Naphthalene	ND		ug/kg	360		1
Nitrobenzene	ND		ug/kg	320		1
Bis(2-Ethylhexyl)phthalate	ND		ug/kg	360		1
Butyl benzyl phthalate	ND		ug/kg	360		1
Di-n-butylphthalate	ND		ug/kg	360		1
Di-n-octylphthalate	ND		ug/kg	360		1
Diethyl phthalate	ND		ug/kg	360		1
Dimethyl phthalate	ND		ug/kg	360		1
Benzo(a)anthracene	910		ug/kg	210		1
Benzo(a)pyrene	770		ug/kg	280		1
Benzo(b)fluoranthene	580		ug/kg	210		1
Benzo(k)fluoranthene	720		ug/kg	210		1

					Serial_N	o:11171	112:25
Project Name:	NEW BEDFORD PITS			La	b Number:	L1	118751
Project Number:	70514.LSP.LIBERTY			Re	eport Date:	11	/17/11
•		SAMPLE R	ESULTS		•		,
Lab ID:	L1118751-02			Date	e Collected:	11/0	9/11 09:00
Client ID:	TP-02				e Received:		0/11
Sample Location:	NEW BEDFORD, MA			Field	d Prep:	Not	Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile	Organics - Westborough Lab)					
Chrysene		960		ug/kg	210		1
Acenaphthylene		320		ug/kg	280		1
Anthracene		480		ug/kg	210		1
Benzo(ghi)perylene		430		ug/kg	280		1
Fluorene		360		ug/kg	360		1
Phenanthrene		1600		ug/kg	210		1
Dibenzo(a,h)anthracene	9	ND		ug/kg	210		1
Indeno(1,2,3-cd)Pyrene	9	400		ug/kg	280		1
Pyrene		1700		ug/kg	210		1
Aniline		ND		ug/kg	430		1
4-Chloroaniline		ND		ug/kg	360		1
Dibenzofuran		ND		ug/kg	360		1
2-Methylnaphthalene		ND		ug/kg	430		1
Acetophenone		ND		ug/kg	360		1
2,4,6-Trichlorophenol		ND		ug/kg	210		1
2-Chlorophenol		ND		ug/kg	360		1
2,4-Dichlorophenol		ND		ug/kg	320		1
2,4-Dimethylphenol		ND		ug/kg	360		1
2-Nitrophenol		ND		ug/kg	770		1
4-Nitrophenol		ND		ug/kg	500		1
2,4-Dinitrophenol		ND		ug/kg	1700		1
Pentachlorophenol		ND		ug/kg	710		1
Phenol		ND		ug/kg	360		1
2-Methylphenol		ND		ug/kg	360		1
3-Methylphenol/4-Methy	ylphenol	ND		ug/kg	510		1
2,4,5-Trichlorophenol		ND		ug/kg	360		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	92		30-130	
Phenol-d6	101		30-130	
Nitrobenzene-d5	94		30-130	
2-Fluorobiphenyl	95		30-130	
2,4,6-Tribromophenol	114		30-130	
4-Terphenyl-d14	107		30-130	

			Serial_No:	11171112:25
Project Name:	NEW BEDFORD PITS		Lab Number:	L1118751
Project Number:	70514.LSP.LIBERTY		Report Date:	11/17/11
		SAMPLE RESULTS		
Lab ID:	L1118751-03 D		Date Collected:	11/09/11 09:45
Client ID:	TP-03		Date Received:	11/10/11
Sample Location:	NEW BEDFORD, MA		Field Prep:	Not Specified
Matrix:	Soil		Extraction Method:	EPA 3546
Analytical Method:	97,8270C		Extraction Date:	11/11/11 05:27
Analytical Date:	11/14/11 18:07			
Analyst:	JB			
Percent Solids:	91%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile Organics - Westbo	rough Lab					
Acenaphthene	ND		ug/kg	1400		5
1,2,4-Trichlorobenzene	ND		ug/kg	1800		5
Hexachlorobenzene	ND		ug/kg	1100		5
Bis(2-chloroethyl)ether	ND		ug/kg	1600		5
2-Chloronaphthalene	ND		ug/kg	1800		5
1,2-Dichlorobenzene	ND		ug/kg	1800		5
1,3-Dichlorobenzene	ND		ug/kg	1800		5
1,4-Dichlorobenzene	ND		ug/kg	1800		5
3,3'-Dichlorobenzidine	ND		ug/kg	1800		5
2,4-Dinitrotoluene	ND		ug/kg	1800		5
2,6-Dinitrotoluene	ND		ug/kg	1800		5
Azobenzene	ND		ug/kg	1800		5
Fluoranthene	2800		ug/kg	1100		5
4-Bromophenyl phenyl ether	ND		ug/kg	1800		5
Bis(2-chloroisopropyl)ether	ND		ug/kg	2100		5
Bis(2-chloroethoxy)methane	ND		ug/kg	1900		5
Hexachlorobutadiene	ND		ug/kg	1800		5
Hexachloroethane	ND		ug/kg	1400		5
Isophorone	ND		ug/kg	1600		5
Naphthalene	ND		ug/kg	1800		5
Nitrobenzene	ND		ug/kg	1600		5
Bis(2-Ethylhexyl)phthalate	ND		ug/kg	1800		5
Butyl benzyl phthalate	ND		ug/kg	1800		5
Di-n-butylphthalate	ND		ug/kg	1800		5
Di-n-octylphthalate	ND		ug/kg	1800		5
Diethyl phthalate	ND		ug/kg	1800		5
Dimethyl phthalate	ND		ug/kg	1800		5
Benzo(a)anthracene	1600		ug/kg	1100		5
Benzo(a)pyrene	1400		ug/kg	1400		5
Benzo(b)fluoranthene	1200		ug/kg	1100		5
Benzo(k)fluoranthene	1200		ug/kg	1100		5

						Serial_N	o:11171	112:25
Project Name:	NEW BEDFORD PITS				La	b Number:	L1	118751
Project Number:	70514.LSP.LIBERTY				Re	port Date:	11.	/17/11
		S	AMPLE RE	SULTS		•	,	,
Lab ID:	L1118751-03	D			Date	Collected:	11/0	9/11 09:45
Client ID:	TP-03					Received:		0/11
Sample Location:	NEW BEDFORD, N	ΛA			Field	Prep:	Not	Specified
Parameter			Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile	Organics - Westborough	Lab						
Chrysene			1600		ug/kg	1100		5
Acenaphthylene			ND		ug/kg	1400		5
Anthracene			ND		ug/kg	1400		5
Benzo(ghi)perylene			ND		ug/kg	1400		5
Fluorene			ND		ug/kg	1800		5
Phenanthrene			2100		ug/kg	1100		5
Dibenzo(a,h)anthracene	9		ND		ug/kg	1100		5
Indeno(1,2,3-cd)Pyrene			ND		ug/kg	1400		5
Pyrene			3000		ug/kg	1100		5
Aniline			ND		ug/kg	2100		5
4-Chloroaniline			ND		ug/kg	1800		5
Dibenzofuran			ND		ug/kg	1800		5
2-Methylnaphthalene			ND		ug/kg	2100		5
Acetophenone			ND		ug/kg	1800		5
2,4,6-Trichlorophenol			ND		ug/kg	1100		5
2-Chlorophenol			ND		ug/kg	1800		5
2,4-Dichlorophenol			ND		ug/kg	1600		5
2,4-Dimethylphenol			ND		ug/kg	1800		5
2-Nitrophenol			ND		ug/kg	3800		5
4-Nitrophenol			ND		ug/kg	2500		5
2,4-Dinitrophenol			ND		ug/kg	8500		5
Pentachlorophenol			ND		ug/kg	3600		5
Phenol			ND		ug/kg	1800		5
2-Methylphenol			ND		ug/kg	1800		5
3-Methylphenol/4-Methy	lphenol		ND		ug/kg	2600		5
2,4,5-Trichlorophenol			ND		ug/kg	1800		5

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	82		30-130	
Phenol-d6	91		30-130	
Nitrobenzene-d5	81		30-130	
2-Fluorobiphenyl	87		30-130	
2,4,6-Tribromophenol	95		30-130	
4-Terphenyl-d14	94		30-130	

			Serial_No:	11171112:25
Project Name:	NEW BEDFORD PITS		Lab Number:	L1118751
Project Number:	70514.LSP.LIBERTY		Report Date:	11/17/11
		SAMPLE RESULTS		
Lab ID:	L1118751-04		Date Collected:	11/09/11 09:55
Client ID:	TP-04		Date Received:	11/10/11
Sample Location:	NEW BEDFORD, MA		Field Prep:	Not Specified
Matrix:	Soil		Extraction Method:	EPA 3546
Analytical Method:	97,8270C		Extraction Date:	11/11/11 05:27
Analytical Date:	11/15/11 13:17			
Analyst:	JB			
Percent Solids:	94%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile Organics - Westbor	ough Lab					
Acenaphthene	ND		ug/kg	270		1
1,2,4-Trichlorobenzene	ND		ug/kg	340		1
Hexachlorobenzene	ND		ug/kg	200		1
Bis(2-chloroethyl)ether	ND		ug/kg	310		1
2-Chloronaphthalene	ND		ug/kg	340		1
1,2-Dichlorobenzene	ND		ug/kg	340		1
1,3-Dichlorobenzene	ND		ug/kg	340		1
1,4-Dichlorobenzene	ND		ug/kg	340		1
3,3'-Dichlorobenzidine	ND		ug/kg	340		1
2,4-Dinitrotoluene	ND		ug/kg	340		1
2,6-Dinitrotoluene	ND		ug/kg	340		1
Azobenzene	ND		ug/kg	340		1
Fluoranthene	2500		ug/kg	200		1
4-Bromophenyl phenyl ether	ND		ug/kg	340		1
Bis(2-chloroisopropyl)ether	ND		ug/kg	410		1
Bis(2-chloroethoxy)methane	ND		ug/kg	370		1
Hexachlorobutadiene	ND		ug/kg	340		1
Hexachloroethane	ND		ug/kg	270		1
Isophorone	ND		ug/kg	310		1
Naphthalene	ND		ug/kg	340		1
Nitrobenzene	ND		ug/kg	310		1
Bis(2-Ethylhexyl)phthalate	ND		ug/kg	340		1
Butyl benzyl phthalate	ND		ug/kg	340		1
Di-n-butylphthalate	ND		ug/kg	340		1
Di-n-octylphthalate	ND		ug/kg	340		1
Diethyl phthalate	ND		ug/kg	340		1
Dimethyl phthalate	ND		ug/kg	340		1
Benzo(a)anthracene	1400		ug/kg	200		1
Benzo(a)pyrene	1100		ug/kg	270		1
Benzo(b)fluoranthene	1300		ug/kg	200		1
Benzo(k)fluoranthene	480		ug/kg	200		1

					Serial_N	o:11171	112:25
Project Name:	NEW BEDFORD PITS			La	b Number:	L1	118751
Project Number:	70514.LSP.LIBERTY			Re	port Date:	11	/17/11
•		SAMPLE R	ESULTS		•		
Lab ID:	L1118751-04			Date	Collected:	11/0	9/11 09:55
Client ID:	TP-04			Date	Received:		0/11
Sample Location:	NEW BEDFORD, MA			Field	d Prep:	Not	Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile	Organics - Westborough Lab	I					
Chrysene		1400		ug/kg	200		1
Acenaphthylene		ND		ug/kg	270		1
Anthracene		370		ug/kg	200		1
Benzo(ghi)perylene		690		ug/kg	270		1
Fluorene		370		ug/kg	340		1
Phenanthrene		3600		ug/kg	200		1
Dibenzo(a,h)anthracene	9	ND		ug/kg	200		1
Indeno(1,2,3-cd)Pyrene		730		ug/kg	270		1
Pyrene		3100		ug/kg	200		1
Aniline		ND		ug/kg	410		1
4-Chloroaniline		ND		ug/kg	340		1
Dibenzofuran		ND		ug/kg	340		1
2-Methylnaphthalene		ND		ug/kg	410		1
Acetophenone		ND		ug/kg	340		1
2,4,6-Trichlorophenol		ND		ug/kg	200		1
2-Chlorophenol		ND		ug/kg	340		1
2,4-Dichlorophenol		ND		ug/kg	310		1
2,4-Dimethylphenol		ND		ug/kg	340		1
2-Nitrophenol		ND		ug/kg	740		1
4-Nitrophenol		ND		ug/kg	480		1
2,4-Dinitrophenol		ND		ug/kg	1600		1
Pentachlorophenol		ND		ug/kg	680		1
Phenol		ND		ug/kg	340		1
2-Methylphenol		ND		ug/kg	340		1
3-Methylphenol/4-Methy	/lphenol	ND		ug/kg	490		1
2,4,5-Trichlorophenol		ND		ug/kg	340		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	47		30-130	
Phenol-d6	48		30-130	
Nitrobenzene-d5	47		30-130	
2-Fluorobiphenyl	55		30-130	
2,4,6-Tribromophenol	75		30-130	
4-Terphenyl-d14	61		30-130	

			Serial_No:	11171112:25
Project Name:	NEW BEDFORD PITS		Lab Number:	L1118751
Project Number:	70514.LSP.LIBERTY		Report Date:	11/17/11
		SAMPLE RESULTS		
Lab ID:	L1118751-05 D		Date Collected:	11/09/11 10:10
Client ID:	TP-05		Date Received:	11/10/11
Sample Location:	NEW BEDFORD, MA		Field Prep:	Not Specified
Matrix:	Soil		Extraction Method:	EPA 3546
Analytical Method:	97,8270C		Extraction Date:	11/11/11 05:27
Analytical Date:	11/15/11 13:43			
Analyst:	JB			
Percent Solids:	94%			

Parameter	Result	Qualifier U	Jnits	RL	MDL	Dilution Factor
MCP Semivolatile Organics - Westbo	rough Lab					
Acenaphthene	ND	u	g/kg	2700		10
1,2,4-Trichlorobenzene	ND	u	g/kg	3300		10
Hexachlorobenzene	ND	u	g/kg	2000		10
Bis(2-chloroethyl)ether	ND	u	g/kg	3000		10
2-Chloronaphthalene	ND	u	g/kg	3300		10
1,2-Dichlorobenzene	ND	u	g/kg	3300		10
1,3-Dichlorobenzene	ND	u	g/kg	3300		10
1,4-Dichlorobenzene	ND	u	g/kg	3300		10
3,3'-Dichlorobenzidine	ND	u	g/kg	3300		10
2,4-Dinitrotoluene	ND	u	g/kg	3300		10
2,6-Dinitrotoluene	ND	u	g/kg	3300		10
Azobenzene	ND	u	g/kg	3300		10
Fluoranthene	2100	u	g/kg	2000		10
4-Bromophenyl phenyl ether	ND	u	g/kg	3300		10
Bis(2-chloroisopropyl)ether	ND	u	g/kg	4000		10
Bis(2-chloroethoxy)methane	ND	u	g/kg	3600		10
Hexachlorobutadiene	ND	u	g/kg	3300		10
Hexachloroethane	ND	u	g/kg	2700		10
Isophorone	ND	u	g/kg	3000		10
Naphthalene	ND	u	g/kg	3300		10
Nitrobenzene	ND	u	g/kg	3000		10
Bis(2-Ethylhexyl)phthalate	ND	u	g/kg	3300		10
Butyl benzyl phthalate	ND	u	g/kg	3300		10
Di-n-butylphthalate	ND	u	g/kg	3300		10
Di-n-octylphthalate	ND	u	g/kg	3300		10
Diethyl phthalate	ND	u	g/kg	3300		10
Dimethyl phthalate	ND	u	g/kg	3300		10
Benzo(a)anthracene	ND	u	g/kg	2000		10
Benzo(a)pyrene	ND	u	g/kg	2700		10
Benzo(b)fluoranthene	ND	u	g/kg	2000		10
Benzo(k)fluoranthene	ND	u	g/kg	2000		10

						Serial_N	o:11171	112:25
Project Name:	NEW BEDFORD PITS				La	b Number:	L1	118751
Project Number:	70514.LSP.LIBERTY				Re	port Date:	11	/17/11
•			SAMPLE R	ESULTS		•		
Lab ID:	L1118751-05	D			Date	Collected:	11/()9/11 10:10
Client ID:	TP-05					Received:		0/11
Sample Location:	NEW BEDFORD, N	ΛA			Field	Prep:	Not	Specified
Parameter			Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile	Organics - Westborough	Lab						
Chrysene			ND		ug/kg	2000		10
Acenaphthylene			ND		ug/kg	2700		10
Anthracene			ND		ug/kg	2000		10
Benzo(ghi)perylene			ND		ug/kg	2700		10
Fluorene			ND		ug/kg	3300		10
Phenanthrene			ND		ug/kg	2000		10
Dibenzo(a,h)anthracene)		ND		ug/kg	2000		10
Indeno(1,2,3-cd)Pyrene			ND		ug/kg	2700		10
Pyrene			2200		ug/kg	2000		10
Aniline			ND		ug/kg	4000		10
4-Chloroaniline			ND		ug/kg	3300		10
Dibenzofuran			ND		ug/kg	3300		10
2-Methylnaphthalene			ND		ug/kg	4000		10
Acetophenone			ND		ug/kg	3300		10
2,4,6-Trichlorophenol			ND		ug/kg	2000		10
2-Chlorophenol			ND		ug/kg	3300		10
2,4-Dichlorophenol			ND		ug/kg	3000		10
2,4-Dimethylphenol			ND		ug/kg	3300		10
2-Nitrophenol			ND		ug/kg	7200		10
4-Nitrophenol			ND		ug/kg	4700		10
2,4-Dinitrophenol			ND		ug/kg	16000		10
Pentachlorophenol			ND		ug/kg	6700		10
Phenol			ND		ug/kg	3300		10
2-Methylphenol			ND		ug/kg	3300		10
3-Methylphenol/4-Methy	/lphenol		ND		ug/kg	4800		10
2,4,5-Trichlorophenol			ND		ug/kg	3300		10

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	79		30-130
Phenol-d6	83		30-130
Nitrobenzene-d5	82		30-130
2-Fluorobiphenyl	88		30-130
2,4,6-Tribromophenol	90		30-130
4-Terphenyl-d14	89		30-130

			Serial_No:	11171112:25
Project Name:	NEW BEDFORD PITS		Lab Number:	L1118751
Project Number:	70514.LSP.LIBERTY		Report Date:	11/17/11
		SAMPLE RESULTS		
Lab ID:	L1118751-06 D		Date Collected:	11/09/11 11:00
Client ID:	TP-06		Date Received:	11/10/11
Sample Location:	NEW BEDFORD, MA		Field Prep:	Not Specified
Matrix:	Soil		Extraction Method:	EPA 3546
Analytical Method:	97,8270C		Extraction Date:	11/11/11 05:27
Analytical Date:	11/15/11 14:09			
Analyst:	JB			
Percent Solids:	96%			

1,2,4-Trichlorobenzene ND ug/kg 1600 5 Hexachlorobenzene ND ug/kg 1500 5 Bis(2-chloroethy)lether ND ug/kg 1600 5 2-Chloronaphthalene ND ug/kg 1600 5 1,2-Dichlorobenzene ND ug/kg 1600 5 1,4-Dichlorobenzene ND ug/kg 1600 5 1,4-Dichlorobenzene ND ug/kg 1600 5 3.3-Dichlorobenzidine ND ug/kg 1600 5 2,4-Dinitrotoluene ND ug/kg 1600 5 2,4-Dinitrotoluene ND ug/kg 1600 5 5,4-Dinitrotoluene ND ug/kg 1600 5 6,10-Dinitrotoluene ND ug/kg 1600 5 6,10-Dinitrotoluene ND ug/kg 1600 5 6,10-Dinitrotoluene ND ug/kg 1600	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,2,4-Trichlorobenzene ND ug/kg 1600 5 Hexachlorobenzene ND ug/kg 1500 5 Bis(2-chloroethy)lether ND ug/kg 1600 5 2-Chloronaphthalene ND ug/kg 1600 5 1,2-Dichlorobenzene ND ug/kg 1600 5 1,4-Dichlorobenzene ND ug/kg 1600 5 1,4-Dichlorobenzene ND ug/kg 1600 5 3.3-Dichlorobenzidine ND ug/kg 1600 5 2,4-Dinitrotoluene ND ug/kg 1600 5 2,4-Dinitrotoluene ND ug/kg 1600 5 5,4-Dinitrotoluene ND ug/kg 1600 5 6,10-Dinitrotoluene ND ug/kg 1600 5 6,10-Dinitrotoluene ND ug/kg 1600 5 6,10-Dinitrotoluene ND ug/kg 1600	MCP Semivolatile Organics - Westbord	ough Lab					
ND ug/kg 980 5 Bis(2-chloroethyl)ether ND ug/kg 1500 5 2-Chloronaphthalene ND ug/kg 1600 5 1,2-Dichlorobenzene ND ug/kg 1600 5 1,3-Dichlorobenzene ND ug/kg 1600 5 3,3-Dichlorobenzene ND ug/kg 1600 5 2,4-Dinitrotoluene ND ug/kg 1600 5 2,4-Dinitrotoluene ND ug/kg 1600 5 2,4-Dinitrotoluene ND ug/kg 1600 5 2,6-Dinitrotoluene ND ug/kg 1600 5 Elocanthene ND ug/kg 1600 5 Bis(2-chlorotospropyl)ether ND ug/kg 1600 5 Bis(2-chlorotosy)methane ND ug/kg 1600 5 <td>Acenaphthene</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>1300</td> <td></td> <td>5</td>	Acenaphthene	ND		ug/kg	1300		5
HexachlorobenzeneNDug/kg980-5Bis(2-chloroethyl)etherNDug/kg1500-52-chloronaphthaleneNDug/kg1600-51,2-DichlorobenzeneNDug/kg1600-51,4-DichlorobenzeneNDug/kg1600-51,4-DichlorobenzeneNDug/kg1600-52,4-DinitrotolueneNDug/kg1600-52,4-DinitrotolueneNDug/kg1600-52,6-DinitrotolueneNDug/kg1600-52,6-DinitrotolueneNDug/kg1600-52,6-DinitrotolueneNDug/kg1600-52,6-DinitrotolueneNDug/kg1600-52,6-DinitrotolueneNDug/kg1600-5ElorantheneNDug/kg1600-5ElorantheneNDug/kg1600-5Bis(2-chlorotoxy)methaneNDug/kg1600-5IsophoroneNDug/kg1600-5IsophoroneNDug/kg1600-5IsophoroneNDug/kg1600-5IsophoroneNDug/kg1600-5IsophoroneNDug/kg1600-5IsophoroneNDug/kg1600-5Isophorone<	1,2,4-Trichlorobenzene	ND		ug/kg	1600		5
Bis(2-chloronaphthalene ND ug/kg 1500 5 2-Chloronaphthalene ND ug/kg 1600 5 1,2-Dichlorobenzene ND ug/kg 1600 5 1,3-Dichlorobenzene ND ug/kg 1600 5 3,3-Dichlorobenzene ND ug/kg 1600 5 2,4-Dinkrotobuene ND ug/kg 1600 5 2,4-Dinkrotobuene ND ug/kg 1600 5 2,4-Dinkrotobuene ND ug/kg 1600 5 4-Zobenzene ND ug/kg 1600 5 Elic2-chloroisoproylether ND ug/kg 1600 5 Bis(2-chloroisoproyl)ether ND ug/kg 1600 5 Bis(2-chloroisoproyl)ether ND ug/kg 1600 5 Bis(2-chloroisoproyl)ether ND ug/kg 1600 </td <td>Hexachlorobenzene</td> <td>ND</td> <td></td> <td></td> <td>980</td> <td></td> <td>5</td>	Hexachlorobenzene	ND			980		5
P2-Chloronaphthalene ND ug/kg 1600 5 1,2-Dichlorobenzene ND ug/kg 1600 5 1,3-Dichlorobenzene ND ug/kg 1600 5 1,4-Dichlorobenzene ND ug/kg 1600 5 3,3-Dichlorobenzene ND ug/kg 1600 5 2,4-Dinitrotoluene ND ug/kg 1600 5 2,4-Dinitrotoluene ND ug/kg 1600 5 2,4-Dinitrotoluene ND ug/kg 1600 5 4-Bromophenyl phenyl ether ND ug/kg 1800 5 616(2-chloroisopropyl)ether ND ug/kg 1800 5 Hexachlorototadiene ND ug/kg 1800 5 Isophorone ND ug/kg 1600 5 Bic/2-thinyknylphthalate ND ug/kg 1600	Bis(2-chloroethyl)ether	ND			1500		5
1,3-Dichlorobenzene ND ug/kg 1600 5 1,4-Dichlorobenzene ND ug/kg 1600 5 3,3-Dichlorobenzidine ND ug/kg 1600 5 2,4-Dinitrotoluene ND ug/kg 1600 5 2,c-Dinitrotoluene ND ug/kg 1600 5 Azobenzene ND ug/kg 1600 5 Azobenzene ND ug/kg 1600 5 Fluoranthene ND ug/kg 1600 5 Bis(2-chloroisopropyl)ether ND ug/kg 1800 5 Bis(2-chloroisopropyl)ether ND ug/kg 1800 5 Bis(2-chlorothoxy)methane ND ug/kg 1800 5 Hexachlorothane ND ug/kg 1600 5 Isophorone ND ug/kg 1600 5 Nitrobenzene ND ug/kg 1600 5<	2-Chloronaphthalene	ND		ug/kg	1600		5
1,4-Dichlorobenzene ND ug/kg 1600 5 3,3'-Dichlorobenzidine ND ug/kg 1600 5 2,4-Dinitrotoluene ND ug/kg 1600 5 2,6-Dinitrotoluene ND ug/kg 1600 5 Azobenzene ND ug/kg 980 5 Fluoranthene ND ug/kg 1600 5 Bis(2-chloroisopropyl)ether ND ug/kg 1600 5 Hexachlorobutadiene ND ug/kg 1600 5 Isophorone ND ug/kg 1600 5 Nitrobenzene ND ug/kg 1600 5 Bit/2-Ethylhexyllphthalate ND ug/kg 1600	1,2-Dichlorobenzene	ND		ug/kg	1600		5
3.3-DichlorobenzidineNDug/kg160052,4-DinitrotolueneNDug/kg16005AzobenzeneNDug/kg16005AzobenzeneNDug/kg9805FluorantheneNDug/kg16005Bis(2-chloroisopropyl)etherNDug/kg16005Bis(2-chloroisopropyl)etherNDug/kg18005Bis(2-chloroethoxy)methaneNDug/kg18005HexachloroethaneNDug/kg16005IsophoroneNDug/kg16005NapthhaleneNDug/kg16005Bis(2-chlyhexyl)phthalateNDug/kg16005Bis(2-chlyhexyl)phthalateNDug/kg16005Din-butylphthalateNDug/kg16005Bis(2-chlyhexyl)phthalateNDug/kg16005Din-butylphthalateNDug/kg16005Din-butylphthalateNDug/kg16005Din-butylphthalateNDug/kg16005Din-butylphthalateNDug/kg16005Din-butylphthalateNDug/kg16005Din-butylphthalateNDug/kg16005Din-butylphthalate <t< td=""><td>1,3-Dichlorobenzene</td><td>ND</td><td></td><td>ug/kg</td><td>1600</td><td></td><td>5</td></t<>	1,3-Dichlorobenzene	ND		ug/kg	1600		5
2,4-DinitrotolueneNDug/kg160052,6-DinitrotolueneNDug/kg16005AzobenzeneNDug/kg16005FluorantheneNDug/kg16005Bis(2-chloroisopropyl)etherNDug/kg16005Bis(2-chloroisopropyl)etherNDug/kg18005Bis(2-chloroisopropyl)etherNDug/kg18005Bis(2-chloroethoxy)methaneNDug/kg16005HexachloroethaneNDug/kg16005IsophoroneNDug/kg16005NapthhaleneNDug/kg16005Bis(2-Ethylhexyl)phthalateNDug/kg16005Din-butylphthalateNDug/kg16005Din-butylphthalateNDug/kg16005Din-butylphthalateNDug/kg16005Din-butylphthalateNDug/kg16005Din-butylphthalateNDug/kg16005Din-butylphthalateNDug/kg16005Din-butylphthalateNDug/kg16005Din-butylphthalateNDug/kg16005Din-butylphthalateNDug/kg16005Din-butylphthalate	1,4-Dichlorobenzene	ND		ug/kg	1600		5
2.6-Dinitrotoluene ND ug/kg 1600 5 Azobenzene ND ug/kg 980 5 Fluoranthene ND ug/kg 980 5 4-Bromophenyl phenyl ether ND ug/kg 1600 5 Bis(2-chloroisopropyl)ether ND ug/kg 1800 5 Bis(2-chloroisopropyl)ether ND ug/kg 1800 5 Bis(2-chloroisopropyl)ether ND ug/kg 1800 5 Bis(2-chloroethoxy)methane ND ug/kg 1800 5 Hexachloroethane ND ug/kg 1600 5 Isophorone ND ug/kg 1600 5 Nitrobenzene ND ug/kg 1600 5 Bis(2-Ethylhexyl)phthalate ND ug/kg 1600 5 Di-n-butylphthalate ND ug/kg 1600 5 Di-n-butylphthalate ND ug/kg 1600	3,3'-Dichlorobenzidine	ND		ug/kg	1600		5
AzobenzeneNDug/kg16005FluorantheneNDug/kg98054-Bromophenyl phenyl etherNDug/kg16005Bis(2-chloroisopropyl)etherNDug/kg18005Bis(2-chloroethoxy)methaneNDug/kg16005HexachloroethaneNDug/kg13005IsophoroneNDug/kg15005NaphthaleneNDug/kg16005Sid(2-chlypkyl)phthalateNDug/kg16005Noug/kg160055Sid(2-chlypkyl)phthalateNDug/kg16005Di-n-butylphthalateNDug/kg16005Di-n-butylphthalateNDug/kg16005Di-n-butylphthalateNDug/kg16005Di-n-butylphthalateNDug/kg16005Di-n-butylphthalateNDug/kg16005Di-n-butylphthalateNDug/kg16005Di-n-butylphthalateNDug/kg16005Benzo(a)anthraceneNDug/kg16005Benzo(a)anthraceneNDug/kg16005Benzo(a)pyreneNDug/kg9805Benzo(b)fluorantheneNDug/kg	2,4-Dinitrotoluene	ND		ug/kg	1600		5
Fluoranthene ND ug/kg 980 5 4-Bromophenyl phenyl ether ND ug/kg 1600 5 Bis(2-chloroisopropyl)ether ND ug/kg 1800 5 Bis(2-chloroethoxy)methane ND ug/kg 1800 5 Hexachlorobutadiene ND ug/kg 1800 5 Hexachlorobutadiene ND ug/kg 1800 5 Hexachlorobutadiene ND ug/kg 1300 5 Isophorone ND ug/kg 1500 5 Nitrobenzene ND ug/kg 1600 5 Bis(2-Ethylhexyl)phthalate ND ug/kg 1600 5 Di-n-butylphthalate ND ug/kg 1600 5 Di-n-octylphthalate ND ug/kg 1600 5 Di-n-octylphthalate ND ug/kg 1600	2,6-Dinitrotoluene	ND		ug/kg	1600		5
ABromophenyl phenyl ether ND ug/kg 1600 5 Bis(2-chloroisopropyl)ether ND ug/kg 1800 5 Bis(2-chloroethoxy)methane ND ug/kg 1800 5 Hexachlorobutadiene ND ug/kg 1600 5 Hexachloroethane ND ug/kg 1300 5 Isophorone ND ug/kg 1600 5 Naphthalene ND ug/kg 1600 5 Nitrobenzene ND ug/kg 1600 5 Bis(2-Ethylhexyl)phthalate ND ug/kg 1600 5 Di-n-butylphthalate ND ug/kg 1600 5 Di-n-octylphthalate ND ug/kg 1600 5 Di-n-octylphthalate ND ug/kg 1600 5 Dientyl phthalate ND ug/kg 1600	Azobenzene	ND		ug/kg	1600		5
Bis(2-chloroisopropyl)ether ND ug/kg 2000 5 Bis(2-chloroethoxy)methane ND ug/kg 1800 5 Hexachloroethane ND ug/kg 1300 5 Hexachloroethane ND ug/kg 1300 5 Isophorone ND ug/kg 1500 5 Naphthalene ND ug/kg 1600 5 Nitrobenzene ND ug/kg 1600 5 Bis(2-Ethylhexyl)phthalate ND ug/kg 1600 5 Bis(2-Ethylhexyl)phthalate ND ug/kg 1600 5 Di-n-butyl phthalate ND ug/kg 1600 5 Di-n-butyl phthalate ND ug/kg 1600 5 Diethyl phthalate ND ug/kg 1600 5 Dimethyl phthalate ND ug/kg 980 </td <td>Fluoranthene</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>980</td> <td></td> <td>5</td>	Fluoranthene	ND		ug/kg	980		5
Bis(2-chloroethoxy)methane ND ug/kg 1800 5 Hexachlorobutadiene ND ug/kg 1600 5 Hexachloroethane ND ug/kg 1300 5 Isophorone ND ug/kg 1500 5 Naphthalene ND ug/kg 1600 5 Nitrobenzene ND ug/kg 1600 5 Bis(2-Ethylhexyl)phthalate ND ug/kg 1600 5 Bis(2-Ethylhexyl)phthalate ND ug/kg 1600 5 Bis(2-Ethylhexyl)phthalate ND ug/kg 1600 5 Di-n-butyl phthalate ND ug/kg 1600 5 Di-n-butyl phthalate ND ug/kg 1600 5 Di-n-butyl phthalate ND ug/kg 1600 5 Dimethyl phthalate ND ug/kg 980 <td< td=""><td>4-Bromophenyl phenyl ether</td><td>ND</td><td></td><td>ug/kg</td><td>1600</td><td></td><td>5</td></td<>	4-Bromophenyl phenyl ether	ND		ug/kg	1600		5
Hexachlorobutadiene ND ug/kg 1600 5 Hexachlorobethane ND ug/kg 1300 5 Isophorone ND ug/kg 1500 5 Naphthalene ND ug/kg 1600 5 Nitrobenzene ND ug/kg 1600 5 Bis(2-Ethylhexyl)phthalate ND ug/kg 1600 5 Di-n-butylphthalate ND ug/kg 1600 5 Di-noctylphthalate ND ug/kg 1600 5 Dientyl phthalate ND ug/kg 1600 5 Benzo(a)anthracene ND ug/kg 980 5 <td>Bis(2-chloroisopropyl)ether</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>2000</td> <td></td> <td>5</td>	Bis(2-chloroisopropyl)ether	ND		ug/kg	2000		5
Hexachloroethane ND ug/kg 1300 5 Isophorone ND ug/kg 1500 5 Naphthalene ND ug/kg 1600 5 Nitrobenzene ND ug/kg 1500 5 Bis(2-Ethylhexyl)phthalate ND ug/kg 1600 5 Di-n-butylphthalate ND ug/kg 1600 5 Di-noctylphthalate ND ug/kg 1600 5 Diethyl phthalate ND ug/kg 1600 5 Benzo(a)anthracene ND ug/kg 1800 5 <td>Bis(2-chloroethoxy)methane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>1800</td> <td></td> <td>5</td>	Bis(2-chloroethoxy)methane	ND		ug/kg	1800		5
Isophorone ND ug/kg 1500 5 Naphthalene ND ug/kg 1600 5 Nitrobenzene ND ug/kg 1500 5 Bis(2-Ethylhexyl)phthalate ND ug/kg 1600 5 Bis(2-Ethylhexyl)phthalate ND ug/kg 1600 5 Di-n-butylphthalate ND ug/kg 1600 5 Di-n-octylphthalate ND ug/kg 1600 5 Di-n-octylphthalate ND ug/kg 1600 5 Diethyl phthalate ND ug/kg 1600 5 Diethyl phthalate ND ug/kg 1600 5 Diethyl phthalate ND ug/kg 1600 5 Benzo(a)anthracene ND ug/kg 980 5 Benzo(a)pyrene ND ug/kg 1300 5 <td>Hexachlorobutadiene</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>1600</td> <td></td> <td>5</td>	Hexachlorobutadiene	ND		ug/kg	1600		5
Naphthalene ND ug/kg 1600 5 Nitrobenzene ND ug/kg 1500 5 Bis(2-Ethylhexyl)phthalate ND ug/kg 1600 5 Bis(2-Ethylhexyl)phthalate ND ug/kg 1600 5 Butyl benzyl phthalate ND ug/kg 1600 5 Di-n-butylphthalate ND ug/kg 1600 5 Di-n-octylphthalate ND ug/kg 1600 5 Dien-octylphthalate ND ug/kg 1600 5 Dientyl phthalate ND ug/kg 1600 5 Dientyl phthalate ND ug/kg 1600 5 Benzo(a)anthracene ND ug/kg 980 5 Benzo(a)pyrene ND ug/kg 1300 5 Benzo(b)fluoranthene ND ug/kg 980	Hexachloroethane	ND		ug/kg	1300		5
Nitrobenzene ND ug/kg 1500 5 Bis(2-Ethylhexyl)phthalate ND ug/kg 1600 5 Butyl benzyl phthalate ND ug/kg 1600 5 Di-n-butylphthalate ND ug/kg 1600 5 Di-n-butylphthalate ND ug/kg 1600 5 Di-n-octylphthalate ND ug/kg 1600 5 Di-n-octylphthalate ND ug/kg 1600 5 Diethyl phthalate ND ug/kg 1600 5 Diethyl phthalate ND ug/kg 1600 5 Benzo(a)anthracene ND ug/kg 980 5 Benzo(a)pyrene ND ug/kg 1300 5 Benzo(b)fluoranthene ND ug/kg 980 5	Isophorone	ND		ug/kg	1500		5
Bis(2-Ethylhexyl)phthalate ND ug/kg 1600 5 Butyl benzyl phthalate ND ug/kg 1600 5 Di-n-butylphthalate ND ug/kg 1600 5 Di-n-octylphthalate ND ug/kg 1600 5 Di-n-octylphthalate ND ug/kg 1600 5 Dien-octylphthalate ND ug/kg 1600 5 Diethyl phthalate ND ug/kg 1600 5 Dimethyl phthalate ND ug/kg 1600 5 Benzo(a)anthracene ND ug/kg 1600 5 Benzo(a)pyrene ND ug/kg 980 5 Benzo(b)fluoranthene ND ug/kg 1300 5	Naphthalene	ND		ug/kg	1600		5
Butyl benzyl phthalateNDug/kg16005Di-n-butylphthalateNDug/kg16005Di-n-octylphthalateNDug/kg16005Diethyl phthalateNDug/kg16005Diethyl phthalateNDug/kg16005Dimethyl phthalateNDug/kg16005Benzo(a)anthraceneNDug/kg9805Benzo(a)pyreneNDug/kg13005Benzo(b)fluorantheneNDug/kg9805	Nitrobenzene	ND		ug/kg	1500		5
Di-n-butylphthalate ND ug/kg 1600 5 Di-n-octylphthalate ND ug/kg 1600 5 Diethyl phthalate ND ug/kg 1600 5 Diethyl phthalate ND ug/kg 1600 5 Dimethyl phthalate ND ug/kg 1600 5 Benzo(a)anthracene ND ug/kg 980 5 Benzo(a)pyrene ND ug/kg 1300 5 Benzo(b)fluoranthene ND ug/kg 980 5	Bis(2-Ethylhexyl)phthalate	ND		ug/kg	1600		5
Di-n-octylphthalateNDug/kg16005Diethyl phthalateNDug/kg16005Dimethyl phthalateNDug/kg16005Benzo(a)anthraceneNDug/kg9805Benzo(a)pyreneNDug/kg13005Benzo(b)fluorantheneNDug/kg9805	Butyl benzyl phthalate	ND		ug/kg	1600		5
Diethyl phthalate ND ug/kg 1600 5 Dimethyl phthalate ND ug/kg 1600 5 Benzo(a)anthracene ND ug/kg 980 5 Benzo(a)pyrene ND ug/kg 1300 5 Benzo(b)fluoranthene ND ug/kg 980 5	Di-n-butylphthalate	ND		ug/kg	1600		5
Dimethyl phthalateNDug/kg16005Benzo(a)anthraceneNDug/kg9805Benzo(a)pyreneNDug/kg13005Benzo(b)fluorantheneNDug/kg9805	Di-n-octylphthalate	ND		ug/kg	1600		5
Benzo(a)anthraceneNDug/kg9805Benzo(a)pyreneNDug/kg13005Benzo(b)fluorantheneNDug/kg9805	Diethyl phthalate	ND		ug/kg	1600		5
Benzo(a)pyrene ND ug/kg 1300 5 Benzo(b)fluoranthene ND ug/kg 980 5	Dimethyl phthalate	ND		ug/kg	1600		5
Benzo(b)fluoranthene ND ug/kg 980 5	Benzo(a)anthracene	ND		ug/kg	980		5
	Benzo(a)pyrene	ND		ug/kg	1300		5
Benzo(k)fluoranthene ND ug/kg 980 5	Benzo(b)fluoranthene	ND		ug/kg	980		5
	Benzo(k)fluoranthene	ND		ug/kg	980		5

						Serial_N	o:11171	112:25
Project Name:	NEW BEDFORD PITS				La	b Number:	L1	118751
Project Number:	70514.LSP.LIBERTY				Re	eport Date:	11	/17/11
			SAMPLE R	ESULTS			• •	, ,
Lab ID:	L1118751-06	D			Date	e Collected:	11/0)9/11 11:00
Client ID:	TP-06				Date	e Received:	11/1	0/11
Sample Location:	NEW BEDFORD, N	ΛA			Field	d Prep:	Not	Specified
Parameter			Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile	Organics - Westborough	Lab						
Chrysene			ND		ug/kg	980		5
Acenaphthylene			ND		ug/kg	1300		5
Anthracene			ND		ug/kg	980		5
Benzo(ghi)perylene			ND		ug/kg	1300		5
Fluorene			ND		ug/kg	1600		5
Phenanthrene			ND		ug/kg	980		5
Dibenzo(a,h)anthracene	9		ND		ug/kg	980		5
Indeno(1,2,3-cd)Pyrene			ND		ug/kg	1300		5
Pyrene			1000		ug/kg	980		5
Aniline			ND		ug/kg	2000		5
4-Chloroaniline			ND		ug/kg	1600		5
Dibenzofuran			ND		ug/kg	1600		5
2-Methylnaphthalene			ND		ug/kg	2000		5
Acetophenone			ND		ug/kg	1600		5
2,4,6-Trichlorophenol			ND		ug/kg	980		5
2-Chlorophenol			ND		ug/kg	1600		5
2,4-Dichlorophenol			ND		ug/kg	1500		5
2,4-Dimethylphenol			ND		ug/kg	1600		5
2-Nitrophenol			ND		ug/kg	3500		5
4-Nitrophenol			ND		ug/kg	2300		5
2,4-Dinitrophenol			ND		ug/kg	7800		5
Pentachlorophenol			ND		ug/kg	3300		5
Phenol			ND		ug/kg	1600		5
2-Methylphenol			ND		ug/kg	1600		5
3-Methylphenol/4-Methy	/lphenol		ND		ug/kg	2400		5
2,4,5-Trichlorophenol			ND		ug/kg	1600		5

% Recovery	Qualifier	Acceptance Criteria	
66		30-130	
76		30-130	
69		30-130	
80		30-130	
87		30-130	
81		30-130	
	66 76 69 80 87	66 76 69 80 87	% Recovery Qualifier Criteria 66 30-130 76 30-130 69 30-130 80 30-130 87 30-130

			Serial_No:	11171112:25
Project Name:	NEW BEDFORD PITS		Lab Number:	L1118751
Project Number:	70514.LSP.LIBERTY		Report Date:	11/17/11
		SAMPLE RESULTS		
Lab ID:	L1118751-07 D		Date Collected:	11/09/11 11:15
Client ID:	TP-07		Date Received:	11/10/11
Sample Location:	NEW BEDFORD, MA		Field Prep:	Not Specified
Matrix:	Soil		Extraction Method:	EPA 3546
Analytical Method:	97,8270C		Extraction Date:	11/11/11 05:31
Analytical Date:	11/14/11 15:27			
Analyst:	JB			
Percent Solids:	95%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile Organics - Westbor	ough Lab					
Acenaphthene	ND		ug/kg	2700		10
1,2,4-Trichlorobenzene	ND		ug/kg	3400		10
Hexachlorobenzene	ND		ug/kg	2000		10
Bis(2-chloroethyl)ether	ND		ug/kg	3000		10
2-Chloronaphthalene	ND		ug/kg	3400		10
1,2-Dichlorobenzene	ND		ug/kg	3400		10
1,3-Dichlorobenzene	ND		ug/kg	3400		10
1,4-Dichlorobenzene	ND		ug/kg	3400		10
3,3'-Dichlorobenzidine	ND		ug/kg	3400		10
2,4-Dinitrotoluene	ND		ug/kg	3400		10
2,6-Dinitrotoluene	ND		ug/kg	3400		10
Azobenzene	ND		ug/kg	3400		10
Fluoranthene	3500		ug/kg	2000		10
4-Bromophenyl phenyl ether	ND		ug/kg	3400		10
Bis(2-chloroisopropyl)ether	ND		ug/kg	4000		10
Bis(2-chloroethoxy)methane	ND		ug/kg	3600		10
Hexachlorobutadiene	ND		ug/kg	3400		10
Hexachloroethane	ND		ug/kg	2700		10
Isophorone	ND		ug/kg	3000		10
Naphthalene	ND		ug/kg	3400		10
Nitrobenzene	ND		ug/kg	3000		10
Bis(2-Ethylhexyl)phthalate	ND		ug/kg	3400		10
Butyl benzyl phthalate	ND		ug/kg	3400		10
Di-n-butylphthalate	ND		ug/kg	3400		10
Di-n-octylphthalate	ND		ug/kg	3400		10
Diethyl phthalate	ND		ug/kg	3400		10
Dimethyl phthalate	ND		ug/kg	3400		10
Benzo(a)anthracene	2400		ug/kg	2000		10
Benzo(a)pyrene	ND		ug/kg	2700		10
Benzo(b)fluoranthene	ND		ug/kg	2000		10
Benzo(k)fluoranthene	ND		ug/kg	2000		10

						Serial_N	lo:11171	112:25
Project Name:	NEW BEDFORD PITS				La	b Number:	L1	118751
Project Number:	70514.LSP.LIBERTY				Re	port Date:	11	/17/11
•			SAMPLE R	ESULTS		•		,
Lab ID:	L1118751-07	D			Date	Collected:	11/0	9/11 11:15
Client ID:	TP-07					Received:		0/11
Sample Location:	NEW BEDFORD, M	ΛN			Field	Prep:	Not	Specified
Parameter			Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile	Organics - Westborough	Lab						
Chrysene			2600		ug/kg	2000		10
Acenaphthylene			ND		ug/kg	2700		10
Anthracene			ND		ug/kg	2000		10
Benzo(ghi)perylene			ND		ug/kg	2700		10
Fluorene			ND		ug/kg	3400		10
Phenanthrene			2600		ug/kg	2000		10
Dibenzo(a,h)anthracene)		ND		ug/kg	2000		10
Indeno(1,2,3-cd)Pyrene			ND		ug/kg	2700		10
Pyrene			4400		ug/kg	2000		10
Aniline			ND		ug/kg	4000		10
4-Chloroaniline			ND		ug/kg	3400		10
Dibenzofuran			ND		ug/kg	3400		10
2-Methylnaphthalene			ND		ug/kg	4000		10
Acetophenone			ND		ug/kg	3400		10
2,4,6-Trichlorophenol			ND		ug/kg	2000		10
2-Chlorophenol			ND		ug/kg	3400		10
2,4-Dichlorophenol			ND		ug/kg	3000		10
2,4-Dimethylphenol			ND		ug/kg	3400		10
2-Nitrophenol			ND		ug/kg	7200		10
4-Nitrophenol			ND		ug/kg	4700		10
2,4-Dinitrophenol			ND		ug/kg	16000		10
Pentachlorophenol			ND		ug/kg	6700		10
Phenol			ND		ug/kg	3400		10
2-Methylphenol			ND		ug/kg	3400		10
3-Methylphenol/4-Methy	lphenol		ND		ug/kg	4800		10
2,4,5-Trichlorophenol			ND		ug/kg	3400		10

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	98		30-130	
Phenol-d6	105		30-130	
Nitrobenzene-d5	92		30-130	
2-Fluorobiphenyl	101		30-130	
2,4,6-Tribromophenol	92		30-130	
4-Terphenyl-d14	106		30-130	

			Serial_No:	11171112:25
Project Name:	NEW BEDFORD PITS		Lab Number:	L1118751
Project Number:	70514.LSP.LIBERTY		Report Date:	11/17/11
		SAMPLE RESULTS		
Lab ID:	L1118751-08 D		Date Collected:	11/09/11 11:30
Client ID:	TP-08		Date Received:	11/10/11
Sample Location:	NEW BEDFORD, MA		Field Prep:	Not Specified
Matrix:	Soil		Extraction Method:	EPA 3546
Analytical Method:	97,8270C		Extraction Date:	11/11/11 05:31
Analytical Date:	11/14/11 15:50			
Analyst:	JB			
Percent Solids:	92%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile Organics - Westborough Lab	D					
Acenaphthene	ND		ug/kg	5600		20
1,2,4-Trichlorobenzene	ND		ug/kg	7000		20
Hexachlorobenzene	ND		ug/kg	4200		20
Bis(2-chloroethyl)ether	ND		ug/kg	6300		20
2-Chloronaphthalene	ND		ug/kg	7000		20
1,2-Dichlorobenzene	ND		ug/kg	7000		20
1,3-Dichlorobenzene	ND		ug/kg	7000		20
1,4-Dichlorobenzene	ND		ug/kg	7000		20
3,3'-Dichlorobenzidine	ND		ug/kg	7000		20
2,4-Dinitrotoluene	ND		ug/kg	7000		20
2,6-Dinitrotoluene	ND		ug/kg	7000		20
Azobenzene	ND		ug/kg	7000		20
Fluoranthene	5200		ug/kg	4200		20
4-Bromophenyl phenyl ether	ND		ug/kg	7000		20
Bis(2-chloroisopropyl)ether	ND		ug/kg	8400		20
Bis(2-chloroethoxy)methane	ND		ug/kg	7500		20
Hexachlorobutadiene	ND		ug/kg	7000		20
Hexachloroethane	ND		ug/kg	5600		20
Isophorone	ND		ug/kg	6300		20
Naphthalene	ND		ug/kg	7000		20
Nitrobenzene	ND		ug/kg	6300		20
Bis(2-Ethylhexyl)phthalate	ND		ug/kg	7000		20
Butyl benzyl phthalate	ND		ug/kg	7000		20
Di-n-butylphthalate	ND		ug/kg	7000		20
Di-n-octylphthalate	ND		ug/kg	7000		20
Diethyl phthalate	ND		ug/kg	7000		20
Dimethyl phthalate	ND		ug/kg	7000		20
Benzo(a)anthracene	ND		ug/kg	4200		20
Benzo(a)pyrene	ND		ug/kg	5600		20
Denne (h) fluere eth ere						
Benzo(b)fluoranthene	ND		ug/kg	4200		20

						Serial_N	lo:11171	112:25
Project Name:	NEW BEDFORD PITS				La	b Number:	L1	118751
Project Number:	70514.LSP.LIBERTY				Re	port Date:	11	/17/11
•			SAMPLE R	ESULTS		•		
Lab ID:	L1118751-08	D			Date	Collected:	11/0)9/11 11:30
Client ID:	TP-08					Received:		0/11
Sample Location:	NEW BEDFORD, N	1A			Field	Prep:	Not	Specified
Parameter			Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile	Organics - Westborough	Lab						
Chrysene			ND		ug/kg	4200		20
Acenaphthylene			ND		ug/kg	5600		20
Anthracene			ND		ug/kg	4200		20
Benzo(ghi)perylene			ND		ug/kg	5600		20
Fluorene			ND		ug/kg	7000		20
Phenanthrene			ND		ug/kg	4200		20
Dibenzo(a,h)anthracene)		ND		ug/kg	4200		20
Indeno(1,2,3-cd)Pyrene			ND		ug/kg	5600		20
Pyrene			5600		ug/kg	4200		20
Aniline			ND		ug/kg	8400		20
4-Chloroaniline			ND		ug/kg	7000		20
Dibenzofuran			ND		ug/kg	7000		20
2-Methylnaphthalene			ND		ug/kg	8400		20
Acetophenone			ND		ug/kg	7000		20
2,4,6-Trichlorophenol			ND		ug/kg	4200		20
2-Chlorophenol			ND		ug/kg	7000		20
2,4-Dichlorophenol			ND		ug/kg	6300		20
2,4-Dimethylphenol			ND		ug/kg	7000		20
2-Nitrophenol			ND		ug/kg	15000		20
4-Nitrophenol			ND		ug/kg	9700		20
2,4-Dinitrophenol			ND		ug/kg	33000		20
Pentachlorophenol			ND		ug/kg	14000		20
Phenol			ND		ug/kg	7000		20
2-Methylphenol			ND		ug/kg	7000		20
3-Methylphenol/4-Methy	/lphenol		ND		ug/kg	10000		20
2,4,5-Trichlorophenol			ND		ug/kg	7000		20

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	0	Q	30-130
Phenol-d6	0	Q	30-130
Nitrobenzene-d5	0	Q	30-130
2-Fluorobiphenyl	0	Q	30-130
2,4,6-Tribromophenol	0	Q	30-130
4-Terphenyl-d14	0	Q	30-130

			Serial_No:	11171112:25
Project Name:	NEW BEDFORD PITS		Lab Number:	L1118751
Project Number:	70514.LSP.LIBERTY		Report Date:	11/17/11
		SAMPLE RESULTS		
Lab ID:	L1118751-09 D		Date Collected:	11/09/11 11:50
Client ID:	TP-09		Date Received:	11/10/11
Sample Location:	NEW BEDFORD, MA		Field Prep:	Not Specified
Matrix:	Soil		Extraction Method:	EPA 3546
Analytical Method:	97,8270C		Extraction Date:	11/11/11 05:31
Analytical Date:	11/14/11 16:13			
Analyst:	JB			
Percent Solids:	82%			

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
MCP Semivolatile Organics - Westboro	ough Lab				
Acenaphthene	ND	ug/kg	1500		5
1,2,4-Trichlorobenzene	ND	ug/kg	1900		5
Hexachlorobenzene	ND	ug/kg	1200		5
Bis(2-chloroethyl)ether	ND	ug/kg	1700		5
2-Chloronaphthalene	ND	ug/kg	1900		5
1,2-Dichlorobenzene	ND	ug/kg	1900		5
1,3-Dichlorobenzene	ND	ug/kg	1900		5
1,4-Dichlorobenzene	ND	ug/kg	1900		5
3,3'-Dichlorobenzidine	ND	ug/kg	1900		5
2,4-Dinitrotoluene	ND	ug/kg	1900		5
2,6-Dinitrotoluene	ND	ug/kg	1900		5
Azobenzene	ND	ug/kg	1900		5
Fluoranthene	1200	ug/kg	1200		5
4-Bromophenyl phenyl ether	ND	ug/kg	1900		5
Bis(2-chloroisopropyl)ether	ND	ug/kg	2300		5
Bis(2-chloroethoxy)methane	ND	ug/kg	2100		5
Hexachlorobutadiene	ND	ug/kg	1900		5
Hexachloroethane	ND	ug/kg	1500		5
Isophorone	ND	ug/kg	1700		5
Naphthalene	ND	ug/kg	1900		5
Nitrobenzene	ND	ug/kg	1700		5
Bis(2-Ethylhexyl)phthalate	ND	ug/kg	1900		5
Butyl benzyl phthalate	ND	ug/kg	1900		5
Di-n-butylphthalate	ND	ug/kg	1900		5
Di-n-octylphthalate	ND	ug/kg	1900		5
Diethyl phthalate	ND	ug/kg	1900		5
Dimethyl phthalate	ND	ug/kg	1900		5
Benzo(a)anthracene	ND	ug/kg	1200		5
Benzo(a)pyrene	ND	ug/kg	1500		5
Benzo(b)fluoranthene	ND	ug/kg	1200		5
Benzo(k)fluoranthene	ND	ug/kg	1200		5

						Serial_N	o:11171	112:25
Project Name:	NEW BEDFORD PITS				La	b Number:	L1	118751
Project Number:	70514.LSP.LIBERTY				Re	eport Date:	11	/17/11
•			SAMPLE R	ESULTS		•		
Lab ID:	L1118751-09	D			Date	e Collected:	11/0	9/11 11:50
Client ID:	TP-09					e Received:		0/11
Sample Location:	NEW BEDFORD, I	MA			Field	d Prep:	Not	Specified
Parameter			Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile (Organics - Westborough	Lab						
Chrysene			ND		ug/kg	1200		5
Acenaphthylene			ND		ug/kg	1500		5
Anthracene			ND		ug/kg	1200		5
Benzo(ghi)perylene			ND		ug/kg	1500		5
Fluorene			ND		ug/kg	1900		5
Phenanthrene			ND		ug/kg	1200		5
Dibenzo(a,h)anthracene	9		ND		ug/kg	1200		5
Indeno(1,2,3-cd)Pyrene			ND		ug/kg	1500		5
Pyrene			1200		ug/kg	1200		5
Aniline			ND		ug/kg	2300		5
4-Chloroaniline			ND		ug/kg	1900		5
Dibenzofuran			ND		ug/kg	1900		5
2-Methylnaphthalene			ND		ug/kg	2300		5
Acetophenone			ND		ug/kg	1900		5
2,4,6-Trichlorophenol			ND		ug/kg	1200		5
2-Chlorophenol			ND		ug/kg	1900		5
2,4-Dichlorophenol			ND		ug/kg	1700		5
2,4-Dimethylphenol			ND		ug/kg	1900		5
2-Nitrophenol			ND		ug/kg	4200		5
4-Nitrophenol			ND		ug/kg	2700		5
2,4-Dinitrophenol			ND		ug/kg	9200		5
Pentachlorophenol			ND		ug/kg	3800		5
Phenol			ND		ug/kg	1900		5
2-Methylphenol			ND		ug/kg	1900		5
3-Methylphenol/4-Methy	/lphenol		ND		ug/kg	2800		5
2,4,5-Trichlorophenol			ND		ug/kg	1900		5

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	92		30-130
Phenol-d6	102		30-130
Nitrobenzene-d5	89		30-130
2-Fluorobiphenyl	93		30-130
2,4,6-Tribromophenol	101		30-130
4-Terphenyl-d14	99		30-130

			Serial_No:	11171112:25
Project Name:	NEW BEDFORD PITS		Lab Number:	L1118751
Project Number:	70514.LSP.LIBERTY		Report Date:	11/17/11
		SAMPLE RESULTS		
Lab ID:	L1118751-10		Date Collected:	11/09/11 12:00
Client ID:	TP-10		Date Received:	11/10/11
Sample Location:	NEW BEDFORD, MA		Field Prep:	Not Specified
Matrix:	Soil		Extraction Method:	EPA 3546
Analytical Method:	97,8270C		Extraction Date:	11/11/11 05:31
Analytical Date:	11/13/11 23:59			
Analyst:	JB			
Percent Solids:	84%			

MCP Semivolatile Organics - Westborough LabAcenaphtheneNDug/kg1,2,4-TrichlorobenzeneNDug/kgHexachlorobenzeneNDug/kgBis(2-chloroethyl)etherNDug/kg2-ChloronaphthaleneNDug/kg1,2-DichlorobenzeneNDug/kg1,3-DichlorobenzeneNDug/kg3,3-DichlorobenzeneNDug/kg2,4-DinitrotolueneNDug/kg2,6-DinitrotolueneNDug/kg4-zobenzeneNDug/kg5,6-DinitrotolueneNDug/kg6,6-DinitrotolueneNDug/kg6,6-DinitrotolueneNDug/kg6,6-DinitrotolueneNDug/kg6,6-DinitrotolueneNDug/kg6,6-DinitrotolueneNDug/kg6,6-DinitrotolueneNDug/kg6,6-DinitrotolueneNDug/kg6,6-DinitrotolueneNDug/kg6,6-DinitrotolueneNDug/kg6,6-DinitrotolueneNDug/kg6,6-DinitrotolueneNDug/kg6,6-DinitrotolueneNDug/kg6,6-DinitrotolueneNDug/kg6,7-DinitrotolueneNDug/kg6,8-DinitrotolueneNDug/kg6,8-DinitrotolueneNDug/kg6,8-DinitrotolueneNDug/kg6,8-DinitrotolueneNDug/kg6,8-DinitrotolueneNDug/kg7,8-DinitrotolueneNDug/kg8,9-Dinitrotoluene	300 380 230 340 380	 1 1 1
1,2,4-TrichlorobenzeneNDug/kgHexachlorobenzeneNDug/kgBis(2-chloroethyl)etherNDug/kg2-ChloronaphthaleneNDug/kg1,2-DichlorobenzeneNDug/kg1,3-DichlorobenzeneNDug/kg1,4-DichlorobenzeneNDug/kg3,3'-DichlorobenzeneNDug/kg2,4-DinitrotolueneNDug/kg2,6-DinitrotolueneNDug/kgFluorantheneNDug/kgFluorantheneNDug/kgBis(2-chloroisopropyl)etherNDug/kgBis(2-chloroethoxy)methaneNDug/kg	380 230 340 380	 1
HexachlorobenzeneNDug/kgBis(2-chloroethyl)etherNDug/kg2-ChloronaphthaleneNDug/kg1,2-DichlorobenzeneNDug/kg1,3-DichlorobenzeneNDug/kg1,4-DichlorobenzeneNDug/kg3,3'-DichlorobenzeneNDug/kg2,4-DinitrotolueneNDug/kg2,6-DinitrotolueneNDug/kgFluorantheneNDug/kgBis(2-chloroisopropyl)etherNDug/kgBis(2-chloroethoxy)methaneNDug/kg	230 340 380	
Bis(2-chloroethyl)etherNDug/kg2-ChloronaphthaleneNDug/kg1,2-DichlorobenzeneNDug/kg1,3-DichlorobenzeneNDug/kg1,4-DichlorobenzeneNDug/kg3,3'-DichlorobenzidineNDug/kg2,4-DinitrotolueneNDug/kg2,6-DinitrotolueneNDug/kg4-Bromophenyl phenyl etherNDug/kgBis(2-chloroisopropyl)etherNDug/kgBis(2-chloroethoxy)methaneNDug/kg	340 380	1
2-ChloronaphthaleneNDug/kg1,2-DichlorobenzeneNDug/kg1,3-DichlorobenzeneNDug/kg1,4-DichlorobenzeneNDug/kg3,3'-DichlorobenzidineNDug/kg2,4-DinitrotolueneNDug/kg2,6-DinitrotolueneNDug/kgAzobenzeneNDug/kgFluorantheneNDug/kgBis(2-chloroisopropyl)etherNDug/kgBis(2-chloroethoxy)methaneNDug/kg	380	 I
1,2-DichlorobenzeneNDug/kg1,3-DichlorobenzeneNDug/kg1,4-DichlorobenzeneNDug/kg3,3'-DichlorobenzidineNDug/kg2,4-DinitrotolueneNDug/kg2,6-DinitrotolueneNDug/kgAzobenzeneNDug/kgFluorantheneNDug/kgBis(2-chloroisopropyl)etherNDug/kgBis(2-chloroethoxy)methaneNDug/kg		1
1,3-DichlorobenzeneNDug/kg1,4-DichlorobenzeneNDug/kg3,3'-DichlorobenzidineNDug/kg2,4-DinitrotolueneNDug/kg2,6-DinitrotolueneNDug/kgAzobenzeneNDug/kgFluorantheneNDug/kg4-Bromophenyl phenyl etherNDug/kgBis(2-chloroisopropyl)etherNDug/kg		 1
1,4-DichlorobenzeneNDug/kg3,3'-DichlorobenzidineNDug/kg2,4-DinitrotolueneNDug/kg2,6-DinitrotolueneNDug/kgAzobenzeneNDug/kgFluorantheneNDug/kg4-Bromophenyl phenyl etherNDug/kgBis(2-chloroisopropyl)etherNDug/kg	380	 1
3,3'-DichlorobenzidineNDug/kg2,4-DinitrotolueneNDug/kg2,6-DinitrotolueneNDug/kgAzobenzeneNDug/kgFluorantheneNDug/kg4-Bromophenyl phenyl etherNDug/kgBis(2-chloroisopropyl)etherNDug/kgBis(2-chloroethoxy)methaneNDug/kg	380	 1
2,4-DinitrotolueneNDug/kg2,6-DinitrotolueneNDug/kgAzobenzeneNDug/kgFluorantheneNDug/kg4-Bromophenyl phenyl etherNDug/kgBis(2-chloroisopropyl)etherNDug/kgBis(2-chloroethoxy)methaneNDug/kg	380	 1
2,6-DinitrotolueneNDug/kgAzobenzeneNDug/kgFluorantheneNDug/kg4-Bromophenyl phenyl etherNDug/kgBis(2-chloroisopropyl)etherNDug/kgBis(2-chloroethoxy)methaneNDug/kg	380	 1
AzobenzeneNDug/kgFluorantheneNDug/kg4-Bromophenyl phenyl etherNDug/kgBis(2-chloroisopropyl)etherNDug/kgBis(2-chloroethoxy)methaneNDug/kg	380	 1
FluorantheneNDug/kg4-Bromophenyl phenyl etherNDug/kgBis(2-chloroisopropyl)etherNDug/kgBis(2-chloroethoxy)methaneNDug/kg	380	 1
4-Bromophenyl phenyl etherNDug/kgBis(2-chloroisopropyl)etherNDug/kgBis(2-chloroethoxy)methaneNDug/kg	380	 1
Bis(2-chloroisopropyl)etherNDug/kgBis(2-chloroethoxy)methaneNDug/kg	230	 1
Bis(2-chloroethoxy)methane ND ug/kg	380	 1
	460	 1
Hexachlorobutadiene ND ug/kg	410	 1
	380	 1
Hexachloroethane ND ug/kg	300	 1
Isophorone ND ug/kg	340	 1
Naphthalene ND ug/kg	380	 1
Nitrobenzene ND ug/kg	340	 1
Bis(2-Ethylhexyl)phthalate ND ug/kg	380	 1
Butyl benzyl phthalate ND ug/kg	380	 1
Di-n-butylphthalate ND ug/kg	380	 1
Di-n-octylphthalate ND ug/kg	380	 1
Diethyl phthalate ND ug/kg	380	 1
Dimethyl phthalate ND ug/kg	380	 1
Benzo(a)anthracene ND ug/kg	230	 1
Benzo(a)pyrene ND ug/kg	300	 1
Benzo(b)fluoranthene ND ug/kg	230	 1
Benzo(k)fluoranthene ND ug/kg	230	 1

				Serial_No:11171112:25			
Project Name:	NEW BEDFORD PITS			La	b Number:	L1	118751
Project Number:	70514.LSP.LIBERTY			Re	port Date:	11	/17/11
•		SAMPLE R	ESULTS		•		,
Lab ID:	L1118751-10			Date	Collected:	11/0	9/11 12:00
Client ID:	TP-10				Received:		0/11
Sample Location:	NEW BEDFORD, MA			Field	d Prep:	Not	Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile	Organics - Westborough Lab	I					
Chrysene		ND		ug/kg	230		1
Acenaphthylene		ND		ug/kg	300		1
Anthracene		ND		ug/kg	230		1
Benzo(ghi)perylene		ND		ug/kg	300		1
Fluorene		ND		ug/kg	380		1
Phenanthrene		ND		ug/kg	230		1
Dibenzo(a,h)anthracene	9	ND		ug/kg	230		1
Indeno(1,2,3-cd)Pyrene		ND		ug/kg	300		1
Pyrene		230		ug/kg	230		1
Aniline		ND		ug/kg	460		1
4-Chloroaniline		ND		ug/kg	380		1
Dibenzofuran		ND		ug/kg	380		1
2-Methylnaphthalene		ND		ug/kg	460		1
Acetophenone		ND		ug/kg	380		1
2,4,6-Trichlorophenol		ND		ug/kg	230		1
2-Chlorophenol		ND		ug/kg	380		1
2,4-Dichlorophenol		ND		ug/kg	340		1
2,4-Dimethylphenol		ND		ug/kg	380		1
2-Nitrophenol		ND		ug/kg	820		1
4-Nitrophenol		ND		ug/kg	530		1
2,4-Dinitrophenol		ND		ug/kg	1800		1
Pentachlorophenol		ND		ug/kg	760		1
Phenol		ND		ug/kg	380		1
2-Methylphenol		ND		ug/kg	380		1
3-Methylphenol/4-Methy	lphenol	ND		ug/kg	550		1
2,4,5-Trichlorophenol		ND		ug/kg	380		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	77		30-130	
Phenol-d6	80		30-130	
Nitrobenzene-d5	70		30-130	
2-Fluorobiphenyl	83		30-130	
2,4,6-Tribromophenol	131	Q	30-130	
4-Terphenyl-d14	106		30-130	

			Serial_No:11171112:25		
Project Name:	NEW BEDFORD PITS		Lab Number:	L1118751	
Project Number:	70514.LSP.LIBERTY		Report Date:	11/17/11	
		SAMPLE RESULTS			
Lab ID:	L1118751-11		Date Collected:	11/09/11 12:40	
Client ID:	TP-11		Date Received:	11/10/11	
Sample Location:	NEW BEDFORD, MA		Field Prep:	Not Specified	
Matrix:	Soil		Extraction Method:	EPA 3546	
Analytical Method:	97,8270C		Extraction Date:	11/11/11 05:31	
Analytical Date:	11/14/11 00:24				
Analyst:	JB				
Percent Solids:	88%				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile Organics - Westbor	rough Lab					
Acenaphthene	ND		ug/kg	290		1
1,2,4-Trichlorobenzene	ND		ug/kg	360		1
Hexachlorobenzene	ND		ug/kg	220		1
Bis(2-chloroethyl)ether	ND		ug/kg	330		1
2-Chloronaphthalene	ND		ug/kg	360		1
1,2-Dichlorobenzene	ND		ug/kg	360		1
1,3-Dichlorobenzene	ND		ug/kg	360		1
1,4-Dichlorobenzene	ND		ug/kg	360		1
3,3'-Dichlorobenzidine	ND		ug/kg	360		1
2,4-Dinitrotoluene	ND		ug/kg	360		1
2,6-Dinitrotoluene	ND		ug/kg	360		1
Azobenzene	ND		ug/kg	360		1
Fluoranthene	ND		ug/kg	220		1
4-Bromophenyl phenyl ether	ND		ug/kg	360		1
Bis(2-chloroisopropyl)ether	ND		ug/kg	440		1
Bis(2-chloroethoxy)methane	ND		ug/kg	390		1
Hexachlorobutadiene	ND		ug/kg	360		1
Hexachloroethane	ND		ug/kg	290		1
Isophorone	ND		ug/kg	330		1
Naphthalene	ND		ug/kg	360		1
Nitrobenzene	ND		ug/kg	330		1
Bis(2-Ethylhexyl)phthalate	ND		ug/kg	360		1
Butyl benzyl phthalate	ND		ug/kg	360		1
Di-n-butylphthalate	ND		ug/kg	360		1
Di-n-octylphthalate	ND		ug/kg	360		1
Diethyl phthalate	ND		ug/kg	360		1
Dimethyl phthalate	ND		ug/kg	360		1
Benzo(a)anthracene	ND		ug/kg	220		1
Benzo(a)pyrene	ND		ug/kg	290		1
Benzo(b)fluoranthene	ND		ug/kg	220		1
Benzo(k)fluoranthene	ND		ug/kg	220		1

				Serial_No:11171112:25			
Project Name:	NEW BEDFORD PITS			La	b Number:	L1	118751
Project Number:	70514.LSP.LIBERTY			Re	port Date:	11	/17/11
		SAMPLE R	ESULTS		•		
Lab ID:	L1118751-11			Date	Collected:	11/0)9/11 12:40
Client ID:	TP-11				Received:		0/11
Sample Location:	NEW BEDFORD, MA			Field	d Prep:	Not	Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile	Organics - Westborough Lab)					
Chrysene		ND		ug/kg	220		1
Acenaphthylene		ND		ug/kg	290		1
Anthracene		ND		ug/kg	220		1
Benzo(ghi)perylene		ND		ug/kg	290		1
Fluorene		ND		ug/kg	360		1
Phenanthrene		ND		ug/kg	220		1
Dibenzo(a,h)anthracene	9	ND		ug/kg	220		1
Indeno(1,2,3-cd)Pyrene		ND		ug/kg	290		1
Pyrene		ND		ug/kg	220		1
Aniline		ND		ug/kg	440		1
4-Chloroaniline		ND		ug/kg	360		1
Dibenzofuran		ND		ug/kg	360		1
2-Methylnaphthalene		ND		ug/kg	440		1
Acetophenone		ND		ug/kg	360		1
2,4,6-Trichlorophenol		ND		ug/kg	220		1
2-Chlorophenol		ND		ug/kg	360		1
2,4-Dichlorophenol		ND		ug/kg	330		1
2,4-Dimethylphenol		ND		ug/kg	360		1
2-Nitrophenol		ND		ug/kg	790		1
4-Nitrophenol		ND		ug/kg	510		1
2,4-Dinitrophenol		ND		ug/kg	1800		1
Pentachlorophenol		ND		ug/kg	730		1
Phenol		ND		ug/kg	360		1
2-Methylphenol		ND		ug/kg	360		1
3-Methylphenol/4-Methy	ylphenol	ND		ug/kg	530		1
2,4,5-Trichlorophenol		ND		ug/kg	360		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	74		30-130
Phenol-d6	76		30-130
Nitrobenzene-d5	65		30-130
2-Fluorobiphenyl	71		30-130
2,4,6-Tribromophenol	96		30-130
4-Terphenyl-d14	92		30-130

Project Name:	NEW BEDFORD PITS	Lab Number:	L1118751
Project Number:	70514.LSP.LIBERTY	Report Date:	11/17/11

Analytical Method:	97,8270C
Analytical Date:	11/13/11 1
Analyst:	JB

15:25

Extraction Method: EPA 3546 Extraction Date: 11/11/11 02:46

arameter	Result	Qualifier	Units	F	RL	MDL
ICP Semivolatile Organics - V	Vestborough Lat	o for sample(s):	07-11	Batch:	WG5016	641-1
Acenaphthene	ND		ug/kg	2	60	
1,2,4-Trichlorobenzene	ND		ug/kg	3	20	
Hexachlorobenzene	ND		ug/kg	2	00	
Bis(2-chloroethyl)ether	ND		ug/kg	2	90	
2-Chloronaphthalene	ND		ug/kg	3	20	
1,2-Dichlorobenzene	ND		ug/kg	3	20	
1,3-Dichlorobenzene	ND		ug/kg	3	20	
1,4-Dichlorobenzene	ND		ug/kg	3	20	
3,3'-Dichlorobenzidine	ND		ug/kg	3	20	
2,4-Dinitrotoluene	ND		ug/kg	3	20	
2,6-Dinitrotoluene	ND		ug/kg	3	20	
Azobenzene	ND		ug/kg	3	20	
Fluoranthene	ND		ug/kg	2	00	
4-Bromophenyl phenyl ether	ND		ug/kg	3	20	
Bis(2-chloroisopropyl)ether	ND		ug/kg	3	90	
Bis(2-chloroethoxy)methane	ND		ug/kg	3	50	
Hexachlorobutadiene	ND		ug/kg	3	20	
Hexachloroethane	ND		ug/kg	2	60	
Isophorone	ND		ug/kg	2	90	
Naphthalene	ND		ug/kg	3	20	
Nitrobenzene	ND		ug/kg	2	90	
Bis(2-Ethylhexyl)phthalate	ND		ug/kg	3	20	
Butyl benzyl phthalate	ND		ug/kg	3	20	
Di-n-butylphthalate	ND		ug/kg	3	20	
Di-n-octylphthalate	ND		ug/kg	3	20	
Diethyl phthalate	ND		ug/kg	3	20	
Dimethyl phthalate	ND		ug/kg	3	20	
Benzo(a)anthracene	ND		ug/kg	2	00	
Benzo(a)pyrene	ND		ug/kg	2	60	
Benzo(b)fluoranthene	ND		ug/kg	2	00	
Benzo(k)fluoranthene	ND		ug/kg	2	00	

Project Name:	NEW BEDFORD PITS	Lab Number:	L1118751
Project Number:	70514.LSP.LIBERTY	Report Date:	11/17/11

Analytical Method:	97,8270C
Analytical Date:	11/13/11 15:25
Analyst:	JB

Extraction Method: EPA 3546 Extraction Date: 11/11/11 02:46

arameter	Result	Qualifier	Units	F	RL	MDL
CP Semivolatile Organics - W	estborough Lab	o for sample(s):	07-11	Batch:	WG501641-	1
Chrysene	ND		ug/kg	2	00	
Acenaphthylene	ND		ug/kg	2	60	
Anthracene	ND		ug/kg	2	00	
Benzo(ghi)perylene	ND		ug/kg	2	60	
Fluorene	ND		ug/kg	3	20	
Phenanthrene	ND		ug/kg	2	00	
Dibenzo(a,h)anthracene	ND		ug/kg	2	00	
Indeno(1,2,3-cd)Pyrene	ND		ug/kg	2	60	
Pyrene	ND		ug/kg	2	00	
Aniline	ND		ug/kg	3	90	
4-Chloroaniline	ND		ug/kg	3	20	
Dibenzofuran	ND		ug/kg	3	20	
2-Methylnaphthalene	ND		ug/kg	3	90	
Acetophenone	ND		ug/kg	3	20	
2,4,6-Trichlorophenol	ND		ug/kg	2	:00	
2-Chlorophenol	ND		ug/kg	3	20	
2,4-Dichlorophenol	ND		ug/kg	2	.90	
2,4-Dimethylphenol	ND		ug/kg	3	20	
2-Nitrophenol	ND		ug/kg	7	00	
4-Nitrophenol	ND		ug/kg	4	60	
2,4-Dinitrophenol	ND		ug/kg	16	600	
Pentachlorophenol	ND		ug/kg	6	50	
Phenol	ND		ug/kg	3	20	
2-Methylphenol	ND		ug/kg	3	20	
3-Methylphenol/4-Methylphenol	ND		ug/kg	4	70	
2,4,5-Trichlorophenol	ND		ug/kg	3	20	

Project Name:	NEW BEDFORD PITS		Lab Number:	L1118751
Project Number:	70514.LSP.LIBERTY		Report Date:	11/17/11
		Method Blank Analysis		

Analytical Method:	97,8270C	Extraction Method:	EPA 3546
Analytical Date:	11/13/11 15:25	Extraction Date:	11/11/11 02:46
Analyst:	JB		

Parameter	Result	Qualifier	Units	RL	М	IDL
MCP Semivolatile Organics -	Westborough Lab	for sample(s):	07-11	Batch: V	VG501641-1	

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	102	30-130
Phenol-d6	100	30-130
Nitrobenzene-d5	84	30-130
2-Fluorobiphenyl	91	30-130
2,4,6-Tribromophenol	109	30-130
4-Terphenyl-d14	103	30-130

Project Name:	NEW BEDFORD PITS	Lab Number:	L1118751
Project Number:	70514.LSP.LIBERTY	Report Date:	11/17/11

Analytical Method:	97,8270C
Analytical Date:	11/13/11 17:59
Analyst:	JB

Extraction Method: EPA 3546 Extraction Date: 11/11/11 05:27

arameter	Result	Qualifier	Units		٦L	MDL
ICP Semivolatile Organics	- Westborough Lab	for sample(s):	01-06	Batch:	WG50	1663-1
Acenaphthene	ND		ug/kg	2	50	
1,2,4-Trichlorobenzene	ND		ug/kg	3	20	
Hexachlorobenzene	ND		ug/kg	1	90	
Bis(2-chloroethyl)ether	ND		ug/kg	2	80	
2-Chloronaphthalene	ND		ug/kg	3	20	
1,2-Dichlorobenzene	ND		ug/kg	3	20	
1,3-Dichlorobenzene	ND		ug/kg	3	20	
1,4-Dichlorobenzene	ND		ug/kg	3	20	
3,3'-Dichlorobenzidine	ND		ug/kg	3	20	
2,4-Dinitrotoluene	ND		ug/kg	3	20	
2,6-Dinitrotoluene	ND		ug/kg	3	20	
Azobenzene	ND		ug/kg	3	20	
Fluoranthene	ND		ug/kg	1	90	
4-Bromophenyl phenyl ether	ND		ug/kg	3	20	
Bis(2-chloroisopropyl)ether	ND		ug/kg	3	80	
Bis(2-chloroethoxy)methane	ND		ug/kg	3	40	
Hexachlorobutadiene	ND		ug/kg	3	20	
Hexachloroethane	ND		ug/kg	2	50	
Isophorone	ND		ug/kg	2	80	
Naphthalene	ND		ug/kg	3	20	
Nitrobenzene	ND		ug/kg	2	80	
Bis(2-Ethylhexyl)phthalate	ND		ug/kg	3	20	
Butyl benzyl phthalate	ND		ug/kg	3	20	
Di-n-butylphthalate	ND		ug/kg	3	20	
Di-n-octylphthalate	ND		ug/kg	3	20	
Diethyl phthalate	ND		ug/kg	3	20	
Dimethyl phthalate	ND		ug/kg	3	20	
Benzo(a)anthracene	ND		ug/kg	1	90	
Benzo(a)pyrene	ND		ug/kg	2	50	
Benzo(b)fluoranthene	ND		ug/kg	1	90	
Benzo(k)fluoranthene	ND		ug/kg	1	90	

Project Name:	NEW BEDFORD PITS	Lab Number:	L1118751
Project Number:	70514.LSP.LIBERTY	Report Date:	11/17/11

Analytical Method:	97,8270C
Analytical Date:	11/13/11 17:59
Analyst:	JB

Extraction Method: EPA 3546 Extraction Date: 11/11/11 05:27

arameter	Result	Qualifier	Units	RL	MDL
CP Semivolatile Organics - We	estborough Lab	for sample(s):	01-06	Batch: V	VG501663-1
Chrysene	ND		ug/kg	190	
Acenaphthylene	ND		ug/kg	250	
Anthracene	ND		ug/kg	190	
Benzo(ghi)perylene	ND		ug/kg	250	
Fluorene	ND		ug/kg	320	
Phenanthrene	ND		ug/kg	190	
Dibenzo(a,h)anthracene	ND		ug/kg	190	
Indeno(1,2,3-cd)Pyrene	ND		ug/kg	250	
Pyrene	ND		ug/kg	190	
Aniline	ND		ug/kg	380	
4-Chloroaniline	ND		ug/kg	320	
Dibenzofuran	ND		ug/kg	320	
2-Methylnaphthalene	ND		ug/kg	380	
Acetophenone	ND		ug/kg	320	
2,4,6-Trichlorophenol	ND		ug/kg	190	
2-Chlorophenol	ND		ug/kg	320	
2,4-Dichlorophenol	ND		ug/kg	280	
2,4-Dimethylphenol	ND		ug/kg	320	
2-Nitrophenol	ND		ug/kg	680	
4-Nitrophenol	ND		ug/kg	440	
2,4-Dinitrophenol	ND		ug/kg	1500)
Pentachlorophenol	ND		ug/kg	630	
Phenol	ND		ug/kg	320	
2-Methylphenol	ND		ug/kg	320	
3-Methylphenol/4-Methylphenol	ND		ug/kg	460	
2,4,5-Trichlorophenol	ND		ug/kg	320	

Project Name:	NEW BEDFORD PITS		Lab Number:	L1118751
Project Number:	70514.LSP.LIBERTY		Report Date:	11/17/11
		Method Blank Analysis		

Batch Quality Control

Analytical Method:	97,8270C	Extraction Method:	EPA 3546
Analytical Date:	11/13/11 17:59	Extraction Date:	11/11/11 05:27
Analyst:	JB		

Parameter	Result	Qualifier	Units	RL	MDL	
MCP Semivolatile Organics -	Westborough Lat	o for sample(s)	: 01-06	Batch: WG	501663-1	

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	80	30-130
Phenol-d6	78	30-130
Nitrobenzene-d5	67	30-130
2-Fluorobiphenyl	78	30-130
2,4,6-Tribromophenol	79	30-130
4-Terphenyl-d14	84	30-130

Lab Control Sample Analysis

Batch Quality Control

Project Name:

Lab Number: L1118751 Report Date: 11/17/11

LCSD %Recovery LCS %Recovery %Recovery Qual Limits RPD **RPD** Limits Qual Qual Parameter MCP Semivolatile Organics - Westborough Lab Associated sample(s): 07-11 Batch: WG501641-2 WG501641-3 40-140 0 30 Acenaphthene 85 85 1,2,4-Trichlorobenzene 83 79 40-140 5 30 Hexachlorobenzene 101 98 40-140 30 3 Bis(2-chloroethyl)ether 40-140 30 79 76 4 2-Chloronaphthalene 112 109 40-140 3 30 40-140 1.2-Dichlorobenzene 84 87 30 4 1,3-Dichlorobenzene 81 83 40-140 2 30 1.4-Dichlorobenzene 82 40-140 30 86 5 3.3'-Dichlorobenzidine 40-140 30 55 43 24 2,4-Dinitrotoluene 40-140 30 116 118 2 2.6-Dinitrotoluene 113 112 40-140 30 1 Azobenzene 95 93 40-140 2 30 Fluoranthene 100 102 40-140 2 30 4-Bromophenyl phenyl ether 40-140 30 99 102 3 Bis(2-chloroisopropyl)ether 40-140 30 91 87 4 Bis(2-chloroethoxy)methane 82 80 40-140 30 2 Hexachlorobutadiene 82 79 40-140 4 30 Hexachloroethane 81 80 40-140 1 30 40-140 30 Isophorone 85 79 7 40-140 30 Naphthalene 85 87 2 84 79 40-140 30 Nitrobenzene 6

NEW BEDFORD PITS

Lab Control Sample Analysis

Batch Quality Control

Project Name: NEW BEDFORD PITS Project Number: 70514.LSP.LIBERTY Lab Number: L1118751 Report Date: 11/17/11

LCS LCSD %Recovery %Recovery %Recovery Limits RPD **RPD** Limits Qual Qual Qual Parameter MCP Semivolatile Organics - Westborough Lab Associated sample(s): 07-11 Batch: WG501641-2 WG501641-3 Bis(2-Ethylhexyl)phthalate 102 40-140 30 95 7 Butyl benzyl phthalate 113 113 40-140 0 30 Di-n-butylphthalate 105 103 40-140 30 2 Di-n-octylphthalate 92 40-140 30 97 5 Diethyl phthalate 102 106 40-140 30 4 Dimethyl phthalate 40-140 30 99 94 5 Benzo(a)anthracene 92 92 40-140 0 30 Benzo(a)pyrene 93 93 40-140 0 30 Benzo(b)fluoranthene 40-140 30 99 102 3 Benzo(k)fluoranthene 105 96 40-140 30 9 95 93 40-140 30 Chrysene 2 Acenaphthylene 106 102 40-140 4 30 Anthracene 95 94 40-140 30 1 Benzo(ghi)perylene 107 40-140 30 106 1 100 40-140 30 Fluorene 98 2 Phenanthrene 91 90 40-140 30 1 Dibenzo(a,h)anthracene 114 114 40-140 0 30 Indeno(1,2,3-cd)Pyrene 30 112 115 40-140 3 Pyrene 40-140 30 109 101 8 Aniline Q 40-140 30 40 35 13 4-Chloroaniline 43 40-140 24 30 55

Project Name: NEW BEDFORD PITS Lab Number: L1118751 Report Date: 11/17/11

arameter	LCS %Recovery	Qual		CSD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
CP Semivolatile Organics - Westborough L	ab Associated	sample(s):	07-11	Batch:	WG501641-2	2 WG501641-3			
Dibenzofuran	98			100		40-140	2		30
2-Methylnaphthalene	91			90		40-140	1		30
Acetophenone	90			95		40-140	5		30
2,4,6-Trichlorophenol	93			102		30-130	9		30
2-Chlorophenol	89			93		30-130	4		30
2,4-Dichlorophenol	103			107		30-130	4		30
2,4-Dimethylphenol	88			96		30-130	9		30
2-Nitrophenol	92			97		30-130	5		30
4-Nitrophenol	91			94		30-130	3		30
2,4-Dinitrophenol	42			12	Q	30-130	111	Q	30
Pentachlorophenol	68			70		30-130	3		30
Phenol	88			92		30-130	4		30
2-Methylphenol	99			100		30-130	1		30
3-Methylphenol/4-Methylphenol	96			98		30-130	2		30
2,4,5-Trichlorophenol	103			105		30-130	2		30

Project Name: NEW BEDFORD PITS Project Number: 70514.LSP.LIBERTY

Lab Number: L1118751 Report Date: 11/17/11

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
					· ····			
MCP Semivolatile Organics - Westborough L	ab Associated a	sample(s):	07-11 Batch:	WG501641-2	2 WG501641-3			

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
2-Fluorophenol	91	90	30-130
Phenol-d6	90	95	30-130
Nitrobenzene-d5	79	83	30-130
2-Fluorobiphenyl	93	93	30-130
2,4,6-Tribromophenol	108	106	30-130
4-Terphenyl-d14	105	98	30-130

MCP Semivolatile Organics - Westborough Lab Associated sample(s): 01-06 Batch: WG501663-2 WG501663-3

30
30
30
30
30
30
30
30
30

Project Name: NEW BEDFORD PITS Lab Number: L1118751 Report Date: 11/17/11

arameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual RPD Limits
ICP Semivolatile Organics - Westborough	Lab Associated sample(s)	: 01-06 Batch:	WG501663-2 WG501663-3		
2,4-Dinitrotoluene	96	103	40-140	7	30
2,6-Dinitrotoluene	92	103	40-140	11	30
Azobenzene	100	105	40-140	5	30
Fluoranthene	98	104	40-140	6	30
4-Bromophenyl phenyl ether	91	98	40-140	7	30
Bis(2-chloroisopropyl)ether	78	90	40-140	14	30
Bis(2-chloroethoxy)methane	82	96	40-140	16	30
Hexachlorobutadiene	69	85	40-140	21	30
Hexachloroethane	70	83	40-140	17	30
Isophorone	84	98	40-140	15	30
Naphthalene	74	89	40-140	18	30
Nitrobenzene	78	93	40-140	18	30
Bis(2-Ethylhexyl)phthalate	109	117	40-140	7	30
Butyl benzyl phthalate	106	109	40-140	3	30
Di-n-butylphthalate	105	111	40-140	6	30
Di-n-octylphthalate	107	114	40-140	6	30
Diethyl phthalate	94	99	40-140	5	30
Dimethyl phthalate	92	96	40-140	4	30
Benzo(a)anthracene	93	99	40-140	6	30
Benzo(a)pyrene	87	95	40-140	9	30
Benzo(b)fluoranthene	87	95	40-140	9	30

Project Name: NEW BEDFORD PITS Lab Number: L1118751 Report Date: 11/17/11

arameter	LCS %Recovery	Qual	LC: %Rec		% Qual	Recovery Limits	RPD	Qual	RPD Limits
ICP Semivolatile Organics - Westborough L	ab Associated	sample(s):	01-06 E	Batch:	WG501663-2	WG501663-3			
Benzo(k)fluoranthene	98		1	01		40-140	3		30
Chrysene	95		1	03		40-140	8		30
Acenaphthylene	86		g	99		40-140	14		30
Anthracene	96		1	02		40-140	6		30
Benzo(ghi)perylene	96		1	00		40-140	4		30
Fluorene	85		g	91		40-140	7		30
Phenanthrene	91		g	97		40-140	6		30
Dibenzo(a,h)anthracene	98		1	02		40-140	4		30
Indeno(1,2,3-cd)Pyrene	94		1	00		40-140	6		30
Pyrene	94		1	00		40-140	6		30
Aniline	33	Q	5	50		40-140	41	Q	30
4-Chloroaniline	45		6	60		40-140	29		30
Dibenzofuran	88		g	96		40-140	9		30
2-Methylnaphthalene	76		g	90		40-140	17		30
Acetophenone	85		g	99		40-140	15		30
2,4,6-Trichlorophenol	93		1	06		30-130	13		30
2-Chlorophenol	82		g	95		30-130	15		30
2,4-Dichlorophenol	86		g	99		30-130	14		30
2,4-Dimethylphenol	96		1	04		30-130	8		30
2-Nitrophenol	81		g	97		30-130	18		30
4-Nitrophenol	113		1	19		30-130	5		30

Lab Control Sample Analysis Batch Quality Control

Project Name: NEW BEDFORD PITS Lab Number: L1118751 Report Date: 11/17/11

Project Number: 70514.LSP.LIBERTY

Parameter	LCS %Recovery	Qual		.CSD ecovery	% Qual	6Recovery Limits	RPD	Qual	RPD Limits
MCP Semivolatile Organics - Westborough La	b Associated	sample(s):	01-06	Batch:	WG501663-2	WG501663-3			
2,4-Dinitrophenol	15	Q		32		30-130	72	Q	30
Pentachlorophenol	90			101		30-130	12		30
Phenol	83			101		30-130	20		30
2-Methylphenol	86			100		30-130	15		30
3-Methylphenol/4-Methylphenol	84			98		30-130	15		30
2,4,5-Trichlorophenol	97			108		30-130	11		30

	LCS	LCSD		Acceptance	
Surrogate	%Recovery	Qual %Recovery	Qual	Criteria	
2-Fluorophenol	80	96		30-130	
Phenol-d6	87	101		30-130	
Nitrobenzene-d5	78	94		30-130	
2-Fluorobiphenyl	78	93		30-130	
2,4,6-Tribromophenol	98	104		30-130	
4-Terphenyl-d14	95	104		30-130	

METALS

Project Name:	NEW	BEDFORD	PITS				Lab Nur	nber:	L11187	51	
Project Number:	70514	LSP.LIBE	RTY				Report I	Date:	11/17/1	1	
				SAMPL	E RES	ULTS					
Lab ID:	L1118	751-01					Date Co	llected:	11/09/1	1 08:35	
Client ID:	TP-01						Date Re	ceived:	11/10/1	1	
Sample Location:	NEW I	BEDFORD	, MA				Field Pre	ep:	Not Spe	ecified	
Matrix:	Soil										
Percent Solids:	90%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analys
MCP Total Metals - V	Westbord	ough Lab									
Arsenic, Total	4.4		mg/kg	0.42		1	11/11/11 11:10	11/15/11 11:13	EPA 3050B	97,6010B	MG
Cadmium, Total	ND		mg/kg	0.42		1	11/11/11 11:10	11/15/11 11:13	EPA 3050B	97,6010B	MG
Chromium, Total	9.7		mg/kg	0.42		1	11/11/11 11:10	11/15/11 11:13	EPA 3050B	97,6010B	MG
Lead, Total	190		mg/kg	2.1		1	11/11/11 11:10	11/15/11 11:13	EPA 3050B	97,6010B	MG
Mercury, Total	0.18		mg/kg	0.07		1	11/16/11 17:10	11/16/11 19:49	EPA 7471A	97,7471A	JP

Project Name:	NEW	BEDFORD	PITS				Lab Nur	nber:	L11187	51	
Project Number:	70514	I.LSP.LIBEI	RTY				Report I	Date:	11/17/1	1	
				SAMPL	E RES	ULTS					
Lab ID:	L1118	751-02					Date Co	llected:	11/09/1	1 09:00	
Client ID:	TP-02						Date Re	ceived:	11/10/1	1	
Sample Location:	NEW I	BEDFORD	, MA				Field Pre	ep:	Not Spe	ecified	
Matrix:	Soil										
Percent Solids:	90%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analys
MCP Total Metals - V	Westbord	ough Lab									
Arsenic, Total	4.6		mg/kg	0.42		1	11/11/11 11:10	11/15/11 11:16	EPA 3050B	97,6010B	MG
Cadmium, Total	ND		mg/kg	0.42		1	11/11/11 11:10	11/15/11 11:16	EPA 3050B	97,6010B	MG
Chromium, Total	10		mg/kg	0.42		1	11/11/11 11:10	11/15/11 11:16	EPA 3050B	97,6010B	MG
										07 00405	
Lead, Total	43		mg/kg	2.1		1	11/11/11 11:10	11/15/11 11:16	EPA 3050B	97,6010B	MG

Project Name:	NEW	BEDFORD	PITS				Lab Nur	nber:	L11187	51	
Project Number:	70514	.LSP.LIBE	RTY				Report	Date:	11/17/1	1	
				SAMPL	E RES	ULTS					
Lab ID:	L1118	751-03					Date Co	llected:	11/09/1	1 09:45	
Client ID:	TP-03						Date Re	ceived:	11/10/1	1	
Sample Location:	NEW I	BEDFORD	, MA				Field Pre	ep:	Not Spe	ecified	
Matrix:	Soil										
Percent Solids:	91%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analys
MCP Total Metals - \	Westbord	ough Lab									
Arsenic, Total	2.1		mg/kg	0.42		1	11/11/11 11:10	11/15/11 11:18	EPA 3050B	97,6010B	MG
Cadmium, Total	ND		mg/kg	0.42		1	11/11/11 11:10	11/15/11 11:18	EPA 3050B	97,6010B	MG
Chromium, Total	14		mg/kg	0.42		1	11/11/11 11:10	11/15/11 11:18	EPA 3050B	97,6010B	MG
Lead, Total	180		mg/kg	2.1		1	11/11/11 11:10	11/15/11 11:18	EPA 3050B	97,6010B	MG
Mercury, Total	0.13		mg/kg	0.07		1	11/16/11 17:10	11/16/11 19:57	EPA 7471A	97,7471A	JP

Project Name:	NEW	BEDFORD	PITS				Lab Nun	nber:	L11187	51	
Project Number:	70514	LSP.LIBE	RTY				Report I	Date:	11/17/1	1	
				SAMPL	E RES	ULTS					
Lab ID:	L1118	751-04					Date Col	lected:	11/09/1	1 09:55	
Client ID:	TP-04						Date Red	ceived:	11/10/1	1	
Sample Location:	NEW I	BEDFORD	, MA				Field Pre	ep:	Not Spe	ecified	
Matrix:	Soil										
Percent Solids:	94%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analys
MCP Total Metals - '	Westbord	ough Lab									
Arsenic, Total	2.0		mg/kg	0.40		1	11/11/11 11:10	11/15/11 11:21	EPA 3050B	97,6010B	MG
Cadmium, Total	ND		mg/kg	0.40		1	11/11/11 11:10	11/15/11 11:21	EPA 3050B	97,6010B	MG
Chromium, Total	10		mg/kg	0.40		1	11/11/11 11:10	11/15/11 11:21	EPA 3050B	97,6010B	MG
Lead, Total	47		mg/kg	2.0		1	11/11/11 11:10	11/15/11 11:21	EPA 3050B	97,6010B	MG

Project Name:	NEW BEDFORD PITS 70514.LSP.LIBERTY						Lab Nur	nber:	L11187	51	
Project Number:	70514	LSP.LIBE	RTY				Report I	Date:	11/17/1	1	
				SAMPL	E RES	ULTS					
Lab ID:	L1118	751-05					Date Co	llected:	11/09/1	1 10:10	
Client ID:	TP-05						Date Re	ceived:	11/10/1	1	
Sample Location:	NEW I	BEDFORD	, MA				Field Pre	ep:	Not Spe	ecified	
Matrix:	Soil										
Percent Solids:	94%					Dilution	Date	Date	Dron	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Prep Method	Method	Analys
MCP Total Metals - \	Nestbord	ough Lab									
Arsenic, Total	1.6		mg/kg	0.41		1	11/11/11 11:10	11/15/11 11:23	3 EPA 3050B	97,6010B	MG
Cadmium, Total	ND		mg/kg	0.41		1	11/11/11 11:10	11/15/11 11:23	3 EPA 3050B	97,6010B	MG
Chromium, Total	15		mg/kg	0.41		1	11/11/11 11:10	11/15/11 11:23	3 EPA 3050B	97,6010B	MG
Lead, Total	260		mg/kg	2.0		1	11/11/11 11:10	11/15/11 11:23	3 EPA 3050B	97,6010B	MG
Mercury, Total	0.09		mg/kg	0.07		1	11/16/11 17:10	11/16/11 20:01	1 EPA 7471A	97,7471A	JP

Project Name:	NEW	BEDFORD	PITS				Lab Nu	mber:	L11187	51	
Project Number:	70514	LSP.LIBE	RTY				Report	Date:	11/17/1	1	
				SAMPL	E RES	ULTS					
Lab ID:	L1118	751-06					Date Co	ollected:	11/09/1	1 11:00	
Client ID:	TP-06						Date Re	eceived:	11/10/1	1	
Sample Location:	NEW I	BEDFORD	, MA				Field Pr	ep:	Not Spe	ecified	
Matrix:	Soil										
Percent Solids:	96%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analys
MCP Total Metals - \	Vestbord	ough Lab									
Arsenic, Total	1.2		mg/kg	0.40		1	11/11/11 11:10) 11/15/11 11:26	EPA 3050B	97,6010B	MG
Cadmium, Total	ND		mg/kg	0.40		1	11/11/11 11:10) 11/15/11 11:26	EPA 3050B	97,6010B	MG
Chromium, Total	12		mg/kg	0.40		1	11/11/11 11:10) 11/15/11 11:26	EPA 3050B	97,6010B	MG
Lead, Total	38		mg/kg	2.0		1	11/11/11 11:10) 11/15/11 11:26	EPA 3050B	97,6010B	MG
Mercury, Total	ND		mg/kg	0.10		1	11/16/11 17:10) 11/16/11 20:03	EPA 7471A	97,7471A	JP

Project Name:	NEW	BEDFORD	PITS				Lab Nur	nber:	L11187	51	
Project Number:	70514	I.LSP.LIBE	RTY				Report I	Date:	11/17/1	1	
				SAMPL	E RES	ULTS					
Lab ID:	L1118	8751-07					Date Co	llected:	11/09/1	1 11:15	
Client ID:	TP-07						Date Re	ceived:	11/10/1	1	
Sample Location:	NEW	BEDFORD	, MA				Field Pre	ep:	Not Spe	ecified	
Matrix:	Soil										
Percent Solids:	95%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analys
MCP Total Metals - \	Vestbord	ough Lab									
Arsenic, Total	1.6		mg/kg	0.40		1	11/11/11 11:10	11/15/11 11:28	B EPA 3050B	97,6010B	MG
Cadmium, Total	ND		mg/kg	0.40		1	11/11/11 11:10	11/15/11 11:28	B EPA 3050B	97,6010B	MG
Chromium, Total	12		mg/kg	0.40		1	11/11/11 11:10	11/15/11 11:28	B EPA 3050B	97,6010B	MG
Lead, Total	47		mg/kg	2.0		1	11/11/11 11:10	11/15/11 11:28	B EPA 3050B	97,6010B	MG
Mercury, Total	0.07		mg/kg	0.07		1	11/16/11 17:10	11/16/11 20:04	EPA 7471A	97,7471A	JP

Project Name:	NEW	BEDFORD	PITS				Lab Nu	mber:	L11187	51	
Project Number:	70514	LSP.LIBE	RTY				Report	Date:	11/17/1	1	
				SAMPL	E RES	ULTS					
Lab ID:	L1118	751-08					Date Co	ollected:	11/09/1	1 11:30	
Client ID:	TP-08						Date Re	eceived:	11/10/1	1	
Sample Location:	NEW I	BEDFORD	, MA				Field Pr	ep:	Not Spe	ecified	
Matrix:	Soil										
Percent Solids:	92%					Dilution	Data	Dete	Dura	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Method	Analys
MCP Total Metals - V	Westbord	ough Lab									
Arsenic, Total	1.6		mg/kg	0.41		1	11/11/11 11:10) 11/15/11 11:30	EPA 3050B	97,6010B	MG
Cadmium, Total	ND		mg/kg	0.41		1	11/11/11 11:10) 11/15/11 11:30	EPA 3050B	97,6010B	MG
Chromium, Total	16		mg/kg	0.41		1	11/11/11 11:10) 11/15/11 11:30	EPA 3050B	97,6010B	MG
Lead, Total	57		mg/kg	2.0		1	11/11/11 11:10) 11/15/11 11:30	EPA 3050B	97,6010B	MG
Mercury, Total	ND		mg/kg	0.12		1	11/16/11 17:10) 11/16/11 20:06	EPA 7471A	97,7471A	JP

Project Name:	NEW	BEDFORD	PITS				Lab Nu	mber:	L11187	51	
Project Number:	70514	LSP.LIBE	RTY				Report	Date:	11/17/1	1	
				SAMPL	E RES	ULTS					
Lab ID:	L1118	751-09					Date Co	ollected:	11/09/1	1 11:50	
Client ID:	TP-09	I					Date Re	eceived:	11/10/1	1	
Sample Location:	NEW I	BEDFORD	, MA				Field Pr	ep:	Not Spe	ecified	
Matrix:	Soil										
Percent Solids:	82%					Dilution	Date	Date	Dueu	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Prep Method	Method	Analys
MCP Total Metals - V	Westbord	ough Lab									
Arsenic, Total	7.3		mg/kg	0.47		1	11/11/11 11:10) 11/15/11 11:38	EPA 3050B	97,6010B	MG
Cadmium, Total	ND		mg/kg	0.47		1	11/11/11 11:10) 11/15/11 11:38	EPA 3050B	97,6010B	MG
Chromium, Total	10		mg/kg	0.47		1	11/11/11 11:10) 11/15/11 11:38	EPA 3050B	97,6010B	MG
Lead, Total	240		mg/kg	2.3		1	11/11/11 11:10) 11/15/11 11:38	EPA 3050B	97,6010B	MG
Mercury, Total	0.15		mg/kg	0.08		1	11/16/11 17:10	0 11/16/11 20:08	EPA 7471A	97,7471A	JP

Project Name:	NEW BEDFORD PITS 70514.LSP.LIBERTY						Lab Nur	nber:	L11187	51	
Project Number:	70514	LSP.LIBE	RTY				Report I	Date:	11/17/1	1	
				SAMPL	E RES	ULTS					
Lab ID:	L1118	751-10					Date Co	llected:	11/09/1	1 12:00	
Client ID:	TP-10	1					Date Re	ceived:	11/10/1	1	
Sample Location:	NEW	BEDFORD	, MA				Field Pre	ep:	Not Spe	ecified	
Matrix:	Soil										
Percent Solids:	84%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
MCP Total Metals - V	Westbord	ough Lab									
Arsenic, Total	1.5		mg/kg	0.45		1	11/11/11 11:10	11/15/11 11:40	EPA 3050B	97,6010B	MG
Cadmium, Total	ND		mg/kg	0.45		1	11/11/11 11:10	11/15/11 11:40	EPA 3050B	97,6010B	MG
Chromium, Total	11		mg/kg	0.45		1	11/11/11 11:10	11/15/11 11:40	EPA 3050B	97,6010B	MG
Lead, Total	26		mg/kg	2.3		1	11/11/11 11:10	11/15/11 11:40	EPA 3050B	97,6010B	MG
Mercury, Total	ND		mg/kg	0.09		1	11/16/11 17:10	11/16/11 20:10	EPA 7471A	97,7471A	JP

Project Name:	NEW	BEDFORD	PITS				Lab Nur	nber:	L11187	51	
Project Number:	70514	LSP.LIBE	RTY				Report I	Date:	11/17/1	1	
				SAMPL	E RES	ULTS					
Lab ID:	L1118	751-11					Date Co	llected:	11/09/1	1 12:40	
Client ID:	TP-11						Date Re	ceived:	11/10/1	1	
Sample Location:	NEW I	BEDFORD	, MA				Field Pre	ep:	Not Spe	ecified	
Matrix:	Soil										
Percent Solids:	88%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analys
MCP Total Metals - \	Nestbord	ough Lab									
Arsenic, Total	0.72		mg/kg	0.44		1	11/11/11 11:10	11/15/11 11:43	B EPA 3050B	97,6010B	MG
Cadmium, Total	ND		mg/kg	0.44		1	11/11/11 11:10	11/15/11 11:43	B EPA 3050B	97,6010B	MG
Chromium, Total	9.5		mg/kg	0.44		1	11/11/11 11:10	11/15/11 11:43	B EPA 3050B	97,6010B	MG
Lead, Total	6.3		mg/kg	2.2		1	11/11/11 11:10	11/15/11 11:43	B EPA 3050B	97,6010B	MG
Mercury, Total	ND		mg/kg	0.09		1	11/16/11 17:10	11/16/11 20:12	2 EPA 7471A	97,7471A	JP

Project Name:NEW BEDFORD PITSProject Number:70514.LSP.LIBERTY

 Lab Number:
 L1118751

 Report Date:
 11/17/11

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Total Metals - Westb	orough Lab for sam	ple(s): 01	-11 B	atch: \	NG501767-	1			
Arsenic, Total	ND	mg/kg	0.40		1	11/11/11 11:10	11/15/11 10:29	97,6010B	MG
Cadmium, Total	ND	mg/kg	0.40		1	11/11/11 11:10	11/15/11 10:29	97,6010B	MG
Chromium, Total	ND	mg/kg	0.40		1	11/11/11 11:10	11/15/11 10:29	97,6010B	MG
Lead, Total	ND	mg/kg	2.0		1	11/11/11 11:10	11/15/11 10:29	97,6010B	MG

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
MCP Total Metals -	Westborough Lab for sam	ple(s): 0 ²	1-11 B	Batch: \	NG502853- ⁻	1			
Mercury, Total	ND	mg/kg	0.08		1	11/16/11 17:10	11/16/11 19:09	97,7471A	JP

Prep Information

Digestion Method: EPA 7471A

Lab Control Sample Analysis Batch Quality Control

Project Name: NEW BEDFORD PITS Lab Number: L1118751 Report Date: 11/17/11

Project Number: 70514.LSP.LIBERTY

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
ICP Total Metals - Westborough Lab Associate	d sample(s): 01-	11 Batch	n: WG501767-2	WG501767-	3 SRM Lot Numbe	er: 0518-10-0)2	
Arsenic, Total	104		100		81-119	4		30
Cadmium, Total	98		98		82-117	0		30
Chromium, Total	97		97		80-119	0		30
Lead, Total	100		96		80-120	4		30
ICP Total Metals - Westborough Lab Associate	d sample(s): 01-	11 Batch	n: WG502853-2	WG502853-	3 SRM Lot Numbe	er: 0518-10-0)2	
Mercury, Total	95		105		67-133	10		30

INORGANICS & MISCELLANEOUS

Serial	No:11	1711	12:25

Project Name: Project Number:	NEW BEDFO 70514.LSP.L							lumber: rt Date:	L1118751 11/17/11	
			S	SAMPLE	RESUL	.TS				
Lab ID: Client ID: Sample Location: Matrix:	L1118751-01 TP-01 NEW BEDFORD Soil	-						Collected: Received: Prep:	11/09/11 08: 11/10/11 Not Specifie	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst

General Chemistry	- Westborough Lab								
Solids, Total	90	%	0.10	NA	1	-	11/14/11 14:26	30,2540G	MD

Serial	No:11	1711	12:25

Project Name: Project Number:	NEW BEDFORD 70514.LSP.LIBE						lumber: rt Date:	L1118751 11/17/11	
			SAMPL	E RESUL	.TS				
Lab ID: Client ID: Sample Location: Matrix:	L1118751-02 TP-02 NEW BEDFORD, M/ Soil	Ą					Collected: Received: Prep:	11/09/11 09: 11/10/11 Not Specified	
Parameter	Result Qu	alifier Un	its RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	A

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - W	estborough Lab)								
Solids, Total	90		%	0.10	NA	1	-	11/14/11 14:26	30,2540G	MD

Serial	No:11	1711	12:25

Project Name: Project Number:		NEW BEDFORD PITS 70514.LSP.LIBERTY SAMPLE RESULTS						lumber: rt Date:	L1118751 11/17/11	
			S	AMPLE	RESUL	.TS				
Lab ID: Client ID: Sample Location: Matrix:	L1118751-03 TP-03 NEW BEDFORD, M Soil	МА						Collected: Received: Prep:	11/09/11 09: 11/10/11 Not Specifie	
Parameter	Result G	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Ar

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - We	estborough Lab									
Solids, Total	91		%	0.10	NA	1	-	11/14/11 14:26	30,2540G	MD

Serial	No:11	1711	12:25

Project Name: Project Number:	NEW BEDFOF 70514.LSP.LIE							lumber: rt Date:	L1118751 11/17/11	
			S	AMPLE	RESUL	.TS				
Lab ID: Client ID: Sample Location: Matrix:	L1118751-04 TP-04 NEW BEDFORD, Soil	MA						Collected: Received: Prep:	11/09/11 09 11/10/11 Not Specifie	
Parameter	Result 0	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Aı

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - \	Nestborough Lab	I.								
Solids, Total	94		%	0.10	NA	1	-	11/14/11 15:01	30,2540G	MD

Serial	No:11	1711	12:25

Project Name: Project Number:	NEW BEDFOR 70514.LSP.LIB							umber: t Date:	L1118751 11/17/11	
			SAI	MPLE F	RESULT	S				
Lab ID: Client ID: Sample Location: Matrix:	L1118751-05 TP-05 NEW BEDFORD, M Soil	ЛА						Collected: Received: Prep:	11/09/11 10: 11/10/11 Not Specified	
Parameter	Result Q	ualifier L	Jnits	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Ar

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - W	Vestborough Lab									
Solids, Total	94		%	0.10	NA	1	-	11/14/11 15:01	30,2540G	MD

Serial	No:11	1711	12:25

Project Name: Project Number:	NEW BEDFORD 70514.LSP.LIBEI						lumber: rt Date:	L1118751 11/17/11	
		:	SAMPLE	RESUL	TS				
Lab ID: Client ID: Sample Location: Matrix:	L1118751-06 TP-06 NEW BEDFORD, MA Soil	Λ.					Collected: Received: Prep:	11/09/11 11: 11/10/11 Not Specified	
Parameter	Result Qua	alifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Ar

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - W	estborough Lab)								
Solids, Total	96		%	0.10	NA	1	-	11/14/11 15:01	30,2540G	MD

Serial	No:11	1711	12:25

Project Name: Project Number:	NEW BEDFOR 70514.LSP.LIE							lumber: rt Date:	L1118751 11/17/11	
			S	AMPLE	RESUL	TS				
Lab ID: Client ID: Sample Location: Matrix:	L1118751-07 TP-07 NEW BEDFORD, Soil	МА						Collected: Received: Prep:	11/09/11 11: 11/10/11 Not Specifie	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	An

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - V	Vestborough Lab)								
Solids, Total	95		%	0.10	NA	1	-	11/14/11 15:01	30,2540G	MD

Serial	No:11	1711	12:25

Project Name: Project Number:	NEW BEDFO 70514.LSP.L							lumber: rt Date:	L1118751 11/17/11	
			S	SAMPLE	RESUL	.TS				
Lab ID: Client ID: Sample Location: Matrix:	L1118751-08 TP-08 NEW BEDFORD Soil	-						Collected: Received: Prep:	11/09/11 11 11/10/11 Not Specifie	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst

									-
General Chemistry	- Westborough Lab								
Solids, Total	92	%	0.10	NA	1	-	11/14/11 15:01	30,2540G	MD

Serial	No:11	1711	12:25

Project Name: Project Number:	NEW BEDFORD 70514.LSP.LIBEF						lumber: rt Date:	L1118751 11/17/11	
		5	SAMPLE	RESUL	TS				
Lab ID: Client ID: Sample Location: Matrix:	L1118751-09 TP-09 NEW BEDFORD, MA Soil	ι.					Collected: Received: Prep:	11/09/11 11: 11/10/11 Not Specified	
Parameter	Result Qua	lifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Ar

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - V	Vestborough Lab									
Solids, Total	82		%	0.10	NA	1	-	11/14/11 15:01	30,2540G	MD

Serial	No:11	1711	12:25

Project Name: Project Number:	NEW BEDFC 70514.LSP.L							lumber: rt Date:	L1118751 11/17/11	
			S	AMPLE	RESUL	.TS				
Lab ID: Client ID: Sample Location: Matrix:	L1118751-10 TP-10 NEW BEDFORD Soil							Collected: Received: Prep:	11/09/11 12: 11/10/11 Not Specifie	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	An

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - V	Vestborough Lat)								
Solids, Total	84		%	0.10	NA	1	-	11/14/11 15:01	30,2540G	MD

Serial	No:11	1711	12:25

11/14/11 15:01

30,2540G

MD

Project Name: Project Number:	NEW BEDFC 70514.LSP.L							lumber: rt Date:	L1118751 11/17/11	
			S	SAMPLE	RESUL	.TS				
Lab ID: Client ID: Sample Location: Matrix:	L1118751-11 TP-11 NEW BEDFORD Soil							Collected: Received: Prep:	11/09/11 12: 11/10/11 Not Specifie	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst

0.10

NA

1

-

%

ANALYTICAL

General Chemistry - Westborough Lab

88

Solids, Total

Lab Duplicate Analysis Batch Quality Control

Project Name:NEW BEDFORD PITSProject Number:70514.LSP.LIBERT)

 Lab Number:
 L1118751

 Report Date:
 11/17/11

Parameter	Native Sam	ple D	uplicate Sample	e Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-03	QC Batch ID:	WG502225-1	QC Sample:	_1118739-01	Client ID:	DUP Sample
Solids, Total	78		79	%	1		20
General Chemistry - Westborough Lab	Associated sample(s): 04-11	QC Batch ID:	WG502233-1	QC Sample: I	_1118751-04	Client ID:	TP-04
Solids, Total	94		94	%	0		20

Project Name:NEW BEDFORD PITSProject Number:70514.LSP.LIBERTY

Lab Number: L1118751 Report Date: 11/17/11

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal Cooler

А

Absent

Container Info		Temp					
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1118751-01A	Amber 120ml unpreserved	A	N/A	2	Y	Absent	MCP-CR-6010T-10(180),MCP- AS-6010T-10(180),MCP- 7471T-10(28),MCP-CD-6010T- 10(180),TS(7),MCP-PB-6010T- 10(180)
L1118751-01B	Amber 250ml unpreserved	А	N/A	2	Y	Absent	MCP-8270-10(14)
L1118751-02A	Amber 120ml unpreserved	A	N/A	2	Y	Absent	MCP-CR-6010T-10(180),MCP- AS-6010T-10(180),MCP- 7471T-10(28),MCP-CD-6010T- 10(180),TS(7),MCP-PB-6010T- 10(180)
L1118751-02B	Amber 250ml unpreserved	А	N/A	2	Y	Absent	MCP-8270-10(14)
L1118751-03A	Amber 120ml unpreserved	A	N/A	2	Y	Absent	MCP-CR-6010T-10(180),MCP- AS-6010T-10(180),MCP- 7471T-10(28),MCP-CD-6010T- 10(180),TS(7),MCP-PB-6010T- 10(180)
L1118751-03B	Amber 250ml unpreserved	А	N/A	2	Y	Absent	MCP-8270-10(14)
L1118751-04A	Amber 120ml unpreserved	A	N/A	2	Y	Absent	MCP-CR-6010T-10(180),MCP- AS-6010T-10(180),MCP- 7471T-10(28),MCP-CD-6010T- 10(180),TS(7),MCP-PB-6010T- 10(180)
L1118751-04B	Amber 250ml unpreserved	А	N/A	2	Y	Absent	MCP-8270-10(14)
L1118751-05A	Amber 120ml unpreserved	A	N/A	2	Y	Absent	MCP-CR-6010T-10(180),MCP- AS-6010T-10(180),MCP- 7471T-10(28),MCP-CD-6010T- 10(180),TS(7),MCP-PB-6010T- 10(180)
L1118751-05B	Amber 250ml unpreserved	А	N/A	2	Y	Absent	MCP-8270-10(14)
L1118751-06A	Amber 120ml unpreserved	A	N/A	2	Y	Absent	MCP-CR-6010T-10(180),MCP- AS-6010T-10(180),MCP- 7471T-10(28),MCP-CD-6010T- 10(180),TS(7),MCP-PB-6010T- 10(180)
L1118751-06B	Amber 250ml unpreserved	А	N/A	2	Y	Absent	MCP-8270-10(14)

Project Name:NEW BEDFORD PITSProject Number:70514.LSP.LIBERTY

Lab Number: L1118751 Report Date: 11/17/11

Container Information Temp							
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1118751-07A	Amber 120ml unpreserved	A	N/A	2	Y	Absent	MCP-CR-6010T-10(180),MCP- AS-6010T-10(180),MCP- 7471T-10(28),MCP-CD-6010T- 10(180),TS(7),MCP-PB-6010T- 10(180)
L1118751-07B	Amber 250ml unpreserved	А	N/A	2	Y	Absent	MCP-8270-10(14)
L1118751-08A	Amber 120ml unpreserved	A	N/A	2	Y	Absent	MCP-CR-6010T-10(180),MCP- AS-6010T-10(180),MCP- 7471T-10(28),MCP-CD-6010T- 10(180),TS(7),MCP-PB-6010T- 10(180)
L1118751-08B	Amber 250ml unpreserved	А	N/A	2	Y	Absent	MCP-8270-10(14)
L1118751-09A	Amber 120ml unpreserved	A	N/A	2	Y	Absent	MCP-CR-6010T-10(180),MCP- AS-6010T-10(180),MCP- 7471T-10(28),MCP-CD-6010T- 10(180),TS(7),MCP-PB-6010T- 10(180)
L1118751-09B	Amber 250ml unpreserved	А	N/A	2	Y	Absent	MCP-8270-10(14)
L1118751-10A	Amber 120ml unpreserved	A	N/A	2	Y	Absent	MCP-CR-6010T-10(180),MCP- AS-6010T-10(180),MCP- 7471T-10(28),MCP-CD-6010T- 10(180),TS(7),MCP-PB-6010T- 10(180)
L1118751-10B	Amber 250ml unpreserved	А	N/A	2	Y	Absent	MCP-8270-10(14)
L1118751-11A	Amber 120ml unpreserved	A	N/A	2	Y	Absent	MCP-CR-6010T-10(180),MCP- AS-6010T-10(180),MCP- 7471T-10(28),MCP-CD-6010T- 10(180),TS(7),MCP-PB-6010T- 10(180)
L1118751-11B	Amber 250ml unpreserved	А	N/A	2	Y	Absent	MCP-8270-10(14)

Project Name: NEW BEDFORD PITS

Project Number: 70514.LSP.LIBERTY

Lab Number: L1118751

Report Date: 11/17/11

Acronyms

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

GLOSSARY

- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit.
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The RPD between the results for the two columns exceeds the method-specified criteria; however, the lower value has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.

Report Format: Data Usability Report

Project Name: NEW BEDFORD PITS

Project Number: 70514.LSP.LIBERTY

Data Qualifiers

- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Lab Number: L1118751 Report Date: 11/17/11

Project Name: NEW BEDFORD PITS Project Number: 70514.LSP.LIBERTY

 Lab Number:
 L1118751

 Report Date:
 11/17/11

REFERENCES

- 30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.
- 97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised November 17, 2011 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574. NELAP Accredited Solid Waste/Soil.

Drinking Water (Inorganic Parameters: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate. <u>Organic Parameters:</u> Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP), Ethylene Dibromide (EDB), 1,4-Dioxane (Mod 8270). <u>Microbiology Parameters:</u> Total Coliform-MF mEndo (SM9222B), Total Coliform – Colilert (SM9223 P/A), E. Coli. – Colilert (SM9223 P/A), HPC – Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D))

Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Silica, Sulfate, Sulfide, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics, TPH (HEM/SGT), Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH. <u>Microbiology Parameters</u>: Total Coliform – MF mEndo (SM9222B), Total Coliform – MTF (SM9221B), HPC – Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D), Fecal Coliform – A-1 Broth (SM9221E).)

Solid Waste/Soil (Inorganic Parameters: pH, Sulfide, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), SPLP Leach (1312 metals only), Reactivity. <u>Organic Parameters</u>: PCBs, PCBs in Oil, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH, Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Volatile Organics, Acid Extractables (Phenols), 3.3'-Dichlorobenzidine, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Maine Department of Human Services Certificate/Lab ID: 2009024.

Drinking Water (<u>Inorganic Parameters</u>: SM9215B, 9222D, 9223B, EPA 180.1, 353.2, SM2130B, 2320B, 2540C, 4500Cl-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B, 4500NO3-F, EPA 200.7, EPA 200.8, 245.1, EPA 300.0. <u>Organic Parameters</u>: 504.1, 524.2.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 350.1, 351.1, 353.2, 410.4, 420.1, SM2320B, 2510B, 2540C, 2540D, 426C, 4500CI-D, 4500CI-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-B, 4500Norg-C, 4500NH3-B, 4500NH3-G, 4500NH3-H, 4500NO3-F, 4500P-B, 4500P-E, 5210B, 5220D, 5310C, 9010B, 9040B, 9030B, 7470A, 7196A, 2340B, EPA 200.7, 6010, 200.8, 6020, 245.1, 1311, 1312, 3005A, Enterolert, 9223D, 9222D. <u>Organic Parameters</u>: 608, 8081, 8082, 8330, 8151A, 624, 8260, 3510C, 3630C, 5030B, ME-DRO, ME-GRO, MA-EPH, MA-VPH.)

Solid Waste/Soil (<u>Inorganic Parameters</u>: 9010B, 9012A, 9014A, 9040B, 9045C, 6010B, 7471A, 7196A, 9050A, 1010, 1030, 9065, 1311, 1312, 3005A, 3050B. <u>Organic Parameters</u>: ME-DRO, ME-GRO, MA-EPH, MA-VPH, 8260B, 8270C, 8330, 8151A, 8081A, 8082, 3540C, 3546, 3580A, 3630C, 5030B, 5035.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA086.

Drinking Water (Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl) (EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Fluoride, Sulfate); (EPA 353.2 for: Nitrate-N, Nitrite-N); (SM4500NO3-F for: Nitrate-N and Nitrite-N); 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, 2320B, SM2540C, SM4500H-B. <u>Organic Parameters</u>: (EPA 524.2 for: Trihalomethanes, Volatile Organics); (504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), EPA 332. <u>Microbiology Parameters</u>: SM9215B; ENZ. SUB. SM9223; ColilertQT SM9223B; MF-SM9222D.)

Page *Non-Potable Water* (Inorganic Parameters:, (EPA 200.8 for: AI,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,TI,Zn); (EPA 200.7 for: AI,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,TI,V,Zn); 245.1, SM4500H,B, EPA 120.1,

SM2510B, 2540C, 2340B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Ammonia-N, SM4500NO3-F, 353.2 for Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B, 5310C, 4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

<u>Organic Parameters</u>: (EPA 624 for Volatile Halocarbons, Volatile Aromatics),(608 for: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs-Water), (EPA 625 for SVOC Acid Extractables and SVOC Base/Neutral Extractables), 600/4-81-045-PCB-Oil. <u>Microbiology Parameters</u>: (ColilertQT SM9223B;Enterolert-QT: SM9222D-MF.)

New Hampshire Department of Environmental Services <u>Certificate/Lab ID</u>: 200307. *NELAP Accredited. Drinking Water* (<u>Inorganic Parameters</u>: SM 9222B, 9223B, 9215B, EPA 200.7, 200.8, 245.2, 300.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 332.0. <u>Organic Parameters</u>: 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM9222D, 9221B, 9222B, 9221E-EC, EPA 3005A, 200.7, 200.8, 245.1, 245.2, SW-846 6010B, 6020, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 300.0, 350.1, 350.2, 351.1, 353.2, 410.4, 420.1, 1664A, SW-846 9010, 9030, 9040B, SM426C, SM2120B, 2310B, 2320B, 2540B, 2540D, 4500H+B, 4500CL-E, 4500CN-E, 4500NH3-H, 4500NO3-F, 4500NO2-B, 4500P-E, 4500-S2-D, 5210B, 5220D, 2510B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D. <u>Organic Parameters</u>: SW-846 3510C, 3630C, 5030B, 8260B, 8270C, 8330, EPA 624, 625, 608, SW-846 8082, 8081A, 8151A.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 6010B, 7196A, 7471A, 1010, 1030, 9010, 9012A, 9014, 9030B, 9040B, 9045C, 9050C, 9065,1311, 1312, 3005A, 3050B. <u>Organic Parameters</u>: SW-846 3540C, 3546, 3550B, 3580A, 3630C, 5030B, 5035, 8260B, 8270C, 8330, 8151A, 8015B, 8082, 8081A.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9222B, 9221E, 9223B, 9215B, 4500CN-CE, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 200.8, 245.2, 2540C, SM2120B, 2320B, 2510B, 5310C, SM4500H-B. <u>Organic Parameters</u>: EPA 332, 504.1, 524.2.)

Non-Potable Water (<u>Inorganic Parameters</u>: SM5210B, EPA 410.4, SM5220D, 4500CI-E, EPA 300.0, SM2120B, SM4500F-BC, EPA 200.7, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310B, C or D, 4500-PE, EPA 420.1, SM510ABC, SM4500P-B5+E, 2540B, 2540C, 2540D, EPA 120.1, SM2510B, SM15 426C, 9222D, 9221B, 9221C, 9221E, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, 4500-S D, EPA 350.1, 350.2, SW-846 1312, 6020, 6020A, 7470A, 5540C, 4500H-B, EPA 200.8, SM3500Cr-D, 4500CN-CE, EPA 245.1, 245.2, SW-846 9040B, 3005A, 3015, EPA 6010B, 6010C, 7196A, 3060A, SW-846 9010B, 9030B. <u>Organic Parameters</u>: SW-846 8260B, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 3510C, EPA 608, 624, 625, SW-846 3630C, 5030B, 8081A, 8081B, 8082, 8082A, 8151A, 8330, NJ OQA-QAM-025 Rev.7, NJ EPH.)

Solid & Chemical Materials (Inorganic Parameters: SW-846, 6010B, 6010C, 7196A, 3060A, 9010B, 9030B, 1010, 1030, 1311, 1312, 3005A, 3050B, 7471A, 7471B, 9014, 9012A, 9040B, 9045C, 9050A, 9065. <u>Organic Parameters</u>: SW-846 8015B, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8330, 8260B, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 3540C, 3545, 3546, 3550B, 3580A, 3630C, 5030B, 5035L, 5035H, NJ OQA-QAM-025 Rev.7, NJ EPH.)

New York Department of Health Certificate/Lab ID: 11148. NELAP Accredited.

Drinking Water (<u>Inorganic Parameters</u>: SM9223B, 9222B, 9215B, EPA 200.8, 200.7, 245.2, SM5310C, EPA 332.0, SM2320B, EPA 300.0, SM2120B, 4500CN-E, 4500F-C, 4500H-B, 4500NO3-F, 2540C, SM 2510B. <u>Organic Parameters</u>: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, 5210B, 5310C, EPA 410.4, SM5220D, 2310B-4a, 2320B, EPA 200.7, 300.0, SM4500CL-E, 4500F-C, SM15 426C, EPA 350.1, SM4500NH3-BH, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, LACHAT 10-107-04-1-C, SM4500-NO3-F, 4500-NO2-B, 4500P-E, 2540C, 2540B, 2540D, EPA 200.8, EPA 6010B, 6020, EPA 7196A, SM3500Cr-D, EPA 245.1, 245.2, 7470A, SM2120B, LACHAT 10-204-00-1-A, EPA 9040B, SM4500-HB, EPA 1664A, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, SM4500S-D, SM5540C, EPA 3005A, 9010B, 9030B.. <u>Organic Parameters</u>: EPA 624, 8260B, 8270C, 625, 608, 8081A, 8151A, 8330, 8082, EPA 3510C, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: 1010, 1030, EPA 6010B, 7196A, 7471A, 9012A, 9014, 9040B, 9045C, 9065, 9050, EPA 1311, 1312, 3005A, 3050B, 9010B, 9030B. <u>Organic Parameters</u>: EPA 8260B, 8270C, 8015B, 8081A, 8151A, 8330, 8082, 3540C, 3545, 3546, 3580, 5030B, 5035.)

North Carolina Department of the Environment and Natural Resources <u>Certificate/Lab ID</u>: 666. <u>Organic</u> <u>Parameters</u>: MA-EPH, MA-VPH.

Page Zhinking Water Program Certificate/Lab ID: 25700. (Inorganic Parameters: Chloride EPA 300.0. Organic Parameters: 524.2)

Pennsylvania Department of Environmental Protection <u>Certificate/Lab ID</u>: 68-03671. *NELAP Accredited. Drinking Water* (<u>Organic Parameters</u>: EPA 524.2, 504.1)

Non-Potable Water (Inorganic Parameters: EPA 1312, 200.7, 410.4, 1664A, SM2540D, 5210B, 5220D, 4500-P,BE. <u>Organic Parameters</u>: EPA 3510C, 3005A, 3630C, 5030B, 625, 624, 608, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Solid & Hazardous Waste (<u>Inorganic Parameters</u>: EPA 350.1, 1010, 1030, 1311, 1312, 3050B, 6010B, 7196A, 7471A, 9010B, 9012A, 9014, 9040B, 9045C, 9050, 9065, SM 4500NH3-H. <u>Organic Parameters</u>: 3540C, 3545, 3546, 3550B, 3580A, 3630C, 5035, 8015B, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Rhode Island Department of Health <u>Certificate/Lab ID</u>: LAO00065. *NELAP Accredited via NY-DOH.* Refer to MA-DEP Certificate for Potable and Non-Potable Water. Refer to NJ-DEP Certificate for Potable and Non-Potable Water.

Texas Commisson on Environmental Quality <u>Certificate/Lab ID</u>: T104704476-09-1. *NELAP Accredited. Non-Potable Water* (<u>Inorganic Parameters</u>: EPA 120.1, 1664, 200.7, 200.8, 245.1, 245.2, 300.0, 350.1, 351.1, 353.2, 410.4, 420.1, 6010, 6020, 7196, 7470, 9040, SM 2120B, 2310B, 2320B, 2510B, 2540B, 2540C, 2540D, 426C, 4500CL-E, 4500CN-E, 4500F-C, 4500H+B, 4500NH3-H, 4500NO2B, 4500P-E, 4500 S2⁻ D, 510C, 5210B, 5220D, 5310C, 5540C. <u>Organic Parameters</u>: EPA 608, 624, 625, 8081, 8082, 8151, 8260, 8270, 8330.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312, 9012, 9014, 9040, 9045, 9050, 9065.)

Department of Defense Certificate/Lab ID: L2217.

Drinking Water (Inorganic Parameters: SM 4500H-B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (<u>Inorganic Parameters</u>: EPA 200.7, 200.8, 6010B, 6020, 245.1, 245.2, 7470A, 9040B, 300.0, 332.0, 6860, 353.2, 410.4, 9060, 1664A, SM 4500CN-E, 4500H-B, 4500NO3-F, 5220D, 5310C, 2320B, 2540C, 3005A, 3015, 9010B, 9056. <u>Organic Parameters</u>: EPA 8260B, 8270C, 8330A, 625, 8082, 8081A, 3510C, 5030B, MassDEP EPH, MassDEP VPH.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 200.7, 6010B, 7471A, 9010, 9012A, 6860, 1311, 1312, 3050B, 7196A, 9010B, 3500-CR-D, 4500CN-CE, 2540G, <u>Organic Parameters</u>: EPA 8260B, 8270C, 8330A/B-prep, 8082, 8081A, 3540C, 3546, 3580A, 5035A, MassDEP EPH, MassDEP VPH.)

The following analytes are not included in our current NELAP/TNI Scope of Accreditation:

EPA 8260B: Freon-113, 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene. **EPA 8330A:** PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT. **EPA 8270C:** Methyl naphthalene, Dimethyl naphthalene, Total Methylnapthalenes, Total Dimethylnaphthalenes, 1,4-Diphenylhydrazine (Azobenzene). **EPA 625:** 4-Chloroaniline, 4-Methylphenol. Total Phosphorus in a soil matrix, Chloride in a soil matrix, TKN in a soil matrix, NO2 in a soil matrix, NO3 in a soil matrix, SO4 in a soil matrix.

PLEASE ANSWER QUESTIONS ABOVE IS YOUR PROJECT MA MCP or CT RCP?	9 5	a) (<u>5 4 -</u>	.	8751, I	ALPHA Lab ID (Lab Use Only)	Other Project Specific Requining It MS is required, indicate in Sample (Note: All CAM methods for inorganic CACRA SMETALS — RCRA SMETALS — C	Email: SWANSON WR & CDM, COM These samples have been previously analyzed by Alpha	CAMBRAL Phone: 6/7-452-1 Fax: SAME) o	Client Information	ωοr	
CT RCP?	7P-10	10-07	10-07 20-07	10-03	TP-01	Sample ID	ific Requirements/Commute in Sample Specific Comments vs for inorganic analyses require MS $ALS = TOTALAS$	all: SWANSON WR & CDM , CON These samples have been previously analyzed by Alpha	16274 16274	\$		MANSFIELD, MA TEL: 508-822-9300 FAX: 508-822-3288	CHAIN
Relingerished By:					IIC		Other Project Specific Requirements/Comments/Detection Limits: If MS is required , indicate in Sample Specific Comments which samples and what tests MS to be performed (Note: All CAM methods for inorganic analyses require MS every 20 soil samples) CRA SMETALS = TOTAL ASJCdJCrJHg, Pb	COM Date Due:			Project Location	Project Information	CHAIN OF CUSTODY
alle 1	1150	H30	0101	0045	0000	Collection Sau Date Time Ma	n Limits: ¹ what lests MS to be perf 19, Pb		nd Time	ILL MANSON	Project Location: NEW BEDFORD, MA,	Project Information Project Name: NEW BEDFORD TEST PT: TS	
Container Type A Preservative A Date/Time Date/Time	K					Sample Sampler's Matrix Initials					<u>۲</u>		/ of 2
A Received by						R	ANAL SVOCS RASM	YSIS TALS	XYes □ No Are N □ Yes XNo Is Ma □ Yes XNo Are C	State /Fed Program MA MCP PRESUMPTI	ory R	Report Information - Dat	Date Rec'd in Lab:
1-10-11 1-10-11			· · · · · · · · · · · · · · · · · · ·						Are MCP Analytical Methods Required? Is Matrix Spike (MS) Required on this SDG? (If yes see not Are CT RCP (Reasonable Confidence Protocols) Required?	/E CERTAINTY (equirements/Report Limits	mation - Data Deliverables	[] <mark>[a]</mark> []
Date/Time Date/Time All sam $\frac{10/(1.175)}{10/(1.175)}$ See rev						Samp			s Required? ed on this SDG?(If ye onfidence Protocols)F	Criteria CT REASONABLE (Billing Information	ALPHA Job #
Please print clearly, legibly and com- pletely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved All samples submitted are subject to Alpha's Terms and Conditions See reverse side						(Please specify below) Sample Specific Comments	 Intractor Not needed Lab to do Preservation Lab to do 	SAMPLE HANDLING	Are MCP Analytical Methods Required? Is Matrix Spike (MS) Required on this SDG? (If yes see note in Comments) Are CT RCP (Reasonable Confidence Protocols) Required?	State /Fed Program Criteria MA MCP PRESUMPTIVE CERTAINTY CT REASONABLE CONFIDENCE PROTO		nto PO #: N//X	ALPHA Job #: 6118751
Ject to View Page 78 of 79	Nn	INN	NNr	JN	NN) отп	「」」〇句 #	┍⋗⊣ѻ⊣	its)	TO			

PLEASE ANSWER QUESTIONS ABOVE! Container Type A A Please prive IS YOUR PROJECT Preservative A A pletely s pletely s MA MCP or CT RCP? Relingfulshed By: Date/Time Received By: Date/Time start untit FORM ND: 01-01 (rev. 18-Jan-2010) MUMMARA I/IOII/ASA I/II		1 TP-11 1109/11 1/2	TIMC I Standard I RUSH (<i>avy continue if pre-approved</i>) IIISMAA/SON/WR olCDM, COM Date Due: Image: Continue if pre-approved These samples have been previously analyzed by Alpha Image: Continue if pre-approved Image: Continue if pre-approved These samples have been previously analyzed by Alpha Image: Continue if pre-approved Image: Continue if pre-approved These samples have been previously analyzed by Alpha Image: Continue if pre-approved Image: Continue if pre-approved The Project Specific Requirements/Comments/Detection limits: Image: Continue if pre-approved Image: Continue if pre-approved All CAM methods for inorganic analyses require MS every 20 soil samples) Image: Content of	CHAIN OF CUSTODY PROJECT Information Date Rec'd in Lab: Image: Cost in formation Project Information Project Information Project Information Report Information - Data Deliverables Project Name: NEW BEDFORDTEST PTS Project Information Project Information Project Information X: 508-822:328 Project Location: NEW BEDFORD, MA, SORD, MA, Project Information Project Information Project Information Project Manager: NI, SWANSON Project Manager: NI, SWANSON Regulatory Requirements/Report Limits Project Manager: NI, SWANSON Ma MCP PRESUMPTIVE CERTAINTY
Please print clearly, legibly and com- pletely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved h/1 //4. All samples submitted are subject to Alpha's Terms and Conditions. d 1750 See reverse side	22		SAMPLE HANDLING Filtration Done I Done Lab to do Preservation Lab to do (Please specify below) Sample Specific Comments	ALPHA Job #: L W & 75] Billing Information Same as Client info POWA Required? I on this SDG? (If yes see note in Comments)

Page 79 of 79

1.1

and the second second

ANALYTICAL REPORT

Lab Number:	L1209261
Client:	CDM Smith, Inc.
	1 Cambridge Place
	50 Hampshire Street
	Cambridge, MA 02139
ATTN:	Kate Murphy
Phone:	(617) 452-6302
Project Name:	LIBERTY ST.
Project Number:	70514.LSP.LIBERTY
Report Date:	06/01/12

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), USDA (Permit #P-330-11-00240), NC (666), TX (T104704476), DOD (L2217), US Army Corps of Engineers.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:	LIBERTY ST.
Project Number:	70514.LSP.LIBERTY

 Lab Number:
 L1209261

 Report Date:
 06/01/12

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1209261-01	TP-A 4'	NEW BEDFORD	05/24/12 08:50
L1209261-02	TP-B 4'	NEW BEDFORD	05/24/12 09:10
L1209261-03	TP-C 4'	NEW BEDFORD	05/24/12 09:30
L1209261-04	TP-D 4'	NEW BEDFORD	05/24/12 10:10
L1209261-05	TP-E 5'	NEW BEDFORD	05/24/12 10:20
L1209261-06	TP-F 4.5'	NEW BEDFORD	05/24/12 10:30
L1209261-07	TP-C MATERIAL	NEW BEDFORD	05/24/12 09:35
L1209261-08	TRIP BLANK	NEW BEDFORD	05/24/12 00:00

Project Name: LIBERTY ST.

Project Number: 70514.LSP.LIBERTY

Lab Number: L1209261

Report Date: 06/01/12

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of- Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
Eb.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES
A res	ponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES
н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO

I Were results reported for the complete analyte list specified in the selected CAM protocol(s)? NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: LIBERTY ST. Project Number: 70514.LSP.LIBERTY

Lab Number: L1209261 Report Date: 06/01/12

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Performance criteria for CAM and RCP methods allow for some LCS compound failures to occur and still be within method compliance. In these instances, the specific failures are not narrated but are noted in the associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples free of charge for 30 days from the date the project is completed. After 30 days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:LIBERTY ST.Project Number:70514.LSP.LIBERTY

 Lab Number:
 L1209261

 Report Date:
 06/01/12

Case Narrative (continued)

MCP Related Narratives

Metals

In reference to question H:

The WG538554-4/-5 MS/MSD recoveries for Lead (197%/229%), performed on L1209261-03, do not apply

because the sample concentration is greater than four times the spike amount added.

In reference to question I:

All samples were analyzed for a subset of MCP elements per the Chain of Custody.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Cynthia McQueen Cynthia McQueen

Authorized Signature:

Title: Technical Director/Representative

Date: 06/01/12

METALS

LIBER	TY ST.					Lab Nu	mber:	L12092	61	
70514	.LSP.LIBER	RTY				Report	Date:	06/01/1	2	
			SAMPL	E RES	ULTS					
L1209	261-01					Date Co	ollected:	05/24/1	2 08:50	
TP-A 4	1'					Date Re	eceived:	05/24/1	2	
NEW I	BEDFORD					Field Pr	ep:	Not Spe	ecified	
Soil										
83%					Dilution	Date	Date	Prop	Analytical	
Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Vestbord	ough Lab									
67		mg/kg	0.27		1	05/31/12 08:50	06/01/12 14:42	EPA 3050B	97,6010B	MG
	70514 L1209 TP-A 4 NEW I Soil 83% Result	L1209261-01 TP-A 4' NEW BEDFORD Soil 83% Result Qualifier	70514.LSP.LIBERTY L1209261-01 TP-A 4' NEW BEDFORD Soil 83% Result Qualifier Units Westborough Lab	70514.LSP.LIBERTY SAMPL L1209261-01 TP-A 4' NEW BEDFORD Soil 83% Result Qualifier Units RL Westborough Lab	70514.LSP.LIBERTY SAMPLE RES L1209261-01 TP-A 4' NEW BEDFORD Soil 83% Result Qualifier Units RL MDL Westborough Lab	70514.LSP.LIBERTY SAMPLE RESULTS L1209261-01 TP-A 4' NEW BEDFORD Soil 83% Result Qualifier Units RL MDL Dilution Factor Westborough Lab	Toble in the result Report 70514.LSP.LIBERTY Report SAMPLE RESULTS Date Co L1209261-01 Date Co TP-A 4' Date Re NEW BEDFORD Field Pr Soil Same 83% Dilution Result Qualifier Units RL Motor Factor Prepared	70514.LSP.LIBERTY Report Date: SAMPLE RESULTS L1209261-01 Date Collected: TP-A 4' Date Received: NEW BEDFORD Field Prep: Soil Soil 83% Date Result Qualifier Units RL MDL Factor Prepared Analyzed	TOSLITITION: Report Date: 06/01/1 70514.LSP.LIBERTY Report Date: 06/01/1 SAMPLE RESULTS Date Collected: 05/24/1 TP-A 4' Date Received: 05/24/1 NEW BEDFORD Field Prep: Not Spectrum Soil Soil Dilution Date B3% Dilution Date Date Prep Result Qualifier Units RL MDL Factor Prepared Analyzed Method	Tobleting Control Control 70514.LSP.LIBERTY Report Date: 06/01/12 SAMPLE RESULTS Date Collected: 05/24/12 08:50 L1209261-01 Date Received: 05/24/12 TP-A 4' Date Received: 05/24/12 NEW BEDFORD Field Prep: Not Specified Soil Same Dilution Date Date Result Qualifier Units RL MDL Factor Prepared Analyzed

Lead, Total	210		mg/kg	2.2		1	05/31/12 08:50) 06/01/12 14:44	EPA 3050B	97,6010B	MG
MCP Total Metals -	Westbord	ough Lab									
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analy
Percent Solids:	86%					Dilution	Date	Date	Prep	Analytical	
Matrix:	Soil										
Sample Location:	NEW I	BEDFORD					Field Pr	ep:	Not Spe	ecified	
Client ID:	TP-B 4	1'					Date Re	eceived:	05/24/1	2	
Lab ID:	L1209	261-02					Date Co	ollected:	05/24/1	2 09:10	
				SAMPL	E RES	ULTS					
Project Number:	70514	.LSP.LIBE	RTY				Report	Date:	06/01/1	2	
Project Name:	LIBER	TY ST.					Lab Nu	mber:	L12092	61	

Project Name:	LIBER	TY ST.					Lab Nu	mber:	L12092	61	
Project Number:	70514	.LSP.LIBEF	RTY				Report	Date:	06/01/1	2	
				SAMPL	E RES	ULTS					
Lab ID:	L1209	261-03					Date Co	ollected:	05/24/1	2 09:30	
Client ID:	TP-C 4	4'					Date Re	eceived:	05/24/1	2	
Sample Location:	NEW I	BEDFORD					Field Pr	ep:	Not Spe	ecified	
Matrix:	Soil										
Percent Solids:	78%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
MCP Total Metals - \	Vestbord	ough Lab									
Lead, Total	400		mg/kg	2.4		1	05/31/12 08:50	0 06/01/12 14:19	EPA 3050B	97,6010B	MG

Project Name:	LIBER	TY ST.					Lab Nu	mber:	L12092	61	
Project Number:	70514	.LSP.LIBEF	RTY				Report	Date:	06/01/12	2	
				SAMPL	E RES	ULTS					
Lab ID:	L1209	261-04					Date Co	ollected:	05/24/12	2 10:10	
Client ID:	TP-D 4	4'					Date Re	eceived:	05/24/12	2	
Sample Location:	NEW I	BEDFORD					Field Pr	ep:	Not Spe	cified	
Matrix:	Soil										
Percent Solids:	83%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analys
MCP Total Metals - \	Westbord	ough Lab									
Lead, Total	240		mg/kg	2.2		1	05/31/12 08:50	06/01/12 14:47	EPA 3050B	97,6010B	MG

Project Name:	LIBER	TY ST.					Lab Nu	mber:	L12092	61	
Project Number:	70514	.LSP.LIBEF	RTY				Report	Date:	06/01/1	2	
				SAMPL	E RES	ULTS					
Lab ID:	L1209	261-05					Date Co	ollected:	05/24/1	2 10:20	
Client ID:	TP-E 5	5'					Date Re	ceived:	05/24/1	2	
Sample Location:	NEW I	BEDFORD					Field Pr	ep:	Not Spe	ecified	
Matrix:	Soil										
Percent Solids:	73%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analys
MCP Total Metals - \	Westbord	ough Lab									
Lead, Total	550		mg/kg	2.6		1	05/31/12 08:50) 06/01/12 14:49	EPA 3050B	97,6010B	MG

Project Name:	LIBER	TY ST.					Lab Nu	mber:	L12092	61	
Project Number:	70514	.LSP.LIBEF	RTY				Report	Date:	06/01/1	2	
				SAMPL	E RES	ULTS					
Lab ID:	L1209	261-06					Date Co	ollected:	05/24/1	2 10:30	
Client ID:	TP-F 4	1.5'					Date Re	eceived:	05/24/1	2	
Sample Location:	NEW B	BEDFORD					Field Pr	ep:	Not Spe	ecified	
Matrix:	Soil										
Percent Solids:	81%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
MCP Total Metals - V	Westbord	ough Lab									
Lead, Total	380		mg/kg	2.4		1	05/31/12 08:5	0 06/01/12 14:52	EPA 3050B	97,6010B	MG

Project Name:LIBERTY ST.Project Number:70514.LSP.LIBERTY

 Lab Number:
 L1209261

 Report Date:
 06/01/12

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
MCP Total Metals - Westbo	orough Lab for sam	ple(s): 01	-06 E	Batch: V	VG538554-1				
Lead, Total	ND	mg/kg	2.0		1	05/31/12 08:50	06/01/12 14:12	97,6010B	MG

Prep Information

Digestion Method: EPA 3050B

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1209261 Report Date: 06/01/12

Project Name: Project Number: 70514.LSP.LIBERTY

LIBERTY ST.

	LCS	LCSD		%Recovery			
Parameter	%Recovery (Qual %Recovery	Qual	Limits	RPD	Qual	RPD Limits
MCP Total Metals - Westborough Lab	Associated sample(s): 01-06	Batch: WG538554-2	2 WG538554-3	3 SRM Lot Number	er: 0518-10-02		
Lead, Total	94	96		80-120	2		30

					-	ke Analy					
Project Name:	LIBERTY ST.			Bu	ton Quu			Lab Number	••	L120926 ²	1
Project Number:	70514.LSP.LIBERT	Y						Report Date	:	06/01/12	
	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD % Becovery	Recovery			PD mits

Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual Limits
MCP Total Metals - Westboro 4'	ugh Lab Assoc	iated samp	le(s): 01-06	QC Batch ID	: WG538	8554-4 W	G538554-5 C	QC Sam	ple: L12092	261-03	Client ID: TP-C
Lead, Total	400	50.7	500	197	Q	520	229	Q	75-125	4	35

Project Name: Project Number:	LIBERTY S ⁻ 70514.LSP.				Analysis	Serial Dilution Analysis ch Quality Control			er: te:	L1209261 06/01/12
Parameter			Native Sar	nple	Serial Dilution	n Units	% D	Qual	RPD	Limits
MCP Total Metals - Wes	tborough Lab	Associated sample	e(s): 01-06	QC Batch ID:	WG538554-7	QC Sample: L1	209261-03	Client ID:	TP-C 4'	
Lead, Total			400		400	mg/kg	0			10

INORGANICS & MISCELLANEOUS

								Serial_No:06	011217:02	
Project Name:	LIBERTY ST	-					Lab	Number:	L1209261	
Project Number:	70514.LSP.L	IBERTY					Rep	ort Date:	06/01/12	
			5	SAMPLE	RESUI	TS				
Lab ID:	L1209261-0 ⁻	1					Date	Collected:	05/24/12 08:	50
Client ID:	TP-A 4'							Received:	05/24/12	_
Sample Location:	NEW BEDFOR	D					Field	l Prep:	Not Specified	1
Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analy
eneral Chemistry - We	stborough Lab)								
lids, Total	83		%	0.10	NA	1	-	05/25/12 00:10	30,2540G	RD

								Serial_No:06	011217:02	
Project Name:	LIBERTY ST						Lab	Number:	L1209261	
Project Number:	70514.LSP.L	IBERTY					Repo	ort Date:	06/01/12	
			S	SAMPLE	RESUL	TS				
Lab ID: Client ID: Sample Location: Matrix:	L1209261-02 TP-B 4' NEW BEDFORD Soil						Date	Collected: Received: Prep:	05/24/12 09: 05/24/12 Not Specified	
Matrix: Parameter	Soli Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analy
neral Chemistry - We	stborough Lab									
lids, Total	86		%	0.10	NA	1	-	05/25/12 00:10	30,2540G	RD

								Serial_No:06	011217:02	
Project Name:	LIBERTY ST						Lab	Number:	L1209261	
Project Number:	70514.LSP.L	IBERTY					Rep	ort Date:	06/01/12	
			S	SAMPLE	RESUL	TS				
Lab ID: Client ID: Sample Location: Matrix:	L1209261-03 TP-C 4' NEW BEDFORD Soil						Date	Collected: Received: Prep:	05/24/12 09:3 05/24/12 Not Specified	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
neral Chemistry - We	stborough Lab									
lids, Total	78		%	0.10	NA	1	-	05/25/12 00:10	30,2540G	RD

								Serial_No:06	011217:02	
Project Name:	LIBERTY ST						Lab	Number:	L1209261	
Project Number:	70514.LSP.L	IBERTY					Rep	ort Date:	06/01/12	
			5	SAMPLE	RESUL	TS				
Lab ID:	L1209261-04	4					Date	Collected:	05/24/12 10:	10
Client ID:	TP-D 4' NEW BEDFORI							Received:	05/24/12	1
Sample Location: Matrix:	Soil						Field	l Prep:	Not Specified	1
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
neral Chemistry - We	stborough Lab)								
ids, Total	83		%	0.10	NA	1	-	05/25/12 00:10	30,2540G	RD

			Serial_No:06011217:02							
Project Name:	LIBERTY ST						Lab	Number:	L1209261	
Project Number:	70514.LSP.L	IBERTY					Rep	ort Date:	06/01/12	
			5	SAMPLE	RESUI	TS				
Lab ID:	L1209261-0	5					Date	Collected:	05/24/12 10::	20
Client ID:	TP-E 5' NEW BEDFORI	п						Received:	05/24/12 Not Specified	4
Sample Location: Matrix:	Soil	J					FIEIU	l Prep:	Not Opecilied	4
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analy
eneral Chemistry - We	stborough Lab)								
lids, Total	73		%	0.10	NA	1	-	05/25/12 00:10	30,2540G	RD

	Serial_No:06011217:02										
Project Name:	LIBERTY ST.						Lab	Number:	L1209261		
Project Number:	70514.LSP.LII	BERTY					Repo	ort Date:	06/01/12		
			5	SAMPLE	RESUL	TS					
Lab ID: Client ID: Sample Location: Matrix:	L1209261-06 TP-F 4.5' NEW BEDFORD Soil						Date	Collected: Received: Prep:	05/24/12 10: 05/24/12 Not Specified		
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys	
eneral Chemistry - We	stborough Lab										
lids, Total	81		%	0.10	NA	1	-	05/25/12 00:10	30,2540G	RD	

Project Name:	LIBERTY ST.	Lab Duplicate Analysis Batch Quality Control	Lab Number:	L1209261
Project Number:	70514.LSP.LIBERT		Report Date:	06/01/12

Parameter	Native Samp	Duplicate Samp	le Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab As	sociated sample(s): 01-06	QC Batch ID: WG538164-1	QC Sample: L120	09261-03	Client ID:	TP-C 4'
Solids, Total	78	76	%	3		20

Lab Number: L1209261 **Report Date:** 06/01/12

Project Name: LIBERTY ST. Project Number: 70514.LSP.LIBERTY

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: 05/24/2012 21:27

Cooler Information Custody Seal Cooler

А

Absent

Container	Information

Container Info	ainer Information Temp						
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1209261-01A	Vial MeOH preserved	А	N/A	4.4	Y	Absent	HOLD-8260HLW(14)
L1209261-01B	Vial water preserved	А	N/A	4.4	Υ	Absent	HOLD-8260HLW(14)
L1209261-01C	Vial water preserved	А	N/A	4.4	Y	Absent	HOLD-8260HLW(14)
L1209261-01D	Amber 250ml unpreserved	А	N/A	4.4	Y	Absent	TS(7),MCP-PB-6010T-10(180)
L1209261-01E	Amber 250ml unpreserved	А	N/A	4.4	Y	Absent	TS(7),MCP-PB-6010T-10(180)
L1209261-02A	Amber 120ml unpreserved	А	N/A	4.4	Y	Absent	TS(7),MCP-PB-6010T-10(180)
L1209261-03A	Amber 120ml unpreserved	А	N/A	4.4	Y	Absent	TS(7),MCP-PB-6010T-10(180)
L1209261-04A	Amber 120ml unpreserved	А	N/A	4.4	Y	Absent	TS(7),MCP-PB-6010T-10(180)
L1209261-05A	Amber 120ml unpreserved	А	N/A	4.4	Y	Absent	TS(7),MCP-PB-6010T-10(180)
L1209261-06A	Amber 120ml unpreserved	А	N/A	4.4	Y	Absent	TS(7),MCP-PB-6010T-10(180)
L1209261-07A	Amber 120ml unpreserved	А	N/A	4.4	Y	Absent	HOLD()
L1209261-08A	Vial MeOH preserved	А	N/A	4.4	Y	Absent	HOLD-8260HLW(14)
L1209261-08B	Vial water preserved	А	N/A	4.4	Y	Absent	HOLD-8260HLW(14)
L1209261-08C	Vial water preserved	А	N/A	4.4	Y	Absent	HOLD-8260HLW(14)

L1209261

06/01/12

Lab Number:

Report Date:

Project Name: LIBERTY ST.

Project Number: 70514.LSP.LIBERTY

GLOSSARY

Acronyms

- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit.
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The RPD between the results for the two columns exceeds the method-specified criteria; however, the lower value has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.

Report Format: Data Usability Report

Project Name:LIBERTY ST.Project Number:70514.LSP.LIBERTY

Lab Number: L1209261 Report Date: 06/01/12

Data Qualifiers

- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Project Name: LIBERTY ST. Project Number: 70514.LSP.LIBERTY

 Lab Number:
 L1209261

 Report Date:
 06/01/12

REFERENCES

- 30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.
- 97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised May 11, 2012 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574. NELAP Accredited Solid Waste/Soil.

Drinking Water (<u>Inorganic Parameters</u>: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate. <u>Organic Parameters:</u> Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP) 504.1, Ethylene Dibromide (EDB) 504.1, 1,4-Dioxane (Mod 8270). <u>Microbiology Parameters:</u> Total Coliform-MF mEndo (SM9222B), Total Coliform – Colilert (SM9223 P/A), E. Coli. – Colilert (SM9223 P/A), HPC – Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D, Fecal Coliform-EC Medium 9221E).

Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Silica, Sulfate, Sulfide, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics, TPH (HEM/SGT), Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH. <u>Microbiology Parameters</u>: Total Coliform – MF mEndo (SM9222B), Total Coliform – MTF (SM9221B), HPC – Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D), Fecal Coliform – A-1 Broth (SM9221E), Enterolert, E.Coli 9223.

Solid Waste/Soil (Inorganic Parameters: pH, Sulfide, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), SPLP Leach (1312 metals only), Reactivity. <u>Organic Parameters</u>: PCBs, PCBs in Oil, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH, Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Dalapon, Volatile Organics, Acid Extractables (Phenols), Benzidines, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Maine Department of Human Services Certificate/Lab ID: 2009024.

Drinking Water (<u>Inorganic Parameters</u>: SM9215B, 9222D, 9223B, EPA 180.1, 353.2, SM2130B, 2320B, 2540C, 4500Cl-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B, 4500NO3-F, EPA 200.7, EPA 200.8, 245.1, EPA 300.0. <u>Organic Parameters</u>: 504.1, 524.2.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 350.1, 351.1, 353.2, 410.4, 420.1, SM2320B, 2510B, 2540C, 2540D, 426C, 4500CI-D, 4500CI-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-B, 4500Norg-C, 4500NH3-B, 4500NH3-G, 4500NO3-F, 4500P-B, 4500P-E, 5210B, 5220D, 5310C, 9010B, 9040B, 9030B, 7470A, 7196A, 2340B, EPA 200.7, 6010B, 200.8, 6020, 245.1, 1311, 1312, 3005A, Enterolert, 9223D, 9222D. <u>Organic Parameters</u>: 608, 624, 625, 8081A, 8082, 8330, 8151A, 8260B, 8270C, 3510C, 3630C, 5030B, ME-DRO, ME-GRO, MA-EPH, MA-VPH.)

Solid Waste/Soil (<u>Inorganic Parameters</u>: 9010B, 9012A, 9014A, 9030B, 9040B, 9045C, 6010B, 7471A, 7196A, 9050A, 1010, 1030, 9065, 1311, 1312, 3005A, 3050B. <u>Organic Parameters</u>: ME-DRO, ME-GRO, MA-EPH, MA-VPH, 8260B, 8270C, 8330, 8151A, 8081A, 8082, 3540C, 3546, 3580A, 3630C, 5030B, 5035.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA086.

Drinking Water (Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl) (EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Fluoride, Sulfate); (EPA 353.2 for: Nitrate-N, Nitrite-N); (SM4500NO3-F for: Nitrate-N and Nitrite-N); 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, 2320B, SM2540C, SM4500H-B. <u>Organic Parameters</u>: (EPA 524.2 for: Trihalomethanes, Volatile Organics); (504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), EPA 332. <u>Microbiology Parameters</u>: SM9215B; ENZ. SUB. SM9223; ColilertQT SM9223B; MF-SM9222D.)

Page 29 of 3A,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,TI,V,Zn); 245.1, SM4500H,B, EPA 120.1,

SM2510B, 2540C, 2340B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Ammonia-N, SM4500NO3-F, 353.2 for Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B, 5310C, 4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

<u>Organic Parameters</u>: (EPA 624 for Volatile Halocarbons, Volatile Aromatics),(608 for: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs-Water), (EPA 625 for SVOC Acid Extractables and SVOC Base/Neutral Extractables), 600/4-81-045-PCB-Oil. <u>Microbiology Parameters</u>: (ColilertQT SM9223B; Enterolert-QT: SM9222D-MF.)

New Hampshire Department of Environmental Services <u>Certificate/Lab ID</u>: 200307. NELAP Accredited. Drinking Water (Inorganic Parameters: SM 9222B, 9223B, 9215B, EPA 200.7, 200.8, 245.2, 300.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 332.0. <u>Organic Parameters</u>: 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM9222D, 9221B, 9222B, 9221E-EC, EPA 3005A, 200.7, 200.8, 245.1, 245.2, SW-846 6010B, 6010C, 6020, 6020A, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 300.0, 350.1, 350.2, 351.1, 353.2, 410.4, 420.1, 426C, 1664A, SW-846 9010B, 9030B, 9040B, SM426C, SM2120B, 2310B, 2320B, 2540B, 2540D, 4500H+B, 4500CL-E, 4500CN-E, 4500NH3-H, 4500NO3-F, 4500NO2-B, 4500P-E, 4500-S2-D, 5210B, 5220D, 2510B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D. <u>Organic Parameters</u>: SW-846 3510C, 3630C, 5030B, 8260B, 8270C, 8270D, 8330, EPA 624, 625, 608, SW-846 8082, 8081A, 8081B, 8151A.)

Solid & Chemical Materials (<u>Inorganic Parameters</u>: SW-846 6010B, 6010C, 7196A, 7471A, 1010, 1030, 9010, 9012A, 9014, 9030B, 9040B, 9045C, 9050, 9065,1311, 1312, 3005A, 3050B, 3060A. <u>Organic Parameters</u>: SW-846 3540C, 3546, 3550B, 3580A, 3630C, 5030B, 5035, 8260B, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 8330, 8151A, 8015B, 8082, 8082A, 8081A, 8081B.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9222B, 9221E, 9223B, 9215B, 4500CN-CE, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 200.8, 245.2, 2540C, SM2120B, 2320B, 2510B, 5310C, SM4500H-B. <u>Organic Parameters</u>: EPA 332, 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM5210B, EPA 410.4, SM5220D, 4500CI-E, EPA 300.0, SM2120B, 2340B, SM4500F-BC, EPA 200.7, 200.8, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310B, C or D, 4500-PE, EPA 420.1, SM510ABC, SM4500P-B5+E, 2540B, 2540C, 2540D, 2540G, EPA 120.1, SM2510B, SM15 426C, 9222D, 9221B, 9221C, 9221E, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, 4500-S D, EPA 350.1, 350.2, SW-846 1312, 7470A, 5540C, SM4500H-B, 4500SO3-B, SM3500Cr-D, 4500CN-CE, EPA 245.1, 245.2, SW-846 9040B, 3005A, 3015, EPA 6010B, 6010C, 6020, 6020A, 7196A, 3060A, SW-846 9010B, 9030B. <u>Organic Parameters</u>: SW-846 8260B, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 3510C, EPA 608, 624, 625, SW-846 3630C, 5030B, 8081A, 8081B, 8082, 8082A, 8151A, 8330, 1,4-Dioxane by NJ Modified 8270, 8015B, NJ OQA-QAM-025 Rev.7, NJ EPH.)

Solid & Chemical Materials (Inorganic Parameters: SW-846, 6010B, 6010C,6020, 6020A, 7196A, 3060A, 9010B, 9030B, 1010, 1030, 1311, 1312, 3005A, 3050B, 7471A, 7471B, 9014, 9012A, 9040B, 9045C, 9050A, 9065. <u>Organic Parameters</u>: SW-846 8015B, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8330, 8260B, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 3540C, 3546, 3580A, 3630C, 5030B, 5035L, 5035H, NJ OQA-QAM-025 Rev.7, NJ EPH.)

New York Department of Health Certificate/Lab ID: 11148. NELAP Accredited.

Drinking Water (<u>Inorganic Parameters</u>: SM9223B, 9222B, 9215B, EPA 200.8, 200.7, 245.2, SM5310C, EPA 332.0, SM2320B, EPA 300.0, SM2120B, 4500CN-E, 4500F-C, 4500NO3-F, 2540C, SM 2510B. <u>Organic Parameters</u>: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, 5210B, 5310C, EPA 410.4, SM5220D, 2310B-4a, 2320B, EPA 200.7, 300.0, SM4500CL-E, 4500F-C, SM15 426C, EPA 350.1, SM4500NH3-BH, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, SM4500-NO3-F, 4500-NO2-B, 4500P-E, 2540C, 2540B, 2540D, EPA 200.8, EPA 6010B, 6010C, 6020, 6020A, EPA 7196A, SM3500Cr-D, EPA 245.1, 245.2, 7470A, SM2120B, LACHAT 10-204-00-1-A, 4500CN-CE, EPA 1664A, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, SM4500S-D, SM5540C, EPA 3005A, 3015, 9010B, 9030B. <u>Organic Parameters</u>: EPA 624, 8260B, 8270C, 8270D, 625, 608, 8081A, 8081B, 8151A, 8330, 8082, 8082A, EPA 3510C, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1010, 1030, EPA 6010B, 6010C, 7196A, 7471A, 7471B, 9012A, 9014, 9065, 9050A, EPA 1311, 1312, 3005A, 3050B, 9010B, 9030B. <u>Organic Parameters</u>: EPA 8260B, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 8015B, 8015C, 8081A, 8081B, 8151A, 8330, 8082 8082A, 3540C, 3546, 3580, 3580A, 5030B, 5035.)

North Carolina Department of the Environment and Natural Resources <u>Certificate/Lab ID</u>: 666. <u>Organic</u> Parameters: MA-EPH, MA-VPH.

Drinking Water Program Certificate/Lab ID: 25700. (Inorganic Parameters: Chloride EPA 300.0. Organic Parameters: 524.2)

Pennsylvania Department of Environmental Protection <u>Certificate/Lab ID</u>: 68-03671. *NELAP Accredited. Drinking Water* (<u>Organic Parameters</u>: EPA 524.2, 504.1)

Non-Potable Water (<u>Inorganic Parameters:</u> EPA 1312, 3005A, 200.7, 410.4, 1664A, SM2540D, 5210B, 5220D, 4500-P,BE. <u>Organic Parameters</u>: EPA 3510C, 3630C, 5030B, 625, 624, 608, 8081A, 8081B, 8082, 8082A, 8151A, 8260B, 8270C, 8270D, 8330)

Solid & Hazardous Waste (<u>Inorganic Parameters</u>: EPA 350.1, 1010, 1030, 1311, 1312, 3050B, 3060A, 6010B, 6010C, 7196A, 7471A, 9010B, 9012A, 9014, 9040B, 9045C, 9050, 9065, SM 4500NH3-H. <u>Organic Parameters</u>: 3540C, 3546, 3580A, 3630C, 5035, 8015B, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8260B, 8270C, 8270D, 8330)

Rhode Island Department of Health <u>Certificate/Lab ID</u>: LAO00065. *NELAP Accredited via NY-DOH.* Refer to MA-DEP Certificate for Potable and Non-Potable Water. Refer to NJ-DEP Certificate for Potable and Non-Potable Water.

Texas Commisson on Environmental Quality <u>Certificate/Lab ID</u>: T104704476-09-1. *NELAP Accredited. Non-Potable Water* (<u>Inorganic Parameters</u>: EPA 120.1, 1664, 200.7, 200.8, 245.1, 245.2, 300.0, 350.1, 351.1, 353.2, 410.4, 420.1, 6010, 6020, 7196, 7470, 9040, SM 2120B, 2310B, 2320B, 2510B, 2540B, 2540C, 2540D, 426C, 4500CL-E, 4500CN-E, 4500F-C, 4500H+B, 4500NH3-H, 4500NO2B, 4500P-E, 4500 S2⁻ D, 510C, 5210B, 5220D, 5310C, 5540C. <u>Organic Parameters</u>: EPA 608, 624, 625, 8081, 8082, 8151, 8260, 8270, 8330.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312, 9012, 9014, 9040, 9045, 9050, 9065.)

Virginia Division of Consolidated Laboratory Services <u>Certificate/Lab ID</u>: 460195. *NELAP Accredited. Non-Potable Water* (Inorganic Parameters: EPA 3005A,3015,1312,6010B,6010C,SM4500S-D, SM4500-CN-CE, Lachat 10-204-00-1-X. <u>Organic Parameters</u>: EPA 8260B)

Solid & Hazardous Waste (<u>Inorganic Parameters</u>: EPA 3050B, 1311, 1312, 6010B, 6010C, 9030B, 9010B, 9012A, 9014. <u>Organic Parameters</u>: EPA 5035, 5030B, 8260B, 8015B, 8015C.)

Department of Defense, L-A-B <u>Certificate/Lab ID</u>: L2217. *Drinking Water* (Inorganic Parameters: SM 4500H-B. <u>Organic Parameters</u>: EPA 524.2, 504.1.)

Non-Potable Water (<u>Inorganic Parameters</u>: EPA 200.7, 200.8, 6010B, 6010C, 6020, 6020A, 245.1, 245.2, 7470A, 9040B, 9010B, 180.1. 300.0, 332.0, 6860, 353.2, 410.4, 9060, 1664A, SM 4500CN-E, 4500H-B, 4500NO3-F, 4500CL-D, 5220D, 5310C, 2130B, 2320B, 2540C, 3005A, 3015, 9010B, 9056. <u>Organic Parameters</u>: EPA 8260B, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 8330A, 8082, 8082A, 8081A, 8081B, 3510C, 5030B, MassDEP EPH, MassDEP VPH.)

Solid & Hazardous Waste (<u>Inorganic Parameters</u>: EPA 200.7, 6010B, 6010C, 7471A, 6860, 1311, 1312, 3050B, 7196A, 9010B, 9012A, 9040B, 9045C, 3500-CR-D, 4500CN-CE, 2540G, <u>Organic Parameters</u>: EPA 8260B, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 8330A/B-prep, 8082, 8082A, 8081A, 8081B, 3540C, 3546, 3580A, 5035A, MassDEP EPH, MassDEP VPH.)

The following analytes are not included in our current NELAP/TNI Scope of Accreditation:

EPA 8260B: Freon-113, 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene. **EPA 8330A:** PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT. **EPA 8270C:** Methyl naphthalene, Dimethyl naphthalene, Total Methylnapthalenes, Total Dimethylnaphthalenes, 1,4-Diphenylhydrazine (Azobenzene). **EPA 625:** 4-Chloroaniline, 4-Methylphenol. Total Phosphorus in a soil matrix, Chloride in a soil matrix, TKN in a soil matrix, NO2 in a soil matrix, NO3 in a soil matrix, SO4 in a soil matrix. **EPA 9071:** Total Petroleum Hydrocarbons, Oil & Grease

PLEASE ANSWER QUESTIONS ABO IS YOUR PROJECT MA MCP <i>or</i> CT RCP?	<u>~</u>]6	5 2 -1 -19260	Email: NWN John La These samples have bee Other Project Specif If MS is required , indicate (Note: All CAM methods for TCUP AL AV AV MS / MS D & M ALPHA Lab ID (Lab Use Only)	Client: AMA SM Address: 50 HAMMA Manhider 1 Phone: 617 - 487 - Fax: DAMAL	WESTBORO, MA TEL: 508-898-9193 Client Information
PLEASE ANSWER QUESTIONS ABOVE! S YOUR PROJECT MA MCP or CT RCP?	TP-C material	TP-0 4 TP-0 4 TP-0 4	(a) (UUM SIMA The COMM In previously analyzed by Alpha ic Requirements/Comme in Sample Specific Comments w or inorganic analyses require MS UNMAT Pb SAMAD 16.5 Sample ID	Humpsturs St. Humpsturs St. der MAA	MANSFIELD TEL: 508-82 FAX: 508-82
Relinquished By:	1030	72000	Date Due: (6 /1// 2 ants/Detection Limits: hich samples and what tests MS to be every 20 soil samples) Collection Date Time	Project #: <u>115 4, LSP</u> Project Manager: Kok M ALPHA Quote #: Turn-Around Time	CHAIN OF CUSTODY PAGE MA 2-3288 Project Information Project Name: (AbLAY S Project Location: NAA) Bea
Container Type Preservative Date/Time //74//2/1200			Sampler's	HUSH (only confirmed if pre-socrowed)	t. tend
Mur Manuel Styles 12			Lead ANALYSIS 8260 PCBS PCBS PH TRCRA 8 React Flash React Flash	State /Fed Program Criteria MA MCP PRESUMPTIVE CERTAINTY CT REASONABLE CONFIDENCE PROTO Yes No Are MCP Analytical Methods Required? Yes No Is Matrix Spike (MS) Required on this SDG? (If yes see note in Comments) Yes No Are CT RCP (Reasonable Confidence Protocols) Required?	ILab: $S/2y/l/2$
Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved All samples submitted are subject to a Alpha's Terms and Conditions. See reverse side	HOLD WORNOT 1		SAMPLE HANDLING Filtration Done Not needed Lab to do Preservation Lab to do (Rease specific Comments	APTIVE CERTAINTY CT REASONABLE CONFIDENCE PROTO Are MCP Analytical Methods Required? Is Matrix Spike (MS) Required on this SDG? (If yes see note in Comments) Are CT RCP (Reasonable Confidence Protocols) Required?	ALPHA Job #: $L(20926)$ Billing Information

ANALYTICAL REPORT

Lab Number:	L1209758
Client:	CDM Smith, Inc.
	1 Cambridge Place
	50 Hampshire Street
	Cambridge, MA 02139
ATTN:	Kate Murphy
Phone:	(617) 452-6302
Project Name:	LIBERTY ST.
Project Number:	70514.LSP.LIBERTY
Report Date:	06/08/12

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), USDA (Permit #P-330-11-00240), NC (666), TX (T104704476), DOD (L2217), US Army Corps of Engineers.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:	LIBERTY ST.
Project Number:	70514.LSP.LIBERTY

 Lab Number:
 L1209758

 Report Date:
 06/08/12

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1209758-01	TP-B 4'	NEW BEDFORD	05/24/12 09:10
L1209758-02	TP-C 4'	NEW BEDFORD	05/24/12 09:30
L1209758-03	TP-D 4'	NEW BEDFORD	05/24/12 10:10
L1209758-04	TP-E 5'	NEW BEDFORD	05/24/12 10:20
L1209758-05	TP-F 4.5'	NEW BEDFORD	05/24/12 10:30

L1209758

Project Name: LIBERTY ST.

Report Date: 06/08/12

Lab Number:

Project Number: 70514.LSP.LIBERTY

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of- Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
Eb.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES
A res	ponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES
н	Were all QC performance standards specified in the CAM protocol(s) achieved?	YES

I Were results reported for the complete analyte list specified in the selected CAM protocol(s)? YES

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: LIBERTY ST. Project Number: 70514.LSP.LIBERTY

Lab Number: L1209758 Report Date: 06/08/12

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Performance criteria for CAM and RCP methods allow for some LCS compound failures to occur and still be within method compliance. In these instances, the specific failures are not narrated but are noted in the associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples free of charge for 30 days from the date the project is completed. After 30 days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:LIBERTY ST.Project Number:70514.LSP.LIBERTY

 Lab Number:
 L1209758

 Report Date:
 06/08/12

Case Narrative (continued)

MCP Related Narratives

Report Submission

All MCP required questions were answered with affirmative responses; therefore, there are no relevant

protocol-specific QC and/or performance standard non-conformances to report.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Michelle M. Marine Michelle M. Morris

Title: Technical Director/Representative

Date: 06/08/12

METALS

Project Name:	LIBER	TY ST.					Lab Nu	mber:	L12097	58	
Project Number:	70514	.LSP.LIBEF	RTY				Report	Date:	06/08/1	2	
				SAMPL	E RES	ULTS					
Lab ID:	L1209	758-01					Date Co	ollected:	05/24/1	2 09:10	
Client ID:	TP-B 4	1'					Date Re	eceived:	05/24/1	2	
Sample Location:	NEW I	BEDFORD					Field Pr	ep:	Not Spe	cified	
Matrix:	Soil						TCLP/S	PLP Ext. Date	e: 06/05/1	2 11:50	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
TCLP Metals by EPA	A 1311 - '	Westborou	gh Lab								
								2 06/07/12 21:15	EPA 3015	1,6010B	MG

Project Name:	LIBER	TY ST.					Lab Nu	mber:	L12097	58	
Project Number:	70514	.LSP.LIBEF	RTY				Report	Date:	06/08/1	2	
				SAMPL	E RES	ULTS					
Lab ID:	L1209	758-02					Date Co	ollected:	05/24/1	2 09:30	
Client ID:	TP-C 4	1'					Date Re	eceived:	05/24/1	2	
Sample Location:	NEW I	BEDFORD					Field Pr	ep:	Not Spe	ecified	
Matrix:	Soil						TCLP/S	PLP Ext. Date	e: 06/05/1	2 11:50	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
TCLP Metals by EPA	A 1311 - '	Westborou	gh Lab								
Lead, TCLP	ND		mg/l	0.50		1	06/06/12 16:02	2 06/07/12 21:17	EPA 3015	1,6010B	MG

Project Name:	LIBER	TY ST.					Lab Nu	mber:	L12097	58	
Project Number:	70514	.LSP.LIBEF	RTY				Report	Date:	06/08/1	2	
				SAMPL	E RES	ULTS					
Lab ID:	L1209	758-03					Date Co	ollected:	05/24/1	2 10:10	
Client ID:	TP-D 4	4'					Date Re	eceived:	05/24/1	2	
Sample Location:	NEW I	BEDFORD					Field Pr	ep:	Not Spe	cified	
Matrix:	Soil						TCLP/S	PLP Ext. Date	e: 06/05/1	2 11:50	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
TCLP Metals by EPA	× 1311 - '	Westborou	gh Lab								
Lead, TCLP	ND		mg/l	0.50		1	06/06/12 16:02	2 06/07/12 21:20	EPA 3015	1,6010B	MG

LIBER	TY ST.					Lab Nu	mber:	L12097	58	
70514	.LSP.LIBEF	RTY				Report	Date:	06/08/1	2	
			SAMPL	E RES	ULTS					
L1209	758-04					Date Co	ollected:	05/24/1	2 10:20	
TP-E 🗄	5'					Date Re	eceived:	05/24/1	2	
NEW I	BEDFORD					Field Pr	ep:	Not Spe	cified	
Soil						TCLP/S	PLP Ext. Date	e: 06/05/1	2 11:50	
Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
A 1311 - '	Westborou	gh Lab								
ND		mg/l	0.50		1	06/06/12 16:00	0.06/07/12 21.23	EPA 3015	1,6010B	MG
	70514 L1209 TP-E 5 NEW I Soil Result	L1209758-04 TP-E 5' NEW BEDFORD Soil Result Qualifier	70514.LSP.LIBERTY L1209758-04 TP-E 5' NEW BEDFORD Soil Result Qualifier Units	70514.LSP.LIBERTY SAMPL L1209758-04 TP-E 5' NEW BEDFORD Soil Result Qualifier Units RL	70514.LSP.LIBERTY SAMPLE RES L1209758-04 TP-E 5' NEW BEDFORD Soil Result Qualifier Units RL MDL	70514.LSP.LIBERTY SAMPLE RESULTS L1209758-04 TP-E 5' NEW BEDFORD Soil Result Qualifier Units RL MDL Dilution Factor A 1311 - Westborough Lab	Toble Trifter Report 70514.LSP.LIBERTY Report SAMPLE RESULTS Date Co L1209758-04 Date Co TP-E 5' Date Re NEW BEDFORD Field Pr Soil TCLP/S Result Qualifier Units RL MDL Factor Prepared	70514.LSP.LIBERTY Report Date: SAMPLE RESULTS L1209758-04 Date Collected: TP-E 5' Date Received: NEW BEDFORD Field Prep: Soil TCLP/SPLP Ext. Date Date Analyzed A 1311 - Westborough Lab	TOSLITITION Encode to the second	TOSLITITION End Mathematical Endotroit 70514.LSP.LIBERTY Report Date: 06/08/12 SAMPLE RESULTS Date Collected: 05/24/12 10:20 TP-E 5' Date Received: 05/24/12 NEW BEDFORD Field Prep: Not Specified Soil TCLP/SPLP Ext. Date: 06/05/12 11:50 Result Qualifier Units RL MDL Factor Prepared Analyzed Method Analytical A 1311 - Westborough Lab Lilloon Lilloon </td

Project Name:	LIBER	TY ST.					Lab Nu	mber:	L12097	58	
Project Number:	70514	.LSP.LIBEF	RTY				Report	Date:	06/08/1	2	
				SAMPL	E RES	ULTS					
Lab ID:	L1209	758-05					Date Co	llected:	05/24/1	2 10:30	
Client ID:	TP-F 4	1.5'					Date Re	ceived:	05/24/1	2	
Sample Location:	NEW I	BEDFORD					Field Pr	ep:	Not Spe	cified	
Matrix:	Soil						TCLP/S	PLP Ext. Date	e: 06/05/1	2 11:50	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analys
TCLP Metals by EPA	1311 - '	Westborou	gh Lab								
Lead, TCLP	ND		mg/l	0.50		1	06/06/12 16:02	2 06/07/12 21:32	EPA 3015	1,6010B	MG

Project Name:LIBERTY ST.Project Number:70514.LSP.LIBERTY

 Lab Number:
 L1209758

 Report Date:
 06/08/12

Method Blank Analysis Batch Quality Control

TCLP Metals by EPA 1311 - Westborough Lab for sample(s): 01-05 Batch: W	WG540415-1			
Lead, TCLP ND mg/l 0.50 1	06/06/12 16:02	06/07/12 20:48	3 1,6010B	MG

Prep Information

Digestion Method: EPA 3015 TCLP/SPLP Extraction Date: 06/05/12 11:50

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1209758 Report Date: 06/08/12

Project Number: 70514.LSP.LIBERTY

LIBERTY ST.

Project Name:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
TCLP Metals by EPA 1311 - Westborough Lab	Associated samp	le(s): 01-05	Batch: WG54	0415-2					
Lead, TCLP	92		-		75-125	-		20	

Project Name:	LIBERTY ST.				rix Spike Anal tch Quality Cont		Lab Number:	L1209758
Project Number:	70514.LSP.LIBERT	Ϋ́					Report Date:	06/08/12
	Native	MS	MS	MS	MSD	MSD	Recovery	RPD

Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	y Qual	Limits	RPD	Qual	Limits
TCLP Metals by EPA 1311	- Westborough	Lab Associate	ed sample(s	s): 01-05 QC	Batch I	D: WG5404	415-4 QC \$	Sample:	L1209823-01	1 Clie	nt ID:	MS Sample
Lead, TCLP	1.8	5.1	6.4	90		-	-		75-125	-		20

Project Name: Project Number:	LIBERTY ST. 70514.LSP.LIBERT\		ab Duplicate Analys Batch Quality Control		ab Number eport Date	E1209750	
Parameter		Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
TCLP Metals by EPA 13 Sample	11 - Westborough Lab	Associated sample(s): 01-05	QC Batch ID: WG540415-3	QC Sampl	e: L1209	823-01 Cli	ent ID: DUP
Lead, TCLP		1.8	1.8	mg/l	0		20

Lab Number: L1209758 Report Date: 06/08/12

Project Name: LIBERTY ST. Project Number: 70514.LSP.LIBERTY

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal Cooler

А

Absent

Container Information

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1209758-01A	Amber 120ml unpreserved	А	N/A	4.4	Y	Absent	-
L1209758-01X	Plastic 250ml HNO3 preserved spl	А	<2	4.4	Y	Absent	PB-CI(180)
L1209758-02A	Amber 120ml unpreserved	А	N/A	4.4	Y	Absent	-
L1209758-02X	Plastic 250ml HNO3 preserved spl	А	<2	4.4	Y	Absent	PB-CI(180)
L1209758-03A	Amber 120ml unpreserved	А	N/A	4.4	Y	Absent	-
L1209758-03X	Plastic 250ml HNO3 preserved spl	А	<2	4.4	Y	Absent	PB-CI(180)
L1209758-04A	Amber 120ml unpreserved	А	N/A	4.4	Y	Absent	-
L1209758-04X	Plastic 250ml HNO3 preserved spl	А	<2	4.4	Y	Absent	PB-CI(180)
L1209758-05A	Amber 120ml unpreserved	А	N/A	4.4	Y	Absent	-
L1209758-05X	Plastic 250ml HNO3 preserved spl	А	<2	4.4	Y	Absent	PB-CI(180)

Project Name: LIBERTY ST.

Project Number: 70514.LSP.LIBERTY

Lab Number: L1209758

Report Date: 06/08/12

GLOSSARY

Acronyms

- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit.
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The RPD between the results for the two columns exceeds the method-specified criteria; however, the lower value has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.

Report Format: Data Usability Report

Project Name: LIBERTY ST. Project Number: 70514.LSP.LIBERTY

Lab Number: L1209758 Report Date: 06/08/12

Data Qualifiers

- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name: LIBERTY ST. Project Number: 70514.LSP.LIBERTY

 Lab Number:
 L1209758

 Report Date:
 06/08/12

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IIIA, 1997.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised May 11, 2012 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574. NELAP Accredited Solid Waste/Soil.

Drinking Water (<u>Inorganic Parameters</u>: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate. <u>Organic Parameters:</u> Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP) 504.1, Ethylene Dibromide (EDB) 504.1, 1,4-Dioxane (Mod 8270). <u>Microbiology Parameters:</u> Total Coliform-MF mEndo (SM9222B), Total Coliform – Colilert (SM9223 P/A), E. Coli. – Colilert (SM9223 P/A), HPC – Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D, Fecal Coliform-EC Medium 9221E).

Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Silica, Sulfate, Sulfide, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics, TPH (HEM/SGT), Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH. <u>Microbiology Parameters</u>: Total Coliform – MF mEndo (SM9222B), Total Coliform – MTF (SM9221B), HPC – Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D), Fecal Coliform – A-1 Broth (SM9221E), Enterolert, E.Coli 9223.

Solid Waste/Soil (Inorganic Parameters: pH, Sulfide, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), SPLP Leach (1312 metals only), Reactivity. <u>Organic Parameters</u>: PCBs, PCBs in Oil, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH, Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Dalapon, Volatile Organics, Acid Extractables (Phenols), Benzidines, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Maine Department of Human Services Certificate/Lab ID: 2009024.

Drinking Water (<u>Inorganic Parameters</u>: SM9215B, 9222D, 9223B, EPA 180.1, 353.2, SM2130B, 2320B, 2540C, 4500Cl-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B, 4500NO3-F, EPA 200.7, EPA 200.8, 245.1, EPA 300.0. <u>Organic Parameters</u>: 504.1, 524.2.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 350.1, 351.1, 353.2, 410.4, 420.1, SM2320B, 2510B, 2540C, 2540D, 426C, 4500CI-D, 4500CI-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-B, 4500Norg-C, 4500NH3-B, 4500NH3-G, 4500NO3-F, 4500P-B, 4500P-E, 5210B, 5220D, 5310C, 9010B, 9040B, 9030B, 7470A, 7196A, 2340B, EPA 200.7, 6010B, 200.8, 6020, 245.1, 1311, 1312, 3005A, Enterolert, 9223D, 9222D. <u>Organic Parameters</u>: 608, 624, 625, 8081A, 8082, 8330, 8151A, 8260B, 8270C, 3510C, 3630C, 5030B, ME-DRO, ME-GRO, MA-EPH, MA-VPH.)

Solid Waste/Soil (<u>Inorganic Parameters</u>: 9010B, 9012A, 9014A, 9030B, 9040B, 9045C, 6010B, 7471A, 7196A, 9050A, 1010, 1030, 9065, 1311, 1312, 3005A, 3050B. <u>Organic Parameters</u>: ME-DRO, ME-GRO, MA-EPH, MA-VPH, 8260B, 8270C, 8330, 8151A, 8081A, 8082, 3540C, 3546, 3580A, 3630C, 5030B, 5035.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA086.

Drinking Water (Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl) (EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Fluoride, Sulfate); (EPA 353.2 for: Nitrate-N, Nitrite-N); (SM4500NO3-F for: Nitrate-N and Nitrite-N); 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, 2320B, SM2540C, SM4500H-B. <u>Organic Parameters</u>: (EPA 524.2 for: Trihalomethanes, Volatile Organics); (504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), EPA 332. <u>Microbiology Parameters</u>: SM9215B; ENZ. SUB. SM9223; ColilertQT SM9223B; MF-SM9222D.)

Page 20 of 23 Joint Potable Water (Inorganic Parameters:, (EPA 200.8 for: AI,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,TI,Zn); (EPA 200.7 for: AI,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,TI,V,Zn); 245.1, SM4500H,B, EPA 120.1,

SM2510B, 2540C, 2340B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Ammonia-N, SM4500NO3-F, 353.2 for Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B, 5310C, 4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

<u>Organic Parameters</u>: (EPA 624 for Volatile Halocarbons, Volatile Aromatics),(608 for: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs-Water), (EPA 625 for SVOC Acid Extractables and SVOC Base/Neutral Extractables), 600/4-81-045-PCB-Oil. <u>Microbiology Parameters</u>: (ColilertQT SM9223B; Enterolert-QT: SM9222D-MF.)

New Hampshire Department of Environmental Services <u>Certificate/Lab ID</u>: 200307. *NELAP Accredited. Drinking Water* (Inorganic Parameters: SM 9222B, 9223B, 9215B, EPA 200.7, 200.8, 245.2, 300.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 332.0. <u>Organic Parameters</u>: 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM9222D, 9221B, 9222B, 9221E-EC, EPA 3005A, 200.7, 200.8, 245.1, 245.2, SW-846 6010B, 6010C, 6020, 6020A, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 300.0, 350.1, 350.2, 351.1, 353.2, 410.4, 420.1, 426C, 1664A, SW-846 9010B, 9030B, 9040B, SM426C, SM2120B, 2310B, 2320B, 2540B, 2540D, 4500H+B, 4500CL-E, 4500CN-E, 4500NH3-H, 4500NO3-F, 4500NO2-B, 4500P-E, 4500-S2-D, 5210B, 5220D, 2510B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D. <u>Organic Parameters</u>: SW-846 3510C, 3630C, 5030B, 8260B, 8270C, 8270D, 8330, EPA 624, 625, 608, SW-846 8082, 8081A, 8081B, 8151A.)

Solid & Chemical Materials (<u>Inorganic Parameters</u>: SW-846 6010B, 6010C, 7196A, 7471A, 1010, 1030, 9010, 9012A, 9014, 9030B, 9040B, 9045C, 9050, 9065,1311, 1312, 3005A, 3050B, 3060A. <u>Organic Parameters</u>: SW-846 3540C, 3546, 3550B, 3580A, 3630C, 5030B, 5035, 8260B, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 8330, 8151A, 8015B, 8082, 8082A, 8081A, 8081B.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9222B, 9221E, 9223B, 9215B, 4500CN-CE, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 200.8, 245.2, 2540C, SM2120B, 2320B, 2510B, 5310C, SM4500H-B. <u>Organic Parameters</u>: EPA 332, 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM5210B, EPA 410.4, SM5220D, 4500CI-E, EPA 300.0, SM2120B, 2340B, SM4500F-BC, EPA 200.7, 200.8, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310B, C or D, 4500-PE, EPA 420.1, SM510ABC, SM4500P-B5+E, 2540B, 2540C, 2540D, 2540G, EPA 120.1, SM2510B, SM15 426C, 9222D, 9221B, 9221C, 9221E, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, 4500-S D, EPA 350.1, 350.2, SW-846 1312, 7470A, 5540C, SM4500H-B, 4500SO3-B, SM3500Cr-D, 4500CN-CE, EPA 245.1, 245.2, SW-846 9040B, 3005A, 3015, EPA 6010B, 6010C, 6020, 6020A, 7196A, 3060A, SW-846 9010B, 9030B. <u>Organic Parameters</u>: SW-846 8260B, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 3510C, EPA 608, 624, 625, SW-846 3630C, 5030B, 8081A, 8081B, 8082, 8082A, 8151A, 8330, 1,4-Dioxane by NJ Modified 8270, 8015B, NJ OQA-QAM-025 Rev.7, NJ EPH.)

Solid & Chemical Materials (Inorganic Parameters: SW-846, 6010B, 6010C,6020, 6020A, 7196A, 3060A, 9010B, 9030B, 1010, 1030, 1311, 1312, 3005A, 3050B, 7471A, 7471B, 9014, 9012A, 9040B, 9045C, 9050A, 9065. <u>Organic Parameters</u>: SW-846 8015B, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8330, 8260B, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 3540C, 3546, 3580A, 3630C, 5030B, 5035L, 5035H, NJ OQA-QAM-025 Rev.7, NJ EPH.)

New York Department of Health Certificate/Lab ID: 11148. NELAP Accredited.

Drinking Water (<u>Inorganic Parameters</u>: SM9223B, 9222B, 9215B, EPA 200.8, 200.7, 245.2, SM5310C, EPA 332.0, SM2320B, EPA 300.0, SM2120B, 4500CN-E, 4500F-C, 4500NO3-F, 2540C, SM 2510B. <u>Organic Parameters</u>: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, 5210B, 5310C, EPA 410.4, SM5220D, 2310B-4a, 2320B, EPA 200.7, 300.0, SM4500CL-E, 4500F-C, SM15 426C, EPA 350.1, SM4500NH3-BH, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, SM4500-NO3-F, 4500-NO2-B, 4500P-E, 2540C, 2540B, 2540D, EPA 200.8, EPA 6010B, 6010C, 6020, 6020A, EPA 7196A, SM3500Cr-D, EPA 245.1, 245.2, 7470A, SM2120B, LACHAT 10-204-00-1-A, 4500CN-CE, EPA 1664A, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, SM4500S-D, SM5540C, EPA 3005A, 3015, 9010B, 9030B. <u>Organic Parameters</u>: EPA 624, 8260B, 8270C, 8270D, 625, 608, 8081A, 8081B, 8151A, 8330, 8082, 8082A, EPA 3510C, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1010, 1030, EPA 6010B, 6010C, 7196A, 7471A, 7471B, 9012A, 9014, 9065, 9050A, EPA 1311, 1312, 3005A, 3050B, 9010B, 9030B. <u>Organic Parameters</u>: EPA 8260B, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 8015B, 8015C, 8081A, 8081B, 8151A, 8330, 8082 8082A, 3540C, 3546, 3580, 3580A, 5030B, 5035.)

North Carolina Department of the Environment and Natural Resources <u>Certificate/Lab ID</u>: 666. <u>Organic</u> Parameters: MA-EPH, MA-VPH.

Drinking Water Program Certificate/Lab ID: 25700. (Inorganic Parameters: Chloride EPA 300.0. Organic Parameters: 524.2)

Pennsylvania Department of Environmental Protection <u>Certificate/Lab ID</u>: 68-03671. *NELAP Accredited. Drinking Water* (<u>Organic Parameters</u>: EPA 524.2, 504.1)

Non-Potable Water (<u>Inorganic Parameters:</u> EPA 1312, 3005A, 200.7, 410.4, 1664A, SM2540D, 5210B, 5220D, 4500-P,BE. <u>Organic Parameters</u>: EPA 3510C, 3630C, 5030B, 625, 624, 608, 8081A, 8081B, 8082, 8082A, 8151A, 8260B, 8270C, 8270D, 8330)

Solid & Hazardous Waste (<u>Inorganic Parameters</u>: EPA 350.1, 1010, 1030, 1311, 1312, 3050B, 3060A, 6010B, 6010C, 7196A, 7471A, 9010B, 9012A, 9014, 9040B, 9045C, 9050, 9065, SM 4500NH3-H. <u>Organic Parameters</u>: 3540C, 3546, 3580A, 3630C, 5035, 8015B, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8260B, 8270C, 8270D, 8330)

Rhode Island Department of Health <u>Certificate/Lab ID</u>: LAO00065. *NELAP Accredited via NY-DOH.* Refer to MA-DEP Certificate for Potable and Non-Potable Water. Refer to NJ-DEP Certificate for Potable and Non-Potable Water.

Texas Commisson on Environmental Quality <u>Certificate/Lab ID</u>: T104704476-09-1. *NELAP Accredited. Non-Potable Water* (<u>Inorganic Parameters</u>: EPA 120.1, 1664, 200.7, 200.8, 245.1, 245.2, 300.0, 350.1, 351.1, 353.2, 410.4, 420.1, 6010, 6020, 7196, 7470, 9040, SM 2120B, 2310B, 2320B, 2510B, 2540B, 2540C, 2540D, 426C, 4500CL-E, 4500CN-E, 4500F-C, 4500H+B, 4500NH3-H, 4500NO2B, 4500P-E, 4500 S2⁻ D, 510C, 5210B, 5220D, 5310C, 5540C. <u>Organic Parameters</u>: EPA 608, 624, 625, 8081, 8082, 8151, 8260, 8270, 8330.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312, 9012, 9014, 9040, 9045, 9050, 9065.)

Virginia Division of Consolidated Laboratory Services <u>Certificate/Lab ID</u>: 460195. *NELAP Accredited. Non-Potable Water* (Inorganic Parameters: EPA 3005A,3015,1312,6010B,6010C,SM4500S-D, SM4500-CN-CE, Lachat 10-204-00-1-X. <u>Organic Parameters</u>: EPA 8260B)

Solid & Hazardous Waste (<u>Inorganic Parameters</u>: EPA 3050B, 1311, 1312, 6010B, 6010C, 9030B, 9010B, 9012A, 9014. <u>Organic Parameters</u>: EPA 5035, 5030B, 8260B, 8015B, 8015C.)

Department of Defense, L-A-B <u>Certificate/Lab ID</u>: L2217. *Drinking Water* (Inorganic Parameters: SM 4500H-B. <u>Organic Parameters</u>: EPA 524.2, 504.1.)

Non-Potable Water (<u>Inorganic Parameters</u>: EPA 200.7, 200.8, 6010B, 6010C, 6020, 6020A, 245.1, 245.2, 7470A, 9040B, 9010B, 180.1. 300.0, 332.0, 6860, 353.2, 410.4, 9060, 1664A, SM 4500CN-E, 4500H-B, 4500NO3-F, 4500CL-D, 5220D, 5310C, 2130B, 2320B, 2540C, 3005A, 3015, 9010B, 9056. <u>Organic Parameters</u>: EPA 8260B, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 8330A, 8082, 8082A, 8081A, 8081B, 3510C, 5030B, MassDEP EPH, MassDEP VPH.)

Solid & Hazardous Waste (<u>Inorganic Parameters</u>: EPA 200.7, 6010B, 6010C, 7471A, 6860, 1311, 1312, 3050B, 7196A, 9010B, 9012A, 9040B, 9045C, 3500-CR-D, 4500CN-CE, 2540G, <u>Organic Parameters</u>: EPA 8260B, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 8330A/B-prep, 8082, 8082A, 8081A, 8081B, 3540C, 3546, 3580A, 5035A, MassDEP EPH, MassDEP VPH.)

The following analytes are not included in our current NELAP/TNI Scope of Accreditation:

EPA 8260B: Freon-113, 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene. **EPA 8330A:** PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT. **EPA 8270C:** Methyl naphthalene, Dimethyl naphthalene, Total Methylnapthalenes, Total Dimethylnaphthalenes, 1,4-Diphenylhydrazine (Azobenzene). **EPA 625:** 4-Chloroaniline, 4-Methylphenol. Total Phosphorus in a soil matrix, Chloride in a soil matrix, TKN in a soil matrix, NO2 in a soil matrix, NO3 in a soil matrix, SO4 in a soil matrix. **EPA 9071:** Total Petroleum Hydrocarbons, Oil & Grease

me start until a to annothing unes a resolved. All samples submuted are subject to Alona's Terms and Conditions	HAND AND SOUTH IN THE	174/12_1700 /	Relinquished By:	MAMCP or CT RCP?
pletely Samples can not in and turnaround time clo		Preservative		
Please print dearly legibl		Container Type		PLEASE ANSWER QUESTIONS ABOVE
			· · · ·	
		*		
anante anante				& trip blank
the and	X		V 0935	ATTP-C maderial
	X		030	NO TP-F 4.5
	X		0-60/	N + P - E 5
	×		0101	34 TP-D 4'
Ms/msp	×		0890	\$ \$ TP-C 4'
NEST IN THE			0910	(MR) 12 TP-B 4!
ONW REVISION TO HOD		SO CATXI	5/24/12 0850	0920 17P-A 41
Sample Specific Comments	8/ 1 PTAL /Y	Matrix Initials	Date Time	(tab Use Only) Sample ID
(Please spadly below)	N STAND			ES.
Preservation	0		every 20 soil samples)	(Note: All CAM methods for inorganic analyses require MS TCUP at IN X JUMPT
Q Done	/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/	performed.	<pre>hts/Detection Limits: hich samples and what tests MS to be</pre>	Other Project Specific Requirements/Comments/Detection Limits: If MS is required , indicate in Sample Specific Comments which samples and what tests MS to be performed.
Filtration			1	These samples have been previously analyzed by Alpha
SAMPLE HANDING			-	Email: Murphy kg (chursmith, com
ce Protocols) Required?	IS YANC Are CT RCP (Reasonable Confidence Protocols) Required?	RUSH (and/ conditined if pre-approved)		Fax 20ml,
his SDG? (If yes see note in Con	S S	at res	Turn-Around Time	
ASONABLE CONFIDENCE			ALPHA Quote #:	È.
		hul		MAL ST
	Regulatory Requirements/Report Limits	1 BREAN	\sim	client: N/N/ Survey
-	DEx CI Add'l Deliverables	tind	Project Location: () / / / Be	ation
Same as Client Info PO #:	AREMAIL D) / , ,) XGFAX	Project Name: 1/2/11/24	20
Billing Information	Report Information - Data Deliverables Bi	Rep	Project Information	WESTBORO, MA MANSFIELD, MA
АLPHA Job #: <u>1120</u>	Date Rec d in Lab $S/24/12$ AL			CHAIN OF
nies on the design of the state		12002530015		

A 4 12 TO 1

Groundwater Analytical, Inc. P.O. Box 1200 228 Main Street Buzzards Bay, MA 02532

Telephone (508) 759-4441 FAX (508) 759-4475 www.groundwateranalytical.com

November 11, 2009

Mr. Derek McClellan Loitherstein Environmental Engineering, Inc 45 Beulah Street Framingham, MA 01701-5243

LABORATORY REPORT

Project:	Lot 256/29086
Lab ID:	129220
Received:	11-04-09

Dear Derek:

Enclosed are the analytical results for the above referenced project. The project was processed for Priority turnaround.

This letter authorizes the release of the analytical results, and should be considered a part of this report. This report contains a sample receipt report detailing the samples received, a project narrative indicating project changes and non-conformances, a quality control report, and a statement of our state certifications.

The analytical results contained in this report meet all applicable NELAC or NVLAP standards, except as may be specifically noted, or described in the project narrative. The analytical results relate only to the samples received. This report may only be used or reproduced in its entirety.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Should you have any questions concerning this report, please do not hesitate to contact me.

Sincerely,

Karyn E. Raymond

Karyn E. Raymond Project Manager

KER/elm Enclosures

Sample Receipt Report

Project: Client: Lab ID:	Lot 256/29086 Loitherstein Envi 129220	ronmenta	al Enginee	ring, Inc	Delivery: Airbill: b Receipt:		ier	Temperature Chain of Custody Custody Seal(s)	: Present
Lab ID	Field ID		Matrix	Sampled	Method			Notes	
129220-1	Under Stockpile		Soil	11/3/09 10:00	MA DEP EPH	with PAHs			
Con ID	Container	Vendor	QC Lot	Preserv	QC Lot	Prep	Ship		
C415547	250 mL Amber Glass	Proline	BX34133	None	n/a	n/a	n/a		
Lab ID	Field ID		Matrix	Sampled	Method			Notes	
129220-2	ESW (0-1')		Soil	11/3/09 11:15	MA DEP EPH	l with PAHs			
Con ID	Container	Vendor	QC Lot	Preserv	QC Lot	Prep	Ship		
C415541	250 mL Amber Glass	Proline	BX34133	None	n/a	n/a	n/a		
Lab ID	Field ID		Matrix	Sampled	Method			Notes	
129220-3	Btm-1 (1')		Soil	11/3/09 11:30	MA DEP EPH	l with PAHs			
Con ID	Container	Vendor	QC Lot	Preserv	QC Lot	Prep	Ship		
C415542	250 mL Amber Glass	Proline	BX34133	None	n/a	n/a	n/a		
Lab ID	Field ID		Matrix	Sampled	Method			Notes	
129220-4	8tm-2 (1')		\$oil	11/3/09 11:40	MA DEP EPH	l with PAHs			
Con ID	Container	Vendor	QC Lot	Preserv	QC Lot	Prep	Ship		
C415548	250 mL Amber Glass	Proline	BX34133	None	n/a	n/a	n/a		
Lab ID	Field ID		Matrix	Sampled	Method			Notes	
129220-5	Btm-3 (6")		Soil	11/3/09 11:50	MA DEP EPH	I with PAHs			
Con ID	Container	Vendor	QC Lot	Preserv	QC Lot	Prep	Ship		
C415545	250 mL Amber Glass	Proline	BX34133	None	n/a	n/a	n/a		

Data Certification

oject: ient:		086 1 Environmental Engineerin	g, Inc				.ab ID: Received:		129220 11-04-09 1	6:19	;
			Compendium c	of Analytical	Met	hads		· · · · ·			
Proie	ect Location:	n/a	compendiant	, , unary rear	mee		DEP RTN:		n/a		
·											
This	Form provides ce	rtifications for the following	, data set:								
MA	DEP EPH:	129220-1,-2,-3,-4,-5									
Sam	ple Matrices:	Groundwater () Soil/	Sediment (X)	Drinking W	ater	()	Other	()		_
	2 SW-846	8260B ()	8151A ()		330	()	6010B	(
Meth	nods Used	8270C ()	8081A ()		ΡH	()	6020A	(
As spe	cified in MA DEP	8082 ()	80218 ()	E	PH	(X)	7000 S ³	() Oth	er ()
Comp Metho	endium of Analytical	1. List Release Tracking Number (R	****								
		2. SW-846 Method 9012A (Equival			ly Ava	ailable Cy	anide (PAC) Me	hod			
	call that apply)	3. 5 - SW-846 Methods 7000 Series					منبعهما المعاد				
	An affirmative re	sponse to questions A, B, C	and D is require	a for Presur	npuv	ve Certa	anty status.				
Α.		ples received by the labora				:h					
	that describe	d on the Chain-of-Custody o	documentation f	or the data s	et?				Yes		
	discuss in a standards or		ot meet appropr	iate performa	ance				Yes		
C.	for "Presum document C	alytical data included in this otive Certainty," as described AM VII A, Quality Assuranc isition and Reporting of Ana	d in Section 2.0 e and Quality C	of the MA D	EP				Yes		
D.		H methods only: Was the V odifications, as specified in		hod run with	out				Yes		
1	A response to gu	estions E and F below is req	uired for "Presu	mptive Certa	inty'	" status.		L			
E.	•	performance standards and thods achieved?	l recommendatio	ons for the					Yes		
F.	Were results method(s) re	for all analyte-list compour ported?	ids/elements for	the specified	1				Yes		
	All No answers a	re addressed in the attache	d Project Narra	ıtive.							
inqu	uiry of those res	attest under the pains an ponsible for obtaining th to the best of my knowle	e information,	the materia	al co	intaine	d in this	sona	al		
Sign	ature:	Karyn E. Rayme Karyn E. Raymond	nd	Position:		Project	: Manager				

Field ID: Project:	Under Stockpile Lot 256/29086				Matrix: Container:	Soil 250 mL Ami	ber Glass	
Client: .aboratory ID:	Loitherstein Environmental	Engineerin	g, Inc		Preservation: QC Batch ID:	Cool EP-3040-M		
Sampled:	11-03-09 10:00				Instrument ID:	GC-12 Agile	ent 6890	
Received:	11-04-09 16:15				Sample Weight:	15 g		
Extracted:	11-05-09 13:00				Final Volume:	1 mL		
Analyzed (AL):	11-10-09 06:04				% Solids:	86		
Analyzed (AR):	11-10-09 06:50				Aliphatic Dilution Factor	: 1		
Analyst:	KMC				Aromatic Dilution Factor	1		
EPH Ranges			Conc	entration	Notes	Units	Reporting Limit	
n-C9 to n-C18 A	liphatic Hydrocarbons [†]			BRL		mg/Kg	35	
	Aliphatic Hydrocarbons [†]			280		mg/Kg	35	
n-C11 to n-C22	Aromatic Hydrocarbons **			280		mg/Kg	35	
	11 to n-C22 Aromatic Hydro	carbons [†]		290		mg/Kg	35	
CAS Number	Analyte		Conc	entration	Notes	Units	Reporting Limit	
91-20-3	Naphthalene			BRL		mg/Kg	0.58	
91-57-6	2-Methylnaphthalene			BRL		mg/Kg	0.58	
85-01-8	Phenanthrene			1.5		mg/Kg	0.58	
83-32-9	Acenaphthene			BRL		mg/Kg	0.58	
208-96-8	Acenaphthylene			BRL		mg/Kg 0.58 mg/Kg 0.58 mg/Kg 0.58 mg/Kg 0.58		
86-73-7	Fluorene			BRL				
120-12-7	Anthracene			BRL				
206-44-0	Fluoranthene			2.2				
129-00-0	Pyrene			2.0		mg/Kg	0.58	
56-55-3	Benzo[a]anthracene			0.95		mg/Kg	0.58	
218-01-9	Chrysene			1.3		mg/Kg	0.58	
205-99-2	Benzo[b]fluoranthene			1.1		mg/Kg	0.58	
207-08-9	Benzo[k]fluoranthene			0.77		mg/Kg	0.58	
50-32-8	Benzo[a]pyrene			1.0		mg/Kg	0.58	
193-39-5	Indeno[1,2,3-c,d]pyrene			BRL		mg/Kg	0.58	
53-70-3	Dibenzo[a,h]anthracene			BRL		mg/Kg	0.58	
191-24-2	Benzo[g,h,i]perylene			0.87		mg/Kg	0.58	
QC Surrogate C	Compound	Spiked	Measured	Recov	ery		C Limits	
Fractionation:	2-Fluorobiphenyl	3.1	2.8	89 %			- 140 %	
	2-Bromonaphthalene	3.1	2.9	92 %			- 140 %	
Extraction:	Chloro-octadecane	3.1	1.4	45 %			- 140 %	
	ortho-Terphenyl	3.1	3.1	100 %		40) - 140 %	
			QA/QC Cert	tification				
	C procedures required by the m						Yes	
	rmance/acceptance standards for						Yes	
, ,	ificant modifications made to the						No	
control report. Re	ormances indicated above are de elease of this data is authorized b of report are considered part of th	y the accompa	anying signed (ort, or in the according to the second project cover letter to the second second second second second second se	ompanying project name ar. The accompanying of the second s	ative and projec cover letter, pro	ct quality bject narrative	

Method Reference: Method for the Determination of Extractable Petroleum Hydrocarbons, MA DEP (Revision 1.1, 2004).

Sample extraction performed by microwave accelerated solvent extraction technique. Results are reported on a dry weight basis. **Report Notations:** BRL Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be

reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample size and dilution.
 Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range.

0 n-C11 to n-C22 Aromatic Hydrocarbons range data excludes the method target analyte concentrations.

ield ID:	ESW (0-1')				Matrix:	Soil	
roject:	Lot 256/29086				Container:	250 mL Am	per Glass
lient:	Loitherstein Environmental	Engineerin	g, Inc		Preservation:	Cool	
aboratory ID:	129220-2				QC Batch ID:	EP-3040-M	
ampled:	11-03-09 11:15				Instrument ID:	GC-12 Agile	ent 6890
leceived:	11-04-09 16:15				Sample Weight:	15 g	
xtracted:	11-05-09 13:00				Final Volume:	1 mL	
nalvzed (AL):	11-10-09 15:45				% Solids:	84	
nalyzed (AR):	11-10-09 16:32				Aliphatic Dilution Factor:	1	
nalyst:	КМС				Aromatic Dilution Factor:	1	
EPH Ranges			Conc	entration	Notes	Units	Reporting Limit
n-C9 to n-C18 A	liphatic Hydrocarbons [†]			BRL		mg/Kg	35
n-C19 to n-C36	Aliphatic Hydrocarbons [†]			69		mg/Kg	35
n-C11 to n-C22	Aromatic Hydrocarbons **			100		mg/Kg	35
Unadjusted n-C	11 to n-C22 Aromatic Hydrod	carbons [†]		120		mg/Kg	35
CAS Number	Analyte		Conc	entration	Notes	Units	Reporting Limit
91-20-3	Naphthalene			BRL		mg/Kg	0.58
91-57-6	2-Methylnaphthalene			BRL		mg/Kg	0.58
85-01-8	Phenanthrene			2.0		mg/Kg	0.58
83-32-9	Acenaphthene			BRL		mg/Kg	0.58
208-96-8	Acenaphthylene			BRL		mg/Kg	0.58
86-73-7	Fluorene			BRL		mg/Kg	0.58
120-12-7	Anthracene			BRL		mg/Kg	0.58
206-44-0	Fluoranthene			3.9		mg/Kg	0.58
129-00-0	Pyrene			3.4		mg/Kg	0.58
56-55-3	Benzo[a]anthracene			1.4		mg/Kg	0.58
218-01-9	Chrysene			1.7		mg/Kg	0.58
205-99-2	Benzo[b]fluoranthene			1.7		mg/Kg	0.58
207-08-9	Benzo[k]fluoranthene			1.4		mg/Kg	0.58
50-32-8	Benzo[a]pyrene			1.9		mg/Kg	0.58
193-39-5	Indeno[1,2,3-c,d]pyrene			1.3		mg/Kg	0.58
53-70-3	Dibenzo[a,h]anthracene			BRL		mg/Kg	0.58
191-24-2	Benzo[g,h,i]perylene			1.6		mg/Kg	0.58
QC Surrogate C	Compound	Spiked	Measured	Recove	ry		C Limits
Fractionation:	2-Fluorobiphenyl	3.1	2.8	91 %			- 140 %
	2-Bromonaphthalene	3.1	2.8	89 %			- 140 %
Extraction:	Chloro-octadecane	3.1	2.1	69 %		40	- 140 %
	ortho-Terphenyl	3.1	3.1	100 %		40	140 %
			QA/QC Cert	tification			
1, Were all QA/C	C procedures required by the me	ethod followe	d?				Yes
2. Were all perfo	rmance/acceptance standards for	the required (QA/QC proced				Yes
	ificant modifications made to the						No

and quality control report are considered part of this data report.

Method Reference: Method for the Determination of Extractable Petroleum Hydrocarbons, MA DEP (Revision 1.1, 2004).

 Sample extraction performed by microwave accelerated solvent extraction technique. Results are reported on a dry weight basis.

 Report Notations:
 BRL
 Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be

reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample size and dilution. Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range.

Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in the n-C11 to n-C22 Aromatic Hydrocarbons range data excludes the method target analyte concentrations.

Field ID: Project:	Btm-1 (1') Lot 256/29086				Matrix: Container:	Soil 250 mL Am	ber Glass
Client:	Loitherstein Environmental	Engineerin	g, Inc		Preservation:	Cool	
Laboratory ID:	129220-3				QC Batch ID:	EP-3040-M	
Sampled:	11-03-09 11:30				Instrument ID:	GC-12 Agile	ent 6890
Received:	11-04-09 16:15				Sample Weight:	15 g	
xtracted:	11-05-09 13:00				Final Volume:	1 mL	
Analyzed (AL):	11-10-09 17:10				% Solids:	84	
Analyzed (AR):	11-10-09 17:56				Aliphatic Dilution Facto	ər: 1	
\nalyst:	КМС				Aromatic Dilution Facto	n: 1	
EPH Ranges		•	Conc	entration	Notes	Units	Reporting Limit
1-C9 to n-C18 A	liphatic Hydrocarbons [†]			BR	L	mg/Kg	35
n-C19 to n-C36	Aliphatic Hydrocarbons [†]			BR	L	mg/Kg	35
n-C11 to n-C22	Aromatic Hydrocarbons **		1	64		mg/Kg	35
Unadjusted n-C1	11 to n-C22 Aromatic Hydro	carbons [†]		73		mg/Kg	35
CAS Number	Analyte		Conc	entration	Notes	Units	Reporting Limit
91-20-3	Naphthalene			BR	L	mg/Kg	0.59
91-57-6	2-Methylnaphthalene			BR	L	mg/Kg	0.59
85-01-8	Phenanthrene			0.92		mg/Kg	0.59
83-32-9	Acenaphthene			BR	L	mg/Kg	0.59
208-96-8	Acenaphthylene			BR	L	mg/Kg	0.59
86-73-7	Fluorene			BR	Ļ	mg/Kg	0.59
120-12-7	Anthracene			BR	L	mg/Kg	0.59
206-44-0	Fluoranthene			1.6		mg/Kg	0.59
129-00-0	Pyrene			1.5		mg/Kg	0.59
56-55-3	Benzo[a]anthracene			0.60		mg/Kg	0.59
218-01-9	Chrysene			0.81		mg/Kg	0.59
205-99-2	Benzo[b]fluoranthene			0.70		mg/Kg	0.59
207-08-9	Benzo[k]fluoranthene			0.65		mg/Kg	0.59
50-32-8	Benzo[a]pyrene			0.82		mg/Kg	0.59
193-39-5	Indeno[1,2,3-c,d]pyrene			BR	L	mg/Kg	0.59
53-70-3	Dibenzo[a,h]anthracene			BR	L	mg/Kg	0.59
191-24-2	Benzo[g,h,i]perylene			0.65		mg/Kg	0.59
QC Surrogate C	ompound	Spiked	Measured	Reco	very		C Limits
Fractionation:	2-Fluorobiphenyl	3.1	2.7	86 %			- 140 %
	2-Bromonaphthalene	3.1	2.7	84 %			- 140 %
Extraction:	Chloro-octadecane	3.1	2.1	65 %			- 140 %
	ortho-Terphenyl	3.1	3.0	97 %		40	- 140 %
			QA/QC Cert	ification			
	C procedures required by the m						Yes
	mance/acceptance standards for						Yes
Were any signi	ficant modifications made to the	method, as sp	pecified in Sect	ion 11.3.1.1?			No
control report. Re	ormances indicated above are de lease of this data is authorized b I report are considered part of th	y the accomp	anying signed p	ort, or in the acc project cover let	companying project nar ter. The accompanying	rative and projec cover letter, pro	t quality ject narrative

Method Reference: Method for the Determination of Extractable Petroleum Hydrocarbons, MA DEP (Revision 1.1, 2004).

 Sample extraction performed by microwave accelerated solvent extraction technique. Results are reported on a dry weight basis.

 Report Notations:
 BRL
 Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be

reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample size and dilution. † Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range.

o n-C11 to n-C22 Aromatic Hydrocarbons range data excludes the method target analyte concentrations.

Field ID: Project:	Btm-2 (1') Lot 256/29086				Matrix: Container:	Soil 250 mL Am	ber Glass
Client:	Loitherstein Environmental	Engineerir	ig, Inc		Preservation:	Cool	
Laboratory ID:	129220-4				QC Batch ID:	EP-3040-M	
Sampled:	11-03-09 11:40				Instrument ID:	GC-12 Agile	ent 6890
Received:	11-04-09 16:15				Sample Weight:	15 g	
Extracted:	11-05-09 13:00				Final Volume:	1 mL	
Analyzed (AL):	11-10-09 02:51				% Solids:	83	
Analyzed (AR):	11-10-09 03:37				Aliphatic Dilution Facto	r: 1	
Analyst:	КМС				Aromatic Dilution Facto	r: 1	
EPH Ranges			Con	centration	Notes	Units	Reporting Limit
n-C9 to n-C18 A	liphatic Hydrocarbons [†]			BR	_	mg/Kg	36
	Aliphatic Hydrocarbons [†]			73		mg/Kg	36
	Aromatic Hydrocarbons +•			52		mg/Kg	36
Unadjusted n-C	11 to n-C22 Aromatic Hydro	carbons [†]		60		mg/Kg	36
CAS Number	Analyte		Con	centration	Notes	Units	Reporting Limit
91-20-3	Naphthalene			BR	L	mg/Kg	0.60
91-57-6	2-Methylnaphthalene			BR	L	mg/Kg	0.60
85-01-8	Phenanthrene			0.83		mg/Kg	0.60
83-32-9	Acenaphthene			BR	L	mg/Kg	0.60
208-96-8	Acenaphthylene			BR	L	mg/Kg	0.60
86-73-7	Fluorene			BR	L	mg/Kg	0.60
120-12-7	Anthracene			BR	L	mg/Kg	0.60
206-44-0	Fluoranthene			1.2		mg/Kg	0.60
129-00-0	Pyrene			1.1		mg/Kg	0.60
56-55-3	Benzo[a]anthracene			BR	Ļ	mg/Kg	0.60
218-01-9	Chrysene			0.71		mg/Kg	0.60
205-99-2	Benzo[b]fluoranthene			0.63		mg/Kg	0.60
207-08-9	Benzo[k]fluoranthene			BR	L	mg/Kg	0.60
50-32-8	Benzo[a]pyrene		-	0.72		mg/Kg	0.60
193-39-5	Indeno[1,2,3-c,d]pyrene			BR	L	mg/Kg	0.60
53-70-3	Dibenzo[a,h]anthracene			BR	L	mg/Kg	0.60
191-24-2	Benzo[g,h,i]perylene			0.66		mg/Kg	0.60
QC Surrogate C	Compound	Spiked	Measured	Reco	very	Q	C Limits
Fractionation:	2-Fluorobiphenyl	3.2	2.9	89 %		40	- 140 %
	2-Bromonaphthalene	3.2	2.8	88 %		40	- 140 %
Extraction:	Chloro-octadecane	3.2	2.4	73 %		40	- 140 %
	ortho-Terphenyl	3.2	3.1	95 %		40	- 140 %
			QA/QC Cer	tification			
	C procedures required by the me rmance/acceptance standards for			dures achieved?			Yes Yes
	ificant modifications made to the						No
control report. Re	ormances indicated above are det elease of this data is authorized by of report are considered part of th	y the accomp	anying signed	port, or in the ac project cover let	companying project nar ter. The accompanying	rative and projec cover letter, pro	t quality ject narrative

Method Reference: Method for the Determination of Extractable Petroleum Hydrocarbons, MA DEP (Revision 1.1, 2004).

 Sample extraction performed by microwave accelerated solvent extraction technique. Results are reported on a dry weight basis.

 Report Notations:
 BRL
 Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be

reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample size and dilution. † Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range.

n-C11 to n-C22 Aromatic Hydrocarbons range data excludes the method target analyte concentrations.

Field ID: Project:	Btm-3 (6") Lot 256/29086	F	- 1		Matrix: Container: Preservation:	Soil 250 mL Am Cool	ber Glass
Client: .aboratory ID:	Loitherstein Environmental 129220-5	Engineerin	g, inc		QC Batch ID:	EP-3040-M	
aboratory iD: Sampled:	11-03-09 11:50				Instrument ID:	GC-12 Agile	nt 6890
Received:	11-04-09 16:15				Sample Weight:	16 g	
xtracted:	11-05-09 13:00				Final Volume:	1 mL	
Analyzed (AL):	11-10-09 18:50				% Solids:	84	
nalyzed (AR):	11-10-09 19:37				Aliphatic Dilution Facto	ม: 1	
Analyst:	KMC				Aromatic Dilution Facto	r: 1	
EPH Ranges			Con	centration	Notes	Units	Reporting Limit
	liphatic Hydrocarbons [†]			35		mg/Kg	33
	Aliphatic Hydrocarbons ⁺			110		mg/Kg	33
	Aromatic Hydrocarbons **			150		mg/Kg	33
	11 to n-C22 Aromatic Hydro	arbons [†]	I	170		mg/Kg	33
CAS Number	Analyte		Con	centration	Notes	Units	Reporting Limit
91-20-3	Naphthalene			BR	Ł	mg/Kg	0.56
91-57-6	2-Methylnaphthalene			BR	L	mg/Kg	0.56
85-01-8	Phenanthrene			1.9		mg/Kg	0.56
83-32-9	Acenaphthene			BR	L	mg/Kg	0.56
208-96-8	Acenaphthylene			BR	L	mg/Kg	0.56
86-73-7	Fluorene			BR	L	mg/Kg	0.56
120-12-7	Anthracene			BR	l.	mg/Kg	0.56
206-44-0	Fluoranthene			2.7		mg/Kg	0.56
129-00-0	Pyrene			2.2		mg/Kg	0.56
56-55-3	Benzo[a]anthracene			1.1		mg/Kg	0.56
218-01-9	Chrysene			1.4		mg/Kg	0.56
205-99-2	Benzo[b]fluoranthene			1.4		mg/Kg	0.56
207-08-9	Benzo[k]fluoranthene			0.91		mg/Kg	0.56
50-32-8	Benzo[a]pyrene			1.3		mg/Kg	0.56
193-39-5	Indeno[1,2,3-c,d]pyrene			0.88		mg/Kg	0.56
53-70-3	Dibenzo[a,h]anthracene			BR	L	mg/Kg	0.56
191-24-2	Benzo[g,h,i]perylene		1	0.65		mg/Kg	0.56
QC Surrogate C	ompound	Spiked	Measured	Reco	wery		C Limits
Fractionation:	2-Fluorobiphenyl	3.0	2.4	82 %			- 140 %
	2-Bromonaphthalene	3.0	2.4	81 %			- 140 %
Extraction:	Chloro-octadecane	3.0	1.8	59 %			- 140 %
	ortho-Terphenyl	3.0	2.8	93 %		40	- 140 %
			QA/QC Cer	tification			
1. Were all QA/C	C procedures required by the me	thod followe	d?				Yes
2. Were all perfor	mance/acceptance standards for	the required	QA/QC proces	tures achieved?			Yes No
	ficant modifications made to the						
control report. Re	ormances indicated above are det lease of this data is authorized by I report are considered part of thi	the accomp	anying signed	port, or in the ac project cover le	companying project nar tter. The accompanying	rative and projec cover letter, pro	t quality ject narrative

Method for the Determination of Extractable Petroleum Hydrocarbons, MA DEP (Revision 1.1, 2004). Method Reference: Sample extraction performed by microwave accelerated solvent extraction technique. Results are reported on a dry weight basis.

BRL Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be **Report Notations:** reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample size and dilution.

Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range.

t n-C11 to n-C22 Aromatic Hydrocarbons range data excludes the method target analyte concentrations. ٥

Project Narrative

 Project:
 Lot 256/29086

 Client:
 Loitherstein Environmental Engineering, Inc

Lab ID: **129220** Received: **11-04-09 16:15**

A. Documentation and Client Communication

The following documentation discrepancies, and client changes or amendments were noted for this project:

1. No documentation discrepancies, changes, or amendments were noted.

B. Method Modifications, Non-Conformances and Observations

The sample(s) in this project were analyzed by the references analytical method(s), and no method modifications, non-conformances or analytical issues were noted, except as indicated below:

1. No method modifications, non-conformances or analytical issues were noted.

Project Name:	228 Main Street P.O. Box 1200 Buzards Bay MA 02532 Tolephone (508) 759-441 + FAX (508) 759-4475 www.groundwateranalytical.com	CHAIN-OF-CUSTODY RECORD AND WORK ORDER					
			ANALYSIS REQUEST				
	Actions:	C) 10 Business Days 20 5 Business Days	Valatine	n 79 W test		General Cherritary	Offer
86	45 Beulah Sh.	Austrantzation Mumber)	ue255113 e0res5 e0res5 e25215 e25215	45240 121 121 121 121 121 121 121 121 121 12	1841038 54		<u></u>
Sampler Name. Devell M CC/ellan	COVISIANEZDI Franingham, M.A. 01701	VMOS	ع ۲ ۲ ۲ ۲ ۲		n Assense An Sixee⊡ Asse	•	optine <u>ses</u> Le trans La trans
Project Managour		BILLING 30 No.2	999101 165701 999700	**************************************	Digital Social Soci Beta Social Socia	14,5140	V
INSTRUCTIONS: Use separate line for each container (except replicates)		KUCE	515 1823 IX 1823 IX 18	HISYAQS Sound Ha	N C Vertin N C Vertin	4964 1012 D V 1012 D V	1743 60344581
Sampling	Matrix Type Container(s)	Prasarvation	917 917 917 917 917 917	10990) es (10990) es (11999) es (80050 100000 100000 100000 100000 1000000	ntisiinet S2153 S2153 S2153 S2153 S2055 S2055 S2055 S2055 S2055 S2	YC 883
MTE SAUPLE DENTIFICATION	2000/16 01 12 12 12 12 12 12 12 12 12 12 12 12 12		2009/2014/2018/2 2012/2018/2018/2 2012/2014/2018/2 2012/2014/2018/2 2012/2014/2018/2 2015/2018/2018/2 2015/2018/2018/2 2018/2 2018/2018/2018/2 2018/2018/2018/2 2018/2018/2018/2 2018/2018/2018/2 2018/2018/2018/2 2018/2018/2018/2 2018/2018/2018/2 2018/2018/2018/2 2018/2018/2018/2 2018/2018/2018/2 2018/2018/2018/2 2018/2018/2018/2 2018/2018/2 2018/2018/2 2018/2018/2 2018/2018/2 2018/2018/2 2018/2018/2 2018/2018/2 2018/2018/2 2018/2	Data service and a service of the se	real official second se	2000 - 20	N NY 255 Y M C
8	5 2 2 1 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	x 3 3 4 4 4	2 2 2 2				
1115 ESW (0-1)	X			X			
-				*			
542				*			
117299 1150 15tm - 3 (6")	X	× ×					- 22 - 299 - 898
	Image: Sector						
	Image: Section of the sectio						
REMARKS / SPECIAL INSTRUCTIONS				CHAIN-OF-CUSTODY RECORD	W RECORD		
ZYES I'N NO MCP Data Certification required.	Redulatory Program	Project Specific OC	NOYE: All samples	submitted subject to	Standard Terms and Conditions on reverse hereof	reverse hereof.	
1.7 YES K NO MCP Deniang Water Sample Included Votatiae analysis require duplicate collection and Trip Blanks)	Blanks).		Asimoustasi ter Sampler	Date Time h[3/69, 2: 30	P (0 (1/ 2/2 2	Racelot Temperature: Kisu Oradopeana 7.8	المرك
C. Analyze Duplicates and Trice Blanks only if positive results.	R ME	not project specific unless prearrantjed. Project specific QC samples are charged on a per rainple basis. Each MS, MSD and Sample Duplicate requires an additional sample uliquot.	Relinquis	Date Time Received by	And LAT	Contrainter Counte	1
Hes C NO CT RCP Data Cartheaton required.	CINH CI Drinking Water CINY CI Wasterwater CIRI CI Waster Disposal	Project Specific OC Required Solection of OC Sample C Sample Darkette C Shared Darkette	Hounguistional by:	Dato Titre Received 9	A FEI	Shipping/Airzill Number: Custode Seed	
10 o	DVI U DROGA MARIANA	La Maura Shing Malita Spike Obplicatio	Method of Shipment: CI GWA Counter	C Express Mail (1 Fedoral trxpres) C	interest of the second se	Number:	

Quality Assurance/Quality Control

A. Program Overview

Groundwater Analytical conducts an active Quality Assurance program to ensure the production of high quality, valid data. This program closely follows the guidance provided by Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans, US EPA QAMS-005/80 (1980), and Test Methods for Evaluating Solid Waste, US EPA, SW-846, Update III (1996).

Quality Control protocols include written Standard Operating Procedures (SOPs) developed for each analytical method. SOPs are derived from US EPA methodologies and other established references. Standards are prepared from commercially obtained reference materials of certified purity, and documented for traceability.

Quality Assessment protocols for most organic analyses include a minimum of one laboratory control sample, one method blank, one matrix spike sample, and one sample duplicate for each sample preparation batch. All samples, standards, blanks, laboratory control samples, matrix spikes and sample duplicates are spiked with internal standards and surrogate compounds. All instrument sequences begin with an initial calibration verification standard and a blank; and excepting GC/MS sequences, all sequences close with a continuing calibration standard. GC/MS systems are tuned to appropriate ion abundance criteria daily, or for each 12 hour operating period, whichever is more frequent.

Quality Assessment protocols for most inorganic analyses include a minimum of one laboratory control sample, one method blank, one matrix spike sample, and one sample duplicate for each sample preparation batch. Standard curves are derived from one reagent blank and four concentration levels. Curve validity is verified by standard recoveries within plus or minus ten percent of the curve.

B. Definitions

Batches are used as the basic unit for Quality Assessment. A Batch is defined as twenty or fewer samples of the same matrix which are prepared together for the same analysis, using the same lots of reagents and the same techniques or manipulations, all within the same continuum of time, up to but not exceeding 24 hours.

Laboratory Control Samples are used to assess the accuracy of the analytical method. A Laboratory Control Sample consists of reagent water or sodium sulfate spiked with a group of target analytes representative of the method analytes. Accuracy is defined as the degree of agreement of the measured value with the true or expected value. Percent Recoveries for the Laboratory Control Samples are calculated to assess accuracy.

Method Blanks are used to assess the level of contamination present in the analytical system. Method Blanks consist of reagent water or an aliquot of sodium sulfate. Method Blanks are taken through all the appropriate steps of an analytical method. Sample data reported is not corrected for blank contamination.

Surrogate Compounds are used to assess the effectiveness of an analytical method in dealing with each sample matrix. Surrogate Compounds are organic compounds which are similar to the target analytes of interest in chemical behavior, but which are not normally found in environmental samples. Percent Recoveries are calculated for each Surrogate Compound.

GROUNDWATER ANALYTICAL

Quality Control Report Laboratory Control Samples

Category: QC Batch ID: Matrix: Units:	MA DEP EPH Method EP-3040-M Soil mg/Kg		Extra Analy	yzed (AL): yzed (AR):	11-05-0 11-09-0	Agilent (19 13:0(19 13:03 19 13:53) Extrac 7 Analy	ment ID: ted: zed (AL): zed (AR):	GC-12 Agilent 11-05-09 13:0 11-09-09 14:3 11-09-09 15:2 KMC	10 19
CAS Number	Analyte		LCS	5		LC	S Duplicate		QC Limi	ts
		Spiked	Measured	Recovery	Spiked	Measured	Recovery	RPD	Spike	RPD
111-84-2	n-Nonane (C ₉)	3.3	1.6	48 %	3.3	1.6	48 %	1 %	30 - 140 %	25%
124-18-5	n -Decane (C ₁₀)	3.3	1.8	55 %	3.3	1.8	55 %	1 %	40 - 140 %	25%
112-40-3	n-Dodecane (C12)	3.3	2.1	62 %	3.3	2.1	64 %	2 %	40 - 140 %	25%
629-59-4	n -Tetradecane (C14)	3.3	2.0	61 %	3.3	2.1	62 %	2 %	40 - 140 %	25%
544-76-3	n-Hexadecane (C16)	3.3	2.2	67 %	3.3	2.2	68 %	2 %	40 - 140 %	25%
593-45-3	n-Octadecane (C ₁₈)	3.3	2.4	74 %	3.3	2.6	78 %	5 %	40 - 140 %	25%
n/a	n-C9 to n-C18 Group	20	12	61 %	20	12	63 %	2 %	40 - 140 %	25%
629-92-5	n-Nonadecane (C19)	3.3	2.5	75 %	3.3	2.6	78 %	4 %	40 - 140 %	25%
112-95-8	n-Eicosane (C ₂₀)	3.3	2.4	73 %	3.3	2.5	77 %	5 %	40 - 140 %	25%
629-97-0	n -Docosane (C ₂₂)	3.3	2.4	74 %	3.3	2.6	77 %	5 %	40 - 140 %	25%
646-31-1	n-Tetracosane (C ₂₄)	3.3	2.5	75 %	3.3	2.6	78 %	4 %	40 - 140 %	25%
630-01-3	n -Hexacosane (C ₂₆)	3.3	2.3	71 %	3.3	2.5	74 %	5 %	40 - 140 %	25%
630-02-4	n -Octacosane (C ₂₈)	3.3	2.3	70 %	3.3	2.4	74 %	5 %	40 - 140 %	25%
638-68-6	n -Triacontane (C ₃₀)	3.3	2.3	70 %	3.3	2.5	74 %	5 %	40 - 140 %	25%
630-06-8	n -Hexatriacontane (C ₃₆)	3.3	2.0	61 %	3.3	2.1	64 %	6 %	40 - 140 %	25%
n/a	n-C19 to n-C36 Group	26	19	71 %	26	20	75 %	5 %	40 - 140 %	25%
91-20-3	Naphthalene	3.3	2.1	63 %	3.3	2.2	65 %	3 %	40 ~ 140 %	25%
91-57-6	2-Methylnaphthalene	3.3	2.3	70 %	3.3	2.4	73 %	5 %	40 - 140 %	25%
208-96-8	Acenaphthylene	3.3	2.3	70 %	3.3	2.4	73 %	4 %	40 - 140 %	25%
83-32-9	Acenaphthene	3.3	2.3	71 %	3.3	2.4	74 %	4 %	40 - 140 %	25%
86-73-7	Fluorene	3.3	2.4	74 %	3.3	2.5	76 %	3 %	40 - 140 %	25%
85-01-8	Phenanthrene	3.3	2.7	81 %	3.3	2.8	84 %	3 %	40 - 140 %	25%
120-12-7	Anthracene	3.3	2.5	75 %	3.3	2.5	76 %	2 %	40 - 140 %	25%
206-44-0	Fluoranthene	3.3	3.1	93 %	3.3	3.1	95 %	3 %	40 - 140 %	25%
129-00-0	Pyrene	3.3	3.0	92 %	3.3	3.1	95 %	3 %	40 - 140 %	25%
56-55-3	Benzo[a]anthracene	3.3	2.6	79 %	3.3	2.7	82 %	3 %	40 ~ 140 %	25%
218-01-9	Chrysene	3.3	3.0	91 %	3.3	3.1	93 %	2 %	40 - 140 %	25%
205-99-2	Benzo[b]fluoranthene	3.3	2.7	82 %	3.3	2.8	84 %	3 %	40 - 140 %	25%
207-08-9	Benzo[k]fluoranthene	3.3	2.8	85 %	3.3	2.9	88 %	3 %	40 - 140 %	25%
50-32-8	Benzo[a]pyrene	3.3	2.9	89 %	3.3	3.0	91 %	3 %	40 - 140 %	25%
193-39-5	Indeno[1,2,3-c,d]pyrene	3.3	3.0	89 %	3.3	3.1	93 %	4 %	40 - 140 %	25%
53-70-3	Dibenzo[a,h]anthracene	3.3	3.0	92 %	3.3	3.1	94 %	3 %	40 - 140 %	25%
191-24-2	Benzo[g,h,i]perylene	3.3	2.8	83 %	3.3	2.8	86 %	3 %	40 - 140 %	25% 25%
n/a	PAH Group	56	46	81 %	56	47	84 %	3 70	40-140 %	2370
QC Surrogat	e Compound	Spiked	Measured	Recovery	Spiked	Measured	Recovery		QC Lim	its
Fractionation:	2-Fluorobiphenyl	2.7	2.4	89 %	2.7	2.5	93 %		40 - 140	.,
	2-Bromonaphthalene	2.7	2.3	85 %	2.7	2.1	78 %		40 - 140	
Extraction:	Chloro-octadecane	2.7	1.8	67 %	2.7	1.9	70 %		40 - 140	
	ortho -Terphenyl	2.7	2.5	93 %	2.7	2.6	96 %	l	40 - 140	%
	Fract	ionatio	n Breakt	hrough Evalu	ation				QC Lim	its
91-20-3	Naphthalene	LCS		0 %	LCSD		2 %		5%	
91-57-6	2-Methylnaphthalene	LCS		0 %	LCSD		1 %	~~~~	5%	
Method Referen	ce: Method for the Dete Method modified by	rmination use of m	icrowave	table Petroleur accelerated so	n Hydroci Ivent extra	action tec	A DEP (Revisio hnique.		•	

 Report Notations:
 All calculations performed prior to rounding. Quality Control Limits are defined by the methodology, or alternatively based upon the historical average recovery plus or minus three standard deviation units. The LCS and LCSD are prepared from separate source standards than those used for calibration.

Quality Control Report Method Blank

Category: QC Batch ID: Matrix:	MA DEP EPH EP-3040-M Soil				GC-12 Agilent 6890 11-05-09 13:00 11-09-09 16:12 11-09-09 16:58 KMC		
EPH Ranges			Conce	entration	Notes	Units	Reporting Limit
n-C9 to n-C18 A	liphatic Hydrocarbons [†]			BRL		mg/Kg	30
n-C19 to n-C36	Aliphatic Hydrocarbons [†]			BRL		mg/Kg	30
n-C11 to n-C22	Aromatic Hydrocarbons * •			BRL		mg/Kg	30
Unadjusted n-C	11 to n-C22 Aromatic Hydro	carbons [†]		BRL		mg/Kg	30
CAS Number	Analyte		Conce	entration	Notes	Units	Reporting Limit
91-20-3	Naphthalene			BRL		mg/Kg	0.50
91-57-6	2-Methylnaphthalene			BRL		mg/Kg	0.50
85-01-8	Phenanthrene Acenaphthene			BRL		mg/Kg	0.50
83-32-9	Acenaphthene	Acenaphthene		BRL		mg/Kg	0.50
208-96-8	Acenaphthylene			BRL		mg/Kg	0.50
86-73-7	Fluorene		BRL			mg/Kg	0.50
120-12-7	Fluorene Anthracene		BRL			mg/Kg	0.50
206-44-0	Fluoranthene		BRL			mg/Kg	0.50
129-00-0	Pyrene		BRL			mg/Kg	0.50
56-55-3	Benzo[a]anthracene		BRL			mg/Kg 0.50	0.50
218-01-9	Chrysene		BRL			mg/Kg	0.50
205-99-2	Benzo[b]fluoranthene			BRL			0.50
207-08-9	Benzo[k]fluoranthene			BRL		mg/Kg	0.50
50-32-8	Benzo[a]pyrene			BRL		mg/Kg	0.50
193-39-5	Indeno[1,2,3-c,d]pyrene			BRL		mg/Kg	0.50
53-70-3	Dibenzo[a,h]anthracene			BRL		mg/Kg	0.50
191-24-2	Benzo[g,h,i]perylene			BRL		mg/Kg	0.50
QC Surrogate C	Compound	Spiked	Measured	Recove	ry	Q	C Limits
Fractionation:	2-Fluorobiphenyl	2.7	2.4	90 %		40	- 140 %
	2-Bromonaphthalene	2.7	2.3	88 %		40	- 140 %
Extraction:	Chloro-octadecane	2.7	2.0	76 %		40	- 140 %
	ortho -Terphenyl	2.7	2.6	99 %		40	- 140 %

Method Reference:

Report Notations:

Method for the Determination of Extractable Petroleum Hydrocarbons, MA DEP (Revision 1.1, 2004). Sample extraction performed by microwave accelerated solvent extraction technique.

BRL Indicates concentration, if any, is below reporting limit for analyte. Reporting limit is the lowest concentration that can be reliably quantified under routine laboratory operating conditions. Reporting limits are adjusted for sample size and dilution. Hydrocarbon range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range.

t

n-C11 to n-C22 Aromatic Hydrocarbons range data excludes the method target analyte concentrations. ٥

ſ

5

Certifications and Approvals

Groundwater Analytical maintains environmental laboratory certification in a variety of states. Copies of our current certificates may be obtained from our website:

http://www.groundwateranalytical.com/qualifications.htm

CONNECTICUT	
Department of Health Services, PH-0586 http://www.ct.gov/dph/lib/dph/environmental health/	Potable Water, Wastewater, Solid Waste and Soil environmental laboratories/pdf/Out State.pdf
MASSACHUSETTS	
Department of Environmental Protection, M-MA-10 http://public.dep.state.ma.us/labcert/labcert.aspx	3 Potable Water and Non-Potable Water
Department of Labor, Division of Occupational Safety, AA000195 http://www.mass.gov/dos/forms/la-rpt list aa.pdf	Asbestos Analytical Services, Class A
NEW HAMPSHIRE	
Department of Environmental Services, 202708 http://www4.egov.nh.gov/DES/NHELAP	Potable Water, Non-Potable Water, Solid and Chemical Material
NEW YORK	
Department of Health, 11754 http://www.wadsworth.org/labcert/elap/comm.html	Potable Water, Non-Potable Water, Solid and Hazardous Waste
RHODE ISLAND	
Department of Health, Division of Laboratories, LAO00054 http://www.health.ri.gov/labs/outofstatelabs.pdf	Potable and Non-Potable Water Microbiology, Organic and Inorganic Chemistry
U.S. DEPARTMENT OF AGRICULTURE	
USDA, Soil Permit, S-53921	Foreign soil import permi
VERMONT	
Department of Health, VT-87643	Potabie Wate

Department of Health, VT-87643 http://healthvermont.gov/enviro/ph_lab/water_test.aspx#cert

Certifications and Approvals

MASSACHUSETTS Department of Environmental Protection, M-MA-103

Groundwater Analytical maintains MassDEP environmental laboratory certification for only the methods and analytes listed below. Analyses for certified analytes are conducted in accordance with MassDEP certification standards, except as may be specifically noted in the project narrative.

AnalyetMethodAnalyetMethod1,2 Dibromo-3-ChloroporpaneEPA 504.1Antonolia/NEPA 200.61,2 Dibromo-3-ChloroporpaneEPA 501.1AntonolyEPA 200.6Alkalini, TotalEPA 200.6AntonolyEPA 200.6Alkalini, TotalEPA 200.6AnsenicEPA 200.6Alkalini, TotalEPA 200.7BerylliumEPA 200.6BariumEPA 200.7BerylliumEPA 200.8BariumEPA 200.8BerylliumEPA 200.8BerylliumEPA 200.7BerylliumEPA 200.7CadmiumEPA 200.7BerylliumEPA 200.7CadmiumEPA 200.7CadmiumEPA 200.7CadriumEPA 200.7CadmiumEPA 200.7CadriumEPA 200.7CadmiumEPA 200.7CadriumEPA 200.7CadmiumEPA 200.7CadriumEPA 200.7CadmiumEPA 200.7CadriumEPA 200.7CadmiumEPA 200.7CadriumEPA 200.7Chorina, Eraid 200.7EPA 200.7CadriumEPA 200.7Chorina, Eraid 200.7EPA 200.7Chorina, Eraid 2016EPA 200.7ChorinaEPA 200.7CadriumEPA 200.7CadriumEPA 200.7Chorina, Eraid 2016EPA 200.7ChorinaEPA 200.7CadriumEPA 200.7CadriumEPA 200.7CadriumEPA 200.7ChorinaEPA 200.7CadriumEPA 200.7ChorinaEPA 200.7CadriumEPA 200.7ChorinaEPA 200.	Potable Water (Drinking Water)		Non-Potable Water (Wastewater)	
1.2.Diferementance FPA 30.1 Antimony FPA 200.7 Atkaininy, Total SA 320-B Antimony FPA 200.8 Antimony FPA 200.8 Antimony FPA 200.8 Antimony FPA 200.8 Antimony FPA 200.7 Baraum FPA 200.7 Baryllium FPA 200.7 Cadmium FPA 200.7 Calcium FPA 200.7 Cadmium FPA 200.7 Cadmium FPA 200.7 Cadmium FPA 200.7 Cadmium FPA 200.7 Chorine, Total Residual SM 520-D Chorine, Total Residual SM 520-D Capper FPA 200.7 Chorine, Total Residual SM 520-D Capper FPA 200.7 Chorine, Total Residual SM 520-D Capper FPA 200.8 Chorine, Total Residual SM 520-D Capper FPA 200.8 Choronium <	Analyte	Method	Analyte	Method
Altaline SM 2320-B Antimany EPA 200.8 Antimany EPA 200.8 Arsenic EPA 200.8 Ansenic EPA 200.8 Arsenic EPA 200.3 Barium EPA 200.8 Beryllium EPA 200.8 Barium EPA 200.8 Beryllium EPA 200.8 Beryllium EPA 200.8 Beryllium EPA 200.8 Beryllium EPA 200.8 Beryllium EPA 200.8 Beryllium EPA 200.8 Biochemical Oxygen Demand SM 5210.6 Cadmium EPA 200.7 Calcium EPA 200.8 Cadmium EPA 200.7 Calcium EPA 200.8 Calcium EPA 200.7 Calcium EPA 200.7 Chorine, Residual Free SM 4500.CL-G Calcium EPA 200.7 Copper EPA 200.8 Chorine, Total Residual SM 5200.CL-G Copper EPA 200.8 Chorine, Total Residual SM 4500.CL-G Copper EPA 200.8 Chorine, Total Residual SM 4500.CL-G Copper EPA 200.8 SUB-400.5L-L EPA 200.8 Copper EPA 200.7 Chorine, Total Residual SM 4500.CL-G Copper EPA 200.7 Chorine, Total Residual SM 4500.CL-G Copper EPA 200.7<	1,2-Dibromo-3-Chloropropane	EPA 504.1	Ammonia-N	
Antimery ConstructionEPA 200 B BArsenicEPA 200.7AssenicEPA 200.8ArsenicEPA 200.9 ÅBariumEPA 200.7BerylliumEPA 200.7BariumEPA 200.7BerylliumEPA 200.8 ÅBerylliumEPA 200.8BerylliumEPA 200.8 ÅBerylliumEPA 200.8BerylliumEPA 200.8 ÅBerylliumEPA 200.7Bichemical Oxygen DemandEPA 200.7 ÅCadmiumEPA 200.7CadmiumEPA 200.7 ÅCadmiumEPA 200.7CalciumEPA 200.7 ÅCadmiumEPA 200.7CalciumEPA 200.7 ÅChorine, Reskital PreeSPA 4500 C.L GChemical Oxygen DemandSM 5220-DChorine, Reskital PreeEPA 200.7Chorine, Total ResidualSM 520-DCopperEPA 200.7Chorine, Total ResidualSM 520-DCopperEPA 200.7Chorine, Total ResidualSM 520-DCopperEPA 200.8Chorine, Total ResidualSM 4500-CL-GCoprerEPA 200.8ChoriniumEPA 200.7E. Coli (Treatmont and Distribution)Rr.2 kub SM 9223-CCobaltEPA 200.7E. Coli (Treatmont and Distribution)NA-MUC SM 9223-CCobaltEPA 200.7E. Coli (Treatmont and Distribution)NA-MUC SM 9223-CCobaltEPA 200.7Eval ColiformMS 4500-C-CCyanide, TotalEachal 10-204-01-ALeadHA 200.7CopperEPA 200.8EPA 200.7FluorideSM 4500-C-CCyanide, TotalEPA 200.8L	1,2-Dibromoethane	EPA 504.1	Antimony	
Arsonic FPA 200 8 Arsonic EPA 200.8 Barium FPA 200.7 Beryllium EPA 200.8 Beryllium EPA 200.8 Barium FPA 200.0 Beryllium EPA 200.7 Beryllium EPA 200.7 Beryllium FPA 200.0 Beryllium EPA 200.7 Cadmium EPA 200.7 Cadmium FPA 200.7 Cadmium EPA 200.7 Cadmium EPA 200.7 Calcium FPA 200.7 Calcium EPA 200.7 Chioridae EPA 300.0 Copper FPA 200.8 Chioridae EPA 300.0 Copper EPA 200.7 Copper Teal EA 200.7 Chioridae EPA 300.0 Copper Copper Teal Eachal 10:204:00-1-A Chormium EPA 200.7 Chioridae EPA 300.0 Copper EPA 200.7 Chioridae EPA 300.0 EQualitic freatment and Distribution EA:200.23 Cobah EPA 200.7 EA:200.8 EA:200.7 EA:200.8 EA:200.7 EA:200.8 EA:200.7 EA:200.8 EA:200.7 EA:200.8 EA:200.8	Alkalinity, Total	SM 2320-B	Antimony	EPA 200.8
Barum EPA 200.7 Beryllium EPA 200.7 Barum EPA 200.8 Beryllium EPA 200.8 Beryllium EPA 200.8 Beryllium EPA 200.7 Beryllium EPA 200.8 Biochemical Oxygen Demand SM 3510-8 Cadmium EPA 200.7 Cadmium EPA 200.7 Cadmium EPA 200.7 Cadmium EPA 200.7 Cadicum EPA 200.7 Calcum EPA 200.7 Chorine, Residual Pree SM 4500CLC.G Chemical Oxygen Demand SM 3220-D Chornium EPA 200.7 Chioriae EPA 200.7 Chioriae Copper EPA 200.7 Chioriae EPA 200.7 Chioriae EPA 200.8 Copper EPA 200.8 Chioriae EPA 200.7 Chioriae EPA 200.7 EPA 200.7 Copper EPA 200.7 Chioriae EPA 200.7 EPA 200.7 EPA 200.7 Coli (Treatment and Distribution) Exchu CSM 221-F Chromium EPA 200.8 EPA 200.8 Coli (Treatment and Distribution) Exchu CSM 222-G Cobalt <td>Antimony</td> <td>EPA 200.8</td> <td>Arsenic</td> <td></td>	Antimony	EPA 200.8	Arsenic	
Batum EPA 200 8 Beryllium EPA 200.8 Beryllium EPA 200.7 BetsBHC EPA 200.7 Cadmitum EPA 200.7 Cadmium EPA 200.7 Cadmitum EPA 200.8 Cadmitum EPA 200.7 Cadmitum EPA 200.7 Calcium EPA 200.7 Calcium EPA 200.7 Calcium EPA 200.7 Chorine, Residual Pree SM 4300-CL-G Chorine, Residual Pree SM 4300-CL-G Copper EPA 200.7 Chlorine, Total Residual SM 4500-CL-G Copper EPA 200.7 Chlorine, Total Residual SM 4500-CL-G Copper EPA 200.7 Chlorine, Total Residual SM 4500-CL-G Copper EPA 200.7 Chlorine, Total Sciulal SM 4500-CL-G Copper EPA 200.8 Chornium EPA 200.7 E. Coli (Treatment and Distribution) EnX-Sub SM 922.3 Cobalt EPA 200.3 E. coli (Treatment and Distribution) EnX-Sub SM 922.4 Copper EPA 200.3 Fecal Coliform Source Watch MS 4500-C-C Cyanide, Total Lochal 10-20-40-1-A	Arsenic	EPA 200.8	Arsenic	EPA 200.8
End ImmEPA 200.7Beta-BHCEPA 400.8BenylliumEPA 200.8Biochemical Oxygen DemandEPA 200.7CadmiumEPA 200.8CadmiumEPA 200.8CadiciumEPA 200.7CalciumEPA 200.7Chlorine, Residual FreeSM 4500 CL-CChemical Oxygen DemandSPA 200.7Chorne, Residual FreeEPA 200.7ChioridancEPA 200.7Chorne, Residual FreeEPA 200.7ChioridancEPA 608CopperEPA 200.7ChioridancEPA 600.7CopperEPA 200.7ChioridancEPA 600.7CopperEPA 200.8Chiorine, Total ResidualSM 4500-CL-CCopperEPA 200.8Chiorine, Total ResidualSM 4500.7Coli (freatment and Distribution)Enz. Sub, SM 922.3CobaltEPA 200.8E. Coli (freatment and Distribution)Enz. Sub, SM 922.4CobaltEPA 200.7E. Coli (freatment and Distribution)HA-MUC SW 922.4CobaltEPA 200.7EluorideEPA 200.8CopperEPA 200.7EPA 200.8FluorideEPA 200.8DDDEPA 608FluorideEPA 200.8DDDEPA 608IluorideEPA 200.8DDEEPA 608Nitate-NEPA 200.8Endosifian IIEPA 608Nitate-NEPA 200.7Endosifian IIEPA 608Nitate-NEPA 200.7Endosifian IIEPA 608Nitate-NEPA 200.7Endosifian IIEPA 608Nitate-NEPA 200.7Endosifian IIEPA 608 <tr< td=""><td>Barium</td><td>EPA 200.7</td><td>Beryllium</td><td>EPA 200.7</td></tr<>	Barium	EPA 200.7	Beryllium	EPA 200.7
BerylliumEPA 200.7Biochemical Oxygen DemandSN 5210-BCadmiumEPA 200.7CadmiumEPA 200.7CadmiumEPA 200.7CadmiumEPA 200.7CalciumEPA 200.7CalciumEPA 200.7Chorine, Residual FreeSM 4500-CL-GChemical Oxygen DemandSM 5220-DChorine, Residual FreeEPA 200.7ChioridaneEPA 200.7CopperEPA 200.7ChioridaneEPA 200.7CopperEPA 200.8Chorine, Total ResidualSM 4500-CL-GCopperEPA 200.8Chorine, Total ResidualSM 4500-CL-GCoparid, TotalLachat 10-204-00-1-AChoriniumEPA 200.7E. Coli (Treatment and Distribution)ECAUC SM 9223-FChorniumEPA 200.7E. Coli (Treatment and Distribution)NA-MUC SM 9223-CCobaltEPA 200.7E. Coli (Treatment and Distribution)NA-MUC SM 9223-CCopperEPA 200.7FluorideEPA 200.7CopperEPA 200.7FluorideSM 4500-FCCyanide, TotalLachat 10-204-01-AHuorideSM 4500-FCCyanide, TotalLachat 10-204-01-AHeterotrophic Plate CountSM 4500-FCCyanide, TotalLachat 10-204-01-AHeterotrophic Plate CountSM 4500-FCCyanide, TotalEA 608NitraceNEPA 200.8DDFEPA 608NitraceNEPA 200.7Dela-BHCEPA 608NitraceNEPA 200.7Chala-BHCEPA 608NitraceNEPA 200.8DDFEPA 608NitraceN	Barium	EPA 200.8	Beryllium	EPA 200.8
CadmiumEPA 200.7CadmiumEPA 200.7CadmiumEPA 200.8CadmiumEPA 200.8CalciumEPA 200.7CalciumEPA 200.7CalciumEPA 200.7CalciumEPA 200.7Chiorine, Residual FreeSM 4500 CL-CChioridaneEPA 608CopperEPA 200.7ChioridaneEPA 608CopperEPA 200.7ChioridaneEPA 608CopperEPA 200.8ChioridaneEPA 200.7Cadi (Treatment and Distribution)ECAULG SM 9221-FChromiumEPA 200.8E. Coil (Treatment and Distribution)Enz. Sub. SM 9223-CCobaltEPA 200.8E. Coil (Treatment and Distribution)Enz. Sub. SM 9224-CCobaltEPA 200.7E. Coil (Treatment and Distribution)Enz. Sub. SM 9224-DCopperEPA 200.7FluorideEPA 300.0CopperEPA 200.8FluorideEPA 300.0CopperEPA 200.8FluorideEPA 200.8DDEEPA 608HuorideEPA 200.8DDEEPA 608LeadEPA 200.8DDEEPA 608Nitrate-NEPA 200.7Delta3HCEPA 608Nitrate-NEPA 200.8DDEEPA 608Nitrate-NEPA 200.7Delta3HCEPA 608Nitrate-NEPA 200.7Delta3HCEPA 608Nitrate-NEPA 200.7Delta3HCEPA 608Nitrate-NEPA 200.8DDEEPA 608Nitrate-NEPA 200.7Endosulfan IIEPA 608Nitrate-NEPA 200.7 <td>Beryllium</td> <td>EPA 200.7</td> <td>Beta-BHC</td> <td>EPA 608</td>	Beryllium	EPA 200.7	Beta-BHC	EPA 608
CadmiumEPA 200.7CadmiumEPA 200.7CadmiumEPA 200.8CadmiumEPA 200.7CalciumEPA 200.7CalciumEPA 200.7Chlorine, Residual FreeSM 4500 CL-GChemical Oxygen DemandSPA 200.8CopperEPA 200.7Chlorine, Total ResidualSM 4500 CL-GCopperEPA 200.7Chlorine, Total ResidualSM 4500 CL-GCopperEPA 200.8Chlorine, Total ResidualSM 4500 CL-GCyaride, TotalLachat 10-204-00-1-AChromiumEPA 200.8C. Coil (Treatment and Distribution)ErX. Sub, SM 9221-FChromiumEPA 200.8E. Coil (Treatment and Distribution)Enx. Sub, SM 922-CCobaltEPA 200.7E. Coil (Treatment and Distribution)HA XUC SM 922-DCopperEPA 200.7FluorideEPA 200.0CopperEPA 200.8FluorideSM 4500-FCCyanide, TotalLachat 10-204-00-1-AHeterotrophic Plate CountSM 4500-FCCyanide, TotalEA 608LeadEPA 200.7DD DEPA 608NickelEPA 200.7DD FEPA 608NickelEPA 200.7DD FEPA 608NickelEPA 200.7Endosulfan 1EPA 608NickelEPA 200.7Gama-BHCEPA 608Nickel<	Beryllium	EPA 200.8	Biochemical Oxygen Demand	SM 5210-B
CalciumEPA 200.7CalciumEPA 200.7Chlorine, Residual FreeSM 4500-CL-GChemical Oxygen DemandSM 5220-DChromiumEPA 200.7ChlordaneEPA 608CopperEPA 200.7ChlordaneEPA 200.7CalciumEPA 200.7ChlordaneEPA 200.7Cyanide, TotalLachat 10-204-00-1-AChormiumEPA 200.7C. Coli (Treatment and Distribution)Enz, Sub, SM 922.1-ChormiumEPA 200.8E. Coli (Treatment and Distribution)Enz, Sub, SM 922.3CobaltEPA 200.8E. Coli (Treatment and Distribution)NA-MIG SM 922.2-DCopperEPA 200.8Feeal Coliform (Source Water)MF SM 922.2-DCopperEPA 200.8FluorideSM 490.6-CCopperEPA 200.8FluorideSM 921.5-8DDDEPA 608LacdEPA 200.8DDFEPA 608Meterotrophic Plate CountEPA 200.8DDFEPA 608NickelEPA 200.8Endosulfan 11EPA 608NickelEPA 200.8DDFEPA 608NickelEPA 200.8Endosulfan 11EPA 608NickelEPA 200.7Endosulfan SulfateEPA 608Nitrate-NLach		EPA 200.7	Cadmium	EPA 200.7
Chlorine, Residual FreeSM 4500 CL-GChemical Oxygen DemandSM 520-DChromiumEPA 200.7ChloridaneEPA 608CopperEPA 200.7Chlorida ResidualSM 4500-CL-GCyanide, TotalLachat 10-204-00-1-AChromiumEPA 200.7E, Coil (Treatment and Distribution)ECAUG SM 922.1-FChoalaEPA 200.7E, Coil (Treatment and Distribution)NA-MUG SM 922.3-GCobaltEPA 200.7E, Coil (Treatment and Distribution)NA-MUG SM 922.2-GCobaltEPA 200.7E, Coil (Treatment and Distribution)NA-MUG SM 922.2-GCobaltEPA 200.7FluorideFA 300.0CopperEPA 200.7FluorideFA 300.0-FCCopperEPA 200.7FluorideFA 300.0-FCCopperEPA 200.7FluorideFA 400.8DDDEPA 608LeadEPA 200.7CopperEPA 608LeadEPA 200.7CopperEPA 608LeadEPA 200.7CopperEPA 608Nitrate-NEPA 200.8DDDEPA 608Nitrate-NEPA 200.8DDTEPA 608Nitrate-NEPA 200.8DDTEPA 608Nitrate-NEPA 300.0Endosulfan IIEPA 608Nitrate-NEPA 200.7Endosulfan IIEPA 608Nitrate-NEPA 200.7Endosulfan IIEPA 608Nitrate-NEPA 200.8Endosulfan IIEPA 608Nitrate-NEPA 200.7Endosulfan IIEPA 608Nitrate-NEPA 200.7Endosulfan II <td>Cadmium</td> <td>EPA 200.8</td> <td>Cadmium</td> <td>EPA 200.8</td>	Cadmium	EPA 200.8	Cadmium	EPA 200.8
ChromiumFPA 200.7ChlorideFPA 608CopperFPA 200.7ChlorideFPA 608CopperFPA 200.7ChlorideFPA 300.0Cyaride, TotalLacharl 10-204-00-1-AChromiumFPA 200.7E. Coli (Treatment and Distribution)Enc. Sub, SM 922.7CobaltFPA 200.7E. Coli (Treatment and Distribution)Enc. Sub, SM 922.3CobaltFPA 200.7E. Coli (Treatment and Distribution)NA-MUG SM 922.2CobaltFPA 200.7Fecal Coliform (Source Water)MF SM 922.2-DCopperFPA 200.7FluorideFPA 200.0CopperFPA 200.8FluorideFPA 200.0CopperFPA 200.8FluorideFPA 200.0CopperFPA 608MitcelFPA 200.7Delta-BHCFPA 608MitcelFPA 200.7Delta-BHCFPA 608MitcelFPA 200.7Delta-BHCFPA 608NitckelFPA 200.0Endosulfan IFPA 608NitckelFPA 200.0Endosulfan IFPA 608Nitrate-NLachat 10-107-04-1-CEndosulfan IFPA 608Nitrate-NLachat 10-107-04-1-CEndosulfan IFPA 608Nitrite-NLachat 10-107-04-1-CEndosulfan IFPA 608 <tr< td=""><td>Calcium</td><td>EPA 200.7</td><td>Calcium</td><td>EPA 200.7</td></tr<>	Calcium	EPA 200.7	Calcium	EPA 200.7
CombinitionEPA 200.7ChlorideEPA 300.0CopperEPA 200.8Chlorine, Total ResidualSM 4500-CL-GCyanide, TotalLachat 10-204-00-1-AChromiumEPA 200.7E. Coli (Treatment and Distribution)EC-MUC SM 922.1-FChromiumEPA 200.7E. Coli (Treatment and Distribution)NA-MUG SM 922.2-GCobaltEPA 200.7Fecal Coliform (Source Water)NA-MUG SM 922.2-GCopperEPA 200.7FluorideEPA 300.0CopperEPA 200.8FluorideEPA 300.0CopperEPA 200.8FluorideEPA 300.0-F-CCyanide, TotalLachat 10-204-00-1-AHeterotrephic Plate CountSM 9215-BDDDEPA 608LeadEPA 200.8DDEEPA 608LeadEPA 200.8DDEEPA 608NickelEPA 200.8DDEEPA 608NickelEPA 200.8DDEEPA 608NickelEPA 200.8DDEEPA 608NickelEPA 200.8Endosuffan IEPA 608Nirate-NEPA 200.8Endosuffan IEPA 608Nirate-NEPA 200.7Endosuffan IEPA 608SilverEPA 200.7Endosuffan IEPA 608SilverEPA 200.7Hardness (CaCO3), TotalEPA 200.7<	Chlorine, Residual Free	SM 4500-CL-G	Chemical Oxygen Demand	SM 5220-D
Copper CopperEPA 200.7EPA 200.7Cyaride, TotalLachar 10-204-00-1-AChromiumEPA 200.7E. Coli (Treatment and Distribution)Erx. Sub. SM 922.3CobaltEPA 200.7E. Coli (Treatment and Distribution)Erx. Sub. SM 922.3CobaltEPA 200.7E. Coli (Treatment and Distribution)Erx. Sub. SM 922.2CobaltEPA 200.7Fecal Coliform (Source Water)MF SM 922.5DCopperEPA 200.8Fecal Coliform (Source Water)MF SM 922.5DCopperEPA 200.8FluorideSM 4500-F-CCyanide, TotalLachar 10-204-00-1-AHeterotrophic Plate CountSM 9215.8DDDEPA 608MercuryEPA 200.7Delta-BHCEPA 608NickelEPA 200.7Delta-BHCEPA 608NickelEPA 200.7Delta-BHCEPA 608NickelEPA 200.0Endosulfan IEPA 608NickelEPA 200.0Endosulfan IEPA 608Niktea-NLachat 10-107-04-1-CEndosulfan IEPA 608Niktrate-NEPA 200.8FluorideEPA 608Niktrate-NLachat 10-107-04-1-CEndosulfan IEPA 608Niktrate-NEPA 200.7Endosulfan IEPA 608SilverEPA 200.7Gamma-BHCEPA 608SilverEPA 200.8FluorideEPA 608SilverEPA 200.7Gamma-BHCEPA 608SilverEPA 200.8Hardness (CaCO3), TotalSM 2340-BSilverEPA 200.7Hardness (CaCO3), TotalEPA 200.7 <td>Chromium</td> <td>EPA 200.7</td> <td>Chlordane</td> <td>EPA 608</td>	Chromium	EPA 200.7	Chlordane	EPA 608
Copper EPA 200.8 Chlorine, Chala Residual SM 4500-CL-G Cyanide, Total Lachat 10-204-00-1-A. Chromium EPA 200.7 E. Coli (Treatment and Distribution) En. Sub. SM 922.3 Cobalt EPA 200.8 E. Coli (Treatment and Distribution) En. Sub. SM 922.3 Cobalt EPA 200.7 E. Coli (Treatment and Distribution) NA-MUG SM 922.2-C Cobalt EPA 200.8 Fluoride EPA 300.0 Copper EPA 200.8 Fluoride SM 920-FC Copper EPA 200.8 Fluoride SM 920-FG Copper EPA 200.8 Fluoride SM 920-FG Copper EPA 200.8 Lead EPA 200.8 DDD EPA 608 Mercury EPA 200.7 Delta-BHC EPA 608 Nickel EPA 200.7 Delta-BHC EPA 608 Nickel EPA 200.7 EPA 608 ENCOR Nickel EPA 200.7 EPA 608 ENCOR Nickel EPA 200.7 EPA 608 ENCOR Nickel EPA 200.7 ENA 6	Copper	EPA 200.7	Chloride	EPA 300.0
Cyanide, Total Lachat 10-204-00-1-A Chromium EPA 200.7 E. Coli (Treatment and Distribution) ECAUCSM 9221-F Chromium EPA 200.8 E. Coli (Treatment and Distribution) Enz. Sub. SM 9223 Cobalt EPA 200.7 E. Coli (Treatment and Distribution) NA-MUC SM 9222-C Cobalt EPA 200.7 Fluoride FPA 300.0 Copper EPA 200.7 Fluoride SM 4900-F-C Copper EPA 200.8 Fluoride SM 9215-B DDD EPA 608 Lead EPA 200.7 EPA 608 EPA 608 Lead EPA 200.7 DDT EPA 608 Nickel EPA 200.7 DeB-BHC EPA 608 Nickel EPA 200.0 Endosulfan I EPA 608 Nickel EPA 200.0 Endosulfan II EPA 608 Nitrate-N Leatat 10-107-04-1-C Endosulfan Sulfate EPA 608 Nitrate-N EPA 200.8 Fluoride EPA 608 Nitrate-N EPA 200.8 Fluoride EPA 608 Silver EPA 200.7		EPA 200.8	Chlorine, Total Residual	SM 4500-CL-G
E Coli (Treatment and Distribution) ECAWUC SM 9221-F Chromium EPA 200.8 E. Coli (Treatment and Distribution) Na.AUUC SM 9223 Cobalt EPA 200.7 Fluoride NA.AUUC SM 9222-C Cobalt EPA 200.8 Fluoride EPA 200.0 Copper EPA 200.8 Fluoride EPA 300.0 Copper EPA 200.8 Fluoride EPA 300.0 Copper EPA 200.8 Fluoride EPA 200.8 DDD EPA 608 Lead EPA 200.8 DDT EPA 608 Metcury EPA 200.0 EPA 608 EPA 608 Nickel EPA 200.0 Endosulfan I EPA 608 Nitrate-N EPA 200.0 Endosulfan I EPA 608 Nitrate-N Lachat 10-107-04-1-C Endosulfan I EPA 608 Nitrate-N Lachat 10-107-04-1-C Endosulfan Sulfate EPA 608 PH SM 4500-FLB Endorin Aldehyde EPA 608 Silver EPA 200.7 Edmin EPA 608 Silver EPA 200.8 Fluo		Lachat 10-204-00-1-A	Chromium	EPA 200.7
E. Coli (Treatment and Distribution) NA.MUC SM 9223 Cobalt EPA 200.7 E. Coli (Treatment and Distribution) NAMUC SM 9222-G Cobalt EPA 200.8 Fecal Coliform (Source Water) MF SM 9222-D Copper EPA 200.7 Fluoride EPA 300.0 Copper EPA 200.8 Fluoride SM 400-F-C Cyanide, Total Lachat 10-204-00-1-A Heterotrophic Plate Count SM 9215-B DDD EPA 608 Lad EPA 200.8 DDE EPA 608 Mercury EPA 200.7 Dela-BHC EPA 608 Nickel EPA 200.7 Dela-BHC EPA 608 Nitrate-N Lachat 10-107-04-1-C Endosulfan II EPA 608 Nitrite-N Lachat 10-107-04-1-C Endrin Midehyde EPA 608 Nitrite-N Lachat 10-107-04-1-C Endrin Midehyde EPA 608 Nitrite-N Lachat 10-107-04-1-C Endrin Midehyde EPA 608 Silver EPA 200.7 Gamma-BHC EPA 608 Silver EPA 200.7 Gamma-SHC EPA 608		EC-MUG SM 9221-F	Chromium	EPA 200.8
E. Coli (Treatment and Distribution) NA-MUC SM 9222-G Coalt FPA 200.8 Fecal Coli (mr (Source Water) MF SM 9222-D Copper EPA 200.7 Fluoride FPA 300.0 Copper EPA 200.8 Fluoride SM 4500-F-C Copper EPA 200.8 Fluoride SM 4500-F-C ODD EPA 608 Lead EPA 200.8 DDD EPA 608 Mercury EPA 200.7 Eldidin EPA 608 Nickel EPA 200.7 Delta-BHC EPA 608 Nickel EPA 200.7 Delta-BHC EPA 608 Nickel EPA 200.7 Endosulfan 1 EPA 608 Nikrate-N EPA 200.7 Endosulfan 1 EPA 608 Nikrate-N EPA 200.7 Endosulfan 1 EPA 608 Nikrate-N Lachat 10-107-04-1-C Endosulfan Sulfate EPA 608 PiH Sulfate EPA 200.7 Gamma-BHC EPA 608 Silver EPA 200.7 Gamma-BHC EPA 608 Silver EPA 200.7 Gamma-BHC EP		Enz. Sub. SM 9223	Cobalt	EPA 200.7
Fecal Coliform (Source Water) MF SM 9222-D Copper EPA 200.7 Fluoride EPA 300.0 Copper EPA 200.8 Fluoride SM 4500-F-C Cyanide, Total Lachat 10-204-00-1-A Heterotrophic Plate Count SM 9215-8 DDD EPA 608 Lead EPA 200.8 DDE EPA 608 Mercury EPA 245.1 DDT EPA 608 Nickel EPA 200.0 Endosulfan I EPA 608 Nitrate-N EPA 300.0 Endosulfan II EPA 608 Nitrate-N EPA 300.0 Endosulfan II EPA 608 Nitrite-N EPA 300.0 Endosulfan II EPA 608 Nitrite-N EPA 200.7 Endosulfan II EPA 608 Silver EPA 200.0 Endosulfan II EPA 608 Silver EPA 200.7 Endosulfan Sulfate EPA 608 Silver EPA 200.7 Gamma-BHC EPA 608 Silver EPA 200.7 Gamma-BHC EPA 200.7 Solitan EPA 200.7 Hardness (CaCO3), Total M 2340	•	NA-MUG SM 9222-G	Cobalt	EPA 200.8
FluorideEPA 300.0CopperEPA 200.8FluorideSM 4500-F.CCyanide, TotalLachat 10-204-00-1-AHeterotrophic Plate CountSM 9215-BDDDEPA 608LeadEPA 200.8DDTEPA 608MercuryEPA 245.1DDTEPA 608NickelEPA 200.7Delta-BHCEPA 608NickelEPA 300.0Endosulfan 1EPA 608Nitrate-NEPA 300.0Endosulfan 1EPA 608Nitrate-NEPA 300.0Endosulfan 1EPA 608Nitrate-NEA 300.0Endosulfan 1EPA 608Nitrate-NLachat 10-107-04-1-CEndosulfan 1EPA 608Nitrite-NLachat 10-107-04-1-CEndosulfan 1EPA 608Nitrite-NLachat 0-107-04-1-CEndosulfan 1EPA 608SilverEPA 200.7Gamma-BHCEPA 608SilverEPA 200.7Gamma-BHCEPA 608SilverEPA 200.7Hardness (CaCO3), TotalEPA 200.7SulfateEPA 200.8Heptachlor EpoxideEPA 608SulfateEPA 200.8Heptachlor EpoxideEPA 200.7Total Coliform (Treatment and Distribution)Enz. Sub. SM 9223IronEPA 200.7Total Coliform (Treatment and Distribution)MrS 9222-8MagnesiumEPA 200.7TurbiditySM 2130-8MagneseEPA 200.7Volatile Organic CompoundsEPA 524.2MagnesiumEPA 200.7Non-Potable Water (Wastewater)MethodEPA 200.7MolydenumEPA 200.7Add		MF SM 9222-D	Copper	EPA 200.7
Fluoride SM 4500-F-C Cyanide, Total Lachat 10-204-00-1-A Heterotrophic Plate Count SM 9215-B DDD EPA 608 Lead EPA 200.8 DDF EPA 608 Mercury EPA 245.1 DDT EPA 608 Nickel EPA 200.8 Diela-BHC EPA 608 Nitrate-N EPA 300.0 Endosulfan I EPA 608 Nitrate-N Lachat 10-107-04-1-C Endosulfan I EPA 608 Nitrite-N Lachat 10-107-04-1-C Endosulfan I EPA 608 Nitrite-N EPA 200.8 Endrin Aldehyde EPA 608 Nitrite-N EPA 200.7 Endosulfan I EPA 608 Silver EPA 200.8 Fluoride EPA 608 Selenium EPA 200.8 Hardness (CaCO3), Total EPA 200.7 Soldum EPA 200.7 Hardness (CaCO3), Total EPA 200.7 Soldum EPA 200.8 Hardness (CaCO3), Total EPA 200.7 Soldum EPA 200.7 Hardness (CaCO3), Total EPA 200.7 Soldum EPA 200.7		EPA 300.0	Copper	EPA 200.8
Heterotrophic Plate CountSM 9215-8DDDEPA 608LeadEPA 200.8DDFEPA 608MercuryEPA 245.1DDTEPA 608NickelEPA 200.7Delta-BHCEPA 608NickelEPA 200.8DieldrinEPA 608Nitrate-NEPA 300.0Endosulfan IEPA 608Nitrate-NLachat 10-107-04-1-CEndosulfan IIEPA 608Nitrate-NLachat 10-107-04-1-CEndosulfan SulfateEPA 608Nitrite-NLachat 10-107-04-1-CEndrin AldehydeEPA 608pHSM 4500-H-8Endrin AldehydeEPA 608pHSM 4500-H-8Endrin AldehydeEPA 608SeleniumEPA 200.7Gamma-BHCEPA 608SilverEPA 200.7Gamma-BHCEPA 608SodiumEPA 200.0HeptachlorEPA 608SulfateEPA 200.0HeptachlorEPA 608SulfateEPA 200.0HeptachlorEPA 608Total Coliform (Treatment and Distribution)KS M 9223IronEPA 200.7Total Coliform (Treatment and Distribution)KS M 9223IronEPA 200.7TrihalomethanesEPA 524.2ManganeseEPA 200.7Volatile Organic CompoundsEPA 524.2ManganeseEPA 200.7Volatile Organic CompoundsEPA 524.2ManganeseEPA 200.7Non-Potable Water (Wastewater)MolybdenumEPA 200.7AnalytePA 608Nitrate-NEPA 200.7AldrinEPA 608Nitrate-NEPA 200.7<				Lachat 10-204-00-1-A
LeadEPA 200.8DDEEPA 608MercuryEPA 245.1DDTEPA 608NickelEPA 200.7Delta-BHCEPA 608NickelEPA 200.0DieldrinEPA 608Nitrate-NLachat 10-107-04-1-CEndosulfan IEPA 608Nitrite-NLachat 10-107-04-1-CEndosulfan SulfateEPA 608Nitrite-NLachat 10-107-04-1-CEndosulfan SulfateEPA 608Nitrite-NLachat 10-107-04-1-CEndosulfan SulfateEPA 608Nitrite-NEPA 300.0Endosulfan SulfateEPA 608Nitrite-NLachat 10-107-04-1-CEndrin AldehydeEPA 608SeleniumEPA 200.7Garma-BHCEPA 608SeleniumEPA 200.7Garma-BHCEPA 608SeleniumEPA 200.8Hardness (CaCO3), TotalEPA 200.7SodiumEPA 200.0HeptachlorEPA 608SulfateEPA 300.0Heptachlor EpoxideEPA 608Total Coliform (Treatment and Distribution)KS M 9223IronEPA 200.7Total Coliform (Treatment and Distribution)KS M 2540-CLeadEPA 200.7Total Coliform (Treatment and Distribution)KS M 2540-CLeadEPA 200.7Total Coliform (Treatment and Distribution)KS 2540-CLeadEPA 200.7Total Disolved SolidsSM 2540-CLeadEPA 200.7Total Coliform (Treatment and Distribution)KS 2540-CLeadEPA 200.7Volatile Organic CompoundsEPA 524.2ManganeseEPA 200.7Volatile Orga				EPA 608
Mercury EPA 245.1 DDT EPA 608 Nickel EPA 200.7 Delta-BHC EPA 608 Nickel EPA 200.8 Dieldrin EPA 608 Nitrate-N EPA 300.0 Endosulfan I EPA 608 Nitrate-N Lachat 10-107-04-1-C Endosulfan II EPA 608 Nitrite-N EPA 300.0 Endrin Aldehyde EPA 608 Silver EPA 200.8 Fluoride EPA 300.0 Silver EPA 200.7 Gamma-BHC EPA 608 Silver EPA 200.7 Hardness (CaCO3), Total EPA 200.7 Sulfate EPA 200.7 Hardness (CaCO3), Total EPA 200.7 Sulfate EPA 200.8 Heptachlor Epoxide EPA 608 Silver EPA 200.7 Hardness (CaCO3), Total EPA 200.7 Total Coliform (Treatment and Distribution) MS 9222-B <	•		DDE	EPA 608
NickelEPA 200.7Delta-BHCEPA 608NickelEPA 200.8DieldrinEPA 608Nitrate-NEPA 300.0Endosulfan IEPA 608Nitrate-NLachat 10-107-04-1-CEndosulfan IIEPA 608Nitrite-NEPA 300.0Endosulfan SulfateEPA 608Nitrite-NLachat 10-107-04-1-CEndosulfan SulfateEPA 608Nitrite-NEPA 200.0Endosulfan SulfateEPA 608Nitrite-NLachat 10-107-04-1-CEndrin AldehydeEPA 608SeleniumEPA 200.8FluorideEPA 300.0SilverEPA 200.8FluorideEPA 200.7SodiumEPA 200.7Gamma-BHCEPA 608SulfateEPA 200.7Hardness (CaCO3), TotalSM 2340-BSulfateEPA 200.7Hardness (CaCO3), TotalSM 2340-BSulfateEPA 200.8Heptachlor EpoxideEPA 608Total Coliform (Treatment and Distribution)Enz. Sub. SM 9223IronEPA 200.7Total Coliform (Treatment and Distribution)Mr SM 9222-BKjeldall-NLachat 10-107-06-02-DTotal Coliform (Treatment and Distribution)Mr SM 922-BMagnesiumEPA 200.7Total Coliform (Treatment and Distribution)Mr SM 922-BKjeldall-NLachat 10-107-06-02-DTotal Coliform (Treatment and Distribution)Mr SM 2540-CLeadEPA 200.7Total Coliform (Treatment and Distribution)Mr SM 2540-CLeadEPA 200.7Total Coliform (Treatment and Distribution)Mr SM 2540-DManganeseEPA 200.7<			DDT	EPA 608
NickelEPA 200.8DieldrinEPA 608Nitrate-NEPA 300.0Endosulfan IIEPA 608Nitrate-NLachat 10-107-04-1-CEndosulfan IIEPA 608Nitrite-NEPA 300.0Endosulfan IIEPA 608Nitrite-NLachat 10-107-04-1-CEndrin MehydeEPA 608SilverSM 4500-1-HBEndrin AldehydeEPA 608SeleniumEPA 200.8FluorideEPA 300.0SilverEPA 200.7Ganma-BHCEPA 608SoliverEPA 200.7Ganma-BHCEPA 200.7SoliterEPA 200.7Hardness (CaCO3), TotalSM 2340-BSulfateEPA 200.7Hardness (CaCO3), TotalSM 2340-BSulfateEPA 200.8Heptachlor EpoxideEPA 608Tatal Coliform (Treatment and Distribution)Enz. Sub. SM 9223IronEPA 200.7Total Coliform (Treatment and Distribution)MF SM 9222-BKieldahl-NLachat 10-107-06-02-DTati AlousethanesEPA 524.2MagneseEPA 200.7TurbiditySM 2130-BManganeseEPA 200.7Volatle Organic CompoundsEPA 524.2MagneseEPA 200.7Non-Potable Water (Wastewater)MolybdenumEPA 200.7AldrinEPA 608Nitrate-NEPA 200.7AldrinEPA 608Nitrate-NEPA 200.7AldrinEPA 524.2MagneseEPA 200.7AldrinEPA 608Nitrate-NEPA 200.7AldrinEPA 608Nitrate-NEPA 200.7AldrinEPA 608Ni	,		Delta-BHC	EPA 608
Nirrate-NEPA 300.0Endosulfan IEPA 608Nirrate-NLachat 10-107-04-1-CEndosulfan IIEPA 608Nitrite-NEPA 300.0Endosulfan SulfateEPA 608Nitrite-NLachat 10-107-04-1-CEndrinEPA 608pHSM 4500-H-BEndrin AldehydeEPA 608SeleniumEPA 200.8FluorideEPA 300.0SilverEPA 200.7Gamma-BHCEPA 200.7SodiumEPA 200.7Gamma-BHCEPA 200.7SodiumEPA 200.7Hardness (CaCO3), TotalEPA 200.7SolifateEPA 300.0Heptachlor EpoxideEPA 608ThalliumEPA 200.8Heptachlor EpoxideEPA 608Total Coliform (Treatment and Distribution)KP 39222-BKjeldal-INLachat 10-107-06-02-DTotal Coliform (Treatment and Distribution)SM 2540-CLeadEPA 200.7TurbiditySM 2540-CLeadEPA 200.7Volatile Organic CompoundsEPA 524.2MagnaeseEPA 200.7Non-Potable Water (Wastewater)MolydenumEPA 200.7AnalyteEPA 608Nitrate-NEPA 200.7AldrinEPA 608Nitrate-NEPA 200.7AldrinEPA 608Nitrate-NEPA 200.7Aldri			Dieldrin	EPA 608
Nitrate-NLachat 10-107-04-1-CEndosulfan IIEPA 608Nitrite-NEPA 300.0Endosulfan SulfateEPA 608Nitrite-NLachat 10-107-04-1-CEndrin AldehydeEPA 608pHSM 4500-H-BEndrin AldehydeEPA 608SeleniumEPA 200.8FluorideEPA 300.0SilverEPA 200.7Gamma-BHCEPA 608SodiumEPA 200.7Hardness (CaCO3), TotalEPA 200.7SodiumEPA 200.7Hardness (CaCO3), TotalSM 2340-BSulfateEPA 200.7Hardness (CaCO3), TotalEPA 608SulfateEPA 200.7Hardness (CaCO3), TotalSM 2340-BSulfateEPA 200.7Hardness (CaCO3), TotalEPA 608Total Coliform (Treatment and Distribution)EPA 200.8Heptachlor EpoxideEPA 608Total Coliform (Treatment and Distribution)MF SM 9222-BKjeldahl-NLachat 10-107-06-02-DTotal Coliform (Treatment and Distribution)MF SM 9222-BKjeldahl-NLachat 10-107-06-02-DTotal Dissolved SolidsSM 2540-CLeadEPA 200.7TurbiditySM 2130-BManganeseEPA 200.7Volatile Organic CompoundsEPA 524.2ManganeseEPA 200.7AnalyteMethodMolydenumEPA 200.8AldrinEPA 608NickelEPA 200.7AldrinEPA 608NickelEPA 200.7AldrinEPA 608NickelEPA 200.7AnalyteMethodMolydenumEPA 200.8AldrinEPA 608Nick				EPA 608
Nitrite-NEPA 300.0Endosulfan SulfateEPA 608Nitrite-NLachat 10-107-04-1-CEndrinEPA 608pHSM 4500-H-BEndrin AldehydeEPA 608SeleniumEPA 200.8FluorideEPA 300.0SilverEPA 200.8FluorideEPA 608SilverEPA 200.7Gamma-BHCEPA 608SodiumEPA 200.7Gamma-BHCEPA 608SulfateEPA 300.0HeptachlorEPA 608SulfateEPA 200.7Hardness (CaCO3), TotalEPA 608ThalliumEPA 200.8HeptachlorEPA 608Total Coliform (Treatment and Distribution)EPA 200.8HeptachlorEPA 608Total Coliform (Treatment and Distribution)Mr 5M 9223-BKjeldah-NLachat 10-107-06-02-DTotal Coliform (Treatment and Distribution)SM 2540-CLeadEPA 200.7Total Dissolved SolidsSM 2130-BMagnesiumEPA 200.7TurbiditySM 2130-BManganeseEPA 200.7Volatile Organic CompoundsEPA 524.2ManganeseEPA 200.7Non-Potable Water (Wastewater)MethodMolybdenumEPA 200.7AnalyteMethodMolybdenumEPA 200.8AldrinEPA 608Nitrate-NEPA 200.7AldrinEPA 608Nitrate-NEPA 200.7AldrinEPA 608Nitrate-NEPA 200.7AldrinEPA 524.2ManganeseEPA 200.7AnalyteEPA 608Nitrate-NEPA 200.7AnalyteEPA 608Ni				EPA 608
Nitrite-NLachat 10-107-04-1-CEndrinEPA 608pHSM 4500-H-BEndrin AldehydeEPA 608SeleniumEPA 200.8FluorideEPA 300.0SilverEPA 200.7Gamma-BHCEPA 200.7SodiumEPA 200.8Hardness (CaCO3), TotalEPA 200.7SodiumEPA 200.7Hardness (CaCO3), TotalSM 2340-BSulfateEPA 300.0HeptachlorEPA 608ThalliumEPA 200.8HeptachlorEPA 608Total Coliform (Treatment and Distribution)Enz, Sub. SM 9223IronEPA 200.7Total Coliform (Treatment and Distribution)MF SM 9222-BKjeldahl-NLachat 10-107-06-02-DTotal Coliform (Treatment and Distribution)MF SM 9222-BKjeldahl-NLachat 10-107-06-02-DTotal Coliform (Treatment and Distribution)MF SM 9222-BMagnesiumEPA 200.7TurbiditySM 2340-CLeadEPA 200.7TurbiditySM 2340-CLeadEPA 200.7Volatile Organic CompoundsEPA 524.2MagneseEPA 200.7Non-Potable Water (Wastewater)MethodMolybdenumEPA 200.7AldrinEPA 608Nitrate-NEPA 200.7AldrinEPA 608Nitrate-NEPA 200.7Alkalinity, TotalSM 2320-BNitrate-NEPA 200.7AldrinEPA 608Nitrate-NLachat 10-107-04-1-CAluminumEPA 608Nitrate-NLachat 10-107-04-1-C			Endosulfan Sulfate	EPA 608
pHSM 4500-H-BEndrin AldehydeEPA 608SeleniumEPA 200.8FluorideEPA 300.0SilverEPA 200.7Gamma-BHCEPA 608SilverEPA 200.8Hardness (CaCO3), TotalEPA 200.7SodiumEPA 200.7Hardness (CaCO3), TotalSM 2340-BSulfateEPA 300.0HeptachlorEPA 608ThalliumEPA 200.8HeptachlorEPA 608Total Coliform (Treatment and Distribution)Enz. Sub. SM 9223IronEPA 200.7Total Coliform (Treatment and Distribution)MF SM 9222-BKjeldahl-NLachat 10-107-06-02-DTotal Coliform (Treatment and Distribution)MF SM 9222-BKjeldahl-NLachat 10-107-06-02-DTotal Coliform (Treatment and Distribution)MF SM 9222-BKjeldahl-NLachat 10-107-06-02-DTotal Coliform (Treatment and Distribution)MF SM 9222-BMagnesiumEPA 200.7Total Coliform (Treatment and Distribution)MF SM 9222-BMagnesiumEPA 200.7Total Coliform (Treatment and Distribution)MF SM 2340-CLeadEPA 200.7TurbiditySM 2130-BManganeseEPA 200.7Volatile Organic CompoundsEPA 524.2ManganeseEPA 200.7Non-Potable Water (Wastewater)MethodMolybdenumEPA 200.7AnalyteMethodMolybdenumEPA 200.8AldrinEPA 608Nitrate-NEPA 200.8AldrinEPA 608Nitrate-NEPA 200.7AldrinEPA 608Nitrate-NEPA 200.7 <tr <td="">Aldria</tr>		Lachat 10-107-04-1-C	Endrin	EPA 608
SeleniumEPA 200.8FluorideEPA 300.0SilverEPA 200.7Gamma-BHCEPA 608SilverEPA 200.8Hardness (CaCO3), TotalEPA 200.7SodiumEPA 200.7Hardness (CaCO3), TotalEPA 200.7SodiumEPA 200.7Hardness (CaCO3), TotalSM 2340-BSulfateEPA 300.0HeptachlorEPA 608ThalliumEPA 200.8HeptachlorEPA 608Total Coliform (Treatment and Distribution)Enz. Sub. SM 9223IronEPA 200.7Total Coliform (Treatment and Distribution)MF SM 9222-BKjeldahl-NLachat 10-107-06-02-DTotal Coliform (Treatment and Distribution)MF SM 9222-BKjeldahl-NLachat 10-107-06-02-DTotal Coliform (Treatment and Distribution)MF SM 9222-BKjeldahl-NLachat 10-107-06-02-DTotal Coliform (Treatment and Distribution)MF SM 9222-BMagnesiumEPA 200.7Total Coliform (Treatment and Distribution)MF SM 9222-BMagnesiumEPA 200.7Total Coliform (Treatment and Distribution)MF SM 9222-BMagnesiumEPA 200.7TurbiditySM 2130-BManganeseEPA 200.7Volatile Organic CompoundsEPA 524.2ManganeseEPA 200.7Non-Potable Water (Wastewater)MolybdenumEPA 200.7AnalyteMethodMolybdenumEPA 200.7AldrinEPA 608NickelEPA 200.8Alkalinity, TotalSM 2320-BNickelEPA 200.8Alkalinity, TotalSM 2320-BNitrate-NEPA 300.0<			Endrin Aldehyde	EPA 608
SilverEPA 200.7Gamma-BHCEPA 608SilverEPA 200.8Hardness (CaCO3), TotalEPA 200.7SodiumEPA 200.7Hardness (CaCO3), TotalSM 2340-BSulfateEPA 300.0HeptachlorEPA 608ThalliumEPA 200.8Heptachlor EpoxideEPA 608Total Coliform (Treatment and Distribution)Enz. Sub. SM 9223IronEPA 200.7Total Coliform (Treatment and Distribution)MF SM 9222-BKjeldahl-NLachat 10-107-06-02-DTotal Dissolved SolidsSM 2540-CLecadEPA 200.7TurbiditySM 2130-BManganeseEPA 200.7Volatile Organic CompoundsEPA 524.2ManganeseEPA 200.8MercuryEPA 200.7MercuryEPA 200.7AnalyteMethodMolybdenumEPA 200.7AldrinEPA 608NickelEPA 200.8AldrinEPA 608NickelEPA 200.8Alkalinity, TotalSM 2320-BNitrate-NEPA 300.0Alkalinity, TotalSM 2320-BNitrate-NEPA 300.0Alkalinity, TotalEPA 608Nitrate-NEPA 300.0Alpha-BHCEPA 608Nitrate-NLachat 10-107-04-1-CAluminumEPA 200.7Non-	•		•	EPA 300.0
SilverEPA 200.8Hardness (CaCO3), TotalEPA 200.7SodiumEPA 200.7Hardness (CaCO3), TotalSM 2340-BSulfateEPA 300.0HeptachlorEPA 608ThalliumEPA 200.8Heptachlor EpoxideEPA 608Total Coliform (Treatment and Distribution)Enz. Sub. SM 9223IronEPA 200.7Total Coliform (Treatment and Distribution)MF SM 9222-BKjeldahl-NLachat 10-107-06-02-DTotal Coliform (Treatment and Distribution)MF SM 9222-BKjeldahl-NLachat 10-107-06-02-DTotal Dissolved SolidsSM 2540-CLeadEPA 200.7TrihalomethanesEPA 524.2MagnesiumEPA 200.7TurbiditySM 2130-BManganeseEPA 200.7Volatile Organic CompoundsEPA 524.2ManganeseEPA 200.7Non-Potable Water (Wastewater)MethodMolybdenumEPA 200.7AnalyteMethodMolybdenumEPA 200.7AldrinEPA 608NickelEPA 200.7AldrinEPA 608NickelEPA 200.7AldrinEPA 608NickelEPA 200.8Alkalinity, TotalSM 2320-BNickelEPA 200.8Alkalinity, TotalSM 2320-BNitrate-NEA 300.0Alpha-BHCEPA 608Nitrate-NLachat 10-107-04-1-CAluminumEPA 200.7Non-Filterable ResidueSM 2540-D				
SodiumEPA 200.7Hardness (CaCO3), TotalSM 2340-BSulfateEPA 300.0HeptachlorEPA 608ThalliumEPA 200.8Heptachlor EpoxideEPA 608Total Coliform (Treatment and Distribution)Enz. Sub. SM 9223IronEPA 200.7Total Coliform (Treatment and Distribution)MF SM 9222-BKjeldahl-NLachat 10-107-06-02-DTotal Coliform (Treatment and Distribution)MF SM 9222-BKjeldahl-NLachat 10-107-06-02-DTotal Dissolved SolidsSM 2540-CLeadEPA 200.7TrihalomethanesEPA 524.2MagnesiumEPA 200.7TurbiditySM 2130-BManganeseEPA 200.7Volatile Organic CompoundsEPA 524.2ManganeseEPA 200.7Non-Potable Water (Wastewater)MethodMolybdenumEPA 200.7AnalyteMethodMolybdenumEPA 200.7AldrinEPA 608NickelEPA 200.7AldrinEPA 608NickelEPA 200.8Alkalnity, TotalSM 2320-BNitrate-NEPA 300.0Alpha-BHCEPA 608Nitrate-NLachat 10-107-04-1-CAluminumEPA 200.7Non-Filterable ResidueSM 2540-D				EPA 200.7
SulfateEPA 300.0HeptachlorEPA 608ThalliumEPA 200.8Heptachlor EpoxideEPA 608Total Coliform (Treatment and Distribution)Enz. Sub. SM 9223IronEPA 200.7Total Coliform (Treatment and Distribution)MF SM 9222-BKjeldahl-NLachat 10-107-06-02-DTotal Colisolved SolidsSM 2540-CLeadEPA 200.7TrihalomethanesEPA 524.2MagnesiumEPA 200.7TurbiditySM 2130-BManganeseEPA 200.7Volatile Organic CompoundsEPA 524.2ManganeseEPA 200.7Non-Potable Water (Wastewater)MethodMolybdenumEPA 200.7AnalyteMethodMolybdenumEPA 200.7AldrinEPA 608NickelEPA 200.7AldrinEPA 608NickelEPA 200.7Alkalinity, TotalSM 2320-BNitrate-NEPA 200.8AluminumEPA 608Nitrate-NEPA 300.0AluminumEPA 608Nitrate-NSM 2540-C	-			SM 2340-B
ThalliumEPA 200.8Heptachlor EpoxideEPA 608Total Coliform (Treatment and Distribution)Enz. Sub. SM 9223IronEPA 200.7Total Coliform (Treatment and Distribution)MF SM 9222-BKjeldahl-NLachat 10-107-06-02-DTotal Dissolved SolidsSM 2540-CLeadEPA 200.7TrihalomethanesEPA 524.2MagnesiumEPA 200.7TurbiditySM 2130-BManganeseEPA 200.7Volatile Organic CompoundsEPA 524.2ManganeseEPA 200.7Volatile Organic CompoundsEPA 524.2ManganeseEPA 200.7Non-Potable Water (Wastewater)MethodMolybdenumEPA 200.7AnalyteMethodMolybdenumEPA 200.7AldrinEPA 608NickelEPA 200.7Alkalinity, TotalSM 2320-BNitrate-NEPA 300.0AluminumEPA 608Nitrate-NLachat 10-107-04-1-CAluminumEPA 200.7Non-Filterable ResidueSM 2540-D			,	EPA 608
Total Coliform (Treatment and Distribution)Enz. Sub. SM 9223IronEPA 200.7Total Coliform (Treatment and Distribution)MF SM 9222-BKjeldahl-NLachat 10-107-06-02-DTotal Dissolved SolidsSM 2540-CLeadEPA 200.7TrihalomethanesEPA 524.2MagnesiumEPA 200.7TurbiditySM 2130-BManganeseEPA 200.7Volatile Organic CompoundsEPA 524.2ManganeseEPA 200.7Non-Potable Water (Wastewater)MethodMolybdenumEPA 200.7AnalyteMethodMolybdenumEPA 200.8AldrinEPA 608NickelEPA 200.8Alkalinity, TotalSM 2320-BNitrate-NEPA 300.0AluminumEPA 608Nitrate-NLachat 10-107-04-1-CAluminumEPA 200.7Non-Filterable ResidueSM 2540-D			•	EPA 608
Total Colliform (Treatment and Distribution)MF SM 9222-BKjeldahl-NLachat 10-107-06-02-DTotal Dissolved SolidsSM 2540-CLeadEPA 200.7TrihalomethanesEPA 524.2MagnesiumEPA 200.7TurbiditySM 2130-BManganeseEPA 200.7Volatile Organic CompoundsEPA 524.2ManganeseEPA 200.8MercuryEPA 200.7MercuryEPA 200.7Non-Potable Water (Wastewater)MethodMolybdenumEPA 200.7AnalyteMethodMolybdenumEPA 200.8AldrinEPA 608NickelEPA 200.8Alkalinity, TotalSM 2320-BNitrate-NEPA 300.0Alpha-BHCEPA 608Nitrate-NLachat 10-107-04-1-CAluminumEPA 200.7Non-Filterable ResidueSM 2540-D				EPA 200.7
Total Dissolved SolidsSM 2540-CLeadEPA 200.7TrihalomethanesEPA 524.2MagnesiumEPA 200.7TurbiditySM 2130-BManganeseEPA 200.7Volatile Organic CompoundsEPA 524.2ManganeseEPA 200.8Mon-Potable Water (Wastewater)FA 245.1MolybdenumEPA 200.7AnalyteMethodMolybdenumEPA 200.7AldrinEPA 608NickelEPA 200.8Alkalinity, TotalSM 2320-BNitrate-NEPA 300.0AluminumEPA 608Nitrate-NEPA 300.0AluminumEPA 200.7Non-Filterable ResidueSM 2540-D				Lachat 10-107-06-02-D
TrihalomethanesEPA 524.2MagnesiumEPA 200.7TurbiditySM 2130-BManganeseEPA 200.7Volatile Organic CompoundsEPA 524.2ManganeseEPA 200.8Non-Potable Water (Wastewater)FPA 200.7EPA 245.1AnalyteMethodMolybdenumEPA 200.7AldrinEPA 608NickelEPA 200.8Alkalinity, TotalSM 2320-BNitrate-NEPA 300.0AluminumEPA 608Nitrate-NLachat 10-107-04-1-CAluminumEPA 200.7Non-Filterable ResidueSM 2540-D				
TurbiditySM 2130-BManganeseEPA 200.7Volatile Organic CompoundsEPA 524.2ManganeseEPA 200.8Non-Potable Water (Wastewater)MolybdenumEPA 245.1Non-Potable Water (Wastewater)MolybdenumEPA 200.7AnalyteMethodMolybdenumEPA 200.7AldrinEPA 608NickelEPA 200.8Alkalinity, TotalSM 2320-BNitrate-NEPA 300.0Alpha-BHCEPA 608Nitrate-NLachat 10-107-04-1-CAluminumEPA 200.7Non-Filterable ResidueSM 2540-D				EPA 200.7
Volatile Organic Compounds EPA 524.2 Manganese EPA 200.8 Non-Potable Water (Wastewater) Molybdenum EPA 200.7 Analyte Method Molybdenum EPA 200.8 Aldrin EPA 608 Nickel EPA 200.7 Alkalinity, Total SM 2320-B Nitrate-N EPA 300.0 Alpha-BHC EPA 608 Nitrate-N Lachat 10-107-04-1-C Aluminum EPA 200.7 Non-Filterable Residue SM 2540-D			÷	
Mercury EPA 245.1 Non-Potable Water (Wastewater) Molybdenum EPA 200.7 Analyte Method Molybdenum EPA 200.8 Aldrin EPA 608 Nickel EPA 200.7 Alkalinity, Total SM 2320-B Nitrate-N EPA 300.0 Alpha-BHC EPA 608 Nitrate-N Lachat 10-107-04-1-C Aluminum EPA 200.7 Non-Filterable Residue SM 2540-D	· · · · ·		8	EPA 200.8
Non-Potable Water (Wastewater) Molybdenum EPA 200.7 Analyte Method Molybdenum EPA 200.8 Nickel EPA 200.7 Nickel EPA 200.7 Aldrin EPA 608 Nickel EPA 200.8 Alkalinity, Total SM 2320-B Nitrate-N EPA 300.0 Alpha-BHC EPA 608 Nitrate-N Lachat 10-107-04-1-C Aluminum EPA 200.7 Non-Filterable Residue SM 2540-D	Volume organic compounds			EPA 245.1
AnalyteMethodMolybdenumEPA 200.8AldrinEPA 608NickelEPA 200.7AldrinSM 2320-BNitrate-NEPA 300.0Alpha-BHCEPA 608Nitrate-NLachat 10-107-04-1-CAluminumEPA 200.7Non-Filterable ResidueSM 2540-D	Non-Potable Water (Wastewater)			
NickelEPA 200.7AldrinEPA 608NickelEPA 200.8Alkalinity, TotalSM 2320-BNitrate-NEPA 300.0Alpha-BHCEPA 608Nitrate-NLachat 10-107-04-1-CAluminumEPA 200.7Non-Filterable ResidueSM 2540-D		Method		
Aldrin EPA 608 Nickel EPA 200.8 Alkalinity, Total SM 2320-B Nitrate-N EPA 300.0 Alpha-BHC EPA 608 Nitrate-N Lachat 10-107-04-1-C Aluminum EPA 200.7 Non-Filterable Residue SM 2540-D	/ mary ce			
Alkalinity, TotalSM 2320-BNitrate-NEPA 300.0Alpha-BHCEPA 608Nitrate-NLachat 10-107-04-1-CAluminumEPA 200.7Non-Filterable ResidueSM 2540-D	Aldrin	EDA 608		
Alpha-BHC EPA 608 Nitrate-N Lachat 10-107-04-1-C Aluminum EPA 200.7 Non-Filterable Residue SM 2540-D				
Aluminum EPA 200.7 Non-Filterable Residue SM 2540-D				
	•			
Autominum Er 200,0 On and Grase Er 1004			-	
	AIGHINGH	L) // 200.0	On and Grease	21/11001

Certifications and Approvals

MASSACHUSETTS Department of Environmental Protection, M-MA-103

Groundwater Analytical maintains MassDEP environmental laboratory certification for only the methods and analytes listed below. Analyses for certified analytes are conducted in accordance with MassDEP certification standards, except as may be specifically noted in the project narrative.

Non-Potable Water (Wastewater)	
Analyte	Method
Orthophosphate	Lachat 10-115-01-1-A
pH	SM 4500-H-B
Phenolics, Total	EPA 420.4
Phenolics, Total	Lachat 10-210-00-1-B
Phosphorus, Total	Lachat 10-115-01-1-C
Phosphorus, Total	SM 4500-P-B,E
Polychlorinated Biphenyls (Oil)	EPA 600/4-81-045
Polychlorinated Biphenyls (Water)	EPA 608
Potassium	EPA 200.7
Selenium	EPA 200.7
Selenium	EPA 200.8
Silver	EPA 200.7
Sodium	EPA 200.7
Specific Conductivity	SM 2510-B
Strontium	EPA 200.7
Sulfate	EPA 300.0
SVOC-Acid Extractables	EPA 625
SVOC-Base/Neutral Extractables	EPA 625
Thallium	EPA 200.7
Thallium	EPA 200.8
Titanium	EPA 200.7
Total Dissolved Solids	SM 2540-C
Total Organic Carbon	SM 5310-B
Toxaphene	EPA 608
Vanadium	EPA 200.7
Vanadium	EPA 200.8
Volatile Aromatics	EPA 602
Volatile Aromatics	EPA 624
Volatile Halocarbons	EPA 624
Zinc	EPA 200.7
Zinc	EPA 200.8

December 23, 2009

David Sullivan TRC Solutions - Lowell 650 Suffolk Street Lowell, MA 01852

Project Location: City Of New Bedford Client Job Number: Project Number: 115058 Laboratory Work Order Number: 09L0487

Enclosed are results of analyses for samples received by the laboratory on December 17, 2009. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Meghan E. Kelley Project Manager

TRC Solutions - Lowell		REPORT DATE:	12/23/2009
650 Suffolk Street	4		
Lowell, MA 01852	PURCHASE ORDER NUMBER:		
ATTN: David Sullivan			
	PROJECT NUMBER: 115058		

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 09L0487

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: City Of New Bedford

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB	
TB	09L0487-01	Trip Blank Soil		SM 2540G		
				SW-846 8260B		
TRC-BTM-1	09L0487-02	Soil		SM 2540G		
				SW-846 8260B		
TRC-BTM-2	091.0487-03	Soil		SM 2540G		
				SW-846 8260B		
TRC-BTM-22	091.0487-04	Soil		SM 2540G		
				SW-846 8260B		
TRC-BTM-3	09L0487-05	Soil		SM 2540G		
				SW-846 8260B		
TRC-ESW	091.0487-06	Soil		SM 2540G		
				SW-846 8260B		

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SW-846 8260B

Qualifications:

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.

Analyte & Samples(s) Qualified:

Carbon Disulfide, Diethyl Ether

B008548-BSD1

Continuing calibration did not meet method specifications and was biased on the low side for this compound. Significant uncertainty is associated with the reported value which is likely to be biased on the low side.

Analyte & Samples(s) Qualified:

Dichlorodifluoromethane (Freon 12)

09L0487-01[TB], 09L0487-02[TRC-BTM-1], 09L0487-03[TRC-BTM-2], 09L0487-04[TRC-BTM-22], 09L0487-05[TRC-BTM-3], 09L0487-06[TRC-ESW], B008548-BLK1, B008548-BS1, B008548-BS1, B008548-MS1

Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy are associated with reported result.

Analyte & Samples(s) Qualified:

1,4-Dioxane, 2-Butanone (MEK), Acetone, Tetrahydrofuran

09L0487-01[TB], 09L0487-02[TRC-BTM-1], 09L0487-03[TRC-BTM-2], 09L0487-04[TRC-BTM-22], 09L0487-05[TRC-BTM-3], 09L0487-06[TRC-ESW], B008548-BLK1, B008548-BSD1, B008548-BSD1, B008548-MS1

SW-846 8260B

Laboratory control sample recoveries for required MCP Data Enhancement 8260 compounds were all within limits specified by the method except for "difficult analytes" where recovery control limits somewhere between 40-160% are used and/or unless otherwise listed in this narrative. Difficult analytes: MIBK, MEK, tert-butyl alcohol, acctone, 1,4-dioxane, vinyl chloride, chloromethane, dichlorodifluoromethane, 2-hexanone, naphthalene, aerylonitrile, 1,2,3-trichloropropane, methylene chloride, n-butylbenzene, and tert-butylbenzene, bromomethane

Duplicate laboratory fortified blank RPDs were all within control limits specified by the method except for "difficult analytes" where RPDs of 50% are used and/or unless otherwise listed in this narrative. Difficult analyte: 1,4-dioxane

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

M Center

Michael A. Erickson Laboratory Director

Volatile Organic Compounds by GC/MS

Project Location: City Of New Bedford

Date Received: 12/17/2009 Field Sample #: TB Sample Description:

Sampled: 12/17/2009 00:00

Sample ID: 09L0487-01

Sample Matrix: Trio Blank Soil

Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Acctone	ND	0.10	mg/Kg wet	1	V-16	SW-846 8260B	12/18/09	12/18/09 8:37	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.0010	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
Benzene	ND	0.0020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
Bromobenzene	ND	0.0020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
Bromochloromethane	ND	0.0020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
Bromodichloromethane	ND	0.0020	mg/Kg wct	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
Bromoform	ND	0.010	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
Bromomethane	ND	0.010	mg/Kg wct	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
2-Butanone (MEK)	ND	0.040	mg/Kg wet	L	V-16	SW-846 8260B	12/18/09	12/18/09 8:37	MFF
n-Butylbenzene	ND	0.0020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
sec-Butylbenzenc	ND	0.0020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
tert-Butylbenzene	ND	0.0020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.0010	mg/Kg wet	l		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
Carbon Disulfide	ND	0.0060	mg/Kg wet	l		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
Carbon Tetrachloride	ND	0.010	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
Chlorobenzene	ND	0.0020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
Chlorodibromomethane	ND	0.0010	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
Chloroethane	ND	0.020	∙mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
Chloroform	ND	0.0040	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
Chloromethane	ND	0.010	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
2-Chlorotolucne	ND	0.0020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
4-Chlorotoluene	ND	0.0020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.010	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
1,2-Dibromoethane (EDB)	ND	0.0010	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
Dibromomethane	ND	0.0020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
1,2-Dichlorobenzene	ND	0.0020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
1,3-Dichlorobenzene	ND	0.0020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
1,4-Dichlorobenzene	ND	0.0020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.020	mg/Kg wet	1	V-05	SW-846 8260B	12/18/09	12/18/09 8:37	MFF
1,1-Dichloroethane	ND	0.0020	mg/Kg wct	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
1,2-Dichloroethane	ND	0.0020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
1,1-Dichloroethylene	ND	0.0040	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
cis-1,2-Dichloroethylene	ND	0.0020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
trans-1,2-Dichloroethylene	ND	0.0020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
1,2-Dichloropropane	ND	0.0020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
1,3-Dichloropropane	ND	0.0010	mg/Kg wet	l		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
2,2-Dichloropropane	ND	0.0020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
1,1-Dichloropropene	ND	0.0020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
cis-1,3-Dichloropropene	ND	0.0010	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
trans-1,3-Dichloropropene	ND	0.0010	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
Diethyl Ether	ND	0.020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
Diisopropyl Ether (DIPE)	ND	0.0010	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
1,4-Dioxane	ND	0.10	mg/Kg wet	1	V-16	SW-846 8260B	12/18/09	12/18/09 8:37	MFF
Ethylbenzene	ND	0.0020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
			-						

Volatile Organic Compounds by GC/MS

Project Location: City Of New Bedford Date Received: 12/17/2009

Sampled: 12/17/2009 00:00

Sample Description:

Sample ID: 09L0487-01

Field Sample #: TB

Sample Matrix: Trip Blank Soil

		101	atte Organie Com	pounds by GC					
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.0020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
2-Hexanone (MBK)	ND	0.020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
Isopropylbenzene (Cumene)	ND	0.0020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0040	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
Methylene Chloride	ND	0.020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
Naphthalene	ND	0.0040	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
n-Propylbenzene	ND	0.0020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
Styrenc	ND	0.0020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
1,1,1,2-Tetrachloroethane	ND	0.0020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
1,1,2,2-Tetrachloroethane	ND	0.0010	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
Tetrachloroethylene	ND	0.0020	mg/Kg wet	1 I		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
Tetrahydrofuran	ND	0.010	mg/Kg wet	1	V-16	SW-846 8260B	12/18/09	12/18/09 8:37	MFF
Toluenc	ND	0.0020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
1,2,3-Trichlorobenzene	ND	0.0020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
1,2,4-Trichlorobenzene	ND	0.0020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
1,1,1-Trichloroethane	ND	0.0020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
1,1,2-Trichloroethane	ND	0.0020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
Trichloroethylene	ND	0.0020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
Trichlorofluoromethane (Freon 11)	ND	0.010	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
1,2,3-Trichloropropane	ND	0.0020	mg/Kg wct	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
1,2,4-Trimethylbenzene	ND	0.0020	mg/Kg wet	1 I		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
1,3,5-Trimethylbenzene	ND	0.0020	mg/Kg wet	l		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
Vinyl Chloride	ND	0.010	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
m+p Xylene	ND	0.0040	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
o-Xylene	ND	0.0020	mg/Kg wet	1		SW-846 8260B	12/18/09	12/18/09 8:37	MFF
Surrogates		% Recovery	Recovery Limit	s	Flag				
1,2-Dichloroethane-d4		103	70-130					12/18/09 8:37	
Toluenc-d8		101	70-130					12/18/09 8:37	
4-Bromofluorobenzene		97.3	70-130					12/18/09 8:37	

Volatile Organic Compounds by GC/MS

Project Location: City Of New Bedford

Date Received: 12/17/2009

Sample Description:

Sampled: 12/17/2009 10:10

Field Sample #: TRC-BTM-I

Sample ID: 09L0487-02

Sample Matrix: Soil

Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetonc	ND	0.082	mg/Kg dry	1	V-16	SW-846 8260B	12/18/09	12/18/09 7:43	MFF
tert-Amyl Methyl Ether (TAME)	NÐ	0.00082	mg/Kg dry	I		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
Benzenc	ND	0.0016	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
Bromobenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
Bromochloromethane	ND	0.0016	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
Bromodichloromethane	ND	0.0016	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
Bromoform	ND	0.0082	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
Bromomethane	ND	0.0082	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
2-Butanone (MEK)	ND	0.033	mg/Kg dry	L	V-16	SW-846 8260B	12/18/09	12/18/09 7:43	MFF
n-Butylbenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
see-Butylbenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
tert-Butylbenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.00082	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
Carbon Disulfide	ND	0.0049	mg/Kg dry	l		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
Carbon Tetrachloride	ND	0.0082	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
Chlorobenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
Chlorodibromomethane	ND	0.00082	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
Chloroethane	ND	0.016	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
Chloroform	ND	0.0033	mg/Kg dry	L		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
Chloromethane	ND	0.0082	mg/Kg dry	ł		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
2-Chlorotolucne	ND	0.0016	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
4-Chlorotoluene	ND	0.0016	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0082	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
1,2-Dibromoethane (EDB)	ND	0.00082	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
Dibromomethane	ND	0.0016	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
1,2-Dichlorobenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
1,3-Dichlorobenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
1,4-Dichlorobenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.016	mg/Kg dry	1	V-05	SW-846 8260B	12/18/09	12/18/09 7:43	MFF
1,1-Dichloroethane	ND	0.0016	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
1,2-Dichloroethane	ND	0.0016	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
1,1-Dichloroethylene	ND	0.0033	mg/Kg dry	I		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
cis-1,2-Dichloroethylene	ND	0.0016	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
trans-1,2-Dichloroethylene	ND	0.0016	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
1,2-Dichloropropane	ND	0.0016	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
1,3-Dichloropropane	ND	0.00082	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
2,2-Dichloropropane	ND	0.0016	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
1,1-Dichloropropene	ND	0.0016	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
cis-1,3-Dichloropropene	ND	0.00082	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
trans-1,3-Dichloropropene	ND	0.00082	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
Dicthyl Ether	ND	0.016	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
Diisopropyl Ether (DIPE)	ND	0.00082	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
1,4-Dioxane	ND	0.082	mg/Kg dry	1	V-16	SW-846 8260B	12/18/09	12/18/09 7:43	MFF
Ethylbenzene	ND	0.0016	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 7:43	MFF
•			0 0 0 0						

Project Location: City Of New Bedford Date Received: 12/17/2009

Field Sample #: TRC-BTM-1

Sampled: 12/17/2009 10:10

Sample ID: 09L0487-02 Sample Matrix: Soil

4-Bromofluorobenzene

Sample Description:

98.9

Volatile Organic Compounds by GC/MS Date/Time Date Dilution Flag Method Prepared Analyzed Analyst Analyte Results RL. Units mg/Kg dry SW-846 8260B 12/18/09 7:43 MFF Heyachlorobutadiene ND 0.0016 1 12/18/09 SW-846 8260B 12/18/09 12/18/09 7:43 MFF 2-Hexanone (MBK) ND 0.016 1 mg/Kg dry SW-846 8260B 12/18/09 12/18/09 7:43 MFF Isopropylbenzene (Cumene) ND 0.0016 mg/Kg dry Т SW-846 8260B 12/18/09 12/18/09 7:43 MFF p-Isopropyltoluene (p-Cymene) ND 0.0016 mg/Kg dry 1 MFF SW-846 8260B 12/18/09 12/18/09 7:43 Methyl tert-Butyl Ether (MTBE) ND 0.0033 mg/Kg dry 1 SW-846 8260B 12/18/09 12/18/09 7:43 MFF Methylene Chloride 0.016 I ND mg/Kg dry 4-Methyl-2-pentanone (MIBK) SW-846 8260B 12/18/09 12/18/09 7:43 MFF ND 0.016 I mg/Kg dry ND 0.0033 SW-846 8260B 12/18/09 12/18/09 7:43 MFF Naphthalene mg/Kg dry 1 SW-846 8260B 12/18/09 12/18/09 7:43 MFF n-Propylbenzene ND 0.0016 mg/Kg dry 1 12/18/09 12/18/09 7:43 MFF Styrene ND 0.0016 mg/Kg dry 1 SW-846 8260B SW-846 8260B 12/18/09 12/18/09 7:43 MFF 1,1,1,2-Tetrachloroethane ND 0.0016 mg/Kg dry 1 SW-846 8260B 12/18/09 12/18/09 7:43 MFF 1,1,2,2-Tetrachloroethane ND 0.00082 mg/Kg dry 1 Tetrachloroethylene 0.0016 SW-846 8260B 12/18/09 12/18/09 7:43 MFF ND mg/Kg dry 1 Tetrahydrofuran V-16 SW-846 8260B 12/18/09 12/18/09 7:43 MFF ND 0.0082 mg/K.g dry 1 Toluene NÐ 0.0016 mg/Kg dry 1 SW-846 8260B 12/18/09 12/18/09 7:43 MFF SW-846 8260B 12/18/09 12/18/09 7:43 MFF 1,2,3-Trichlorobenzene ND 0.0016 mg/Kg dry 1 12/18/09 SW-846 8260B 12/18/09 7:43 MFF 1,2,4-Trichlorobenzene ND 0.0016 mg/Kg dry I 1,1,1-Trichloroethane 0.0016 SW-846 8260B 12/18/09 12/18/09 7:43 MFF ND mg/Kg dry 1 SW-846 8260B 12/18/09 12/18/09 7:43 MFF 1,1,2-Trichloroethane ND 0.0016 1 mg/Kg dry SW-846 8260B 12/18/09 12/18/09 7:43 MFF Trichloroethylenc ND 0.0016 mg/Kg dry ł Trichlorofluoromethane (Freon 11) 0.0082 SW-846 8260B 12/18/09 12/18/09 7:43 MFF ND mg/Kg dry 1 SW-846 8260B 12/18/09 12/18/09 7:43 MFF 1,2,3-Trichloropropane ND 0.0016 1 mg/Kg dry SW-846 8260B 12/18/09 12/18/09 7:43 MFF 1,2,4-Trimethylbenzene ND 0.0016 mg/Kg dry 1 SW-846 8260B 12/18/09 12/18/09 7:43 MFF 1,3,5-Trimethylbenzene 0.0016 1 ND mg/Kg dry SW-846 8260B 12/18/09 12/18/09 7:43 MFF Vinyl Chloride ND 0.0082 mg/Kg dry 1 SW-846 8260B 12/18/09 12/18/09 7:43 MFF m+p Xylene ND 0.0033 mg/Kg dry 1 SW-846 8260B 12/18/09 12/18/09 7:43 MFF o-Xylcne ND 0.0016 mg/Kg dry 1 Flag Surrogates % Recovery **Recovery Limits** 1,2-Dichloroethane-d4 108 70-130 12/18/09 7:43 12/18/09 7:43 Toluenc-d8 102 70-130 12/18/09 7:43

70-130

85.6

% Solids

	39 Spruce St	treet * East Lo	ngmeadow, MA (01028 * FAX 41	3/525-6405 * TE	L. 413/525-2332			
Project Location: City Of New Bedford	Sa	mple Descriptio	n:				Work Order	: 09L0487	
Date Received: 12/17/2009				9					
Field Sample #: TRC-BTM-1	Sa	mpled: 12/17/2	009 10:10						
Sample ID: 09L0487-02									
Samole Matrix: Soil									
	Conve	entional Chemi	stry Parameters h	y EPA/APHA/S	W-846 Methods ((Total)			
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst

1

SM 2540G

12/21/09 12/21/09 15:21 FWD

Page 8 of 33

% Wt

Volatile Organic Compounds by GC/MS

Project Location: City Of New Bedford

Date Received: 12/17/2009 Field Sample #: TRC-BTM-2

Sample Description:

Sampled: 12/17/2009 10:15

Sample ID: 09L0487-03

Sample Matrix: Soil

Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	0.069	mg/Kg dry	1	V-16	SW-846 8260B	12/18/09	12/18/09 8:10	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.00069	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
Benzene	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
Bromobenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
Bromochloromethane	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
Bromodichloromethane	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
Bromoform	ND	0.0069	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
Bromomethane	ND	0.0069	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
2-Butanonc (MEK)	ND	0.028	mg/Kg dry	1	V-16	SW-846 8260B	12/18/09	12/18/09 8:10	MFF
n-Butylbenzene	NÐ	0.0014	mg/Kg dry	l		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
sec-Butylbenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
tert-Butylbenzene	ND	0.0014	mg/Kg dry	l		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.00069	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
Carbon Disulfide	ND	0.0042	mg/Kg dry	I		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
Carbon Tetrachloride	ND	0.0069	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
Chlorobenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
Chlorodibromomethane	ND	0.00069	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
Chloroethane	ND	0.014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
Chloroform	ND	0.0028	mg/Kg dry	i		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
Chloromethane	ND	0.0069	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
2-Chlorotoluene	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
4-Chlorotoluene	ND	0.0014	mg/Kg dry	I.		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
1,2-Dibromo-3-chloropropanc (DBCP)	ND	0.0069	mg/Kg dry	I		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
1,2-Dibromoethane (EDB)	ND	0.00069	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
Dibromomethane	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
1,2-Dichlorobenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
1,3-Dichlorobenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
1,4-Dichlorobenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.014	mg/Kg dry	1	V-05	SW-846 8260B	12/18/09	12/18/09 8:10	MFF
1,1-Dichloroethane	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
1,2-Dichlorocthane	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
1,1-Dichloroethylene	ND	0.0028	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
cis-1,2-Dichloroethylene	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
trans-1,2-Dichloroethylene	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
1,2-Dichloropropanc	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
1,3-Dichloropropane	ND	0.00069	mg/Kg dry	I		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
2,2-Dichloropropane	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
1,1-Dichloropropenc	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
cis-1,3-Dichloropropene	ND	0.00069	mg/Kg dry	I		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
trans-1,3-Dichloropropene	ND	0.00069	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
Diethyl Ether	ND	0.014	mg/Kg dry	l		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
Diisopropyl Ether (DIPE)	ND	0.00069	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
1,4-Dioxane	ND	0.069	mg/Kg dry	1	V-16	SW-846 8260B	12/18/09	12/18/09 8:10	MFF
Ethylbenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF

Volatile Organic Compounds by GC/MS

Project Location: City Of New Bedford

Date Received: 12/17/2009 Field Sample #: TRC-BTM-2 Sample Description:

Sampled: 12/17/2009 10:15

Sample ID: 09L0487-03

Sample Matrix: Soil

Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.0014	mg/Kg dry	l	LIAG	SW-846 8260B	12/18/09	12/18/09 8:10	MFF
2-Hexanone (MBK)	ND	0.014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
Isopropylbenzene (Cumene)	ND	0.0014	nig/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
p-Isopropyltoluene (p-Cymene)	NĎ	0.0014	mg/Kg dry	I		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0028	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
Methylene Chloride	ND	0.014	mg/Kg dry	t		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
Naphthalone	ND	0.0028	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
n-Propylbenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
Styrene	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
1,1,1,2-Tetrachloroethanc	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
1,1,2,2-Tetrachloroethane	ND	0.00069	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
Tetrachloroethylene	ND	0.0014	mg/Kg dry	L		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
Tetrahydrofuran	ND	0.0069	mg/Kg dry	ι	V-16	SW-846 8260B	12/18/09	12/18/09 8:10	MFF
Tolucne	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
1,2,3-Trichlorobenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
1,2,4-Trichlorobenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
1,1,1-Trichloroethane	ND	0.0014	mg/Kg dry	I		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
1,1,2-Trichloroethane	ND	0.0014	mg/Kg dry	l		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
Trichloroethylene	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
Trichlorofluoromethane (Freon 11)	ND	0.0069	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
1,2,3-Trichloropropane	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
1,2,4-Trimethylbenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
1,3,5-Trimethylbenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
Vinyl Chloride	ND	0.0069	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
ni+p Xylene	ND	0.0028	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
o-Xylene	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 8:10	MFF
Surrogates		% Recovery	Recovery Limits	S	Flag				
1,2-Dichloroethane-d4		108	70-130					12/18/09 8:10	
Toluene-d8		103	70-130					12/18/09 8:10	
4-Bromofluorobenzene		97.9	70-130					12/18/09 8:10	I

92.6

% Solids

	39 Spruce S	treet * East Lo	ngmeadow, MA 0	1028 * FAX 41	3/525~6405 * TE	EL. 413/525-2332			
Project Location: City Of New Bedford	Sa	mple Descriptio	n:				Work Ord	er: 09L0487	
Date Received: 12/17/2009				n.					
Field Sample #: TRC-BTM-2	Sa	mpled: 12/17/2	009 10:15						
Sample 1D: 09L0487-03									
Sample Matrix: Soil									
	Conv	entional Chemi	istry Parameters by	у ЕРА/АРНА/Ѕ	W-846 Methods	(Total)			
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
% Solids	92.6		% Wt	1		SM 2540G	12/21/09	12/21/09 15:21	FWD

1

SM 2540G

Page 11 of 33

% Wt

Volatile Organic Compounds by GC/MS

Project Location: City Of New Bedford Date Received: 12/17/2009

Sampled: 12/17/2009 10:20

Sample Description:

Field Sample #: TRC-BTM-22 Sample ID: 09L0487-04

Sample Matrix: Soil

Date Date/Time Dilution Flag Method Prepared Analyzed Analyst Analyte Results RL. Units 0.070 1 V-16 SW-846 8260B 12/18/09 12/18/09 9:03 MFF ND Acetone mg/K.g dry tert-Amyl Methyl Ether (TAME) 0.00070 SW-846 8260B 12/18/09 12/18/09 9:03 MFF ND mg/Kg dry 1 SW-846 8260B 12/18/09 12/18/09 9:03 MFF ND 0.0014 1 Benzene mg/Kg dry mg/Kg dry SW-846 8260B 12/18/09 12/18/09 9:03 MFF Bromobenzene ND 0.0014 1 Bromochloromethane ND 0.0014 SW-846 8260B 12/18/09 12/18/09 9:03 MFF mg/Kg dry 1 SW-846 8260B 12/18/09 12/18/09 9:03 MFF Bromodichloromethane ND 0.0014 mg/Kg dry 1 SW-846 8260B 12/18/09 12/18/09 9:03 MFF Bromoform ND 0.0070 mg/Kg dry ł SW-846 8260B 12/18/09 12/18/09 9:03 MFF 0.0070 1 Bromomethane ND mg/Kg dry 12/18/09 12/18/09 9:03 MFF 2-Butanone (MEK) ND 0.028 mg/Kg dry 1 V-16 SW-846 8260B n-Butylbenzene ND 0.0014 mg/Kg dry 1 SW-846 8260B 12/18/09 12/18/09 9:03 MFF MFF 0.0014 SW-846 8260B 12/18/09 12/18/09 9:03 sec-Butylbenzene ND mg/Kg dry l 12/18/09 12/18/09 9:03 MFF tert-Butylbenzene NÐ 0.0014 mg/Kg dry 1 SW-846 8260B SW-846 8260B 12/18/09 12/18/09 9:03 MFF tert-Butyl Ethyl Ether (TBEE) 0.00070 1 ND mg/Kg dry Carbon Disulfide SW-846 8260B 12/18/09 12/18/09 9:03 MFF 0.0042 ND mg/Kg dry 1 Carbon Tetrachloride ND 0.0070 mg/Kg dry 1 SW-846 8260B 12/18/09 12/18/09 9:03 MFF SW-846 8260B 12/18/09 12/18/09 9:03 MFF Chlorobenzene ND 0.0014 ī mg/Kg dry 12/18/09 Chlorodibromomethane ND 0.00070 mg/Kg dry 1 SW-846 8260B 12/18/09 9:03 MFF SW-846 8260B 12/18/09 12/18/09 9:03 MFF Chlorocthane ND 0.014 mg/Kg dry 1 12/18/09 12/18/09 9:03 MFF SW-846 8260B 0.0028 Chloroform ND mg/Kg dry 1 0.0070 SW-846 8260B 12/18/09 12/18/09 9:03 MFF Chloromethane NÐ mg/Kg dry L 12/18/09 12/18/09 9:03 MFF 0.0014 SW-846 8260B 2-Chlorotoluene ND mg/Kg dry 1 SW-846 8260B 12/18/09 12/18/09 9:03 MFF 4-Chlorotolucne ND 0.0014 mg/Kg dry MFF 1,2-Dibromo-3-chloropropane (DBCP) ND 0.0070 mg/Kg dry 1 SW-846 8260B 12/18/09 12/18/09 9:03 12/18/09 12/18/09 9:03 MFF SW-846 8260B 1,2-Dibromocthane (EDB) ND 0.00070 mg/Kg dry I 12/18/09 12/18/09 9:03 MFF 0.0014 SW-846 8260B Dibromomethane ND mg/Kg dry í SW-846 8260B 12/18/09 12/18/09 9:03 MFF 1.2-Dichlorobenzene ND 0.0014 mg/Kg dry 1 12/18/09 12/18/09 9:03 ND 0.0014 SW-846 8260B MFF 1.3-Dichlorobenzene mg/Kg dry 1 SW-846 8260B 12/18/09 12/18/09 9:03 MFF 1,4-Dichlorobenzene ND 0.0014 mg/Kg dry 1 Dichlorodifluoromethane (Freoa 12) 0.014 V-05 SW-846 8260B 12/18/09 12/18/09 9:03 MFF NÐ mg/Kg dry 1 1,1-Dichlorocthane ND 0.0014 1 SW-846 8260B 12/18/09 12/18/09 9:03 MFF mg/Kg dry SW-846 8260B 12/18/09 12/18/09 9:03 MFF 1,2-Dichloroethane ND 0.0014 mg/Kg dry 1 SW-846 8260B 12/18/09 12/18/09 9:03 MFF 1.1-Dichloroethylene ND 0.0028 mg/Kg dry 1 SW-846 8260B 12/18/09 12/18/09 9:03 MFF 0.0014 cis-1,2-Dichloroethylene ND mg/Kg dry 1 SW-846 8260B 12/18/09 12/18/09 9:03 MFF trans-1,2-Dichloroethylene ND 0.0014 mg/Kg dry 1 1,2-Dichloropropane ND 0.0014 1 SW-846 8260B 12/18/09 12/18/09 9:03 MFF mg/Kg dry 12/18/09 0.00070 SW-846 8260B 12/18/09 9:03 MFF 1,3-Dichloropropane ND mg/Kg dry I MFF 2,2-Dichloropropane NÐ 0.0014 mg/Kg dry Į SW-846 8260B 12/18/09 12/18/09 9:03 12/18/09 12/18/09 9:03 MFF SW-846 8260B 1,1-Dichloropropene ND 0.0014 mg/Kg dry 1 SW-846 8260B 12/18/09 12/18/09 9:03 MFF cis-1,3-Dichloropropene ND 0.00070 mg/Kg dry 1 trans-1,3-Dichloropropene 0.00070 SW-846 8260B 12/18/09 12/18/09 9:03 MFF ND 1 mg/Kg dry 12/18/09 12/18/09 9:03 MFF 0.014 SW-846 8260B Diethyl Ether ND 1 mg/Kg dry Diisopropyl Ether (DIPE) ND 0.00070 I SW-846 8260B 12/18/09 12/18/09 9:03 MFF mg/Kg dry V-16 SW-846 8260B 12/18/09 12/18/09 9:03 MFF 1,4-Dioxanc ND 0.070 mg/Kg dry I MEP 12/18/09 12/18/09 9:03 Ethylbenzene ND 0.0014 mg/Kg dry 1 SW-846 8260B

Project Location: City Of New Bedford

Date Received: 12/17/2009

Sample Description: Sampled: 12/17/2009 10:20

Field Sample #: TRC-BTM-22

Sample ID: 09L0487-04

Sample Matrix: Soil

Volatile Organic Compounds by GC/MS Results BL Units Dilution Flag

							Date	Date/ i hae	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Hexachlorobutadiene	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:03	MFF
2-Hexanone (MBK)	ND	0.014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:03	MFF
Isopropylbenzene (Cumene)	ND	0.0014	mg/Kg dry	t		SW-846 8260B	12/18/09	12/18/09 9:03	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:03	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0028	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:03	MFF
Methylene Chloride	ND	0.014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:03	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:03	MFF
Naphthalene	ND	0.0028	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:03	MFF
n-Propylbenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:03	MFF
Styrene	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:03	MFF
1,1,1,2-Tetrachloroethane	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:03	MFF
1,1,2,2-Tetrachloroethane	ND	0.00070	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:03	MFF
Tetrachloroethylene	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:03	MFF
Tetrahydrofuran	ND	0.0070	mg/Kg dry	1	V-16	SW-846 8260B	12/18/09	12/18/09 9:03	MFF
Toluene	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:03	MFF
1,2,3-Trichlorobenzene	ND	0.0014	mg/Kg dry	ı		SW-846 8260B	12/18/09	12/18/09 9:03	MFF
1,2,4-Trichlorobenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:03	MFF
1,1,1-Trichloroethane	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:03	MFF
1,1,2-Trichloroethane	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:03	MFF
Trichloroethylene	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:03	MFF
Trichlorofluoromethane (Freon 11)	ND	0.0070	mg/Kg dry	ĩ		SW-846 8260B	12/18/09	12/18/09 9:03	MFF
1,2,3-Trichloropropane	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:03	MFF
1,2,4-Trimethylbenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:03	MFF
1,3,5-Trimethylbenzene	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:03	MFF
Vinyl Chloride	ND	0.0070	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:03	MFF
m+p Xylene	ND	0.0028	nig/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:03	MFF
o-Xylene	ND	0.0014	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:03	MFF
Surrogates		% Recovery	Recovery Limits	1	Flag			,	
1,2-Dichloroethane-d4		106	70-130					12/18/09 9:03	
Toluene-d8		102	70-130					12/18/09 9:03	
4-Bromofluorobenzene		101	70-130					12/18/09 9:03	

Work Order: 091.0487

Date

Date/Time

	39 Spruce S	treet * East Lo	ngmeadow, MA 0	1028 * FAX 41	3/525-6405 * TE	EL. 413/525-2332			
Project Location: City Of New Bedford	Sa	mple Description	m:				Work Order:	091.0487	
Date Received: 12/17/2009				<i>••</i>					
Field Sample #: TRC-BTM-22	Sa	mpled: 12/17/2	009 10:20						
Sample ID: 09L0487-04									
Sample Matrix: Soil									
	Conv	entional Chem	istry Parameters by	y EPA/APHA/S	W-846 Methods	(Total)			
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst

1

SM 2540G

12/21/09 12/21/09 15:21 FWD

% Wt

91.8

Project Location: City Of New Bedford Date Received: 12/17/2009

Sampled: 12/17/2009 10:30

Sample Description:

Field Sample #: TRC-BTM-3

Sample ID: 09L0487-05

Sample Matrix: Soil

Acctone

Benzene

Bromobenzene

Bromoform

Bromomethane

Volatile Organic Compounds by GC/MS Date/Time Date Dilution Method Prepared Analyzed Analyst Analyte Results RL Units Flag V-16 SW-846 8260B 12/18/09 12/18/09 9:56 ND 0.067 mg/Kg dry 1 tert-Amyl Methyl Ether (TAME) SW-846 8260B 12/18/09 12/18/09 9:56 ND 0.00067 mg/Kg dry T 0.0013 t SW-846 8260B 12/18/09 12/18/09 9:56 ND mg/Kg dry SW-846 8260B 12/18/09 12/18/09 9:56 ND 0.0013 mg/Kg dry 1 SW-846 8260B 12/18/09 12/18/09 9:56 Bromochloromethane ND 0.0013 mg/Kg dry 1 SW-846 8260B 12/18/09 12/18/09 9:56 Bromodichloromethane 0.0013 mg/Kg dry 1 ND 0.0067 mg/Kg dry SW-846 8260B 12/18/09 12/18/09 9:56 ND 1 ND 0.0067 mg/Kg dry l SW-846 8260B 12/18/09 12/18/09 9:56 SW-846 8260B 12/18/09 12/18/09 9:56 2 Outenano (MEV) mg/Kg drv V-16 ND 0.027 1

2-Butanonc (MEK)	ND	0.027	mg/Kg dry	1	V-16	SW-846 8260B	12/18/09	12/18/09 9:56	MFF
n-Butylbenzene	ND	0.0013	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
sec-Butylbenzene	ND	0.0013	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
tert-Butylbenzene	ND	0.0013	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.00067	mg/Kg dry	I.		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
Carbon Disulfide	ND	0.0040	mg/Kg dry	L		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
Carbon Tetrachloride	ND	0.0067	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
Chlorobenzene	ND	0.0013	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
Chlorodibromomethane	ND	0.00067	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
Chloroethane	ND	0.013	mg/Kg dry	l		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
Chloroform	ND	0.0027	mg/Kg dry	l		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
Chloromethane	ND	0.0067	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
2-Chlorotoluene	ND	0.0013	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
4-Chlorotolucne	ND	0.0013	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0067	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
1,2-Dibromoethane (EDB)	ND	0.00067	mg/Kg dry	ī		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
Dibromomethane	ND	0.0013	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
1,2-Dichlorobenzene	ND	0.0013	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
1,3-Dichlorobenzene	ND	0.0013	mg/Kg dry	L		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
1,4-Dichlorobenzenc	ND	0.0013	mg/Kg dry	l		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.013	mg/Kg dry	1	V-05	SW-846 8260B	12/18/09	12/18/09 9:56	MFF
1,1-Dichloroethane	ND	0.0013	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
1,2-Dichloroethane	ND	0.0013	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
1,1-Dichloroethylene	ND	0.0027	mg/Kg dry	I		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
cis-1,2-Dichloroethylene	ND	0.0013	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
trans-1,2-Dichloroethylene	ND	0.0013	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
1,2-Dichloropropane	ND	0.0013	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
1,3-Dichloropropane	ND	0.00067	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
2,2-Dichloropropane	ND	0.0013	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
1,1-Dichloropropene	ND	0.0013	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
cis-1,3-Dichloropropene	ND	0.00067	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
trans-1,3-Dichloropropene	ND	0.00067	mg/Kg dry	l		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
Diethyl Ether	ND	0.013	mg/Kg dry	I		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
Diisopropyl Ether (DIPE)	ND	0.00067	mg/Kg dry	L		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
1,4-Dioxane	ND	0.067	mg/Kg dry	ļ	V-16	SW-846 8260B	12/18/09	12/18/09 9:56	MFF
Ethylbenzene	ND	0.0013	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF

Work Order: 09L0487

MFF

MFF

MFF

MFF

MFF

MFF

MFF

MFF

MEE

Volatile Organic Compounds by GC/MS

Project Location: City Of New Bedford

Date Received: 12/17/2009

Sample Description:

Field Sample #: TRC-BTM-3

Sampled: 12/17/2009 10:30

Sample ID: 09L0487-05

Sample Matrix: Soil

4 b.a.	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Analyte Hexachlorobutadiene	ND	0.0013	mg/Kg dry	l	r tag	SW-846 8260B	12/18/09	12/18/09 9:56	MFF
2-Hexanone (MBK)	ND	0.013	mg/Kg dry			SW-846 8260B	12/18/09	12/18/09 9:56	MFF
Isopropylbenzene (Cumene)	ND	0.0013	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0013	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0027	mg/Kg dry	ı		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
Methylene Chloride	ND	0.013	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.013	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
Naphthalene	ND	0.0027	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
n-Propylbenzene	ND	0.0013	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
Styrene	ND	0.0013	mg/Kg dry	L		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
1,1,1,2-Tetrachloroethane	ND	0.0013	mg/Kg dry	ł		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
1,1,2,2-Tetrachlorocthane	ND	0.00067	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
Tetrachloroethylene	NÐ	0.0013	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
Tetrahydrofiaran	ND	0.0067	mg/Kg dry	1	V-16	SW-846 8260B	12/18/09	12/18/09 9:56	MFF
Toluene	ND	0.0013	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
1,2,3-Trichlorobenzene	ND	0.0013	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
1,2,4-Trichlorobenzene	ND	0.0013	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
1,1,1-Trichloroethane	ND	0.0013	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
1,1,2-Trichloroethane	ND	0.0013	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
Trichloroethylene	ND	0.0013	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
Trichlorofluoromethane (Freon 11)	ND	0.0067	mg/Kg dry	l		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
1,2,3-Trichloropropane	ND	0.0013	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
1,2,4-Trimethylbenzene	ND	0.0013	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
1,3,5-Trimethylbenzene	ND	0.0013	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
Vinyl Chloride	ND	0.0067	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
m+p Xylene	ND	0.0027	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
o-Xyiene	ND	0.0013	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 9:56	MFF
Surregates		% Recovery	Recovery Limit	5	Flag				
1,2-Dichloroethane-d4		106	70-130					12/18/09 9:56	
Toluene-d8		104	70-130					12/18/09 9:56	
4-Bromofluorobenzene		97.0	70-130					12/18/09 9:56	•

92.7

% Solids

	39 Spruce S	treet * East Lo	ongmeadow, MA 0	1028 * FAX 41	3/525-6405 * TE	L. 413/525-2332			
Project Location: City Of New Bedford	Sa	mple Descriptio	on:				Work Order:	: 09L0487	
Date Received: 12/17/2009				···					
Field Sample #: TRC-BTM-3	Sa	mpled: 12/17/2	009 10:30						
Sample ID: 091.0487-05									
Sample Matrix: Soil									
	Conv	entional Chem	istry Parameters b	y EPA/APHA/S	W-846 Methods ((Total)			
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst

1

SM 2540G

12/21/09 12/21/09 15:21 FWD

Page 17 of 33

% Wt

Project Location: City Of New Bedford

Date Received: 12/17/2009

Sample Description: Sampled: 12/17/2009 10:40

Field Sample #: TRC-ESW

Sample ID: 09L0487-06 Sample Matrix: Soil Volatile Organic Compounds by GC/MS Date/Time Date Results RL Units Dilution Flag Method Prepared Analyzed Analyte V-16 SW-846 8260B 12/18/09 12/18/09 10:23 ND 0.076 1 Acctone mg/Kg dry SW-846 8260B 12/18/09 12/18/09 10:23 tert-Amyl Methyl Ether (TAME) ND 0.00076 1 mg/Kg dry 1 SW-846 8260B 12/18/09 12/18/09 10:23 Benzene ND 0.0015 mg/Kg dry 12/18/09 12/18/09 10:23 ND 0.0015 1 SW-846 8260B Bromobenzene mg/Kg dry 12/18/09 12/18/09 10:23 Bromochloromethane ND 0.0015 mg/Kg dry 1 SW-846 8260B SW-846 8260B 12/18/09 12/18/09 10:23 0.0015 Bromodichloromethane ND mg/Kg dry 1 SW-846 8260B 12/18/09 12/18/09 10:23 0.0076 Bromoform ND mg/Kg dry ł 0.0076 SW-846 8260B 12/18/09 12/18/09 10:23 Bromomethane ND I mg/Kg dry V-16 SW-846 8260B 12/18/09 12/18/09 10:23 2-Butanone (MEK) ND 0.030 mg/Kg dry 1 n-Butylbenzene ND 0.0015 mg/Kg dry 1 SW-846 8260B 12/18/09 12/18/09 10:23 12/18/09 10:23 SW-846 8260B 12/18/09 sec-Butylbenzene ND 0.0015 mg/Kg dry 1 12/18/09 12/18/09 10:23 SW-846 8260B tert-Butylbenzene ND 0.0015 mg/Kg dry I tert-Butyl Ethyl Ether (TBEE) 0.00076 SW-846 8260B 12/18/09 12/18/09 10:23 ND mg/Kg dry 1 12/18/09 12/18/09 10:23 0.0046 SW-846 8260B Carbon Disulfide ND mg/Kg dry ł Carbon Tetrachloride ND 0.0076 mg/Kg dry 1 SW-846 8260B 12/18/09 12/18/09 10:23 12/18/09 10:23 ND 0.0015 SW-846 8260B 12/18/09 Chlorobenzene mg/Kg dry 1 12/18/09 12/18/09 10:23 SW-846 8260B Chlorodibromomethane ND 0.00076 mg/Kg dry 1 0.015 SW-846 8260B 12/18/09 12/18/09 10:23 Chloroethane ND mg/Kg dry ł SW-846 8260B 12/18/09 12/18/09 10:23 0.0030 Chloroform ND mg/Kg dry 1 SW-846 8260B 12/18/09 12/18/09 10:23 Chloromethane ND 0.0076 mg/Kg dry 1 SW-846 8260B 12/18/09 12/18/09 10:23 2-Chlorotoluene ND 0.0015 mg/Kg dry 1 4-Chlorotolu 1,2-Dibromo 1,2-Dibromo Dibromomet 1,2-Dichloro 1,3-Dichloro 1,4-Dichloro Dichlorodifly 1,1-Dichloro 1,2-Dichloro

4-Chlorotoluene	ND	0.0015	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF	
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0076	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF	
1,2-Dibromoethane (EDB)	ND	0.00076	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF	
Dibromomethane	ND	0.0015	mg/Kg dry	ı		SW-846 8260B	12/18/09	12/18/09 10:23	MFF	
1,2-Dichlorobenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF	
1,3-Dichlorobenzene	ND	0.0015	mg/Kg dry	L		SW-846 8260B	12/18/09	12/18/09 10:23	MFF	
1,4-Dichlorobenzene	ND	0.0015	mg/Kg dry	l		SW-846 8260B	12/18/09	12/18/09 10:23	MFF	
Dichlorodifluoromethane (Freon 12)	ND	0.015	mg/Kg dry	1	V-05	SW-846 8260B	12/18/09	12/18/09 10:23	MFF	
1,1-Dichloroethane	ND	0.0015	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF	
1,2-Dichloroethane	ND	0.0015	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF	
1,1-Dichloroethylene	ND	0.0030	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF	
cis-1,2-Dichloroethylene	ND	0.0015	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF	
trans-1,2-Dichloroethylene	ND	0.0015	mg/Kg dry	l		SW-846 8260B	12/18/09	12/18/09 10:23	MFF	
1,2-Dichloropropane	ND	0.0015	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF	
1,3-Dichloropropane	ND	0.00076	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF	
2,2-Dichloropropane	ND	0.0015	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF	
1,1-Dichloropropene	ND	0.0015	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF	
cis-1,3-Dichloropropene	ND	0.00076	mg/Kg dry]		SW-846 8260B	12/18/09	12/18/09 10:23	MFF	
trans-1,3-Dichloropropene	ND	0.00076	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF	
Dicthyl Ether	ND	0.015	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF	
Diisopropyl Ether (DIPE)	ND	0.00076	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF	
1,4-Dioxane	ND	0.076	mg/Kg dry	l	V-16	SW-846 8260B	12/18/09	12/18/09 10:23	MFF	
Ethylbenzene	ND	0.0015	mg/Kg dry	l		SW-846 8260B	12/18/09	12/18/09 10:23	MFF	
								$D_{2} \propto 10$	of	22

Work Order: 09L0487

Analyst

MFF

Volatile Organic Compounds by GC/MS

Project Location: City Of New Bedford Date Received: 12/17/2009

Sample Description:

Sampled: 12/17/2009 10:40

Field Sample #: TRC-ESW Sample ID: 09L0487-06

Sample Matrix: Soil

Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.0015	mg/Kg dry	1	ž	SW-846 8260B	12/18/09	12/18/09 10:23	MFF
2-Hexanone (MBK)	ND	0.015	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF
Isopropylbenzene (Cumene)	ND	0.0015	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0015	mg/Kg dry	I		SW-846 8260B	12/18/09	12/18/09 10:23	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0030	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF
Methylene Chloride	ND	0.015	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.015	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF
Naphthalene	ND	0.0030	mg/Kg dry	ı		SW-846 8260B	12/18/09	12/18/09 10:23	MFF
n-Propylbenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF
Styrene	ND	0.0015	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF
1,1,1,2-Tetrachloroethane	ND	0.0015	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF
1,1,2,2-Tetrachlorocthanc	ND	0.00076	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF
Tetrachloroethylene	ND	0.0015	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF
Tetrahydrofuran	ND	0.0076	mg/Kg dry	1	V-16	SW-846 8260B	12/18/09	12/18/09 10:23	MFF
Toluene	ND	0.0015	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF
1,2,3-Trichlorobenzene	ND	0.0015	mg/Kg dry	l		SW-846 8260B	12/18/09	12/18/09 10:23	MFF
1,2,4-Trichlorobenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF
1,1,1-Trichloroethane	ND	0.0015	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF
1,1,2-Trichloroethane	ND	0.0015	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF
Trichloroethylene	ND	0.0015	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF
Trichlorofluoromethane (Freon 11)	ND	0.0076	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF
1,2,3-Trichloropropane	ND	0.0015	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF
1,2,4-Trimethylbenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF
1,3,5-Trimethylbenzene	ND	0.0015	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF
Vinyl Chloride	ND	0.0076	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF
m+p Xylene	ND	0.0030	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF
o-Xylene	ND	0.0015	mg/Kg dry	1		SW-846 8260B	12/18/09	12/18/09 10:23	MFF
Surrogates		% Recovery	Recovery Limits	5	Flag				
1,2-Dichloroethane-d4		103	70-130					12/18/09 10:23	
Toluene-d8		102	70-130					12/18/09 10:23	
4-Bromofluorobenzene		97.8	70-130					12/18/09 10:23	•

92.5

% Solids

	39 Spruce S	treet * East Longmea	dow, MA 0	1028 * FAX 41	3/525-6405 * TE	L. 413/525-2332			
Project Location: City Of New Bedford	· Sa	mple Description:					Work Order	: 09L0487	
Date Received: 12/17/2009				v					
Field Sample #: TRC-ESW	Sa	mpled: 12/17/2009 10:	40						
Sample ID: 09L0487-06									
Sample Matrix: Soil									
	Conv	entional Chemistry Par	rameters by	/ EPA/APHA/S	W-846 Methods ((Total)			
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst

1

SM 2540G

12/21/09 12/21/09 15:21 FWD

Page 20 of 33

% Wt

Sample Extraction Data

Prep Method: % Solids-SM 2540G

Lab Number [Field ID]	Batch	Date
09L0487-02 [TRC-BTM-1]	B008593	12/21/09
09L0487-03 [TRC-BTM-2]	B008593	12/21/09
091.0487-04 [TRC-BTM-22]	B008593	12/21/09
091.0487-05 [TRC-BTM-3]	B008593	12/21/09
09L0487-06 [TRC-ESW]	B008593	12/21/09

Prep Method: SW-846 5035-SW-846 8260B

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date	
09L0487-01 [TB]	B008548	5	10	12/18/09	
091.0487-02 [TRC-BTM-1]	B008548	7.1	10	12/18/09	
091.0487-03 [TRC-BTM-2]	B008548	7.8	10	12/18/09	
09L0487-04 [TRC-BTM-22]	B008548	7.8	10	12/18/09	
)9L0487-05 [TRC-BTM-3]	B008548	8.1	10	12/18/09	
09L0487-06 [TRC-ESW]	B008548	7.1	10	12/18/09	

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B008548 - SW-846 5035										
Blank (B008548-BLK1)				Prepared &	Analyzed: 12	/18/09				
Acctone	ND	0.10	mg/Kg wet							V-16
ert-Amyl Methyl Ether (TAME)	ND	0.0010	mg/Kg wet							
Benzene	ND	0.0020	mg/Kg wet							
Bromobenzene	ND	0.0020	mg/Kg wet							
Bromochloromethane	ND	0.0020	mg/Kg wet							
Bromodichloromethane	ND	0.0020	mg/Kg wet							
Bromoform	ND	0.010	mg/Kg wet							
Bromomethane	ND	0.010	mg/Kg wet							
2-Butanone (MEK)	ND	0.040	mg/Kg wet							V-16
Butylbenzene	ND	0.0020	mg/Kg wet							
ec-Butylbenzene	ND	0.0020	mg/Kg wet							
ert-Butylbenzene	ND	0.0020	mg/Kg wet							
crt-Butyl Ethyl Ether (TBEE)	ND	0.0010	mg/Kg wet							
Carbon Disulfide	ND	0.0060	mg/Kg wet							
Carbon Tetrachloride	ND	0.010	mg/Kg wet							
Chlorobenzene	ND	0.0020	mg/Kg wet							
Chlorodibromomethane	ND	0.0010	mg/Kg wet							
Chloroethane	ND	0.020	mg/Kg wet							
Chloroform	ND	0.0040	mg/Kg wet							
Chloromethane	ND	0.010	mg/Kg wet							
P-Chlorotolucne	ND	0.0020	mg/Kg wet							
I-Chlorotoluene	ND	0.0020	mg/Kg wet							
,2-Dibromo-3-chloropropane (DBCP)	ND	0.010	mg/Kg wet							
,2-Dibromocthane (EDB)	ND	0.0010	mg/Kg wet							
Dibromomethane	ND	0.0020	mg/Kg wet							
,2-Dichlorobenzene	ND	0.0020	mg/Kg wet							
1,3-Dichlorobenzene	ND	0.0020	mg/Kg wet							
,4-Dichlorobenzene	ND	0.0020	mg/Kg wet							
Dichlorodifluoromethane (Freon 12)	ND	0.020	mg/Kg wei							V-05
,1-Dichlorocthane	ND	0.0020	mg/Kg wet							
,2-Dichloroethane	ND	0.0020	mg/Kg wet							
i,1-Dichloroethylene	ND	0.0040	mg/Kg wet							
cis-1,2-Dichloroethylene	ND	0.0020	mg/Kg wet							
rans-1,2-Dichloroethylene	ND	0.0020	mg/Kg wet							
1,2-Dichloropropane	ND	0.0020	mg/Kg wet							
1,3-Dichloropropane	ND	0.0010	mg/Kg wet							
2,2-Dichloropropane	ND	0.0020	mg/Kg wet							
1,1-Dichloropropene	ND	0.0020	mg/Kg wet							
cis-1,3-Dichloropropene	ND	0.0010	mg/Kg wet							
trans-1,3-Dichloropropene	NÐ	0.0010	mg/Kg wet							
Dicthyl Ether	ND	0.020	mg/Kg wet							
Diisopropyl Ether (DIPE)	ND	0.0010	mg/Kg wet							
,4-Dioxanc	ND	0.10	mg/Kg wet							V-16
Ethylbenzenc	ND	0.0020	mg/Kg wet							
Hexachlorobutadiene	ND	0.0020	mg/Kg wet							
2-Hexanone (MBK)	ND	0.020	mg/Kg wet							
isopropylbenzene (Cumene)	ND	0.0020	mg/Kg wet							
p-Isopropyltoluene (p-Cymene)	ND	0.0020	mg/Kg wet							
Methyl tert-Butyl Ether (MTBE)	ND	0.0040	mg/Kg wet							
Methylene Chloride	ND	0.020	mg/Kg wet							
4-Methyl-2-pentatione (MIBK)	ND	0.020	mg/Kg wet							
Naphthalene	NĐ	0.0040	mg/Kg wet							

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B008548 - SW-846 5035											
Blank (B008548-BLK1)				Prepared &	Analyzed: 12	/18/09					
n-Propylbenzene	ND	0.0020	mg/Kg wet								
Styrene	ND	0.0020	mg/Kg wet								
1,1,1,2-Tetrachloroethane	ND	0.0020	mg/Kg wet								
1,1,2,2-Tetrachloroethane	ND	0.0010	mg/Kg wet								
Tetrachloroethylene	ND	0.0020	mg/Kg wet								
Tetrahydrofuran	ND	0.010	mg/Kg wet							V-16	
Toluene	ND	0.0020	mg/Kg wet								
1,2,3-Trichlorobenzene	ND	0.0020	mg/Kg wet								
1,2,4-Trichlorobenzene	ND	0.0020	mg/Kg wet								
1,1,1-Trichloroethanc	ND	0,0020	mg/Kg wet								
1,1,2-Trichloroethane	ND	0.0020	mg/Kg wet								
Trichloroethylene	ND	0.0020	mg/Kg wet								
Trichlorofluoromethane (Freon 11)	ND	0.010	mg/Kg wet								
1,2,3-Trichloropropane	ND	0.0020	mg/Kg wet								
1,2,4-Trimethylbenzene	ND	0.0020	mg/Kg wet								
1,3,5-Trimethylbenzene	ND	0.0020	mg/Kg wet								
Vinyl Chloride	ND	0.010	mg/Kg wet								
m+p Xylene	ND	0.0040	mg/Kg wet								
o-Xylene	ND	0.0020	mg/Kg wet								
Surrogate: 1,2-Dichloroethane-d4	0.0539		mg/Kg wet	0.0500		108	70-130				
Surrogate: Toluene-d8	0.0510		mg/Kg wet	0.0500		102	70-130				
Surrogate: 4-Bromofluorobenzene	0.0499		mg/Kg wet	0.0500		99.8	70-130				
LCS (B008548-BS1)				Prepared &	Analyzed: 12	2/18/09					
Acetone	0.222	0.10	mg/Kg wet	0.200		111	70-160			V-16	
tert-Amyl Methyl Ether (TAME)	0.0192	0.0010	mg/Kg wet	0.0200		96.1	70-130				
Benzene	0.0217	0.0020	mg/Kg wet	0.0200		108	70-130				
Bromobenzene	0.0195	0.0020	mg/Kg wet	0.0200		97.6	70-130				
Bromochloromethane	0.0210	0.0020	mg/Kg wet	0.0200		105	70-130				
Bromodichloromethane	0.0198	0.0020	mg/Kg wet	0.0200		98.8	70-130				
Bromoform	0.0185	0.010	mg/Kg wet	0.0200		92.5	70-130				
Bromomethane	0.0209	0.010	mg/Kg wet	0.0200		104	40-130				
2-Butanone (MEK)	0.210	0.040	mg/Kg wet	0.200		105	70-160			V-16	
n-Butylbenzene	0.0220	0.0020	mg/Kg wet	0.0200		110	70-130				
sec-Butylbenzene	0.0222	0.0020	mg/Kg wet	0.0200		111	70-130				
tert-Butylbenzene	0.0211	0.0020	mg/Kg wet	0.0200		106	70-160				
tert-Butyl Ethyl Ether (TBEE)	0.0203	0.0010	mg/Kg wet	0.0200		102	70-130				
Carbon Disulfide	0.0256	0.0060	mg/Kg wet	0.0200		128	70-130				
Carbon Tetrachloride	0.0181	0.010	mg/Kg wet	0.0200		90.5	70-130				
Chlorobenzene	0.0199	0.0020	mg/Kg wet	0.0200		99.5	70-130				
Chlorodibromomethane	0.0234	0.0010	-	0.0200		117	70-130				
Chloroethane	0.0248	0.020		0.0200		124	70-130				
Chloroform	0.0224	0.0040	mg/Kg wet	0.0200		112	70-130				
Chloromethane	0.0196	0.010		0.0200		98.1	70-130				
2-Chlorotoluene	0.0209	0.0020	mg/Kg wet	0.0200		105	70-130				
4-Chlorotoluene	0.0210	0.0020		0.0200		105	70-130				
1,2-Dibromo-3-chloropropane (DBCP)	0.0176	0.010		0.0200		88.0	70-130				
1,2-Dibromoethane (EDB)	0.0201	0,0010		0.0200		101	70-130				
Dibromomethanc	0.0208	0.0020	mg/Kg wet	0.0200		104	70-130				
1,2-Dichlorobenzene	0.0203	0.0020	mg/Kg wet			101	70-130				
1,3-Dichlorobenzene	0.0196	0.0020	mg/Kg wet			97.8	70-130				
1,0 X/1011010000120110	0.0120	0,0020		0.0200		27.0	10 100				

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B008548 - SW-846 5035											
LCS (B008548-BS1)			1	Prepared &	Analyzed: 12	/18/09					
Dichlorodifluoromethane (Freon 12)	0.0160	0.020	mg/Kg wet	0.0200		80.2	40-160			V-05	1
1,1-Dichloroethane	0.0224	0.0020	mg/Kg wet	0.0200		112	70-130				
1,2-Dichloroethane	0.0210	0.0020	mg/Kg wet	0.0200		105	70-130				
1,1-Dichloroethylene	0.0246	0.0040	mg/Kg wet	0.0200		123	70-130				
cis-1,2-Dichloroethylenc	0.0209	0.0020	mg/Kg wet	0.0200		105	70-130				
trans-1,2-Dichloroethylene	0.0208	0.0020	mg/Kg wet	0.0200		104	70-130				
1,2-Dichloropropane	0.0209	0.0020	mg/Kg wet	0.0200		105	70-130				
1,3-Dichloropropane	0.0205	0.0010	mg/Kg wet	0.0200		103	70-130				
2,2-Dichloropropane	0.0166	0.0020	mg/Kg wet	0.0200		83.1	70-130				
1,1-Dichloropropene	0.0227	0.0020	mg/Kg wet	0.0200		113	70-130				
cis-1,3-Dichloropropenc	0.0183	0.0010	mg/Kg wet	0.0200		91.7	70-130				
trans-1,3-Dichloropropene	0.0188	0.0010	mg/Kg wct	0.0200		94.2	70-130				
Diethyl Ether	0.0256	0.020	mg/Kg wet	0.0200		128	70-130				
Diisopropyl Ether (DIPE)	0.0226	0.0010	mg/Kg wet	0.0200		113	70-130				
1,4-Dioxane	0,190	0.10	mg/Kg wet	0.200		95.0	40-160			V-16	÷
Ethylbenzene	0.0207	0.0020	mg/Kg wet	0.0200		104	70-130				
Hexachlorobutadiene	0.0208	0.0020	mg/Kg wet	0.0200		104	70-160				
2-Hexanone (MBK)	0.197	0.020	mg/Kg wet	0.200		98.5	70-160				-
Isopropylbenzene (Cumene)	0.0242	0.0020	mg/Kg wet	0.0200		121	70-130				
p-lsopropyltoluene (p-Cymene)	0.0211	0.0020	mg/Kg wet	0.0200		106	70-130				
Methyl tert-Butyl Ether (MTBE)	0.0204	0.0040	mg/Kg wet	0.0200		102	70-130				
Methylene Chloride	0.0205	0.020	mg/Kg wet	0.0200		102	40-160				÷
4-Methyl-2-pentanone (MIBK)	0.199	0.020	mg/Kg wet	0.200		99.3	70-160				-
Naphthalene	0.0192	0.0040	mg/Kg wet	0.0200		96.1	40-130				
n-Propylbenzene	0.0220	0.0020	mg/Kg wet	0.0200		110	70-130				
Styrene	0.0205	0.0020	mg/Kg wet	0.0200		102	70-130				
1,1,1,2-Tetrachloroethane	0.0179	0.0020	mg/Kg wet	0.0200		89.4	70-130				
1,1,2,2-Tetrachlorocthane	0.0207	0.0010	mg/Kg wet	0.0200		103	70-130				
Tetrachloroethylene	0.0215	0.0020	mg/Kg wet	0.0200		107	70-130				
Tetrahydrofuran	0.0188	0.010	mg/Kg wet	0.0200		94.1	70-130			V-16	
Toluene	0.0213	0.0020	mg/Kg wet	0.0200		106	70-130				
1,2,3-Trichlorobenzene	0.0191	0.0020	mg/Kg wet	0.0200		95.3	70-130				
1,2,4-Trichlorobenzene	0.0193	0.0020	mg/Kg wet	0.0200		96.5	70-130				
1,1,1-Trichloroethanc	0.0202	0.0020	mg/Kg wet	0.0200		101	70-130				
1,1,2-Trichloroethane	0.0199	0.0020	mg/Kg wet	0.0200		99.6	70-130				
Trichloroethylene	0.0210	0.0020	mg/Kg wet	0.0200		105	70-130				
Trichlorofluoromethane (Freon 11)	0.0237	0.010	mg/Kg wet	0.0200		118	70-130				
	0.0158	0.0020	mg/Kg wet	0.0200		79.2	70-130				
1,2,3-Trichloropropane	0.0158	0.0020	mg/Kg wet	0.0200		99.5	70-130				
1,2,4-Trimethylbenzene	0.0199	0.0020	mg/Kg wet	0.0200		99.5 104	70-130				
1,3,5-Trimethylbenzene Visut Chlorida	0.0181	0.0020	mg/Kg wet	0.0200		90.4	40-130				
Vinyl Chloride	0.0411	0.0040	mg/Kg wet	0.0200		90.4 103	70-130				
m+p Xylenc	0.0208	0.0040	mg/Kg wet	0.0400		103	70-130				
o-Xylenc		0.0020		, . ,					······································		
Surrogate: 1,2-Dichloroethane-d4	0.0537		mg/Kg wet	0.0500		107	70-130				
Surrogate: Toluene-d8	0.0516		mg/Kg wet	0.0500		103	70-130				
Surrogate: 4-Bromofluorobenzene	0.0497		mg/Kg wet	0.0500		99.4	70-130				

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
3atch B008548 - SW-846 5035											
.CS Dup (B008548-BSD1)			1	Prepared &	Analyzed: 12	/18/09					
Acctone	0.244	0.10	mg/Kg wet	0.200		122	70-160	9.39	25	V-16	
ert-Amyl Methyl Ether (TAME)	0.0207	0.0010	mg/Kg wet	0.0200		103	70-130	7.22	25		
3enzene	0.0227	0.0020	mg/Kg wet	0.0200		114	70-130	4.68	25		
Bromobenzene	0.0203	0.0020	mg/Kg wet	0.0200		102	70-130	3.92	25		
Bromochloromethane	0.0216	0.0020	mg/Kg wet	0.0200		108	70-130	2.81	25		
Bromodichloromethane	0.0206	0.0020	mg/Kg wet	0.0200		103	70-130	4.16	25		
Bromoform	0.0191	0.010	mg/Kg wet	0.0200		95.7	70-130	3.40	25		
romomethane	0.0227	0.010	mg/Kg wet	0.0200		114	40-130	8.44	25		
-Butanone (MEK)	0.231	0.040	mg/Kg wet	0.200		115	70-160	9.38	25	V-16	
-Butylbenzene	0.0224	0.0020	mg/Kg wet	0.0200		112	70-130	1.80	25		
ee-Butylbenzene	0.0223	0.0020	mg/Kg wet	0.0200		112	70-130	0.809	25		
ert-Butylbenzene	0.0213	0.0020	mg/Kg wet	0.0200		106	70-160	0.849	25		
ert-Butyl Ethyl Ether (TBEE)	0.0212	0.0010	mg/Kg wet	0.0200		106	70-130	4.53	25		
Carbon Disulfide	0.0262	0.0060	mg/Kg wet	0.0200		131 *	70-130	2.40	25	L-07	
Carbon Tetrachloride	0.0181	0.010	mg/Kg wet	0.0200		90.6	70-130	0.110	25		
hlorobenzene	0.0205	0.0020	mg/Kg wet	0.0200		102	70-130	2.78	25		
hlorodibromomethane	0.0240	0.0010	mg/Kg wet	0.0200		120	70-130	2.45	25		
hloroethanc	0.0260	0.020	mg/Kg wet	0.0200		130	70-130	4.73	25		
hloroform	0.0228	0.0040	mg/Kg wet	0.0200		114	70-130	1.77	25		
hloromethane	0.0206	0.010	mg/Kg wet	0.0200		103	70-130	4.68	25		
Chlorotolucne	0.0217	0.0020	mg/Kg wet	0.0200		108	70-130	3.66	25		
Chlorotoluene	0.0216	0.0020	mg/Kg wet	0.0200		108	70-130	2.73	25		
2-Dibromo-3-chloropropane (DBCP)	0.0188	0.010	mg/Kg wet	0.0200		94.2	70-130	6.81	25		
2-Dibromoethane (EDB)	0.0214	0.0010	mg/Kg wet	0.0200		107	70-130	5.88	25		
ibromomethane	0.0224	0.0020	mg/Kg wet	0.0200		112	70-130	7.04	25		
	0.0208	0.0020	mg/Kg wet	0.0200		104	70-130	2.82	25		
2-Dichlorobenzene	0.0199	0.0020	mg/Kg wet	0.0200		99.7	70-130	1.92	25		
3-Dichlorobenzene	0.0199	0.0020	mg/Kg wet	0.0200		99.0	70-130	0.608	25		
4-Dichlorobenzene	0.0198	0.0020	• •				40-160	4,15	25	V-05	
vichlorodifluoromethane (Freon 12)			mg/Kg wet	0.0200		83.6		4.13	2 <i>3</i> 25	v-05	
1-Dichloroethane	0.0234	0.0020	mg/Kg wet	0.0200		117	70-130				
2-Dichloroethane	0.0223	0.0020	mg/Kg wet	0.0200		112	70-130	6.37	25		
1-Dichloroethylene	0.0253	0.0040	mg/Kg wet	0.0200		127	70-130	2.88	25		
s-1,2-Dichloroethylene	0.0216	0.0020	mg/Kg wet	0.0200		108	70-130	3.20	25		
ans-1,2-Dichloroethylene	0.0220	0.0020	mg/Kg wet	0.0200		110	70-130	5.23	25		
2-Dichloropropane	0.0217	0.0020	mg/Kg wet	0.0200		108	70-130	3.66	25		
,3-Dichloropropane	0.0212	0.0010	mg/Kg wet	0.0200		106	70-130	3.07	25		
2-Dichloropropane	0.0170	0.0020	mg/Kg wet	0.0200		85.1	70-130	2.38	25		
,1-Dichloropropene	0.0232	0.0020	mg/Kg wet	0.0200		116	70-130	2.09	25		
is-1,3-Dichloropropene	0.0195	0.0010	mg/Kg wet	0.0200		97.5	70-130	6.13	25		
ans-1,3-Dichloropropene	0.0195	0.0010	mg/Kg wet	0.0200		97.3	70-130	3.24	25		
liethyl Ether	0.0263	0.020	mg/Kg wet	0.0200		131 *		2.70	25	L-07	
iisopropyl Ether (DIPE)	0.0237	0.0010	mg/Kg wet	0.0200		118	70-130	4.41	25		
4-Dioxane	0,193	0.10	mg/Kg wet	0.200		96.4	40-160	1.51	50	V-16	
thylbenzene	0.0213	0.0020	mg/Kg wet	0.0200		106	70-130	2.76	25		
lexachlorobutadiene	0.0215	0.0020	mg/Kg wet	0.0200		107	70-160	3.03	25		
-Hexanone (MBK)	0.216	0.020	mg/Kg wet	0.200		108	70-160	9.08	25		
opropylbenzene (Cumene)	0.0247	0.0020	mg/Kg wet	0.0200		124	70-130	2.13	25		
Isopropyltoluene (p-Cymene)	0.0214	0.0020	mg/Kg wet	0.0200		107	70-130	1.22	25		
fethyl tert-Butyl Ether (MTBE)	0.0223	0.0040	mg/Kg wet	0.0200		112	70-130	8.80	25		
Aethylene Chloride	0.0213	0.020	mg/Kg wet	0.0200		106	40-160	3.83	25		
i-Methyl-2-pentanone (MIBK)	0.220	0.020	mg/Kg wet	0.200		110	70-160	10.1	25		
Vaphthalene	0.0222	0.0040	mg/Kg wet	0.0200		111	40-130	14.2	25		

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
3atch B008548 - SW-846 5035										
CS Dup (B008548-BSD1)				Prepared & /	Analyzed: 12	/18/09				
I-Propylbenzene	0.0225	0.0020	mg/Kg wet	0.0200		112	70-130	2.16	25	
ityrene	0.0211	0.0020	mg/Kg wet	0.0200		106	70-130	3.08	25	
,1,1,2-Tetrachloroethane	0.0184	0.0020	mg/Kg wet	0.0200		92.1	70-130	2.98	25	
,1,2,2-Tetrachloroethane	0.0220	0.0010	mg/Kg wet	0.0200		110	70-130	6.37	25	
Fetrachloroethylene	0.0222	0.0020	mg/Kg wet	0.0200		111	70-130	3.57	25	
Cetrahydrofuran	0.0211	0.010	mg/Kg wet	0.0200		106	70-130	11.6	25	V-16
Coluene	0.0218	0.0020	mg/Kg wet	0.0200		109	70-130	2.14	25	
,2,3-Trichlorobenzene	0.0202	0.0020	mg/Kg wet	0.0200		101	70-130	5.71	25	
,2,4-Trichlorobenzene	0.0200	0.0020	mg/Kg wet	0.0200		100	70-130	3.56	25	
,1,1-Trichlorocthane	0.0208	0.0020	mg/Kg wet	0.0200		104	70-130	2.73	25	
,1,2-Trichloroethane	0.0209	0.0020	mg/Kg wet	0.0200		105	70-130	4.99	25	
Frichloroethylene	0.0221	0.0020	mg/Kg wet	0.0200		110	70-130	5.11	25	
Frichlorofluoromethane (Freon 11)	0.0246	0.010	mg/Kg wet	0.0200		123	70-130	3.81	25	
,2,3-Trichloropropane	0.0177	0.0020	mg/Kg wet	0.0200		88.7	70-130	11.3	25	
,2,4-Trimethylbenzene	0.0200	0.0020	mg/Kg wet	0.0200		99.8	70-130	0.301	25	
,3,5-Trimethylbenzene	0.0216	0.0020	mg/Kg wet	0.0200		108	70-130	3.58	25	
/inyl Chłoride	0.0192	0.010	mg/Kg wet	0.0200		96.1	40-130	6.11	25	
n+p Xylene	0.0426	0.0040	mg/Kg wet	0.0400		106	70-130	3.54	25	
o-Xylene	0.0214	0,0020	mg/Kg wet	0.0200		107	70-130	3.22	25	
urrogate: 1,2-Dichloroethane-d4	0.0540		mg/Kg wet	0.0500		108	70-130			,
Surrogate: Toluene-d8	0.0520		mg/Kg wet	0.0500		104	70-130			
jurrogate: 4-Bromofluorobenzene	0.0507		mg/Kg wet	0.0500		101	70-130			
-	2	0.01 0.005		Duran and B	tashwadi 11	119/00				
Matrix Spike (B008548-MS1)	0.163	rce: 09L0487	mg/Kg dry	0.144	Analyzed: 12 NI		70-130			V-16
Accione	0.0140	0.00072	mg/Kg dry	0.0144	NI		70-130			
ert-Amyl Methyl Ether (TAME)	0.0140	0.00012	mg/Kg dry mg/Kg dry	0.0144	NI		70-130			
Benzene Bromobenzene	0.0134	0.0014	mg/Kg dry	0.0144	NI		70-130			
Bromochloromethane	0.0154	0.0014	mg/Kg dry	0.0144	NI		70-130			
	0.0132	0.0014	mg/Kg dry	0.0144	NI		70-130			
Bromodichloromethane Bromoform	0.0133	0.0072	mg/Kg dry	0.0144	NI		70-130			
sromotorm 3romomethane	0.0121	0.0072	mg/Kg dry	0.0144	NI		70-130			
	0.153	0.0072	mg/Kg dry	0.0144	NI		70-130			V-16
-Butanone (MEK)	0.133	0.029	mg/Kg dry mg/Kg dry	0.144	N		70-130			* 10
n-Butylbenzene	0.0142	0.0014	mg/Kg dry mg/Kg dry	0.0144	N		70-130			
see-Butylbenzene	0.0140	0.0014	mg/Kg dry	0.0144	NI		70-130			
ert-Butylbenzene							70-130			
ert-Butyl Ethyl Ether (TBEE)	0.0141	0.00072 0.0043	mg/Kg dry	0,0144	NI					
Carbon Disulfide	0.0158		mg/Kg dry	0.0144	N		70-130			
Carbon Tetrachloride	0.0106	0.0072	mg/Kg dry mg/Kg dry	0.0144	N		70-130			
Chlorobenzene	0.0138	0.0014	mg/Kg dry	0.0144	N		70-130			
Chlorodibromomethane	0.0155	0.00072	mg/Kg dry	0.0144	N		70-130			
Chloroethane	0.0166	0.014	mg/Kg dry	0.0144	N		70-130			
Chloroform	0.0158	0.0029	mg/Kg dry	0.0144	N		70-130			
Chloromethane	0.0132	0.0072	mg/Kg dry	0.0144	N		70-130			
2-Chlorotoluene	0.0143	0.0014	mg/Kg dry	0.0144	N		70-130			
I-Chlorotoluene	0.0143	0.0014	mg/Kg dry	0.0144	N		70-130			
I,2-Dibromo-3-chloropropane (DBCP)	0.0116	0.0072	mg/Kg dry	0.0144	N		70-130			
1,2-Dibromoethane (EDB)	0.0147	0.00072	mg/Kg dry	0.0144	N		70-130			
Dibromomethane	0.0153	0.0014	mg/Kg dry	0.0144	N		70-130			
1,2-Dichlorobenzene	0.0135	0.0014	mg/Kg dry	0.0144	N		70-130			
1,3-Dichlorobenzene	0.0131	0.0014	mg/Kg dry	0.0144	N		70-130			
1,4-Dichlorobenzene	0.0131	0.0014	mg/Kg dry	0.0144	N	D 90.7	70-130			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B008548 - SW-846 5035										
Matrix Spike (B008548-MS1)	Sou	rce: 09L0487	-03	Prepared & A	Analyzed: 12/1	8/09				
Dichlorodifluoromethane (Freon 12)	0.0107	0.014	mg/Kg dry	0.0144	ND	74.3	70-130			V-05
1,1-Dichloroethane	0.0158	0.0014	mg/Kg dry	0.0144	ND	109	70-130			
1,2-Dichloroethanc	0.0153	0.0014	mg/Kg dry	0.0144	ND	106	70-130			
1,1-Dichloroethylene	0.0162	0.0029	mg/Kg dry	0.0144	ND	113	70-130			
sis-1,2-Dichloroethylene	0.0144	0.0014	mg/Kg dry	0.0144	ND	100	70-130			
rans-1,2-Dichlorocthylene	0.0142	0.0014	mg/Kg dry	0.0144	ND	98.8	70-130			
,2-Dichloropropane	0.0149	0.0014	mg/Kg dry	0.0144	ND	104	70-130			
,3-Dichloropropane	0.0150	0.00072	mg/Kg dry	0.0144	ND	104	70-130			
2.2-Dichloropropane	0.0102	0.0014	mg/Kg dry	0.0144	ND	70.5	70-130			
,1-Dichloropropene	0.0152	0.0014	mg/Kg dry	0.0144	ND	106	70-130			
sis-1,3-Dichloropropene	0.0126	0.00072	mg/Kg dry	0.0144	ND	87.4	70-130			
rans-1,3-Dichloropropene	0.0120	0.00072	mg/Kg dry	0.0144	ND	83.4	70-130			
Diethyl Ether	0.0173	0.014	mg/Kg dry	0.0144	ND	120	70-130			
Disopropyl Ether (DIPE)	0.0160	0.00072	mg/Kg dry	0.0144	ND	11)	70-130			
,4-Dioxanc	0.178	0.072	mg/Kg dry	0.144	ND	123	70-130			V-16
Ethylbenzene	0.0143	0.0014	mg/Kg dry	0.0144	ND	99.3	70-130			
Icxachlorobutadiene	0.0123	0.0014	mg/Kg dry	0.0144	ND	85.2	70-130			
-Hexanone (MBK)	0.153	0.014	mg/Kg dry	0.144	ND	107	70-130			
sopropylbenzene (Cumenc)	0.0161	0.0014	mg/Kg dry	0.0144	ND	112	70-130			
-Isopropyltoluene (p-Cymene)	0.0138	0.0014	mg/Kg dry	0.0144	ND	95.8	70-130			
Acthyl tert-Butyl Ether (MTBE)	0.0147	0.0029	mg/Kg dry	0.0144	ND	102	70-130			
Aethylene Chloride	0.0145	0.014	mg/Kg dry	0.0144	7.20E-4	96.0	70-130			
-Methyl-2-pentanone (MJBK)	0.156	0.014	mg/Kg dry	0.144	ND	108	70-130			
Vaphthalene	0.0113	0.0029	mg/Kg dry	0.0144	ND	78.2	70-130			
-Propylbenzene	0.0148	0.0014	mg/Kg dry	0.0144	ND	102	70-130			
Styrene	0.0139	0.0014	mg/Kg dry	0.0144	ND	96.4	70-130			
1,1,1,2-Tetrachloroethane	0.0117	0.0014	mg/Kg dry	0.0144	ND	81.3	70-130			
,1,2,2-Tetrachloroethane	0.0156	0.00072	mg/Kg dry	0.0144	ND	108	70-130			
Fetrachloroethylene	0.0146	0.0014	mg/Kg dry	0.0144	ND	102	70-130			
Fetrahydrofuran	0.0152	0.0072	mg/Kg dry	0.0144	ND	106	70-130			V-16
Foluene	0.0148	0.0014	mg/Kg dry	0.0144	ND	103	70-130			
1,2,3-Trichlorobenzene	0.0116	0.0014	mg/Kg dry	0.0144	ND	80.5	70-130			
1,2,4-Trichlorobenzene	0.0122	0.0014	mg/Kg dry	0.0144	ND	84.5	70-130			
,1,1-Trichloroethane	0.0128	0.0014	mg/Kg dry	0.0144	ND	88.8	70-130			
1,1,2-Trichloroethane	0.0148	0.0014	mg/Kg dry	0.0144	ND	103	70-130			
frichloroethylenc	0.0148	0.0014	mg/Kg dry	0.0144	ND	103	70-130			
Frichlorofluoromethane (Freon 11)	0.0159	0.0072	mg/Kg dry	0.0144	ND	110	70-130			
,2,3-Trichloropropane	0.0128	0.0014	mg/Kg dry	0.0144	ND		70-130			
,2,4-Trimethylbenzene	0.0133	0.0014	mg/Kg dry	0.0144	ND		70-130			
,3,5-Trimethylbenzene	0.0141	0.0014	mg/Kg dry	0.0144	ND		70-130			
Vinyl Chloride	0.0121	0.0072	mg/Kg dry	0.0144	ND	84.3	70-130			
n+p Xylene	0.0282	0.0029	mg/Kg dry	0.0288	ND	97.8	70-130			
-Xylenc	0.0145	0.0014	mg/Kg dry	0.0144	ND	100	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.0386		mg/Kg dry	0.0360		107	70-130			
Surrogate: Toluene-d8	0.0375		mg/Kg dry	0.0360		104	70-130			
Surrogate: 4-Bromofluorobenzene	0.0359		mg/Kg dry	0.0360		99.7	70-130			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 FLAG/QUALIFIER SUMMARY

- * QC result is outside of established limits.
- t Wide recovery limits established for difficult compound.
- t Wide RPD limits established for difficult compound.
- # Data exceeded client recommended or regulatory level
 - Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
- L-07 Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.
- V-05 Continuing calibration did not meet method specifications and was biased on the low side for this compound.
- Significant uncertainty is associated with the reported value which is likely to be biased on the low side.
 V-16 Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy are associated with reported result.

CERTIFICATIONS

Certified Analyses included in this Report

rtified Analyses included in this Report	
Analyte	Certifications
V-846 8260B in Soil	
Acetone	CT,NH,NY
Benzene	CT,NH,NY
Bromobenzene	NH,NY
Bromochloromethane	NH,NY
Bromodichloromethane	CT,NH,NY
Bromoform	CT,NH,NY
Bromomethane	CT,NH,NY
2-Butanone (MEK)	CT,NH,NY
n-Butylbenzene	СТ, NH, NY
sec-Butylbenzene	CT,NH,NY
tert-Butylbenzene	СТ, NH, NY
Carbon Disulfide	CT,NH,NY
Carbon Tetrachloride	CT,NH,NY
Chlorobenzene	CT,NH,NY
Chlorodibromomethane	CT,NH,NY
Chloroethane	CT,NH,NY
Chloroform	CT,NH,NY
Chloromethane	CT,NH,NY
2-Chlorotoluene	CT,NH,NY
4-Chlorotoluene	CT,NH,NY
Dibromomethanc	NH,NY
1,2-Dichlorobenzene	CT,NH,NY
1,3-Dichlorobenzene	CT,NH,NY
1,4-Dichlorobenzene	CT,NH,NY
Dichlorodifluoromethane (Freon 12)	NY
I,1-Dichloroethane	CT,NH,NY
1,2-Dichloroethane	CT,NH,NY
1,1-Dichloroethylene	CT,NH,NY
cis-1,2-Dichloroethylene	CT,NH,NY
trans-1,2-Dichloroethylene	CT,NH,NY
1,2-Dichloropropane	CT,NH,NY
1,3-Dichloropropane	NH,NY
2,2-Dichloropropane	NH,NY
1,1-Dichloropropene	NH,NY
cis-1,3-Dichloropropene	CT,NH,NY
trans-1,3-Dichloropropene	CT,NH,NY
Ethylbenzene	CT,NH,NY
Hexachlorobutadiene	NH,NY
2-Hexanone (MBK)	CT,NH,NY
Isopropylbenzenc (Cumene)	CT,NH,NY
Methylene Chloride	СТ, NH, NY
4-Methyl-2-pentanone (MIBK)	CT,NH,NY
Naphthalenc	NENY
Styrene	CT,NH,NY
1,1,1,2-Tetrachloroethane	CT,NH,NY
1,1,2,2-Tetrachloroethane	CT,NH,NY
.,.,	3

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
5W-846 8260B in Soil		
Toluene	CT,NH,NY	
1,2,4-Trichlorobenzene	NH,NY	
1,1,1-Trichloroethane	CT,NH,NY	
1,1,2-Trichlorocthane	CT,NH,NY	
Trichloroethylene	CT,NH,NY	
Trichlorofluoromethane (Freon 11)	CT,NH,NY	
1,2,3-Trichloropropane	NH,NY	
1,2,4-Trimethylbenzene	CT,NH,NY	
1,3,5-Trimethylbenzene	CT,NH,NY	
Vinyl Chloride	CT,NH,NY	
m+p Xylene	CT,NH,NY	
o-Xylene	CT,NH,NY	

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	American Industrial Hygiene Association	100033	01/1/2012
MA	Massachusetts DEP	M-MA100	06/30/2010
СТ	Connecticut Department of Publile Health	PH-0567	09/30/2011
NY	New York State Department of Health	10899 NELAP	04/1/2010
NH	New Hampshire Environmental Lab	2516 NELAP	02/5/2010
RI	Rhode Island Department of Health	LAO00112	12/30/2010
NC	North Carolina Div. of Water Quality	652	12/31/2009
NJ	New Jersey DEP	MA007 NELAP	06/30/2010
FL.	Florida Department of Health	E871027 NELAP	06/30/2010
VŤ	Vermont Department of Health Lead Laboratory	LL015036	07/30/2010
WA	State of Washington Department of Ecology	C2065	03/23/2010

AIHA,
NELAC &
WBE/OBE
Certilles

INCOMMECT, TUMNAHOUND TIME WILL NOT START UNTIL ALL QUESTIONS ARE ANSWERED BY OUR CLIENT.

ETELY OR IS	er 0 = Other	O = other	STIONS ON YOUR CHAIN. IF TH	RE ARE QUES	* Require lab approval ECEIPT UNLESS THEF	* Requir	E DAY AFTER SAMPLE	TURMAROUND TIME STARTS AT 9:00 A.M. THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE QUESTIONS ON YOUR CHAIN. IF THIS FORM IS NOT FILLED OUT COMPLETELY OR IS	
sulfate		SL = sludge			U */2-Hr 🗆 *4-Day			Der Der Constructioner	2
id.		S = soll/solid	irements or DL's: See Que te	Special Requirements	0 ^24-Hr 0 *48-Hr			a to the week	
		A = air		1	HUSH	~~~~~		manuel of the second of the second	/
	er	DW= dri	ement Project/RCP?	Data Enhancement Pr	Other 5 / 4	~	107 V 100	Relinguisher we (signature)	II III
T = Na thiosulfate	WW= wastewater H = HCL	WW≃ wa			10-Day			increation of the statistical of the state o	THE CE
X = Na hydroxide	ater	GW= gro	Put.	Regulations?	7-Day		KIIIICY	- T	
) Codes:	Code: **Preservation Codes:	*Matrix Code:	Limit Requirements	Detection	Turnaround **		Date/Time/ K30	Heirigustation (1977)	
р ! 2-	C - Clean; U - Unknown	C - Clean	H - High; M - Medium; L - Low;			1			
ul ∨B →	in concentration in Matrix/Conc. Code Box:	rix/Conc.	be high in concentration in Matrix/Conc. Code Box:						
			Please use the following onles t	<u>.</u>				Laboratory Comments:	Labo
) <u>7</u> Ę									
					No.	2 0	- Torporat		
2011 73			N S	6-	1040	12/13/01	106	TRC-ESN	
			V V	V	1030	K	105	TAC- BTM-3	
(hanging)				· 1 Total Bay	1020		704	TRC - BTM-22	
labelled on					1015		20-1	TRL-BTM-Z	
Note 5 Sarple			S U S	6	0101		107	TRC-871-1	
<u>Client</u> Comments:			7	9	NA	bo/ ci/21	- 0	T.J	
			"Matrix Conc. Code Code	Comp- osite Grab	e Date Time	2 Start Date/Time	Lab # OULCUS	Field ID Sample Description	Field
O=Olifer			Ć s		S	Date	yes 🗖 no	Dyes ZIO 7 proposal date]
Three within the second						. [.] .	State Form Required?	Proposal Provided? (For Billing purposes)	Prop
v=vlai			XI GIS KEY	D PDF	S'EXCEL	Email: <i>"</i> Format:	Veteson	Sallphen by: J. Sunder S/V.	oan
P=plastic ST=sterile					× ×	Fax # :_	City Yourd)	ion: (ty of NB (Proj
C=glass				11 I	DATA DELIVERY (check one):		5	Attention: $\int \frac{duriN}{duriN} = \frac{\partial u u u}{\partial u} \frac{\partial u}{\partial u} \partial u$	Attei
-Cont Code	ANALYSIS REQUESTED	ANALY		1 mar and and	#	Client PO	01854	fourth MA	
-Cont.Com				15058		Project #	St.	Address: 550 Juttolle S	Addi
# of containers				656-352	Telephone:			y Name: TRC	Com
						a	www.contestlabs.com		
	39 SPRUCE ST, 2ND FLOOR EAST LONGMEADOW, MA 01028	39 SPRI EAST LI	RECO	CHAIN OF CUSTODY	CHAIN	abs.com	Phone: 413-525-2332 Fax: 413-525-6405 Email: info@contestlabs.com	ANALYTICAL LABORATORY	

₩ŵw.contestlabs.com	Sample R	con-test analytical Laborator eceipt Check	list	39 Spruce St. East Longmeadow, MA 01028 P: 413-525-2332 F: 413-525-6405
CLIENT NAME: TRC		_ RECEIVED BY:_	JDP	DATE: 12/17/09
 Was the chain(s) of custody in the chain agree with the lif not, explain: Does the chain agree with the lif not, explain: Are all the samples in good of lif not, explain: How were the samples received in Terms of the samples received in Terms of the samples received in Terms of the lift of lift of	e samples? ondition? ed: Sampling emperature Complia 2°C for the lab to filter? Date Date FHOLDING TIME sa	Ambient Ince of (2-6°C)? Temperature °C t Time Imples?	y Temp gun Yes No Yes No Yes No	Stored where:
) Location where samples are s	tored: [9			ntract samples? Yes No) if not already approved
) Location where samples are s		(Walk	-in clients only; Signature:	•
	Containers se	(Walk	-in clients only Signature:) if not already approved
` C	<u> 19 </u>	Client	i-in clients only Signature: n-Test) if not already approved
, C 1 Liter Amber	Containers se	Client	i-in clients only Signature: n-Test oz clear jar) if not already approved
C 1 Liter Amber 500 mL Amber	Containers se	Client	i-in clients only Signature: n-Test oz clear jar oz clear jar) if not already approved
1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber)	Containers se	Client	-in clients only Signature: n-Test oz clear jar oz clear jar oz clear jar) if not already approved
1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic	Containers se	Client	i-in clients only Signature: n-Test oz clear jar oz clear jar oz clear jar oz clear jar) if not already approved
C 1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic	Containers se	ent in to Co 8 4 2 0tt Plast	-in clients only Signature: n-Test oz clear jar oz clear jar oz clear jar oz clear jar oz clear jar oz clear jar) if not already approved
1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic	# of containers	Client Client ent in to Co 8 4 2 0 0 tt Plast	-in clients only Signature: n-Test oz clear jar oz clear jar oz clear jar oz clear jar c Bag / Ziploc r Cassette) if not already approved
1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL Plastic 250 mL plastic 40 mL Vial - type listed below	Containers se	Client Client ent in to Co 8 4 2 0 0 tt Plast	-in clients only Signature: n-Test oz clear jar oz clear jar oz clear jar oz clear jar c Bag / Ziploc r Cassette iss Sleeves) if not already approved
C 1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle	# of containers	Client Client ent in to Co 8 4 2 0 0 tt Plast Ai Bra	-in clients only Signature: n-Test oz clear jar oz clear jar oz clear jar c Bag / Ziploc r Cassette iss Sleeves Tubes) if not already approved
C 1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle	# of containers	Client Client ent in to Co 8 4 2 0 0 tr Plasti Ai Bra Su	-in clients only Signature: n-Test oz clear jar oz clear jar oz clear jar clear jar clear jar clear jar clear jar clear jar clear jar clear jar clear jar der glass star der glass jar der glass star der glas star der glas star der glas star der glas star der gla) if not already approved
C 1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle Flashpoint bottle	# of containers	Client Client ent in to Co 8 4 2 0 0 tr Plasti Ai Bra Su	-in clients only Signature: n-Test oz clear jar oz clear jar oz clear jar c Bag / Ziploc r Cassette iss Sleeves Tubes) if not already approved
C 1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle	# of containers	ent in to Co 8 4 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1	-in clients only Signature: n-Test oz clear jar oz clear jar oz clear jar oz clear jar c Bag / Ziploc r Cassette iss Sleeves Tubes mma Cans egulators) if not already approved
C 1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle Flashpoint bottle	# of containers	Client Client ent in to Co 8 4 2 0 0 tr Plasti Ai Bra Su	-in clients only Signature: n-Test oz clear jar oz clear jar oz clear jar oz clear jar c Bag / Ziploc r Cassette iss Sleeves Tubes mma Cans egulators) if not already approved # of containers
C 1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle Flashpoint bottle Encore boratory Comments:	interimental de la contrainer de la container	ent in to Co 8 4 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1	-in clients only Signature: n-Test oz clear jar oz clear jar oz clear jar oz clear jar c Bag / Ziploc r Cassette iss Sleeves Tubes mma Cans egulators) if not already approved
C 1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle Flashpoint bottle Encore	/ 8	ent in to Co 8 4 2 Ott Plasti Ai Bra Su R	i-in clients only Signature: n-Test oz clear jar oz clear jar oz clear jar oz clear jar oz clear jar oz clear jar c Bag / Ziploc r Cassette iss Sleeves Tubes mma Cans egulators Other) if not already approved # of containers

Page 32 of 3B

		MADEP MCF	P Analytical Method I	Report Certifi	cation Form				
Labo	ratory Name: C	on-Test Analytical	Laboratory		Project #: 09L0)487			
Proje	Project Location: City Of New Bedford MADEP RTN11:								
	This Form provides certifications for the following data set: [list Laboratory Sample ID Number(s)] 09L0487-01 thru 09L0487-06								
Sam	ple Matrices: So	il							
МС	P SW-846	7470A/1	A()						
1	MCP SW-846 Methods Used 8270C() 8081A() VPH() 6020() 9014M²()								
	specified in MADEP 8082 () 8021B () EPH () 7000 S ³ () 7196A ()								
Analy	Compendium of I I I Analytical Methods. 1 List Release Tracking Number (RTN), if known 2 M SW-846 Method 9014 or MADEP Physiologically Available Cyanide (PAC) Method (check all that apply) 3 S SW-846 Methods 7000 Series List individual method and analyte								
An affirmative response to questions A, B, C and D is required for "Presumptive Certainty" status									
A Were all samples received by the laboratory in a condition consistent with that described on the Chain-of-Custody documentation for the data set?							□No¹		
В	B Were all QA/QC procedures required for the specified analytical method(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?								
C Does the data included in this report meet all the analytical requirements for "Presumptive Certainty", as described in Section 2.0 (a), (b), (c) and (d) of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?							□No ¹		
D							□No¹		
	A response to q	uestions E and F	below is required for	""Presumptive	e Certainty" status				
E	Were all analytical specified methods		standards and recomn	nendations for	the	□ Yes	⊡No¹		
F							□No¹		
¹ A//	Negative response	s must be address	ed in an attached Env	ironmental Lal	boratory case narra	tive.			
inq	uiry of those respo	onsible for obtaini	ns and penalties of p ng the information, ti and belief, accurate a	he material co					
Si	gnature:	-m c	caden-	Position:	Laboratory Director				
Pri	inted Name:	Michael A. Erickso	n	Date:	12/23/09				

DAVID SULLIVAN	17				
TRC SOLUTIONS	G - LOWELL			6	27/2008
650 SUFFOLK ST	REET			P	age 19 of 32
LOWELL, MA 018	52	Purchase Order No .:	1.0		J
Project Location:	CITY OF NEW BEDFORD			LIMS-BAT #:	LIMT-16916
Date Received:	6/18/2008			Job Number:	115058(EDGEOFF
Field Sample # :	SB-210-5				
Sample ID :	08B21995	‡Sampled : 6/16/2008			
		Not Specified			

Sample Matrix: SOIL

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/F
Acenaphthene	mg/kg dry wt	ND	06/24/08	BGL	0.231			
Acenaphthylene	mg/kg dry wt	ND	06/24/08	BGL	0.231			
Anthracene	mg/kg dry wt	ND	06/24/08	BGL	0.231			
Benzo(a)anthracene	mg/kg dry wt	ND	06/24/08	BGL	0.231			
Benzo(a)pyrene	mg/kg dry wt	ND	06/24/08	BGL	0.231			
Benzo(b)fluoranthene	mg/kg dry wt	ND	06/24/08	BGL	0.231			
Benzo(g,h,i)perylene	mg/kg dry wt	ND	06/24/08	BGL	0.231			
Benzo(k)fluoranthene	mg/kg dry wt	ND	06/24/08	BGL	0.231			
Chrysene	mg/kg dry wt	ND	06/24/08	BGL	0.231			
Dibenz(a,h)anthracene	mg/kg dry wt	ND	06/24/08	BGL	0.231			
Fluoranthene	mg/kg dry wt	0.293	06/24/08	BGL	0.231			
Fluorene	mg/kg dry wt	ND	06/24/08	BGL	0.231			
Indeno(1,2,3-cd)pyrene	mg/kg dry wt	ND	06/24/08	BGL	0.231			
2-Methylnaphthalene	mg/kg dry wt	ND	06/24/08	BGL	0.231			
Naphthalene	mg/kg dry wt	ND	06/24/08	BGL	0.231			
Phenanthrene	mg/kg dry wt	ND	06/24/08	BGL	0.231			
Pyrene	mg/kg dry wt	0.337	06/24/08	BGL	0.231			
Extraction Date 8270		6/19/2008	06/24/08	BGL				

Analytical Method:

SW846 8270

SAMPLES ARE EXTRACTED IN METHYLENE CHLORIDE/ACETONE AND FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR BENZOIC ACID AND PENTACHLORONITROBENZENE ARE ESTIMATED SINCE RESPONSE FACTOR FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

* = See end of report for comments and notes applying to this sample

‡ = See attached chain-of-custody record for time sampled

39 Spruce Street ° East Longmeadow,	MA 0	01028 ° FAX	413/525-6405 °	TEL. 413/525-2332
-------------------------------------	------	-------------	----------------	-------------------

DAVID SULLIVAN				
TRC SOLUTIONS	- LOWELL		6/	27/2008
650 SUFFOLK ST	REET		P	age 20 of 32
LOWELL, MA 018	52	Purchase Order No.:		
Project Location:	CITY OF NEW BEDFORD		LIMS-BAT #:	LIMT-16916
Date Received:	6/18/2008		Job Number:	115058(EDGEOFF
Field Sample # :	SB-212-4			
Sample ID :	08B21996	‡Sampled : 6/16/2008		2
		Not Specified		
Sample Matrix:	SOIL			

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/F
Acenaphthene	mg/kg dry wt	ND	06/24/08	BGL	0.218			
Acenaphthylene	mg/kg dry wt	ND	06/24/08	BGL	0.218			
Anthracene	mg/kg dry wt	ND	06/24/08	BGL	0.218			
Benzo(a)anthracene	mg/kg dry wt	0.284	06/24/08	BGL	0.218			
Benzo(a)pyrene	mg/kg dry wt	0.267	06/24/08	BGL	0.218			
Benzo(b)fluoranthene	mg/kg dry wt	0.363	06/24/08	BGL	0.218			
Benzo(g,h,i)perylene	mg/kg dry wt	ND	06/24/08	BGL	0.218			
Benzo(k)fluoranthene	mg/kg dry wt	ND -	06/24/08	BGL	0.218			
Chrysene	mg/kg dry wt	0.314	06/24/08	BGL	0.218			
Dibenz(a,h)anthracene	mg/kg dry wt	ND	06/24/08	BGL	0.218			
Fluoranthene	mg/kg dry wt	0.450	06/24/08	BGL	0.218			
Fluorene	mg/kg dry wt	ND	06/24/08	BGL	0,218			
Indeno(1,2,3-cd)pyrene	mg/kg dry wt	ND	06/24/08	BGL	0.218			
2-Methylnaphthalene	mg/kg dry wt	ND	06/24/08	BGL	0.218			
Naphthalene	mg/kg dry wt	ND	06/24/08	BGL	0.218			
Phenanthrene	mg/kg dry wt	0.326	06/24/08	BGL	0.218			
Pyrene	mg/kg dry wt	0.437	06/24/08	BGL	0.218			
Extraction Date 8270		6/19/2008	06/24/08	BGL				

Analytical Method:

SW846 8270

SAMPLES ARE EXTRACTED IN METHYLENE CHLORIDE/ACETONE AND FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR BENZOIC ACID AND PENTACHLORONITROBENZENE ARE ESTIMATED SINCE RESPONSE FACTOR FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

* = See end of report for comments and notes applying to this sample

DAVID SULLIVAN TRC SOLUTIONS 650 SUFFOLK ST LOWELL, MA 018	- LOWELL REET	Ρ	Purchase Order 1	No.:						2008 21 of 32		
Project Location: Date Received: Field Sample # :	CITY OF NEW BI 6/18/2008 SB-212-D	EDFORD						BAT #: umber:		IMT-16916 15058(EDG	EOF	F
Sample ID :	08B21997	‡Sample Not Spe	ed : 6/16/2008 cified									
Sample Matrix:	SOIL											4
		Units	Results	Date Analyzed	Analyst	RL	S Lo	PEC Li	mit Hi	P/ F		2
Acenaphthene		mg/kg dry wt	ND	06/24/08	BGL	0.222						
Acenaphthylene		mg/kg dry wt	ND	06/24/08	BGL	0.222						
Anthracene		mg/kg dry wt	ND	06/24/08	BGL	0.222						
Benzo(a)anthracer	ne	mg/kg dry wt	0.448	06/24/08	BGL	0.222						

			-		
Acenaphthene	mg/kg dry wt	ND	06/24/08	BGL	0.222
Acenaphthylene	mg/kg dry wt	ND	06/24/08	BGL	0.222
Anthracene	mg/kg dry wt	ND	06/24/08	BGL	0.222
Benzo(a)anthracene	mg/kg dry wt	0.448	06/24/08	BGL	0.222
Benzo(a)pyrene	mg/kg dry wt	0.435	06/24/08	BGL	0.222
Benzo(b)fluoranthene	mg/kg dry wt	0.604	06/24/08	BGL	0.222
Benzo(g,h,i)perylene	mg/kg dry wt	ND	06/24/08	BGL	0.222
Benzo(k)fluoranthene	mg/kg dry wt	0,237	06/24/08	BGL	0.222
Chrysene	mg/kg dry wt	0.501	06/24/08	BGL	0.222
Dibenz(a,h)anthracene	mg/kg dry wt	ND	06/24/08	BGL	0.222
Fluoranthene	mg/kg dry wt	0.810	06/24/08	BGL	0.222
Fluorene	mg/kg dry wt	ND	06/24/08	BGL	0.222
Indeno(1,2,3-cd)pyrene	mg/kg dry wt	0.261	06/24/08	BGL	0.222
2-Methylnaphthalene	mg/kg dry wt	ND	06/24/08	BGL	0.222
Naphthalene	mg/kg dry wt	ND	06/24/08	BGL	0.222
Phenanthrene	mg/kg dry wt	0,459	06/24/08	BGL	0.222
Pyrene	mg/kg dry wt	0.599	06/24/08	BGL	0.222
Extraction Date 8270		6/19/2008	06/24/08	BGL	

Analytical Method:

SW846 8270

SAMPLES ARE EXTRACTED IN METHYLENE CHLORIDE/ACETONE AND FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR BENZOIC ACID AND PENTACHLORONITROBENZENE ARE ESTIMATED SINCE RESPONSE FACTOR FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

INIVI – NUL Measureu

* = See end of report for comments and notes applying to this sample

39 Spruce Street ° East Longmeadow, M	MA 01028 °	° FAX 413/525-6405 °	TEL. 413/525-2332
---------------------------------------	------------	----------------------	-------------------

Purchase Order No.:

6/27/2008

Job Number: 115058(EDGEOFF

LIMS-BAT #: LIMT-16916

Page 22 of 32

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL 650 SUFFOLK STREET

LOWELL, MA 01852

Project Location: CITY OF NEW BEDFORD Date Received: 6/18/2008

Field Sample # : SB-214-4 Sample ID :

08B22000

‡Sampled : 6/17/2008 Not Specified

Sample Matrix: SOIL

	Units	Results	Date	Analyst	RL	SPEC	Limit	P/F
			Analyzed			Lo	Hi	
Acenaphthene	mg/kg dry wt	ND	06/24/08	BGL	1.02			
Acenaphthylene	mg/kg dry wt	ND	06/24/08	BGL	1.02			
Anthracene	mg/kg dry wt	1.23	06/24/08	BGL	1.02			
Benzo(a)anthracene	mg/kg dry wt	3.95	06/24/08	BGL	1.02			
Benzo(a)pyrene	mg/kg dry wt	3.57	06/24/08	BGL	1.02			
Benzo(b)fluoranthene	mg/kg dry wt	4.25	06/24/08	BGL	1.02			
Benzo(g,h,i)perylene	mg/kg dry wt	1.49	06/24/08	BGL	1.02			
Benzo(k)fluoranthene	mg/kg dry wt	1.81	06/24/08	BGL	1.02			
Chrysene	mg/kg dry wt	3.97	06/24/08	BGL	1.02			
Dibenz(a,h)anthracene	mg/kg dry wt	ND	06/24/08	BGL	1.02			
Fluoranthene	mg/kg dry wt	5.52	06/24/08	BGL	1.02			
Fluorene	mg/kg dry wt	ND	06/24/08	BGL	1.02			
Indeno(1,2,3-cd)pyrene	mg/kg dry wt	1.97	06/24/08	BGL	1.02			
2-Methylnaphthalene	mg/kg dry wt	ND	06/24/08	BGL	1.02			
Naphthalene	mg/kg dry wt	ND	06/24/08	BGL	1.02			
Phenanthrene	mg/kg dry wt	4.16	06/24/08	BGL	1.02			
Pyrene	mg/kg dry wt	5.90	06/24/08	BGL	1.02			
Extraction Date 8270		6/19/2008	06/24/08	BGL				

Analytical Method:

SW846 8270

SAMPLES ARE EXTRACTED IN METHYLENE CHLORIDE/ACETONE AND

FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR BENZOIC ACID AND PENTACHLORONITROBENZENE ARE ESTIMATED SINCE RESPONSE FACTOR FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

* = See end of report for comments and notes applying to this sample

39 Spruce Street ° East Longmeadow, M/	01028 ° FAX 413/525-6405 ° TEL.	. 413/525-2332
--	---------------------------------	----------------

			.,					
DAVID SULLIVAN TRC SOLUTIONS 650 SUFFOLK S	S - LOWELL TREET	÷						27/2008 age 23 of 32
LOWELL, MA 018			Purchase Order	NO.:				
Project Location: Date Received: Field Sample # :	6/18/2008	W BEDFORD					LIMS-BAT #: Job Number:	LIMT-16916 115058(EDGEOFF
Sample ID :	08B22001	‡Samp	led : 6/17/2008					
		Not Spe	ecified					
Sample Matrix:	SOIL							
		Units	Results	Date Analyzed	Analyst	RL	SPEC Lim Lo H	
Acenaphthene		mg/kg dry wt	ND	06/25/08	BGL	0.186		
Acenaphthylene		mg/kg dry wt	ND	06/25/08	BGL	0.186		
Anthracene		mg/kg dry wt	0,197	06/25/08	BGL	0.186		
Benzo(a)anthrace	ene	mg/kg dry wt	0.643	06/25/08	BGL	0.186		
Benzo(a)pyrene		mg/kg dry wt	0,698	06/25/08	BGL	0.186		
Benzo(b)fluoranth	iene	mg/kg dry wt	0.835	06/25/08	BGL	0,186		
Benzo(g,h,i)peryle	ene	mg/kg dry wt	0.414	06/25/08	BGL	0.186		
Benzo(k)fluoranth	iene	mg/kg dry wt	0.339	06/25/08	BGL	0.186		
Chrysene		mg/kg dry wt	0.676	06/25/08	BGL	0.186		
Dibenz(a,h)anthra	icene	mg/kg dry wt	ND	06/25/08	BGL	0.186		
Fluoranthene		mg/kg dry wt	1.60	06/25/08	BGL	0.186		
Fluorene		mg/kg dry wt	ND	06/25/08	BGL	0.186		
Indeno(1,2,3-cd)p	yrene	mg/kg dry wt	0.490	06/25/08	BGL	0.186		
2-Methylnaphthal	ene	mg/kg dry wt	ND	06/25/08	BGL	0.186		
Naphthalene		mg/kg dry wt	ND	06/25/08	BGL	0.186		
Phenanthrene		mg/kg dry wt	0.799	06/25/08	BGL	0.186		
Pyrene		mg/kg dry wt	1.20	06/25/08	BGL	0.186		
Extraction Date 8	270		6/19/2008	06/25/08	BGL			

Analytical Method:

SW846 8270

SAMPLES ARE EXTRACTED IN METHYLENE CHLORIDE/ACETONE AND FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR BENZOIC ACID AND PENTACHLORONITROBENZENE ARE ESTIMATED SINCE RESPONSE FACTOR FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

÷

NM = Not Measured

* = See end of report for comments and notes applying to this sample

39 Spruce Street ° East Longmeadow	, MA	01028 ° FAX	(413/525-64	405 ° TEL.	413/525-2332
------------------------------------	------	-------------	--------------	------------	--------------

DAVID SULLIVAN TRC SOLUTIONS 650 SUFFOLK ST	- LOWELL				27/2008 age 24 of 32
LOWELL, MA 018		Purchase Order No .:			0
Project Location: Date Received: Field Sample # :	CITY OF NEW BEDFORD 6/18/2008 SB-217-5		×.	LIMS-BAT #: Job Number:	LIMT-16916 115058(EDGEOFF
Sample ID :	08B22002	‡Sampled : 6/17/2008 Not Specified			
Sample Matrix:	SOIL				

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lim Lo H	
Acenaphthene	mg/kg dry wt	ND	06/26/08	BGL	0.229		
Acenaphthylene	mg/kg dry wt	ND	06/26/08	BGL	0.229		
Anthracene	mg/kg dry wt	ND	06/26/08	BGL	0.229		
Benzo(a)anthracene	mg/kg dry wt	0.643	06/26/08	BGL	0.229		
Benzo(a)pyrene	mg/kg dry wt	0.410	06/26/08	BGL	0.229		
Benzo(b)fluoranthene	mg/kg dry wt	0.710	06/26/08	BGL	0.229		
Benzo(g,h,i)perylene	mg/kg dry wt	0.367	06/26/08	BGL	0.229		
Benzo(k)fluoranthene	mg/kg dry wt	0.243	06/26/08	BGL	0.229		
Chrysene	mg/kg dry wt	0.810	06/26/08	BGL	0.229		
Dibenz(a,h)anthracene	mg/kg dry wt	ND	06/26/08	BGL	0.229		
Fluoranthene	mg/kg dry wt	1.05	06/26/08	BGL	0.229		
Fluorene	mg/kg dry wt	ND	06/26/08	BGL	0.229		
Indeno(1,2,3-cd)pyrene	mg/kg dry wt	0.380	06/26/08	BGL	0.229		
2-Methylnaphthalene	mg/kg dry wt	ND	06/26/08	BGL	0.229		
Naphthalene	mg/kg dry wt	ND	06/26/08	BGL	0.229		
Phenanthrene	mg/kg dry wt	0.930	06/26/08	BGL	0.229		
Pyrene	mg/kg dry wt	1.11	06/26/08	BGL	0.229		
Extraction Date 8270		06/25/2008	06/26/08	BGL			

Analytical Method:

SW846 8270

SAMPLES ARE EXTRACTED IN METHYLENE CHLORIDE/ACETONE AND FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR BENZOIC ACID AND PENTACHLORONITROBENZENE ARE ESTIMATED SINCE RESPONSE FACTOR FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

* = See end of report for comments and notes applying to this sample

.

Purchase Order No.:

6/27/2008

Job Number: 115058(EDGEOFF

LIMS-BAT #: LIMT-16916

Page 25 of 32

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL 650 SUFFOLK STREET

LOWELL, MA 01852

Project Location: CITY OF NEW BEDFORD

Date Received:6/18/2008Field Sample # :SB-219-4

Sample ID : 08B22003

‡Sampled : 6/17/2008 Not Specified

Sample Matrix: SOIL

	Units	Results	Date Analyzed	Analyst	RL	SPEC Limit Lo Hi	P/F
Acenaphthene	mg/kg dry wt	ND	06/25/08	BGL	1.14		
Acenaphthylene	mg/kg dry wt	ND	06/25/08	BGL	1.14		
Anthracene	mg/kg dry wt	ND	06/25/08	BGL	1.14		
Benzo(a)anthracene	mg/kg dry wt	ND	06/25/08	BGL	1,14		
Benzo(a)pyrene	mg/kg dry wt	ND	06/25/08	BGL	1.14		
Benzo(b)fluoranthene	mg/kg dry wt	ND	06/25/08	BGL	1.14		
Benzo(g,h,i)perylene	mg/kg dry wt	ND	06/25/08	BGL	1,14		
Benzo(k)fluoranthene	mg/kg dry wt	ND	06/25/08	BGL	1.14		
Chrysene	mg/kg dry wt	ND	06/25/08	BGL	1.14		
Dibenz(a,h)anthracene	mg/kg dry wt	ND	06/25/08	BGL	1.14		
Fluoranthene	mg/kg dry wt	ND	06/25/08	BGL	1.14		
Fluorene	mg/kg dry wt	ND	06/25/08	BGL	1.14		
Indeno(1,2,3-cd)pyrene	mg/kg dry wt	ND	06/25/08	BGL	1.14		
2-Methylnaphthalene	mg/kg dry wt	ND	06/25/08	BGL	1.14		
Naphthalene	mg/kg dry wt	ND	06/25/08	BGL	1.14		
Phenanthrene	mg/kg dry wt	ND	06/25/08	BGL	1.14		
Pyrene	mg/kg dry wt	ND	06/25/08	BGL	1.14		
Extraction Date 8270		6/19/2008	06/25/08	BGL			

Analytical Method:

SW846 8270

SAMPLES ARE EXTRACTED IN METHYLENE CHLORIDE/ACETONE AND

FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR BENZOIC ACID AND PENTACHLORONITROBENZENE ARE ESTIMATED SINCE RESPONSE FACTOR FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

* = See end of report for comments and notes applying to this sample

39 Spruce Street ° East Longmeadow, MA 01028 ° FAX 413/525-6405 ° TEL: 413/525-233
--

Purchase Order No.:

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL 650 SUFFOLK STREET

LOWELL, MA 01852

Project Location: CITY OF NEW BEDFORD

Date Received: 6/18/2008

Field Sample #: SB-221-5

Sample ID : 08B22004 ‡Sampled : 6/17/2008 Not Specified

Sample Matrix: SOIL

	Units	Results	Date	Analyst	RL	SPEC Limit	P/F
			Analyzed			Lo Hi	
cenaphthene	mg/kg dry wt	ND	06/25/08	BGL	0.178		
cenaphthylene	mg/kg dry wt	ND	06/25/08	BGL	0.178		
Inthracene	mg/kg dry wt	ND	06/25/08	BGL	0.178		
Senzo(a)anthracene	mg/kg dry wt	ND	06/25/08	BGL	0.178		
enzo(a)pyrene	mg/kg dry wt	ND	06/25/08	BGL	0.178		
Senzo(b)fluoranthene	mg/kg dry wt	ND	06/25/08	BGL	0.178		
lenzo(g,h,i)perylene	mg/kg dry wt	ND	06/25/08	BGL	0.178		
enzo(k)fluoranthene	mg/kg dry wt	ND	06/25/08	BGL	0.178		
Chrysene	mg/kg dry wt	ND	06/25/08	BGL	0.178		
)ibenz(a,h)anthracene	mg/kg dry wt	ND	06/25/08	BGL	0.178		
luoranthene	mg/kg dry wt	ND	06/25/08	BGL	0.178		
luorene	mg/kg dry wt	ND	06/25/08	BGL	0.178		
ndeno(1,2,3-cd)pyrene	mg/kg dry wt	ND	06/25/08	BGL	0.178		
-Methylnaphthalene	mg/kg dry wt	ND	06/25/08	BGL	0.178	4	
laphthalene	mg/kg dry wt	ND	06/25/08	BGL	0.178		
Phenanthrene	mg/kg dry wt	ND	06/25/08	BGL	0,178		
yrene	mg/kg dry wt	ND	06/25/08	BGL	0.178		
Extraction Date 8270		6/19/2008	06/25/08	BGL			

Analytical Method:

SW846 8270

SAMPLES ARE EXTRACTED IN METHYLENE CHLORIDE/ACETONE AND

FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR BENZOIC ACID AND PENTACHLORONITROBENZENE ARE ESTIMATED SINCE RESPONSE FACTOR FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

* = See end of report for comments and notes applying to this sample

‡ = See attached chain-of-custody record for time sampled

6/27/2008 Page 28 of 32

LIMS-BAT #: LIMT-16916 Job Number: 115058(EDGEOFF

Laboratory Name:	Northeast Analytical, Inc.	
ELAP ID No:	11078	
Matrix:	Soil	
Sample wt(Dry)/vol:	8.4589 g	Lat
Percent Moisture:	19.6	Da
Extraction:	SOXHLET	Dat
Conc. Extract Volume:	25000 uL	Dat
Method:	SW-846 8082 (PCB)	Dilu

SDG No:	08060171	
LRF ID:	08060171-18	
Client ID:	SB-210-5	
Lab Sample ID:	AL09987	
Date Received:	06/19/2008	
Date Extracted:	06/19/2008	
Date Analyzed:	06/23/2008	
Dilution Factor:	1	
Sulfur Cleanup:	YES	

Column 1 Information:

GC Column: Phenomenex Ca	pillary, MultiResidue-1, 30m; ID: 0;25mm; 0.25um	
Injection Volume:	1.0 uL	
Lab File ID:	GC20F-196-27	
A		85

Column 2 Information:

GC Column: Phenomenex Capillary, MultiResidue-2, 30m; ID: 0.25mm; 0.20um			
Injection Volume:	1.0 uL		
Lab File ID:	GC20B-156-29		

Column Number	CAS NO	COMPOUND NAME	CONCENTRATION UG/G	Q
1	12674-11-2	Aroclor 1016	0.0591	U
1	11104-28-2	Aroclor 1221	0.0591	U
1	11141-16-5	Aroclor 1232	0.0591	U
1	53469-21-9	Aroclor 1242	0.0591	U
1	12672-29-6	Aroclor 1248	0.0591	U
1	11097-69-1	Aroclor 1254	0.0591	U
1	11096-82-5	Aroclor 1260	0.0591	U

Laboratory Qualifiers:

U - Denotes analyte not detected at concentration greater than or equal to the Practical Quantitation Limit (PQL). PQLs are adjusted for sample weight/volume and dilution factors.

FORM I-CLP-PCB (NEA)

08060171.PDF

Laboratory Name:	Northeast Analytical, Inc.
ELAP ID No:	11078
Matrix:	Soil
Sample wt(Dry)/vol:	8.5632 g
Percent Moisture:	16.7
Extraction:	SOXHLET
Conc. Extract Volume:	25000 uL
Method:	SW-846 8082 (PCB)

SDG No: _	08060171
LRF ID:	08060171-19
Client ID:	SB-210-11
Lab Sample ID:	AL09988
Date Received:	06/19/2008
Date Extracted:	06/19/2008
Date Analyzed:	06/23/2008
Dilution Factor:	1
Sulfur Cleanup:	YES

Column 1 Information:

GC Column: Phenomenex Ca	pillary, MultiResidue-1, 30m; ID: 0.25mm; 0.25um	
Injection Volume:	1.0 uL	
Lab File ID:	GC20F-196-28	
·		

Column 2 Information:

GC Column: Phenome	Phenomenex Capillary, MultiResidue-2, 30m; ID: 0.25mm; 0.20um	
Injection Volume:	1.0 uL	
Lab File ID:	GC20B-156-30	

Column Number	CAS NO	COMPÓUND NAME	CONCENTRATION UG/G	Q
1	12674-11-2	Aroclor 1016	0.0584	U
1	11104-28-2	Aroclor 1221	0.0584	U
1	11141-16-5	Aroclor 1232	0.0584	U
1	53469-21-9	Aroclor 1242	0.0584	U
1	12672-29-6	Aroclor 1248	0.0584	U
1	11097-69-1	Aroclor 1254	0.0584	U
1	11096-82-5	Aroclor 1260	0.0584	U

Laboratory Qualifiers:

U - Denotes analyte not detected at concentration greater than or equal to the Practical Quantitation Limit (PQL). PQLs are adjusted for sample weight/volume and dilution factors.

Print Date: 07/02/2008 Nea Lims Version : 4,4,0,3

Laboratory Name:	Northeast Analytical, Inc.	
ELAP ID No:	11078	_
Matrix:	Soil	
Sample wt(Dry)/vol:	7.5487 g	
Percent Moisture:	29.0	
Extraction:	SOXHLET	
Conc. Extract Volume:	25000 uL	
Method:	SW-846 8082 (PCB)	_
		-

SDG No:	08060172
LRF ID:	08060172-01
Client ID:	SB-211-5
Lab Sample ID:	AL09990
Date Received:	06/19/2008
Date Extracted:	06/23/2008
Date Analyzed:	06/25/2008
Dilution Factor:	1
Sulfur Cleanup: _	YES

Column 1 Information:

GC Column: Phenomenex	Capillary, MultiResidue-1, 30m; ID: 0.25mm; 0.25um	
Injection Volume:	1.0 uL	
Lab File ID:	GC20F-198-16	

Column 2 Information:

GC Column: Phenomenex Capillary, MultiResidue-2, 30m; ID: 0,25mm; 0.20um		
Injection Volume:	1.0 uL	
Lab File ID:	GC20B-158-16	

Column Number	CAS NO	COMPOUND NAME	CONCENTRATION UG/G	Q
1	12674-11-2	Aroclor 1016	0.0662	U
1	11104-28-2	Aroclor 1221	0.0662	U
1	11141-16-5	Aroclor 1232	0.0662	U
1	53469-21-9	Aroclor 1242	0.0662	U
-1	12672-29-6	Aroclor 1248	0.0662	U
1	11097-69-1	Aroclor 1254	0.0662	U
1	11096-82-5	Aroclor 1260	0.0662	U

Laboratory Qualifiers: U - Denotes analyte not detected at concentration greater than or equal to the Practical Quantitation Limit (PQL), PQLs are adjusted for sample weight/volume and dilution factors.

FORM I-CLP-PCB (NEA)

Northeast Analytical, Inc.
11078
Soil
9.1769 g
11.3
SOXHLET
25000 uL
SW-846 8082 (PCB)

SDG No:	08060172
LRF ID:	08060172-02
Client ID:	SB-211-11
Lab Sample ID:	AL09991
Date Received:	06/19/2008
Date Extracted:	06/23/2008
Date Analyzed:	06/26/2008
Dilution Factor:	1
Sulfur Cleanup:	YES

Column 1 Information:

GC Column: Phenomenex Ca	apillary, MultiResidue-1, 30m; ID: 0.25mm; 0.25um	
Injection Volume:	1.0 uL	3
Lab File ID:	GC20F-198-19	

Column 2 Information:

GC Column: Phenomenex Capillary, MultiResidue-2, 30m; ID: 0.25mm; 0.20um		
Injection Volume:	1.0 uL	
Lab File ID:	GC20B-158-19	

Column Number	CAS NO	COMPOUND NAME	CONCENTRATION UG/G	Q
1	12674-11-2	Aroclor 1016	0.0545	U
1	11104-28-2	Aroclor 1221	0.0545	U
1	11141-16-5	Aroclor 1232	0.0545	U
1	53469-21-9	Aroclor 1242	0.0545	U
1	12672-29-6	Aroclor 1248	0.0545	U
1	11097-69-1	Aroclor 1254	0.0545	U
1	11096-82-5	Aroclor 1260	0.0545	U ·

Laboratory Qualifiers:

U - Denotes analyte not detected at concentration greater than or equal to the Practical Quantitation Limit (PQL). PQLs are adjusted for sample weight/volume and dilution factors.

FORM I-CLP-PCB (NEA)

Laboratory Name:	Northeast Analytical, Inc.
ELAP ID No:	11078
Matrix:	Soil
Sample wt(Dry)/vol:	7.6331 g
Percent Moisture:	27.2
Extraction:	SOXHLET
Conc. Extract Volume:	25000 uL
Method:	SW-846 8082 (PCB)

SDG No:	08060172
LRF ID:	08060172-04
Client ID:	SB-212-4
Lab Sample ID:	AL09993
Date Received:	06/19/2008
Date Extracted:	06/23/2008
Date Analyzed:	06/26/2008
Dilution Factor:	1
Sulfur Cleanup:	YES

Column 1 Information:

GC Column: Phenomenex Capillary, MultiResidue-1, 30m; ID: 0.25mm; 0.25um				
Injection Volume:	1.0 uL			
Lab File ID:	GC20F-198-20			

Column 2 Information:

GC Column: Phenomenex Capillary, MultiResidue-2, 30m; ID: 0.25mm; 0.20um				
Injection Volume:	1.0 uL			
Lab File ID:	GC20B-158-20			

Column Number	CAS NO	COMPOUND NAME	CONCENTRATION UG/G	Q
1	12674-11-2	Aroclor 1016	0.0655	U -
1	11104-28-2	Aroclor 1221	0.0655	U
1	11141-16-5	Aroclor 1232	0.0655	U
1	53469-21-9	Aroclor 1242	0.0655	U
1	12672-29-6	Aroclor 1248	0.0655	U
1	11097-69-1	Aroclor 1254	0.0655	U
1	11096-82-5	Aroclor 1260	0.0655	U

Laboratory Qualifiers:

U - Denotes analyte not detected at concentration greater than or equal to the Practical Quantitation Limit (PQL). PQLs are adjusted for sample weight/volume and dilution factors.

Print Date: 07/03/2008 Nea Linns Version : 4,4.0,3

Northeast Analytical, Inc.
11078
Soil
9.2359 g
13.4
SOXHLET
25000 uL
SW-846 8082 (PCB)

SDG No:	08060172
LRF ID:	08060172-05
Client ID:	SB-212-10
Lab Sample ID:	AL09994
Date Received:	06/19/2008
Date Extracted:	06/23/2008
Date Analyzed:	06/26/2008
Dilution Factor:	1
Sulfur Cleanup:	YES

Column 1 Information:

GC Column: Phenomenex Capillary, MultiResidue-1, 30m; ID: 0.25mm; 0.25um				
Injection Volume:	1.0 uL			
Lab File ID:	GC20F-198-21			

Column 2 Information:

GC Column: Phenomenex Capillary, MultiResidue-2, 30m; ID: 0.25mm; 0.20um				
Injection Volume:	1.0 uL			
Lab File ID:	GC20B-158-21			

Column Number	CAS NO	COMPOUND NAME	CONCENTRATION UG/G	Q
1	12674-11-2	Aroclor 1016	0.0541	U
1	11104-28-2	Aroclor 1221	0.0541	U
1	11141-16-5	Aroclor 1232	0.0541	U
1	53469-21-9	Aroclor 1242	0.0541	U
1	12672-29-6	Aroclor 1248	0.0541	U
1	11097-69-1	Aroclor 1254	0.0541	U
1	11096-82-5	Aroclor 1260	0.0541	U

Laboratory Qualifiers:

U - Denotes analyte not detected at concentration greater than or equal to the Practical Quantitation Limit (PQL). PQLs are adjusted for sample weight/volume and dilution factors.

Print Date: 07/03/2008 Nea Lims Version : 4.4.0.3

Laboratory Name:	Northeast Analytical, Inc.	SDG No:	08060172
ELAP ID No:	11078	LRF ID:	08060172-06
- Matrix:	Soil	Client ID:	SB-212-D
Sample wt(Dry)/vol:	7.8768 g	Lab Sample ID:	AL09995
Percent Moisture:	23.8	Date Received:	06/19/2008
Extraction:	SOXHLET	Date Extracted:	06/23/2008
Conc. Extract Volume:	25000 uL	Date Analyzed:	06/26/2008
Method:	SW-846 8082 (PCB)	Dilution Factor:	1
			YES

Column 1 Information:

GC Column: Phenomenex	Capillary, MultiResidue-1, 30m; ID: 0.25mm; 0.25um	
Injection Volume:	1.0 uL	
Lab File ID:	GC20F-198-22	

Sulfur Cleanup: YES

Column 2 Information:

GC Column: Phenomenex C	apillary, MultiResidue-2, 30m; ID: 0.25mm; 0.20um	
Injection Volume:	1.0 uL	
Lab File ID:	GC20B-158-22	

Column Number	CAS NO	COMPOUND NAME	CONCENTRATION UG/G	Q
1	12674-11-2	Aroclor 1016	0.0635	U
1	11104-28-2	Aroclor 1221	0.0635	U
1	11141-16-5	Aroclor 1232	0.0635	U
1	53469-21-9	Aroclor 1242	0.0635	U
1	12672-29-6	Aroclor 1248	0.0635	U
1	11097-69-1	Aroclor 1254	0.0635	U
1	11096-82-5	Aroclor 1260	0.0635	U

Laboratory Qualifiers: U - Denotes analyte not detected at concentration greater than or equal to the Practical Quantitation Limit (PQL). PQLs are adjusted for sample weight/volume and dilution factors.

Laboratory Name:	Northeast Analytical, Inc.
ELAP ID No:	11078
Matrix:	Soil
Sample wt(Dry)/vol:	9.0142 g
Percent Moisture:	11.4
Extraction:	SOXHLET
Conc. Extract Volume:	25000 uL
Method:	SW-846 8082 (PCB)

SDG No:	08060172
LRF ID:	08060172-12
Client ID:	SB-213-5
Lab Sample ID:	AL10001
Date Received:	06/19/2008
Date Extracted:	06/23/2008
Date Analyzed:	06/26/2008
Dilution Factor:	1
Sulfur Cleanup:	YES

Column 1 Information:

GC Column: Phenomenex Ca	pillary, MultiResidue-1, 30m; ID: 0.25mm; 0.25um	
Injection Volume:	1.0 uL	
Lab File ID:	GC20F-198-26	

Column 2 Information:

GC Column: Phenomenex Capillary, MultiResidue-2, 30m; ID: 0.25mm; 0.20um		
Injection Volume:	1.0 uL	
Lab File ID:	GC20B-158-26	

Column Number	CAS NO	COMPOUND NAME	CONCENTRATION UG/G	Q
1	12674-11-2	Aroclor 1016	0.0555	U
1	11104-28-2	Aroclor 1221	0.0555	U
1	11141-16-5	Aroclor 1232	0.0555	U
1	53469-21-9	Aroclor 1242	0.0555	U
1	12672-29-6	Aroclor 1248	0.0555	U
1	11097-69-1	Aroclor 1254	0.0555	U
1	11096-82-5	Aroclor 1260	0.0555	U

Laboratory Qualifiers: U - Denotes analyte not detected at concentration greater than or equal to the Practical Quantitation Limit (PQL). PQLs are adjusted for sample weight/volume and dilution factors.

FORM I-CLP-PCB (NEA)

08060172.PDF

Laboratory Name:	Northeast Analytical, Inc.	SDG No:
ELAP ID No:	11078	LRF ID:
Matrix:	Soil	Client ID:
Sample wt(Dry)/vol:	9.1084 g	Lab Sample ID:
Percent Moisture:	11.5	Date Received:
Extraction:	SOXHLET	Date Extracted:
Conc. Extract Volume:	25000 uL	Date Analyzed:
Method:	SW-846 8082 (PCB)	Dilution Factor:
5		

SDG No: _	08060172
LRF ID:	08060172-13
Client ID:	SB-213-12
Lab Sample ID:	AL10002
Date Received:	06/19/2008
Date Extracted:	06/23/2008
Date Analyzed:	06/26/2008
Dilution Factor:	1
Sulfur Cleanup:	YES

Column 1 Information:

GC Column: Phenomenex Ca	pillary, MultiResidue-1, 30m; ID: 0.25mm; 0.25um	
Injection Volume:	1.0 uL	
Lab File ID:	GC20F-198-27	

Column 2 Information:

GC Column: Phenomenex Capillary, MultiResidue-2, 30m; ID: 0,25mm; 0,20um		
Injection Volume:	1.0 uL	
Lab File ID:	GC20B-158-27	

Column			CONCENTRATION	~
Number	CAS NO	COMPOUND NAME	UG/G	Q
1	12674-11-2	Aroclor 1016	0.0549	U
1	11104-28-2	Aroclor 1221	0.0549	U
1	11141-16-5	Aroclor 1232	0.0549	U
1	53469-21-9	Aroclor 1242	0.0549	U
1	12672-29-6	Aroclor 1248	0.0549	U
1	11097-69-1	Aroclor 1254	0.0549	U
1	11096-82-5	Aroclor 1260	0.0549	U

Laboratory Qualifiers: U - Denotes analyte not detected at concentration greater than or equal to the Practical Quantitation Limit (PQL). PQLs are adjusted for sample weight/volume and dilution factors.

Print Date: 07/03/2008 Nea Lims Version : 4.4.0.3

08060172.PDF

Northeast Analytical, Inc.
11078
Soil
8.2840 g
20.4
SOXHLET
25000 uL
SW-846 8082 (PCB)

SDG No:	08060172
LRF ID:	08060172-15
Client ID:	SB-214-4
Lab Sample ID:	AL10004
Date Received:	06/19/2008
Date Extracted:	06/23/2008
Date Analyzed:	06/26/2008
Dilution Factor:	11
Sulfur Cleanup:_	YES

Column 1 Information:

GC Column: Phenomenex Ca	pillary, MultiResidue-1, 30m; ID: 0,25mm; 0,25um	_
Injection Volume:	1.0 uL	
Lab File ID:	GC20F-198-28	

Column 2 Information:

GC Column: Phenomenex Ca	apillary, MultiResidue-2, 30m; ID: 0.25mm; 0.20um	
Injection Volume:	1.0 uL	
Lab File ID:	GC20B-158-28	

Column			CONCENTRATION	
Number	CAS NO	COMPOUND NAME	UG/G	Q
1	12674-11-2	Aroclor 1016	0.0604	U
1	11104-28-2	Aroclor 1221	0.0604	U
1	11141-16-5	Aroclor 1232	0.0604	U
1	53469-21-9	Aroclor 1242	0.0604	U
1	12672-29-6	Aroclor 1248	0.0604	U
1	11097-69-1	Aroclor 1254	0.225	AF
1	11096-82-5	Aroclor 1260	0.0604	U

Laboratory Qualifiers:

AF-Aroclor 1254 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern. U - Denotes analyte not detected at concentration greater than or equal to the Practical Quantitation Limit (PQL). PQLs are adjusted for sample weight/volume and dilution factors.

FORM I-CLP-PCB (NEA)

Laboratory Name:	Northeast Analytical, Inc.	SDG No:	08060172	
ELAP ID No:	11078	LRF ID:	08060172-16	
Matrix:	Soil	Client ID:	SB-214-10	
Sample wt(Dry)/vol:	3.8139 g	Lab Sample ID:	AL10005	
Percent Moisture:	63.3	Date Received:	06/19/2008	
Extraction:	SOXHLET	Date Extracted:	06/23/2008	
Conc. Extract Volume:	25000 uL	Date Analyzed:	06/26/2008	
Method:	SW-846 8082 (PCB)	Dilution Factor:	1	
		Sulfur Cleanup:	YES	-

Column 1 Information:

GC Column: Phenomenex Ca	pillary, MultiResidue-1, 30m; ID: 0.25mm; 0.25um	
Injection Volume:	1.0 uL	
Lab File ID:	GC20F-198-29	

Column 2 Information:

GC Column: Phenomenex Capillary, MultiResidue-2, 30m; ID: 0,25mm; 0,200m			
Injection Volume:	1.0 uL		
Lab File ID:	GC20B-158-29		

Column Number	CAS NO	COMPOUND NAME	CONCENTRATION UG/G	Q
1	12674-11-2	Aroctor 1016	0.131	U
1	11104-28-2	Aroclor 1221	0.131	U
1	11141-16-5	Aroclor 1232	0.131	U
1	53469-21-9	Aroclor 1242	0.131	U
1.	12672-29-6	Aroclor 1248	0.131	U
1	11097-69-1	Aroclor 1254	0.131	U
1	11096-82-5	Aroclor 1260	0.131	U

Laboratory Qualifiers:

Note: There were several non-target peaks. U - Denotes analyte not detected at concentration greater than or equal to the Practical Quantitation Limit (PQL). PQLs are adjusted for sample weight/volume and dilution factors.

Print Date: 07/03/2008 Nea Linns Version : 4.4.0.3

_
_
<u></u> I
_
_

SDG No:	08060172
LRF ID:	08060172-18
Client ID:	SB-215-7.5
Lab Sample ID:	AL10007
Date Received:	06/19/2008
Date Extracted:	06/23/2008
Date Analyzed:	06/26/2008
Dilution Factor:	1
Sulfur Cleanup:	YES

Column 1 Information:

GC Column: Phenomenex Capillary, MultiResidue-1, 30m; ID: 0.25mm; 0,25um Injection Volume: 1.0 uL GC20F-198-30

Lab File ID:

Column 2 Information:

GC Column:	Phenomenex Capillary, MultiResidue-2, 30m; ID: 0.25mm; 0.20um		
Injection Volu	me: 1.0 uL		

Lab File ID:	GC20B-158-30

Column Number	CAS NO	COMPOUND NAME	CONCENTRATION UG/G	Q
1	12674-11-2	Aroclor 1016	0.0611	U
1	11104-28-2	Aroclor 1221	0.0611	U
1	11141-16-5	Aroclor 1232	0.0611	U
1	53469-21-9	Aroclor 1242	0.0611	U
1	12672-29-6	Aroclor 1248	0.0611	U
1	11097-69-1	Aroclor 1254	0.0611	U
1	11096-82-5	Aroclor 1260	0.0611	U

Laboratory Qualifiers:

Note: There were several non-target peaks. U - Denotes analyte not detected at concentration greater than or equal to the Practical Quantitation Limit (PQL). PQLs are adjusted for sample weight/volume and dilution factors.

Northeast Analytical, Inc.
11078
Soil
3.6158 g
64.2
SOXHLET
25000 uL
SW-846 8082 (PCB)

SDG No:_	08060172
LRF ID:	08060172-19
Client ID:_	SB-215-9
Lab Sample ID:	AL10008
Date Received:	06/19/2008
Date Extracted:	06/23/2008
Date Analyzed:	06/26/2008
Dilution Factor:	1
Sulfur Cleanup:_	YES

Column 1 Information:

y, MultiResidue-1, 30m; ID: 0.25mm; 0.25um	
1.0 uL	
GC20F-198-31	
	1.0 uL

Column 2 Information:

GC Column: Phenomenex Capillary, MultiResidue-2, 30m; ID: 0.25mm; 0.20um		
Injection Volume:	1.0 uL	
Lab File ID:	GC20B-158-31	

Column Number	CAS NO	COMPOUND NAME	CONCENTRATION UG/G	Q
1	12674-11-2	Aroclor 1016	0.138	U
1	11104-28-2	Aroclor 1221	0.138	U
1	11141-16-5	Aroclor 1232	0.138	U
1	53469-21-9	Aroclor 1242	0.138	U
1	12672-29-6	Aroclor 1248	0.138	U
1	11097-69-1	Aroclor 1254	0.138	U
1	11096-82-5	Aroclor 1260	0.138	U

Laboratory Qualifiers:

U - Denotes analyte not detected at concentration greater than or equal to the Practical Quantitation Limit (PQL). PQLs are adjusted for sample weight/volume and dilution factors.

Print Date: 07/03/2008 Nea Lims Version : 4 4.0 3

Laboratory Name: _	Northeast Analytical, Inc.	
ELAP ID No:	11078	
Matrix:	Soil	
Sample wt(Dry)/vol:	9.5294 g	
Percent Moisture:	10.1	_
Extraction:	SOXHLET	
Conc. Extract Volume: _	25000 uL	
Method:	SW-846 8082 (PCB)	

SDG No:_	08060173
LRF ID: _	08060173-01
Client ID:	SB-216-4
Lab Sample ID:	AL10010
Date Received:	06/19/2008
Date Extracted:_	06/20/2008
Date Analyzed:	06/24/2008
Dilution Factor:	11
Sulfur Cleanup: _	YES

Column 1 Information:

GC Column: Phenomenex Ca	pillary, MultiResidue-1, 30m; ID: 0,25mm; 0,25um	
Injection Volume:	1.0 uL	
Lab File ID:	GC20F-197-7	

Column 2 Information:

GC Column: Phenomenex Cap	pillary, MultiResidue-2, 30m; ID: 0,25mm; 0,20um	
Injection Volume:	1.0 uL	_
Lab File ID:	GC20B-157-7	

		CONCENTRATION	
CAS NO	COMPOUND NAME	UG/G	Q
12674-11-2	Aroclor 1016	0.0525	U
11104-28-2	Aroclor 1221	0.0525	U
11141-16-5	Aroclor 1232	0.0525	U
53469-21-9	Aroclor 1242	0.0525	U
12672-29-6	Aroclor 1248	0.0525	U
11097-69-1	Aroclor 1254	0.0525	U
11096-82-5	Aroclor 1260	0.0525	U
	12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	12674-11-2 Aroclor 1016 11104-28-2 Aroclor 1221 11141-16-5 Aroclor 1232 53469-21-9 Aroclor 1242 12672-29-6 Aroclor 1248 11097-69-1 Aroclor 1254	CAS NOCOMPOUND NAMEUG/G12674-11-2Aroclor 10160.052511104-28-2Aroclor 12210.052511141-16-5Aroclor 12320.052553469-21-9Aroclor 12420.052512672-29-6Aroclor 12480.052511097-69-1Aroclor 12540.0525

Laboratory Qualifiers:

U - Denotes analyte not detected at concentration greater than or equal to the Practical Quantitation Limit (PQL). PQLs are adjusted for sample weight/volume and dilution factors.

Print Date: 07/06/2008 Nea Lims Version : 4.4,0,3

Laboratory Name:	Northeast Analytical, Inc.
ELAP ID No:	11078
Matrix:	Soil
Sample wt(Dry)/vol:	7.6536 g
Percent Moisture:	25.7
Extraction:	SOXHLET
Conc. Extract Volume:	25000 uL
Method:	SW-846 8082 (PCB)

SDG No:	08060173
LRF ID:	08060173-04
Client ID: _	SB-217-5
Lab Sample ID:	AL10013
Date Received:	06/19/2008
Date Extracted:_	06/20/2008
Date Analyzed:	06/24/2008
Dilution Factor:	11
Sulfur Cleanup:	YES

Column 1 Information:

GC Column: Phenomenex Capillary, MultiResidue-1, 30m; ID: 0.25mm; 0.25um		
Injection Volume:	1.0 uL	
Lab File ID:	GC20F-197-8	

Column 2 Information:

GC Column: Phenomenex Capillary, MultiResidue-2, 30m; ID: 0.25mm; 0.20um			
Injection Volume:	1.0 uL		
Lab File ID:	GC20B-157-8	_	

Column Number	CAS NO	COMPOUND NAME	CONCENTRATION UG/G	Q
1	12674-11-2	Aroclor 1016	0.0653	U
1	11104-28-2	Aroclor 1221	0.0653	U
1	11141-16-5	Aroclor 1232	0.0653	U
1	53469-21-9	Aroclor 1242	0.0653	U
1	12672-29-6	Aroclor 1248	0.0653	U
1	11097-69-1	Aroclor 1254	0.0653	U
1	11096-82-5	Aroclor 1260	0.0653	U

Laboratory Qualifiers:

U - Denotes analyte not detected at concentration greater than or equal to the Practical Quantitation Limit (PQL), PQLs are adjusted for sample weight/volume and dilution factors.

FORM I-CLP-PCB (NEA)

Laboratory Name:	Northeast Analytical, Inc.
ELAP ID No:	11078
Matrix:	Soil
Sample wt(Dry)/vol:	9.4350 g
Percent Moisture:	7.30
Extraction:	SOXHLET
Conc. Extract Volume:	25000 uL
Method:	SW-846 8082 (PCB)

SDG No: _	08060173
LRF ID:	08060173-05
Client ID: _	SB-217-11
Lab Sample ID:	AL10014
Date Received:	06/19/2008
Date Extracted:	06/20/2008
Date Analyzed:	06/24/2008
Dilution Factor:	1
Sulfur Cleanup: _	YES

Column 1 Information:

GC Column: Phenomenex Capillary, MultiResidue-1, 30m; ID: 0.25mm; 0.25um		
Injection Volume:	1.0 uL	
Lab File ID:	GC20F-197-9	
Column 2 Information	<u>:</u>	

GC Column: Phenomenex Capillary, MultiResidue-2, 30m; ID: 0.25mm; 0.20um				
Injection Volume:	1.0 uL			
Lab File ID:	GC20B-157-9			

Column			CONCENTRATION	
Number	CAS NO	COMPOUND NAME	UG/G	Q
1	12674-11-2	Aroclor 1016	0.0530	U
1	11104-28-2	Aroclor 1221	0.0530	U
1	11141-16-5	Aroclor 1232	0.0530	U
1	53469-21-9	Aroclor 1242	0.0530	υ
1	12672-29-6	Aroclor 1248	0.0530	U
1	11097-69-1	Aroclor 1254	0.0530	U
1	11096-82-5	Aroclor 1260	0.0530	U

Laboratory Qualifiers:

U - Denotes analyte not detected at concentration greater than or equal to the Practical Quantitation Limit (PQL), PQLs are adjusted for sample weight/volume and dilution factors.

FORM I-CLP-PCB (NEA)

Print Date: 07/06/2008 Nea Lims Version 144,0,3

Laboratory Name:	Northeast Analytical, Inc.
ELAP ID No:	11078
Matrix:	Soil
Sample wt(Dry)/vol:	8.6066 g
Percent Moisture:	17.3
Extraction:	SOXHLET
Conc. Extract Volume:	25000 uL
Method:	SW-846 8082 (PCB)

SDG No:_	08060173
LRF ID:	08060173-07
Client ID: _	SB-218-4.5
Lab Sample ID:	AL10016
Date Received:	06/19/2008
Date Extracted:	06/20/2008
Date Analyzed:	06/24/2008
Dilution Factor:	11
Sulfur Cleanup: _	YES

Column 1 Information:

GC Column: Phenomer	ex Capillary, MultiResidue-2, 30m; ID: 0,25mm; 0,20um	-
Injection Volume:	1.0 uL	
Lab File ID:	GC20B-157-10	

Column 2 Information:

GC Column: Phenomenex Capillary, MultiResidue-1, 30m; ID: 0.25mm; 0.25um		
Injection Volume:	1.0 uL	
Lab File ID:	GC20F-197-10	

Column Number	CAS NO	COMPOUND NAME	CONCENTRATION UG/G	Q
1	12674-11-2	Aroclor 1016	0.0581	U
1	11104-28-2	Aroclor 1221	0.0581	U
1	11141-16-5	Aroclor 1232	0.0581	U
1	53469-21-9	Aroclor 1242	0.0581	U
1	12672-29-6	Aroclor 1248	0.0581	U
1	11097-69-1	Aroclor 1254	0.158	AF
2	11096-82-5	Aroclor 1260	0.0843	AG

Laboratory Qualifiers:

AF-Aroclor 1254 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern. AF-Aroclor 1260 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern. U - Denotes analyte not detected at concentration greater than or equal to the Practical Quantitation Limit (PQL). PQLs are adjusted for sample weight/volume and dilution factors.

FORM'I-CLP-PCB (NEA)

Laboratory Name:	Northeast Analytical, Inc.	
ELAP ID No:	11078	
Matrix:	Soil	
Sample wt(Dry)/vol:	9.3694 g	
Percent Moisture:	12.0	
Extraction:	SOXHLET	
Conc. Extract Volume:	25000 uL	
Method:	SW-846 8082 (PCB)	

08060173
08060173-08
SB-218-10
AL10017
06/19/2008
06/20/2008
06/24/2008
1
YES

0.0534

0.0534

Column 1 Information:

Injection Volume:

Lab File ID:

(

GC Column: Phenomenex Ca	pillary, MultiResidue-1, 30m; 1D: 0,25mm; 0,25um	1
Injection Volume:	1.0 uL	
Lab File ID:	GC20F-197-11	
Column 2 Informatio	<u>n:</u>	

1.0 uL GC20B-157-11

Aroclor 1254

Aroclor 1260

GC Column: Phenomenex Capillary, MultiResidue-2, 30m; ID: 0.25mm; 0,20um

RATION
34
34
34
34
34
3 3

Laboratory Qualifiers:

11097-69-1

11096-82-5

1

1

U - Denotes analyte not detected at concentration greater than or equal to the Practical Quantitation Limit (PQL), PQLs are adjusted for sample weight/volume and dilution factors.

FORM I-CLP-PCB (NEA)

Print Date: 07/06/2008 Nea Lims Version 14.0.3

U

U

Laboratory Name:	Northeast Analytical, Inc.
ELAP ID No:	11078
Matrix:	Soil
Sample wt(Dry)/vol:	7.6108 g
Percent Moisture:	23.9
Extraction:	SOXHLET
Conc. Extract Volume:	25000 uL
Method:	SW-846 8082 (PCB)

SDG No:	08060173	
LRF ID:	08060173-10	
Client ID:	SB-219-4	_
Lab Sample ID:	AL10019	
Date Received:	06/19/2008	_
Date Extracted:	06/20/2008	
Date Analyzed:	06/24/2008	
Dilution Factor:	1	
Sulfur Cleanup:	YES	

Column 1 Information:

GC Column: Phenomenex Ca	pillary, MultiResidue-1, 30m; ID: 0.25mm; 0.25um	
Injection Volume:	1.0 uL	
Lab File ID:	GC20F-197-15	

Column 2 Information:

		-
Injection Volume:	1.0 uL	
Lab File ID:	GC20B-157-15	

Column Number	CAS NO	COMPOUND NAME	CONCENTRATION UG/G	Q
1	12674-11-2	Aroclor 1016	0.0657	U
1	11104-28-2	Aroclor 1221	0.0657	U
1	11141-16-5	Aroclor 1232	0.0657	U
1	53469-21-9	Aroclor 1242	0.0657	U
1	12672-29-6	Aroclor 1248	0.0657	U
1	11097-69-1	Aroclor 1254	0.0657	U
1	11096-82-5	Aroclor 1260	0.0657	U

Laboratory Qualifiers:

U - Denotes analyte not detected at concentration greater than or equal to the Practical Quantitation Limit (PQL). PQLs are adjusted for sample weight/volume and dilution factors.

FORM I-CLP-PCB (NEA)

Print Date: 07/06/2008 Nea Lims Version -14.0.3

Laboratory Name:	Northeast Analytical, Inc.
ELAP ID No:	11078
Matrix:	Soil
Sample wt(Dry)/vol:	9.3109 g
Percent Moisture:	10.1
Extraction:	SOXHLET
Conc. Extract Volume:	25000 uL
Method:	SW-846 8082 (PCB)

SDG No:_	08060173
LRF ID:	08060173-11
Client ID:	SB-219-9
Lab Sample ID:	AL10020
Date Received:	06/19/2008
Date Extracted:	06/20/2008
Date Analyzed:	06/24/2008
Dilution Factor:	1
Sulfur Cleanup:	YES

Column 1 Information:

GC Column: Phenomenex Capil	lary, MulliResidue-1, 30m; ID: 0.25mm; 0.25um	
Injection Volume:	1.0 uL	
Lab File ID:	GC20F-197-16	
Column 2 Information	<u>:</u>	

GC Column: Phenomenex Capillary, MultiResidue-2, 30m; ID: 0,25mm; 0,20um Injection Volume: 1.0 uL

•	
Lab File ID:	GC20B-157-16

Column Number	CAS NO	COMPOUND NAME	CONCENTRATION UG/G	Q
1	12674-11-2	Aroclor 1016	0.0537	U
1	11104-28-2	Aroclor 1221	0.0537	U
1	11141-16-5	Aroclor 1232	0.0537	U
1	53469-21-9	Aroclor 1242	0.0537	U
1	12672-29-6	Aroclor 1248	0.0537	U
1	11097-69-1	Aroclor 1254	0.0537	U
1	11096-82-5	Aroclor 1260	0.0537	U

Laboratory Qualifiers:

U - Denotes analyte not detected at concentration greater than or equal to the Practical Quantitation Limit (PQL). PQLs are adjusted for sample weight/volume and dilution factors.

FORM I-CLP-PCB (NEA)

08060173.PDF

Laboratory Name:	Northeast Analytical, Inc.
ELAP ID No:	11078
Matrix:	Soil
Sample wt(Dry)/vol:	7.3449 g
Percent Moisture:	27.4
Extraction:	SOXHLET
Conc. Extract Volume:	25000 uL
Method:	SW-846 8082 (PCB)

SDG No:	08060173	
LRF ID:	08060173-12	
Client ID:	SB-219-D	
Lab Sample ID:	AL10021	
Date Received:	06/19/2008	
Date Extracted:	06/20/2008	
Date Analyzed:	06/24/2008	
Dilution Factor:	1	
Sulfur Cleanup:	YES	

Column 1 Information:

GC Column: Phenomenex Ca	pillary, MultiResidue-1, 30m; ID: 0.25mm; 0.25um	
Injection Volume:	1.0 uL	
Lab File ID:	GC20F-197-17	
Column 2 Informatio	<u>n:</u>	

GC Column: Phenomenex Capillary, MultiResidue-2, 30m; ID: 0.25mm; 0.20um

Injection Volume:1.0 uLLab File ID:GC20B-157-17

Column Number	CAS NO	COMPOUND NAME	CONCENTRATION UG/G	Q
1	12674-11-2	Aroclor 1016	0.0681	U
1	11104-28-2	Aroclor 1221	0.0681	U
1	11141-16-5	Aroclor 1232	0.0681	U
1	53469-21-9	Aroclor 1242	0.0681	U
1	12672-29-6	Aroclor 1248	0.0681	U
1	11097-69-1	Aroclor 1254	0.0681	U
1	11096-82-5	Aroclor 1260	0.0681	U

Laboratory Qualifiers:

U - Denotes analyte not detected at concentration greater than or equal to the Practical Quantitation Limit (PQL). PQLs are adjusted for sample weight/volume and dilution factors.

Print Date: 07/06/2008 Nea Lims Version : 4.4.0.3

....

Laboratory Name:	Northeast Analytical, Inc.	
ELAP ID No:	11078	
Matrix:	Soil	
Sample wt(Dry)/vol:	9.4080 g	
Percent Moisture:	7.10	
Extraction:	SOXHLET	
Conc. Extract Volume:	25000 uL	I
Method:	SW-846 8082 (PCB)	

SDG No:	08060173	
LRF ID:	08060173-14	
Client ID:	SB-221-5	
Lab Sample ID:	AL10023	_
Date Received:	06/19/2008	
Date Extracted:	06/20/2008	
Date Analyzed:	06/24/2008	į
Dilution Factor:	1	
Sulfur Cleanup:	YES	

Column 1 Information:

GC Column: Phenomenex Ca	pillary, MulliResidue-1, 30m; ID: 0.25mm; 0.25um	
Injection Volume:	1.0 uL	
Lab File ID:	GC20F-197-18	

Column 2 Information:

GC Column: Phenomenex Capillary, MultiResidue-2, 30m; ID: 0.25mm; 0.20um					
Injection Volume:	1.0 uL				
Lab File ID:	GC20B-157-18				

Column Number	CAS NO	COMPOUND NAME	CONCENTRATION UG/G	Q
1	12674-11-2	Aroclor 1016	0.0531	U
1	11104-28-2	Aroclor 1221	0.0531	U
1	11141-16-5	Aroclor 1232	0.0531	U
1	53469-21-9	Aroclor 1242	0.0531	U
1	12672-29-6	Aroclor 1248	0.0531	U
1	11097-69-1	Aroclor 1254	0.0531	U
1	11096-82-5	Aroclor 1260	0.0531	U
1	11096-82-5	Aroclor 1260	0.0531	

Laboratory Qualifiers:

U - Denotes analyte not detected at concentration greater than or equal to the Practical Quantitation Limit (PQL). PQLs are adjusted for sample weight/volume and dilution factors.

FORM I-CLP-PCB (NEA)

Northeast Analytical, Inc.
11078
Soil
9.7192 g
9.20
SOXHLET
25000 uL
SW-846 8082 (PCB)

SDG No:	08060173
LRF ID:	08060173-15
Client ID:	SB-221-8.5
Lab Sample ID:	AL10024
Date Received:	06/19/2008
Date Extracted:	06/20/2008
Date Analyzed:	06/24/2008
Dilution Factor:	1
Sulfur Cleanup:	YES

Column 1 Information:

Ş	GC Column: Phenomenex Capillary, MultiResidue-1, 30m; ID: 0.25mm; 0.25um					
	Injection Volume:	1.0 uL				
	Lab File ID:	GC20F-197-19				

Column 2 Information:

GC Column: Phenomenex Capillary, MultiResidue-2, 30m; ID: 0.25mm; 0.20um					
Injection Volume:	1.0 uL				
Lab File ID:	GC20B-157-19				

Column			CONCENTRATION	
Number	CAS NO	COMPOUND NAME	UG/G	Q
1	12674-11-2	Aroclor 1016	0.0514	U
1	11104-28-2	Aroclor 1221	0.0514	U
1	11141-16-5	Aroclor 1232	0.0514	U
1	53469-21-9	Aroclor 1242	0.0514	U
1	12672-29-6	Aroclor 1248	0.0514	U
1	11097-69-1	Aroclor 1254	0.0514	U
1	11096-82-5	Aroclor 1260	0.0514	U

Laboratory Qualifiers:

U - Denotes analyte not detected at concentration greater than or equal to the Practical Quantitation Limit (PQL). PQLs are adjusted for sample weight/volume and dilution factors.

FORM I-CLP-PCB (NEA)

CERTIFICATE OF ANALYSIS 07/07/2008 TRC ENVIRONMENTAL WANNALANCIT MILLS 650 SUFFOLK ST LOWELL, MA 01854 CONTACT: DAVID SULLIVAN

CUSTOMER ID:	SB-217-5	NEA ID: AL10013 NEA LRF: 08060173-04
MATRIX:	SOIL	DATE SAMPLED: 06/17/2008 TIME: 12:25
DATE RECEIVED:	06/19/2008 TIME: 10:12	PROJECT: CITY OF NEW BEDFORD
SAMPLED BY:	C. FOSTER	LOCATION: NEW BEDFORD
CUSTOMER PO:	N/A	LAB ELAP#: 11078
METHOD:	PCB by EPA Method 680 GCMS	DATE ANALYZED: 06/26/2008

HOMOLOG GROUP	CAS NUMBER	AMOUNT	PQL	UNITS	WEIGHT PERCENT
Monochlorobiphenyl	27323-18-8	ND	0.017	mg/kg	ND
Dichlorobiphenyl	25512-42-9	ND	0.017	mg/kg	ND
Trichlorobiphenyl	25323-68-6	ND	0.017	mg/kg	ND
Tetrachlorobiphenyl	26914-33-0	ND	0.033	mg/kg	ND
Pentachlorobiphenyl	25429-29-2	ND	0.033	mg/kg	ND
Hexachlorobiphenyl	26601-64-9	ND	0.033	mg/kg	ND
Heptachlorobiphenyl	28655-71-2	ND	0.050	mg/kg	ND
Octachlorobiphenyl	55722-26-4	ND	0.050	mg/kg	ND
Nonachlorobiphenyl	53742-07-7	ND	0.083	mg/kg	ND
Decachlorobiphenyl	2051-24-3	ND	0.083	mg/kg	ND
Total PCB	1336-36-3	ND			ND

Notes: ND (Not Detected). Denotes analyte not detected at a concentration greater than the PQL. PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

AUTHORIZED SIGNATURE:

William A Kotas Quality Assurance Officer

Robert E. Wagner Laboratory Director

This report may not be reproduced except in full, without the written approval of Northeast Analytical, Inc.

2190 Technology Drive Schenectady, NY 12308 Phone 518.346.4592 Fax 518.381.6055 Email : information@nealab.com

SOIL

Sample Matrix:

39 Spruce Street 6	' East Longmeadow,	MA	01028	° FAX	413/525-6	5405°	TEL. 4	413/525	-2332

Not Specified

DAVID SULLIVAN	l			
TRC SOLUTIONS	- LOWELL		6	27/2008
650 SUFFOLK STREET		Р	age 4 of 32	
LOWELL, MA 018	52	Purchase Order No .:		
Project Location:	CITY OF NEW BEDFORD		LIMS-BAT #:	LIMT-16916
Date Received:	6/18/2008		Job Number:	115058(EDGEOFF
Field Sample # :	SB-210-5			
Sample ID :	08B21995	‡Sampled : 6/16/2008		

	Units	Results	Date	Analyst	RL	SPEC	Limit	P/ F
			Analyzed			Lo	Hi	
Antimony	mg/kg dry wt	ND	06/24/08	OP	5.53			
Arsenic	mg/kg dry wt	12.3	06/24/08	OP	3.46			
Barium	mg/kg dry wt	260	06/24/08	OP	6.91			
Beryllium	mg/kg dry wt	0.64	06/24/08	OP	0.35			
Cadmium	mg/kg dry wt	0.49	06/24/08	OP	0.35			
Chromium	mg/kg dry wt	16.3	06/24/08	OP	0.70			
Lead	mg/kg dry wt	510	06/24/08	OP	1.04			
Nickel	mg/kg dry wt	15.8	06/24/08	OP	0.70			
Selenium	mg/kg dry wt	ND	06/24/08	OP	6.91			
Silver	mg/kg dry wt	4.13	06/24/08	OP	0.70			
Thallium	mg/kg dry wt	ND	06/24/08	OP	4.15			
Vanadium	mg/kg dry wt	34.5	06/24/08	OP	6.91			
Zinc	mg/kg dry wt	371	06/24/08	OP	1.39			

Analytical Method:

SW846 6010

SAMPLES ARE DIGESTED WITH MINERAL ACIDS AND ANALYZED BY INDUCTIVELY COUPLED PLASMA EMISSION SPECTROMETRY (ICP).

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

 \star = See end of report for comments and notes applying to this sample

	39	Spruce Street	° East Longmeadow,	MA	01028	° FAX	413/525-6	i405 ° T	EL. 41	3/525-23	332
--	----	---------------	--------------------	----	-------	-------	-----------	----------	--------	----------	-----

DAVID SULLIVAN TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET LOWELL, MA 01852

EOWELE, MA OTOOL

Purchase Order No.:

6/27/2008 Page 5 of 32

LIMS-BAT #: LIMT-16916 Job Number: 115058(EDGEOFF

Project Location: CITY OF NEW BEDFORD Date Received: 6/18/2008 Field Sample #: SB-212-4

08B21996

‡Sampled : 6/16/2008 Not Specified

Sample Matrix: SOIL

Sample ID :

		Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
Antimony		mg/kg dry wt	ND	06/24/08	OP	5.23			
Arsenic		mg/kg dry wt	16.9	06/24/08	OP	3.27			
Barium		mg/kg dry wt	697	06/24/08	OP	6.53			
Beryllium		mg/kg dry wt	0.57	06/24/08	OP	0.33			
Cadmium		mg/kg dry wt	1.96	06/24/08	OP	0.33			
Chromium		mg/kg dry wt	16.0	06/24/08	OP	0.66			
Lead		mg/kg dry wt	2420	06/24/08	OP	0.98			
Nickel		mg/kg dry wt	16.1	06/24/08	OP	0.66			
Selenium		mg/kg dry wt	ND	06/24/08	OP	6.53			
Silver		mg/kg dry wt	5.82	06/24/08	OP	0.66			
Thallium		mg/kg dry wt	ND	06/24/08	OP	3.92			
Vanadium		mg/kg dry wt	27.3	06/24/08	OP	6.53			
Zinc		mg/kg dry wt	483	06/24/08	OP	1.31			

Analytical Method:

SW846 6010

SAMPLES ARE DIGESTED WITH MINERAL ACIDS AND ANALYZED BY INDUCTIVELY COUPLED PLASMA EMISSION SPECTROMETRY (ICP).

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

* = See end of report for comments and notes applying to this sample

	39 S	pruce Street	° East Longmeadow,	MA	01028	° FAX	413/525-64	05 ° TEL.	. 413/525-23:
--	------	--------------	--------------------	----	-------	-------	------------	-----------	---------------

DAVID SULLIVAN					
TRC SOLUTIONS	- LOWELL			6/2	27/2008
650 SUFFOLK STI	REET			Pa	age 6 of 32
LOWELL, MA 018	52	Purchase Order	No.:		
Project Location:	CITY OF NEW BEDFORD			LIMS-BAT #:	LIMT-16916
Date Received:	6/18/2008			Job Number:	115058(EDGEOFF
Field Sample # :	SB-212-D				
Sample ID :	08B21997	‡Sampled : 6/16/2008			
		Not Specified			
Sample Matrix:	SOIL				

	Units	Results	Date Analyzed	Analyst	RL	SPEC Limit Lo Hi	P/F
Antimony	mg/kg dry wt	ND	06/24/08	OP	5.33		
Arsenic	mg/kg dry wt	18.4	06/24/08	OP	3.33		
Barium	mg/kg dry wt	707	06/24/08	OP	6.66		
Beryllium	mg/kg dry wt	0.66	06/24/08	OP	0.34		
Cadmium	mg/kg dry wt	1.38	06/24/08	OP	0.34		
Chromium	mg/kg dry wt	17.6	06/24/08	OP	0.67		
Lead	mg/kg dry wt	5580	06/24/08	OP	1.00		
Nickel	mg/kg dry wt	18.3	06/24/08	OP	0.67		
Selenium	mg/kg dry wt	ND	06/24/08	OP	6.66		
Silver	mg/kg dry wt	4.30	06/24/08	OP	0.67		
Thallium	mg/kg dry wt	ND	06/24/08	OP	4.00		
Vanadium	mg/kg dry wt	31.4	06/24/08	OP	6.66		
Zinc	mg/kg dry wt	428	06/24/08	OP	1.34		

Analytical Method:

SW846 6010

SAMPLES ARE DIGESTED WITH MINERAL ACIDS AND ANALYZED BY INDUCTIVELY COUPLED PLASMA EMISSION SPECTROMETRY (ICP).

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

* = See end of report for comments and notes applying to this sample

10 Converse Ctreast	² East Longmeadow,	840	04000	° L V V	A40/E0E	CAOE 9	TEI	440/EDE 0000
39 Spruce Street	East Longmeadow.	IVIA	UTUZO	FAA	413/323-	0400	IEL.	413/323-2332

DAVID SULLIVAN					
TRC SOLUTIONS	- LOWELL			6/	27/2008
650 SUFFOLK ST	REET			Р	age 7 of 32
LOWELL, MA 018	52	Purchase Order No.:			*
Project Location:	CITY OF NEW BEDFORD			LIMS-BAT #:	LIMT-16916
Date Received:	6/18/2008			Job Number:	115058(EDGEOFF
Field Sample # :	SB-214-4				
Sample ID :	08B22000	‡Sampled : 6/17/2008			
		Not Specified			

Sample Matrix: SOIL

	Units	Results	Date	Date Analyst RL		SPEC Limit		P/ F
			Analyzed			Lo	Hi	
Antimony	mg/kg dry wt	ND	06/24/08	OP	4.89			
Arsenic	mg/kg dry wt	7.20	06/24/08	OP	3.06			
Barium	mg/kg dry wt	211	06/24/08	OP	6.11			
Beryllium	mg/kg dry wt	0.36	06/24/08	OP	0.31			
Çadmium	mg/kg dry wt	1.54	06/24/08	OP	0.31			
Chromium	mg/kg dry wt	11.7	06/24/08	OP	0.62			
Lead	mg/kg dry wt	561	06/24/08	OP	0.92			
Nickel	mg/kg dry wt	-73.6	06/24/08	OP	0.62			
Selenium	mg/kg dry wt	ND	06/24/08	OP	6.11			
Silver	mg/kg dry wt	3.03	06/24/08	OP	0.62			
Thallium	: mg/kg dry wt	ND	06/24/08	OP	3.67			
Vanadium	mg/kg dry wt	17.6	06/24/08	OP	6.11			
Zinc	mg/kg dry wt	445	06/24/08	OP	1.23			

Analytical Method:

SW846 6010

SAMPLES ARE DIGESTED WITH MINERAL ACIDS AND ANALYZED BY INDUCTIVELY COUPLED PLASMA EMISSION SPECTROMETRY (ICP).

RL ≈ Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

* = See end of report for comments and notes applying to this sample

39 Spruce Street '	^o East Longmeadow,	MA	01028	° FAX	413/525	-6405°	TEL.	413/525-2	2332

DAVID SULLIVAN				
TRC SOLUTIONS	- LOWELL		6/	27/2008
650 SUFFOLK ST	REET		Pa	age 8 of 32
LOWELL, MA 018	52	Purchase Order No.:		
Project Location:	CITY OF NEW BEDFORD		LIMS-BAT #:	LIMT-16916
Date Received:	6/18/2008		Job Number:	115058(EDGEOFF
Field Sample # :	SB-216-4			
Sample ID :	08B22001	‡Sampled : 6/17/2008		
		Not Specified		

Sample Matrix: SOIL

	Units	Results	Date	Analyst	RL	SPEC I	.imit	P/F
			Analyzed			Lo	Hi	
Antimony	mg/kg dry wt	ND	06/24/08	OP	4.45			
Arsenic	mg/kg dry wt	3.51	06/24/08	OP	2.78			
Barium	mg/kg dry wt	31.9	06/24/08	OP	5.56			
Beryllium	mg/kg dry wt	ND	06/24/08	OP	0.28			
Cadmium	mg/kg dry wt	ND	06/24/08	OP	0.28			
Chromium	mg/kg dry wt	5.27	06/24/08	OP	0.56			
Lead	mg/kg dry wt	55.3	06/24/08	OP	0.84			
Nickel	mg/kg dry wt	3.72	06/24/08	OP	0.56			
Selenium	mg/kg dry wt	ND	06/24/08	OP	5.56			
Silver	mg/kg dry wt	1.23	06/24/08	OP	0.56			
Thallium	mg/kg dry wt	ND	06/24/08	OP	3.34			
Vanadium	mg/kg dry wt	9.43	06/24/08	OP	5.56			
Zinc	mg/kg dry wt	43.6	06/24/08	OP	1.12			

Analytical Method:

SW846 6010

SAMPLES ARE DIGESTED WITH MINERAL ACIDS AND ANALYZED BY INDUCTIVELY COUPLED PLASMA EMISSION SPECTROMETRY (ICP).

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

* = See end of report for comments and notes applying to this sample

30 Spruce	Stroot °	East Longmeadow		01028 °	FΔX	413/525-6405	TEL	413/525-2332
39 Spruce	Slieel	East Lungineauuw	, IVIA	01020	FAA	413/323-0403	IEL.	410/020-2002

DAVID SULLIVAN				
TRC SOLUTIONS	- LOWELL	(a))	6/2	27/2008
650 SUFFOLK ST	REET		Pa	ige 9 of 32
LOWELL, MA 018	52	Purchase Order No.:		
Project Location:	CITY OF NEW BEDFORD		LIMS-BAT #:	LIMT-16916
Date Received:	6/18/2008		Job Number:	115058(EDGEOFF
Field Sample # :	SB-217-5			
Sample ID :	08B22002	‡Sampled : 6/17/2008		
		Not Specified		

Sample Matrix: SOIL

	Units	Results	Date Analyzed	Analyst	RL	SPEC Li Lo	mit Hi	P/F
Antimony	mg/kg dry wt	ND	06/24/08	OP	5.50		1.44	
Arsenic	mg/kg dry wt	15.3	06/24/08	OP	3.44			
Barium	mg/kg dry wt	513	06/24/08	OP	6.87			
Beryllium	mg/kg dry wt	0.87	06/24/08	OP	0.35			
Cadmium	mg/kg dry wt	1.14	06/24/08	OP	0.35			
Chromium	mg/kg dry wt	13.5	06/24/08	OP	0.69			
Lead	mg/kg dry wt	418	06/24/08	OP	1.04			
Nickel	mg/kg dry wt	26.3	06/24/08	OP	0.69			
Selenium	mg/kg dry wt	ND	06/24/08	OP	6.87			
Silver	mg/kg dry wt	7.72	06/24/08	OP	0.69			
Thallium	mg/kg dry wt	ND	06/24/08	OP	4.13			
Vanadium	mg/kg dry wt	23.3	06/24/08	OP	6.87			
Zinc	mg/kg dry wt	560	06/24/08	OP	1.38			

Analytical Method:

SW846 6010

SAMPLES ARE DIGESTED WITH MINERAL ACIDS AND ANALYZED BY INDUCTIVELY COUPLED PLASMA EMISSION SPECTROMETRY (ICP).

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

* = See end of report for comments and notes applying to this sample

‡ = See attached chain-of-custody record for time sampled

39 Spruce Street ° East Longmeadow	v, MA	01028 ° FAX	(413/525-6405 °	' TEL. 413/525-2332
------------------------------------	-------	-------------	------------------	---------------------

DAVID SULLIVAN				
TRC SOLUTIONS	- LOWELL		6/	27/2008
650 SUFFOLK ST	REET		Pa	age 10 of 32
LOWELL, MA 018	52	Purchase Order No.:		
Project Location:	CITY OF NEW BEDFORD		LIMS-BAT #:	LIMT-16916
Date Received:	6/18/2008		Job Number:	115058(EDGEOFF
Field Sample # :	SB-219-4			
Sample ID :	08B22003	‡Sampled : 6/17/2008		
		Not Specified		

Sample Matrix: SOIL

	Units	Results	Date	Analyst	RL	SPEC	Limit	P/F
			Analyzed			Lo	Hi	
Antimony	mg/kg dry wt	ND	06/24/08	OP	5.45			
Arsenic	mg/kg dry wt	17.3	06/24/08	OP	3.41			
Barium	mg/kg dry wt	337	06/24/08	OP	6.82			
Beryllium	mg/kg dry wt	ND	06/24/08	OP	0.35			
Cadmium	mg/kg dry wt	2.92	06/24/08	OP	0.35			
Chromium	mg/kg dry wt	35.9	06/24/08	OP	0.69			
Lead	mg/kg dry wt	1500	06/24/08	OP	1.03			
Nickel	mg/kg dry wt	28.9	06/24/08	OP	0.69			
Selenium	mg/kg dry wt	ND	06/24/08	OP	6.82			
Silver	mg/kg dry wt	12.2	06/24/08	OP	0.69			
Thallium	mg/kg dry wt	ND	06/24/08	OP	4.09			
Vanadium	mg/kg dry wt	28.5	06/24/08	OP	6.82			
Zinc	mg/kg dry wt	579	06/24/08	OP	1.37			

Analytical Method:

SW846 6010

SAMPLES ARE DIGESTED WITH MINERAL ACIDS AND ANALYZED BY INDUCTIVELY COUPLED PLASMA EMISSION SPECTROMETRY (ICP).

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

* = See end of report for comments and notes applying to this sample

± = See attached chain-of-custody record for time sampled

39 Spruce Street ° East Longmeadow, M/	A 01028 ° FAX 413/525-6405 ° TEL	. 413/525-2332
--	----------------------------------	----------------

Purchase Order No.:

6/27/2008

Job Number: 115058(EDGEOFF

LIMS-BAT #: LIMT-16916

Page 13 of 32

DAVID SULLIVAN TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

LOWELL, MA 01852

Project Location: CITY OF NEW BEDFORD

Date Received: 6/18/2008

Field Sample # : SB-221-5

Sample ID : 08B22004

Sample Matrix: SOIL

	,	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/F
Antimony		mg/kg dry wt	ND	06/24/08	OP	4.27			
Arsenic		mg/kg dry wt	ND	06/24/08	OP	2.67			
Barium		mg/kg dry wt	27.8	06/24/08	OP	5.34			
Beryllium		mg/kg dry wt	ND	06/24/08	OP	0.27			
Cadmium		mg/kg dry wt	ND	06/24/08	OP	0.27			
Chromium		mg/kg dry wt	8.59	06/24/08	OP	0.54			
Lead		mg/kg dry wt	2.49	06/24/08	OP	0.80			
Nickel		mg/kg dry wt	4.95	06/24/08	OP	0.54			5
Selenium		mg/kg dry wt	ND	06/24/08	OP	5.34			
Silver		mg/kg dry wt	1.11	06/24/08	OP	0.54			
Thallium		mg/kg dry wt	ND	06/24/08	OP	3.20			
Vanadium		mg/kg dry wt	12.0	06/24/08	OP	5.34			
Zinc		mg/kg d ry wt	12.3	06/24/08	OP	1.07			

Analytical Method:

SW846 6010

SAMPLES ARE DIGESTED WITH MINERAL ACIDS AND ANALYZED BY INDUCTIVELY COUPLED PLASMA EMISSION SPECTROMETRY (ICP).

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

* = See end of report for comments and notes applying to this sample

‡ = See attached chain-of-custody record for time sampled

TRC SOLUTIONS 650 SUFFOLK ST								7/2008
LOWELL, MA 018			Purchase Order	No			Ра	ge 14 of 32
Project Location;	CITY OF NEW						LIMS-BAT #;	LIMT-16916
Date Received:	6/18/2008						Job Number:	115058(EDGEOFF
Field Sample # :								
Sample ID :	08B21992	‡Samr Not Sp	oled : 6/16/2008 eccified					
Sample Matrix:	SOIL							
		Units	Results	Date Analyzed	Analyst	RL	SPEC Limit Lo Hi	
Mercury		mg/kg dry wt	0.096	06/20/08	SPL	0.021		· · · · · · ·
Field Sample # :								
Sample ID :	08B21993	‡Samp Not Sp	oled : 6/16/2008 ecified					
Sample Matrix:	SOIL							
		Units	Results	Date Analyzed	Analyst	RL	SPEC Limit Lo Hi	P/ F
Mercury		mg/kg dry wt	0.188	06/20/08	SPL	0.020	-	
Field Sample # :								
Sample ID :	08B21994	‡Samp Not Sp	led : 6/16/2008 ecified					
Sample Matrix:	SOIL							
		Units	Results	Date Analyzed	Analyst	RL	SPEC Limit Lo Hi	P/F
Mercury		mg/kg dry wt	0.082	06/20/08	SPL	0.015		
Field Sample # :	SB-210-5							*
Sample ID :	08B21995	‡Samp Not Sp	led : 6/16/2008 ecified					
Sample Matrix:	SOIL							
		Units	Results	Date Analyzed	Analyst	RL	SPEC Limit Lo Hi	P/F
Mercury		mg/kg dry wt	0.154	06/20/08	SPL	0.034		
Field Sample # :	SB-212-4							
Sample ID :	08B21996	‡Samp Not Spo	led : 6/16/2008 ecified					12 C
Sample Matrix:	SOIL							
		Units	Results	Date Analyzed	Analyst	RL	SPEC Limit Lo Hi	P/F
Mercury		mg/kg dry wt	0.265	06/20/08	SPL	0.199		

39 Spruce Street ° East Longmeadow, MA 01028 ° FAX 413/525-6405 ° TEL. 413/525-2332

RL = Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

* = See end of report for comments and notes applying to this sample

‡ = See attached chain-of-custody record for time sampled

ND = Not Detected at or above the Reporting Limit

DAVID SULLIVAN							6/2	7/2008
650 SUFFOLK ST LOWELL, MA 018	TREET	F	Purchase Order N	No.:				ge 15 of 32
Project Location: Date Received: Field Sample # :	CITY OF NEW 6/18/2008						LIMS-BAT #: Job Number:	LIMT-16916 115058(EDGEOFF
Sample ID :	08B21997	‡Samp Not Spe	led : 6/16/2008 ecified					
Sample Matrix:	SOIL							
		Units	Results	Date Analyzed	Analyst	RL	SPEC Limit Lo Hi	
Mercury		mg/kg dry wt	2.47	06/20/08	SPL	0.127	11751	
Field Sample # :	SB-214-4							
Sample ID :	08B22000	‡Samp Not Spe	led : 6/17/2008 ecified					
Sample Matrix:	SOIL							
		Units	Results	Date Analyzed	Analyst	RL	SPEC Limit Lo Hi	
Mercury		mg/kg dry wt	0.272	06/20/08	SPL	0.025		
Field Sample # :	SB-216-4							
Sample ID :	08B22001	‡Sampl Not Spe	ied : 6/17/2008 ecified					
Sample Matrix:	SOIL							
		Units	Results	Date Analyzed	Analyst	RL	SPEC Limit Lo Hi	
Mercury		mg/kg dry wt	0.446	06/20/08	SPL	0.022		
Field Sample # :	SB-217-5							
Sample ID :	08B22002	‡Sampl Not Spe	ed : 6/17/2008 ecified-					
Sample Matrix:	SOIL	·						
		Units	Results	Date Analyzed	Analyst	RL	SPEC Limit Lo Hi	
Mercury		mg/kg dry wt	0.111	06/20/08	SPL	0.024		
Field Sample # :	SB-219-4							
Sample ID :	08B22003	‡Sampl Not Spe	ed : 6/17/2008 ecified					
Sample Matrix:	SOIL		5					
		Units	Results	Date Analyzed	Analyst	RL	SPEC Limit Lo Hi	
Mercury		mg/kg dry wt	0.281	06/20/08	SPL	0.021		

39 Spruce Street ° East Longmeadow, MA 01028 ° FAX 413/525-6405 ° TEL. 413/525-2332

RL = Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

* = See end of report for comments and notes applying to this sample

‡ = See attached chain-of-custody record for time sampled

ND = Not Detected at or above the Reporting Limit

	39 Spruce Street	° East Longmeadow, MA	01028	° FAX 413/525-6405	° TEL. 413/525-2332
--	------------------	-----------------------	-------	--------------------	---------------------

DAVID SULLIVAN TRC SOLUTIONS 650 SUFFOLK ST	- LOWELL							27/2008 age 16 of 32
LOWELL, MA 018			Purchase Order I	No.:				
Project Location: Date Received: Field Sample # :	CITY OF NEV 6/18/2008	VBEDFORD					LIMS-BAT #: Job Number:	LIMT-16916 115058(EDGEOF
Sample ID :	08B21998	‡Samp Not Sp	oled : 6/16/2008 ecified					
Sample Matrix:	SOIL							
		Units	Results	Date Analyzed	Analyst	RL	SPEC Lim Lo F	
Mercury		mg/kg dry wt	0.038	06/20/08	SPL	0.021		
Field Sample # :								
Sample ID :	08B21999	‡Samp Not Sp	oled : 6/16/2008 ecified					
Sample Matrix:	SOIL							
		Units	Results	Date Analyzed	Analyst	RL	SPEC Lim Lo ト	
Mercury		mg/kg dry wt	ND	06/20/08	SPL	0.021		
Field Sample # :	SB-221-5							
Sample ID :	08B22004	‡Samp Not Sp	oled : 6/17/2008 ecified				÷	
Sample Matrix:	SOIL							
		Units	Results	Date Analyzed	Analyst	RL	SPEC Lim Lo H	
Mercury		mg/kg dry wt	ND	06/20/08	SPL	0.014		

SW846 3050/7471

SAMPLES ARE DIGESTED WITH ACIDS AND THEN ANALYZED BY

COLD VAPOR (FLAMELESS) ATOMIC ABSORPTION SPECTROPHOTOMETRY

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

* = See end of report for comments and notes applying to this sample
 ‡ = See attached chain-of-custody record for time sampled

Appendix E Toxicity Profiles

ZINC⁽¹⁾

Summary of Primary Health Effects in Humans and Experimental Animals

				Health Effects by Route of Exp	osure and Endpoint of Intent			
Overview of Zinc Related Health Effects	Death	Systemic Effects	Developmental Effects	Reproductive Effects	Genotoxic Effects	Neurological Effects	Immunological Effects	Cancer
Zinc is an essential human nutrient. Deficiency may result in failure to grow, impaired wound healing, skin lesions.	I: 30,000 ppm in air for humans in LOAEL.	I: Respiratory tract effects in humans.	I: No studies were located regarding developmental effects in humans or in animals.	I: No conclusive data was available regarding reproductive effects.	I: Slight increase in chromo- somal aberrations in mice.	I: No studies were located regarding neurological effects in humans or in animals.	I: No studies were located regarding immunological effects in humans or in animals.	I: Studies were inadequate to assess the carcinogenicity of zinc in humans.
Large oral doses lead to adverse gastrointestinal effects.	O: 850 mg/kg/day for 3-13 days lethal for ferrets.	O: Gastrointestinal, hematological, and renal effects in humans.	O: Reduced fetal weight, reduction in copper levels in rats.	O: No conclusive data was available regarding reproductive effects.	O: Slight increase in chromosomal aberrations in mice.	O: Lethargy, dizziness observed in humans.	O: Impairment to immune and inflammatory response in humans.	O: Studies were inadequate to assess the carcinogenicity of zinc in humans.
Excess zinc may interfere with the ability to absorb other essential nutrients such as copper and iron.	D: No studies were located.	D: No studies were located.	D: No studies were located.	D: No studies were located.	D: No studies were located.	D: No studies were located.	D : No studies were located.	D: No studies were located.

Notes: (1): Refer to original source (1990 ATSDR) for details (1): Inhalation route of exposure. (0): Oral route of exposure. (1): Dermal route of exposure. (2): "No information provided" indicates no information was provided by original source. (3): "No studies were located" indicates no studies were located by original source.

BARIUM (1)

Summary of Primary Health Effects in Humans and Experimental Animals

	Systemic Effects I: Minor respiratory effects, G.I. effects, hematological effects.	Developmental Effects I: Reduced survival, underdevelopment, lowered, weight gain, and various	Reproductive Effects	Genotoxic Effects I: No studies were located	Neurological Effects	Immunological Effects	Cancer I: No studies were located
ding lethality in humans					I: Limited information is available.	I. No studies were located	I. No studies were located
ding lethality in humans					I: Limited information is available.	I: No studies were located	I. No studies were located
		hematological alterations (rats).	decreased number of sperm (rat).	regarding genotoxic effects in humans or in animals.	Absence of deep tendon reflexes was observed.	regarding immunological effects in humans or in animals.	regarding cancer in humans or in animals.
Acute oral LD50 ranges 132 to 277 mg/kg/day (rat).		O: Limited information was available regarding developmental effects in humans or in animals.	O: No adverse effects were noted at doses as high as 135 mg/kg/day.	O: No studies were located regarding genotoxicity in humans or in animals.	O: Numbness and tingling around the mouth and neck.	O: Limited data is available. Acute gavage exposure of rats to doses less than 198 mg/kg/day was not associated with	O: No conclusive information was provided regarding carcinogenic effects.
		D: No studies were located regarding developmental effects in humans or in animals.	D: No studies were located regarding reproductive effects in humans or in animals.	D: No studies were located regarding genotoxic effects in humans or in animals.	D: No studies were located regarding neurological effects in humans or in animals.	changes in thymus weight. D: No studies were located regarding immunological effects in humans or in animals.	D: No adequate human or anima data were available for evaluatin carcinogenicity.
13 at	32 to 277 mg/kg/day (rat). es that barium is toxic te oral gavage exposure.	32 to 277 mg/kg/day (rat). hematological, muscoskeletal, renal, and minor hepatic effects.	 32 to 277 mg/kg/day (rat). hematological, muscoskeletal, renal, and minor hepatic effects. and minor hepatic effects. b. No conclusive information was available regarding systemic effects. D: No studies were located regarding developmental effects in humans or in animals. 	32 to 277 mg/kg/day (rat). hematological, muscoskeletal, renal, and minor hepatic effects. regarding developmental effects in humans or in animals. O: No adverse effects were noted at doses as high as 135 mg/kg/day. e rat gavage exposure. D: No conclusive information was available regarding systemic effects. D: No studies were located regarding reproductive effects in humans or in animals. D: No studies were located regarding reproductive effects in humans or in animals.	32 to 277 mg/kg/day (rat). hematological, muscoskeletal, renal, and minor hepatic effects. regarding developmental effects in humans or in animals. O: No adverse effects were noted at doses as high as 135 mg/kg/day. regarding genotoxicity in humans or in animals. e or al gavage exposure. D: No conclusive information was available regarding systemic effects. D: No studies were located regarding reproductive effects in humans or in animals. D: No studies were located regarding reproductive effects in humans or in animals. D: No studies or in animals. D: No studies or in animals.	 32 to 277 mg/kg/day (rat). hematological, muscoskeletal, renal, and minor hepatic effects. be that barium is toxic is or animals. c) and minor hepatic effects. c) No adverse effects were noted at doses as high as 135 mg/kg/day. c) No adverse effects were noted at doses as high as 135 mg/kg/day. c) No adverse effects were noted at doses as high as 135 mg/kg/day. c) No studies were located regarding systemic effects. c) No studies were located regarding systemic effects. c) No studies were located regarding systemic effects. c) No studies were located regarding genotoxic effects in humans or in animals. 	 32 to 277 mg/kg/day (rat). be matological, muscoskeletal, renal, and minor hepatic effects. a minor hepatic effects. b No conclusive information was available regarding systemic effects. D: No studies were located regarding gevelopmental effects in humans or in animals. D: No studies were located regarding gevelopmental effects in humans or in animals. D: No studies were located regarding gevelopmental effects in humans or in animals. D: No studies were located regarding gevelopmental effects in humans or in animals.

Notes: (1): Refer to original source (1990 ATSDR) for details (1): Inhalation route of exposure. (0): Oral route of exposure.

(D): Dermal route of exposure.
(D): Dermal route of exposure.
(2): "No information provided" indicates no information was provided by original source.
(3): "No studies were located" indicates no studies were located by original source.

C9-C18 ALIPHATICS (1) (Based on the Toxicity of Surrogate Compound Nonane)

Summary of Primary Health Effects in Humans and Experimental Animals

				Health Effects by Route of Exp	osure and Endpoint of Intent			
Overview of C ₉ -C ₁₈ Aliphatics Related Health Effects	Death	Systemic Effects	Developmental Effects	Reproductive Effects	Genotoxic Effects	Neurological Effects	Immunological Effects	Cancer
The C9-C18 aliphatics are considered an order of magnitude less toxic with respect to neurotoxicity compared to C5-C8 aliphatics.	I: There are no data available regarding lethality in humans or animals.	I: No studies were located regarding systemic effects in humans or animals.	I: There are no data available regarding developmental effects in humans or animals.	I: No studies were located regarding reproductive effects in humans or in animals.	I: No studies were located regarding genotoxic effects in humans or in animals.	I: No studies were located regarding neurological effects in humans. A NOAEL of 590 ppm was established based on a 13- week rat inhalation study.	I: No studies were located regarding immunological effects in humans or animals.	I: No studies were located regarding carcinogenic effec in humans or animals.
Little toxicological dara exists for Nonane. The RfD was based on the comparison of one unhalation rat study for	O: There are no data available regarding lethality in humans or animals.	O: No studies were located regarding systemic effects in humans or animals.	O: There are no data available regarding developmental effects in humans or animals.	O: No studies were located regarding reproductive effects in humans or in animals.	I: No studies were located regarding genotoxic effects in humans or in animals.	O: No studies were located regarding neurological effects in humans or in animals.	O: No studies were located regarding immunological effects in humans or animals.	O: No studies were located regarding carcinogenic effect in humans or animals.
nonane compared to one inhalation mouse study for hexane.	D: No studies were located regarding lethality in humans or animals.	D: No studies were located regarding systemic effects in humans or animals.	D: There are no data available regarding developmental effects in humans or animals.	D: No studies were located regarding reproductive effects in humans or in animals.	I: No studies were located regarding genotoxic effects in humans or in animals.	D: No studies were located regarding neurological effects in humans or in animals.	D: No studies were located regarding immunological effects in humans or animals.	O: No studies were located regarding carcinogenic effect in humans or animals.

Notes:

Ivoues.
(1): Refer to original source (Interim Final Petroleum Report: Development of Health-Based Alternative to the Total Petroleum Hydrocarbon (TPH) Parameter (MADEP, 1994)) for details.
(1): Inhalation route of exposure.
(0): Oral route of exposure.
(D): Dermal route of exposure.

C11-C22 AROMATICS (1) (Based on the Toxicity of Surrogate Compound Pyrene)

Summary of Primary Health Effects in Humans and Experimental Animals

	Health Effects by Route of Exposure and Endpoint of Intent									
Overview of Pyrene Related Health Effects	Death	Systemic Effects	Developmental Effects	Reproductive Effects	Genotoxic Effects	Neurological Effects	Immunological Effects	Cancer		
	I: No studies were located regarding lethality in humans or animals.	I: No studies were located regarding systemic effects in humans or animals.	I: No studies were located regarding developmental effects in humans or in animals.	I: No studies were located regarding reproductive effects in humans or in animals.	I: No studies were located regarding genotoxic effects in humans or in animals.	I: No studies were located regarding neurological effects in humans or in animals.	I: No studies were located regarding immunological effects in humans or in animals.	I: No studies were located regarding carcinogenic effects in humans or in animals.		
	 O: No studies were located regarding lethality in humans. D: No studies were located 	O: Minimal information is available regarding systemic effects in humans or animals.	O: No studies were located regarding developmental effects in humans.	O: No studies were located regarding reproductive effects in humans.	O: No studies were located regarding genotoxic effects in humans.	O: No studies were located regarding neurological effects in humans or in animals.	O: No studies were located regarding immunological effects in humans or in animals.	O: No studies were located regarding carcinogenic effects in humans.		
	regarding lethality in humans or animals.	D: Can cause skin disorders.	D: No studies were located regarding developmental effects in humans.	D: No studies were located regard- ing reproductive effects in humans or in animals.	D: No studies were located regarding genotoxic effects in humans.	D: No studies were located regarding neurological effects in humans or in animals.	D: No studies were located regarding immunological effects in humans or in animals.	D: No studies were located that gave evidence of a direct association between dermal exposure and cancer induction.		

Notes: (1): Refer to original source (1990 ATSDR) for details. (1): Inhalation route of exposure. (O): Oral route of exposure. (D): Dermal route of exposure.

C19-C36 ALIPHATICS⁽¹⁾(Based on the Toxicity of Surrogate Compound Eicosane)

Summary of Primary Health Effects in Humans and Experimental Animals

				Health Effects by Route of Exp	osure and Endpoint of Intent			
Overview of C ₁₉ -C ₃₆ Aliphatics Related Health Effects	Death	Systemic Effects	Developmental Effects	Reproductive Effects	Genotoxic Effects	Neurological Effects	Immunological Effects	Cancer
dentified as a reference	I: There are no data available regarding lethality in humans or animals.	I: No studies were located regarding systemic effects in humans or animals.	I: There are no data available regarding developmental effects in humans or animals.	I: No studies were located regarding reproductive effects in humans or in animals.	I: No studies were located regarding genotoxic effects in humans or in animals.	I: No studies were located regarding neurological effects in humans. A NOAEL of 590 ppm was established based on a 13- week rat inhalation study.	I: No studies were located regarding immunological effects in humans or animals.	I: No studies were located regarding carcinogenic effect in humans or animals.
aliphatics.	O: There are no data available regarding lethality in humans or animals.	O: No studies were located regarding systemic effects in humans or animals.	O: There are no data available regarding developmental effects in humans or animals.	O: No studies were located regarding reproductive effects in humans or in animals.	I: No studies were located regarding genotoxic effects in humans or in animals.	O: No studies were located regarding neurological effects in humans or in animals.	O: No studies were located regarding immunological effects in humans or animals.	O: No studies were located regarding carcinogenic effect in humans or animals.
was based on the NOAEL for white mineral oil.	D: No studies were located regarding lethality in humans or animals.	D: No studies were located regarding systemic effects in humans or animals.	D: There are no data available regarding developmental effects in humans or animals.	D: No studies were located regarding reproductive effects in humans or in animals.	I: No studies were located regarding genotoxic effects in humans or in animals.	D: No studies were located regarding neurological effects in humans or in animals.	D: No studies were located regarding immunological effects in humans or animals.	O: No studies were located regarding carcinogenic effect in humans or animals.

Notes:

Ivoues.
(1): Refer to original source (Interim Final Petroleum Report: Development of Health-Based Alternative to the Total Petroleum Hydrocarbon (TPH) Parameter (MADEP, 1994)) for details.
(1): Inhalation route of exposure.
(0): Oral route of exposure.
(D): Dermal route of exposure.

LEAD (1)

Summary of Primary Health Effects in Humans and Experimental Animals

				Health Effects by Route of Exposu	re and Endpoint of Intent			
Overview of Lead Related Health Effects	Death	Systemic Effects	Developmental Effects	Reproductive Effects	Genotoxic Effects	Neurological Effects	Immunological Effects	Cancer
Lead is especially dangerous to unborn children. More of the lead swallowed by children enters their bodies and they are more sensitive to its effects.	Lethality data for oral exposure is limited to LDLO values. The lowest LDLO value for a dog is 191 mg/kg.	The end points of greatest concern for human health after oral exposure are heme synthesis, and erythropoiesis, neurobehavioral toxicity, cardiovascular toxicity, and vitamin D metabolism and growth.	Studies provide no evidence that oral exposure to lead results in malformations.	Caused irregular estrous cycles in females , testicular damage was seen in male rats.	Conflicting information is available, a clastogenic effect has been suggested.	Nerve conduction velocity is slowed. In children effects such a lower IQ levels have been associated with lead exposure.	No information is provided. s	Statistically increased incidences of kidney tumors.

<u>Notes:</u> (1): Refer to original source (1990 ATSDR) for details (2): "No information provided" indicates no information was provided by original source. (3): "No studies were located" indicates no studies were located by original source.

MERCURY (1)

Summary of Primary Health Effects in Humans and Experimental Animals

			Health Effects by Route of Expos	sure and Endpoint of Intent			
Death	Systemic Effects	Developmental Effects	Reproductive Effects	Genotoxic Effects	Neurological Effects	Immunological Effects	Cancer
I: Following acute exposure to high concentrations death was attributed to loss of respiratory function as a result of severe damage to pullpopary tissue	I: Serious cardiovascular and pulmonary effects in humans Gastrointestinal, hepatic and renal effects.	I: Studies in humans following prenatal exposure to mercury suggest chronic exposure results in increased frequencies of mentural disturbances and	I: Exposure to metallic mercury causes prolongation of estrus cycles.	I: Increased incidence of structural chromosomal anomalies.	 I: Central nervous system is critical system for elemental mercury. O: Studies failed to reveal any. 	I: No studies were located regarding immunological effects in humans or in animals.	I: There were no reliable studies indicating that inorganic or organi mercury are carcinogenic.
O: The lethal doses ranged from 29 to at least 50 mg/kg.	O: Kidney and central nervous system effects.	spontaneous abortions.	O: No studies were located regard- ing developmental effects in humans. In animals 1 mg /k/day affected male fertility.	O: A positive correlation between blood mercury levels and increased frequencies of chromosomal aberrations was reported.	evidence of neurotoxicity in mice administered 1 or 3 mg/kg/day of HgCl2.	O: Evidence indicates immune system is affected.	O: There were no reliable studies indicating that inorganic or organic mercury are carcinogenic.
D: No studies were located		O: No studies were located regard- ing developmental effects in humans. In animals, increased percentage of fetal resorptions were observed (hamsters).	D: No studies were located regarding reproductive effects in humans or experimental animals.	D: No studies were located regarding genotoxic effects in humans or experimental	D: Exposure via the dermal route is one of the most common routes of exposure, therefore symptom such as acrodynia may be related to the	D: Contact allergies have been reported however results are not conclusive.	D: No studies were located regarding carcinogenic effects in humans or in animals.
regarding lethality in humans or experimental animals.	D: Studies report the occurrence of neurotoxic and nephrotoxic effects following dermal exposure.			animals.	dermal route of exposure.		
		D: No studies were located regarding developmental effects in humans or experimental animals.					
	 I: Following acute exposure to high concentrations death was attributed to loss of respiratory function as a result of severe damage to pulmonary tissue. O: The lethal doses ranged from 29 to at least 50 mg/kg. D: No studies were located regarding lethality in humans or 	Death Effects I: Following acute exposure to high concentrations death was attributed to loss of respiratory function as a result of severe damage to pulmonary tissue. I: Serious cardiovascular and pulmonary effects in humans Gastrointestinal, hepatic and renal effects. O: The lethal doses ranged from 29 to at least 50 mg/kg. O: Kidney and central nervous system effects. D: No studies were located regarding lethality in humans or experimental animals. D: Studies report the occurrence of neurotoxic and nephrotoxic effects	DeathEffectsEffectsI: Following acute exposure to high concentrations death was attributed to loss of respiratory function as a result of severe damage to pulmonary tissue.I: Serious cardiovascular and pulmonary effects in humans Gastrointestinal, hepatic and renal effects.I: Studies in humans following prenatal exposure to mercury suggest chronic exposure results in increased frequencies of menstrual disturbances and spontaneous abortions.O: The lethal doses ranged from 29 to at least 50 mg/kg.O: Kidney and central nervous system effects.O: No studies were located regard- ing developmental effects in humans. In animals, increased precentage of fetal resorptions were observed (hamsters).D: No studies were located regarding lethality in humans or experimental animals.D: Studies report the occurrence of neurotoxic and nephrotoxic effects following dermal exposure.D: No studies were located regarding developmental effects in humans. In animals, increased precentage of studies were located regarding developmental effects in humans or experimental animals.	No. 1Systemic EffectsDevelopmental EffectsReproducive RefectsL: Following acute exposure to high concentrations death was attributed to loss of respirationitestinal, hepatic and related frequencies of menstrual disturbances and system effects.L: Studies in humans following prenatal exposure to mercury super chronic exposure to mercury super loss of respirationitestinal, hepatic and renal effects.L: Studies in humans following prenatal exposure to mercury super loss of respirationitestinal, hepatic and renal effects.L: Studies in humans following prenatal exposure to mercury super loss of respiration to severe users and ereal effects.L: Exposure to metallic mercury causes prolongation of estrus cycles.O: The lethal doses ranged from 29 to at least 50 mg/kg.O: Kidney and central nervous system effects.D: No studies were located regard- in animals, increased percentage of fetal resorptions were observed (hamsters).D: No studies were located regard- in developmental effects in humans In animals, increased percentage of fetal resorptions were observed (hamsters).D: No studies were located regard- in developmental effects in humans or experimental animals.D: No studies were located regarding lethality in humans or seprimental animals.D: No studies were located regarding terbolowing dermal exposure.D: No studies were located regarding developmental effects in humans or experimental animals.D: No studies were located regarding developmental animals.D: No studies were located regarding reproductive effects in humans or experimental animals.D: No studies were located regarding developmental effects.D: No studies wer	DeathEffectsEffectsEffectsEffectsEffectsI: Following acute exposure to high concentrations death was attributed to loss of respiratory function as a result of severe damage to pulmonary tissue.I: Serious cardiovascular and pulmonary effects in humans Gastrointestinal, hepatic and renal effects.I: Studies in humans following prentatal exposure to mercury suggest chronic exposure results in increased frequencies of menstrual disturbances and spontaneous abortions.I: Exposure to metallic mercury causes prolongation of estrus cycles.I: Increased incidence of structural chromosomal anomalies.O: The lethal doses ranged from 29 to at least 50 mg/kg.O: Kidney and central nervous system effects.O: No studies were located regard- ing developmental effects in humans of fetal resorptions were ohserved (hamsters).O: No studies were located regarding reproductive effects in humans or experimental animals.D: No studies were located regarding reproductive effects in humans or experimental animals.D: No studies were located regarding reproductive effects in humans or experimental animals.D: No studies were located regarding reproductive effects in humans or experimental animals.D: No studies were located regarding reproductive effects in humans or experimental animals.D: No studies were located regarding reproductive effects in humans or experimental animals.	DashSystemic EffectsDevelopmental EffectsReproductive EffectsGenotocic EffectsNeurological EffectsI: Following acute exposure to high concentrations death was attributed to loss of respirator amage to pulmonary effects in humans attributed to loss of respirational, hepatic and enal effects.I: Studies in humans following prenatal exposure rosults increased frequencies of menstrual disturbances and system feets.I: Exposure to metallic mercury causes prolongation of estrus curses prolongation of estrus curses prolongation of estrus animalis.I: Increased incidence of structural chronosonal animalis.I: Central nervous system is critical system for elemental mercury. animalis ing <i>k</i> /day affected in humans or Studies were located regard- ing developmental effects in humans frequencies of frequencies of neal instrust.O: No studies were located regard- ing developmental effects in humans animalis.O: No studies were located regard- ing developmental effects in humans animalis.O: No studies were located regard- ing developmental effects in humans animalis.O: No studies were located regard- ing developmental effects in humans animalis.D: No studies were located regard- ing developmental effects in humans animalis.D: No studies were located regard- ing developmental effectsD: No studies were located regard- ing developmental effects	NexthSystemic EffectsDevelopmental EffectsReproductive EffectsGenotoxic EffectsNeurological EffectsImmunological EffectsI:Following acute exposure to high concentrations deal was acuto exteriminations deal was attributed to loss of respiratory function as a result of sever duance to pulmoary tiffects in humans anal effects.I:Studies in humans following prentatal exposure to mercury suggest chronic exposure results in increased frequencies of mentational disturbances and portaneous abortions.I:Exposure to metallic mercury curses of sever operation increased regarding immunosofial effects in humans in arimals.I:

Notes: (1): Refer to original source (1990 ATSDR) for details (1): Inhalation route of exposure. (0): Oral route of exposure. (1): Dermal route of exposure. (2): "No information provided" indicates no information was provided by original source. (3): "No studies were located" indicates no studies were located by original source.

NICKEL⁽¹⁾

Summary of Primary Health Effects in Humans and Experimental Animals

				Health Effects by Route of Exp	osure and Endpoint of Intent			
Overview of Nickel Related Health Effects	Death	Systemic Effects	Developmental Effects	Reproductive Effects	Genotoxic Effects	Neurological Effects	Immunological Effects	Cancer
Nickel can cause effects on the lung and the immune system, as well as asthma in sensitive people.	I: Acute mice 1.7 mg/m ³ , acute rat 3.3 mg/m ³ .	I: Lung target organ - increased risk of lung cancer, asthma and nasal effects.	I: Reduced fetal body weight (rat).	I: Testicular effects in rats and mice.	I: Limited information available.	I: No studies were located regarding immunological effects in humans or in animals.	I: No studies were located regarding immunological effects in humans or in animals.	I: Occupational studies show an increased risk of nasal, laryngeal, and lung cancer in humans.
inhalation causes cancer in the ung, nasal cavity and voice sox.	O: Acute oral lethality in humans by poisoning is 220 mg/kg.	O: Hematological system is target organ - increased white blood cell count and increased platelet count (rats).	O: A reduction in mean birth weight observed in mice.	O: A loss of maternal weight, increased spontaneous abortions (mice).	O: No studies were located regarding genotoxic effects in humans or animals.	O: No conclusive information was provided regarding neurological effects.	O: No studies were located regarding immunological effects in humans or in animals.	O: Available studies do not indicate carcinogenicity to animals, but the data are inadequate due to limited data.
	D : No data were available.	D: Contact dermatitis observed in humans.	D: No studies were located.	D: Data were inadequate.D: No studies were located.	D: No studies were located.	D: No studies were located.	D: No studies were located.	D : No studies were located.

Notes: (1): Refer to original source (1988 ATSDR) for details (I): Inhalation route of exposure. (O): Oral route of exposure.

(D): Dermal route of exposure.
(2): "No information provided" indicates no information was provided by original source.
(3): "No studies were located" indicates no studies were located by original source.

Summary of Primary Health Effects in Humans and Experimental Animals

				Health Effects by Route of Exp	osure and Endpoint of Intent			
Overview of PCBs Related Health Effects	Death	Systemic Effects	Developmental Effects	Reproductive Effects	Genotoxic Effects	Neurological Effects	Immunological Effects	Cancer
Exposure at low levels may cause eye and throat irritation. Exposure to high levels may cause decreased movement and	be 4,000 ppm and 13,367 ppm	I: Pulmonary and ocular effects. Respiratory, hematological, hepatic effects.	I: Exposure for 24 hr/day for 9 days at doses ranging from 138 to 552 ppm produced fetal resorption and retardation of skeletal development.	I: No conclusive data was available regarding reproductive effects.	I: No studies were located regarding genotoxic effects in humans or in animals.	I: Dizziness, vertigo. Central nervous toxicity.	I: No studies were located regarding immunological effects in humans or in animals.	I: No association has been found between the occurrence of cancer in humans and occupational exposure.
Short-term exposure to high levels may cause liver, and kidney damage.		O: No conclusive data were provided regarding systemic effects.	O: No studies were located regarding developmental effects in humans or in animals.	O: Acute oral exposure to 500 or 1,000 mg/kg decreases peripheral hormone levels and blocks the estrus cvcle (rats).	O: No studies were located regarding genotoxic effects in humans or animals.	O: No conclusive information was provided regarding neurological effects.	O: No studies were located regarding immunological effects in humans or in animals.	O: A statistically significant increase in total malignant tumors were reported in females administered 500 mg/kg/day for 104 weeks.
	D: Dermal LD50 is 15,415 mg/kg	D: No studies were located.	D: No studies were located.	D: No studies were located.	D: No studies were located.	D: No studies were located.	D: No studies were located.	D: No studies were located.

Notes: (1): Refer to original source (1990 ATSDR) for details (1): Inhalation route of exposure. (0): Oral route of exposure. (1): Dermal route of exposure. (2): "No information provided" indicates no information was provided by original source. (3): "No studies were located" indicates no studies were located by original source.

SILVER (1)

Summary of Primary Health Effects in Humans and Experimental Animals

				Health Effects by Route of	f Exposure and Endpoint of Intent			
Overview of Silver Related Health Effects	Death	Systemic Effects	Developmental Effects	Reproductive Effects	Genotoxic Effects	Neurological Effects	Immunological Effects	Cancer
No adverse health effect have been reported in humans. Some areas of the skin and other body tissues may turn gray after many exposures.	I: No studies were located lethality in humans or in animals.	I: Respiratory effects have been observed infrequently in humans.	I: No studies were located regarding developmental effects in humans or in animals.	I: No studies were located regarding reproductive effects in humans or in animals.	I: No studies were located regarding genotoxic effects in humans or in animals.	I: No studies were located regarding neurological effects in humans or in animals.	I: No studies were located regarding immunological effects in humans or in animals.	I: No studies were located regarding the carcinogenicity of silver.
	O: Death was reported in rats receiving 222.2 mg/kg/day of silver nitrate over a longer duration.	O: Gray discoloration of the skin has been observed .	O: No studies were located regarding developmental effects in humans or in animals. D: No studies were located regarding developmental effects in humans or in	O: No significant studies were located regarding reproductive effects in humans or in animals.	O: No studies were located regarding genotoxic effects in humans or in animals. D: No studies were located regarding	O: Direct correlation between the exposure to silver and neurological effects has not been determined.	O: No information was provided. D: Medical case histories describe	O: No studies were located regarding the carcinogenicity of silver.
	D: No significant studies were located regarding lethality in humans or in animals.	D: Exposure to silver for extended periods of time or repeated exposure can lead to local skin discoloration.	animals.	D: No studies were located regarding reproductive effects in humans or in animals.	genotoxic effects in humans or in animals.	O: No studies were located regarding neurological effects in humans or in animals.	mild allergic responses. Sensitization has been observed.	D: No studies were located regarding the carcinogenicity of silver.

Notes: (1): Refer to original source (1990 ATSDR) for details (J): Inhalation route of exposure. (D): Oral route of exposure. (D): Dermal route of exposure. (2): "No information provided" indicates no information was provided by original source. (3): "No studies were located" indicates no studies were located by original source.

Summary of Primary Health Effects in Humans and Experimental Animals

				Health Effects by Route of	Exposure and Endpoint of Intent			
Overview of Vanadium Related Health Effects	Death	Systemic Effects	Developmental Effects	Reproductive Effects	Genotoxic Effects	Neurological Effects	Immunological Effects	Cancer
Exposure to vanadium appears to have the greatest effect on the respiratory system, resulting in mucus formation and cough.	 I: No studies were located regarding death in humans. One animal study was located. This study determined the LD₃₀ for rabbits to be a single acute exposure to 114 mg/m³ as vanadium pentoxide. O: No studies were located regarding death in humans. An LD₃₀ of 41 mg/kg was set for rats. Chronic exposure of up to 4.1 mg vanadju sulfate in food or water did not affect mortality in rats or mice. D: No studies were located regarding death in humans or animals following exposure. 	 I: Respiratory effects, such as mucus formation and coughing followed exposure to 0.06 mg/m³. No significant studies were located regarding cardiovascular, gastrointestinal, hematological, musculo-skeletal, hepatic or renal effects. Moderate eye irritation when exposed to vanadium dusts was reported, as well as weight loss. O: Thallium ingestion of 0.47-1.3 mg vadaium/kg as ammonium vanadyl tarritae for 45-68 days resulted in intestinal cramping and diarrhea. However, workers were exposed to other chemicals a well. D: No studies were located regarding systemic effects in humans or animals following exposure. 	 I: No studies were located regarding developmental effects in humans or animals. O: No studies were located regarding human exposure. Rats exposed to sodium metavanadate showed an increase in facial and dorsal hemorrhages. The significance of this finding is not known. D: No studies were located regarding developmental effects in humans or in animals. 	 I: No studies were located regarding respiratory effects in humans or animals. O: No studies were located regarding reproductive effects in humans. Gavage does of sodium metavanadate given to male and female rats during gestation and lactation did not affect fertility, reproduction, or parturition. D: No studies were located regarding reproductive effects in humans or in animals. 	 I: No studies were located regarding genotoxic effects in humans or animals. O: No studies were located regarding genotoxic effects in humans and animals. D: No studies were located regarding genotoxic effects in humans or in animals. 	 I: No neurological complaints were made after an acute exposure. However, some workers did complain of dizziness, depression, headache or tremors of the fingers and arms, which may or may not have been due to vanadium. O: No studies were located regarding neurological effects in humans or animals. D: No studies were located regarding neurological effects in humans or animals. 	 I: One study found no significant effects regarding allergic reactions in humans. No significant effects were found on the spleen of rabbits. O: No studies were located regarding immunological effects in humans. No significant studies regarding animal exposure were located. D: No studies were located regarding immunological effects in humans or animals. 	 I: No studies were located regarding carcinogenic effects in humans or animals. O: No studies were located that specifically studied cancer in humans or animals. However some studies that were designed to test other end points noted no increase in tumor frequency in rats and mice chronically exposed to 0.5-4.1 mg vanadium kg as vanadyl sulfate in drinking water. Although these oral studies were negative for carcinogenicity, they were inadequate for evaluating carcinogenic effects. D: No studies were located regarding the carcinogenicity of vanadium in humans or animals.

Notes: (1): Refer to original source (1990 ATSDR) for details (1): Inhalation route of exposure. (0): Oral route of exposure. (1): Dermal route of exposure. (2): "No information provided" indicates no information was provided by original source. (3): "No studies were located" indicates no studies were located by original source.

Appendix F AUL

Activity and Use Limitation (AUL) recorded on March 11, 2013

Form 1075

NOTICE OF ACTIVITY AND USE LIMITATION M.G.L. c. 21E, § 6 and 310 CMR 40.0000

Disposal Site Name: <u>Liberty Street Parcel</u>, <u>New Bedford</u>, <u>MA</u> DEP Release Tracking No.(s): <u>4-15685 (partial)</u>

This Notice of Activity and Use Limitation ("Notice") is made as of this <u>5th</u> day of <u>March</u>, 2013, by City of New Bedford, 133 William Street, New Bedford, MA 02740, together with its successors and assigns (collectively "Owner").

WITNESSETH:

WHEREAS, City of New Bedford, MA, is the owner in fee simple of those certain parcels of land located in New Bedford, Bristol County, Massachusetts with the buildings and improvements thereon, pursuant to deeds recorded with the Bristol County Registry of Deeds in Book 182, Page 47 (Map 76, Lot 256), and Book 407, Page 177 (Map 70, Lots 2 and 227);

WHEREAS, said parcels of land, which is more particularly bounded and described in Exhibit A, attached hereto and made a part hereof ("Property") is subject to this Notice of Activity and Use Limitation. The Property is shown on a plan recorded in the Bristol County Registry of Deeds in Plan Book 170, Plan 27;

WHEREAS, the Property comprises part of a disposal site as the result of a release of oil and/or hazardous material. Exhibit B is a sketch plan showing the relationship of the Property subject to this Notice of Activity and Use Limitation to the boundaries of said disposal site existing within the limits of the Property and to the extent such boundaries have been established. Exhibit B is attached hereto and made a part hereof; and

WHEREAS, one or more response actions have been selected for the Disposal Site in accordance with M.G.L. c. 21E ("Chapter 21E") and the Massachusetts Contingency Plan, 310 CMR 40.0000 ("MCP"). Said response actions are based upon (a) the restriction of human access to and contact with oil and/or hazardous material in soil and (b) the restriction of certain activities occurring in, on, through, over or under the Property. The basis for such restrictions is set forth in an Activity and Use Limitation Opinion ("AUL Opinion"), dated October 22, 2012, (which is attached hereto as Exhibit C and made a part hereof);

NOW, THEREFORE, notice is hereby given that the activity and use limitations set forth in said AUL Opinion are as follows:

1. <u>Activities and Uses Consistent with the AUL Opinion</u>. The AUL Opinion provides that a condition of No Significant Risk to health, safety, public welfare or the environment exists for any foreseeable period of time (pursuant to 310 CMR 40.0000) so long as any of the following activities and uses occur on the Property:

(i) Activities consistent with use of the property as a DPI and DPF maintenance yard including but not limited to parking, storage of equipment and materials such as road salt and sand and use of the property for solar panels.

(ii) Site maintenance that does not cause or result in the removal of soil. Future construction activities, if any, are required to be accomplished under plans described in (iv) below;

(iii) Any emergency utility repair, construction and/or other work (5 working days or less) in soil of any depth provided that promptly following the completion of the project such soils are returned to their original location or properly disposed of offsite and are replaced with acceptable soil as determined by a Licensed Site Professional (LSP);

(iv) Any subsurface utility, construction and/or other work, other than emergency repair, in soil of any depth provided that appropriate Soil Management and Health and Safety Plans are developed and implemented prior to initiation of such activities and provided that following the completion of the project such soils are returned promptly to their original location or properly disposed of off-site and are replaced with acceptable soil as determined by an LSP;

(v) Such other activities or uses which, in the Opinion of an LSP, shall present no greater risk of harm to health, safety, public welfare or the environment than the activities and uses set forth in this Paragraph; and

(vi) Such other activities and uses not identified in Paragraph 2 as being Activities and Uses Inconsistent with the AUL.

2. <u>Activities and Uses Inconsistent with the AUL Opinion</u>. Activities and uses which are inconsistent with the objectives of this Notice of Activity and Use Limitation, and which, if implemented at the Property, may result in a significant risk of harm to health, safety, public welfare or the environment or in a substantial hazard, are as follows:

(i) Use of the Property for residential use;

(ii) Use of site soils for cultivation of fruits, vegetables or other produce destined for human consumption; and

(iii) Activities and/or uses which involve the disturbance of the urban fill material, other than emergency repairs, without prior development of a Soil Management Plan and Health and Safety Plan in accordance with the Obligations and Conditions of this Notice.

3. <u>Obligations and Conditions Set Forth in the AUL Opinion</u>. If applicable, obligations and/or conditions to be undertaken and/or maintained at the Property to maintain a condition of No Significant Risk as set forth in the AUL Opinion shall include the following:

(i) Prior to the performance of any non-emergency intrusive subsurface activities within the designated AUL area including, but not limited to, the excavation of soil at any depth, a written Soil Management Plan and a written Health and Safety Plan must be implemented in accordance with the following guidelines:

- (a) The Soil Management Plan shall be prepared by a LSP and must describe soil excavation, handling, storage, transport and disposal procedures, and must include a description of the engineering controls and air monitoring procedures needed to protect off-site receptors from exposures to fugitive dust and particulates and exposures to contaminated material via dermal contact. Workers who may come in contact with the soil should be appropriately trained on the requirements of the Soil Management Plan, and the Soil Management Plan must remain available on site throughout the course of the project. The Soil Management Plan must be in accordance with the LSP Opinion attached hereto as Exhibit C; and
- (b) The Health and Safety Plan must be prepared by a Certified Industrial Hygienist or other qualified professional familiar with worker health and safety procedures and requirements. The Health and Safety Plan should specify the type of personal protection, engineering controls, and environmental monitoring necessary to prevent worker and other potential receptor exposures to soil through ingestion, dermal contact and inhalation. Workers who may come in contact with the soil should be appropriately trained on the requirements of the Health and Safety Plan, and the Health and Safety Plan must remain available on site throughout the course of the project.

4. <u>Proposed Changes in Activities and Uses</u>. Any proposed changes in activities and uses at the Property which may result in higher levels of exposure to oil and/or hazardous material than currently exist shall be evaluated by an LSP who shall render an Opinion, in accordance with 310 CMR 40.1080 *et seq.*, as to whether the proposed changes will present a significant risk of harm to health, safety, public welfare or the environment. Any and all requirements set forth in the Opinion to meet the objective of this Notice shall be satisfied before any such activity or use is commenced.

5. <u>Violation of a Response Action Outcome</u>. The activities, uses and/or exposures upon which this Notice is based shall not change at any time to cause a significant risk

of harm to health, safety, public welfare, or the environment or to create substantial hazards due to exposure to oil and/or hazardous material without the prior evaluation by an LSP in accordance with 310 CMR 40.1080 *et seq.*, and without additional response actions, if necessary, to achieve or maintain a condition of No Significant Risk or to eliminate substantial hazards.

If the activities, uses, and/or exposures upon which this Notice is based change without the prior evaluation and additional response actions determined to be necessary by an LSP in accordance with 310 CMR 40.1080 *et seq.*, the owner or operator of the Property subject to this Notice at the time that the activities, uses and/or exposures change, shall comply with the requirements set forth in 310 CMR 40.0020.

6. <u>Incorporation Into Deeds</u>, <u>Mortgages</u>, <u>Leases</u>, <u>and Instruments of Transfer</u>. This Notice shall be incorporated either in full or by reference into all future deeds, easements, mortgages, leases, licenses, occupancy agreements or any other instrument of transfer, whereby an interest in and/or a right to use the Property or a portion thereof is conveyed.

Owner hereby authorizes and consents to the filing and recordation and/or registration of this Notice, said Notice to become effective when executed under seal by the undersigned LSP, and recorded and/or registered with the appropriate Registry of Deeds and/or Land Registration Office.

WITNESS the execution hereof under seal this 5/4 day of March, 2013.

Owner: City of New Bedford By: Jonathan F. Mitchell Its: Mayor

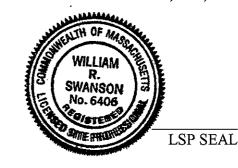
Map 70, Lot 227, and Map 76, Lot 256: Mayor authorized to sign on behalf of the School Committee by School Committee vote on January 14, 2013.

Map 70, Lot 2: Mayor authorized to sign on behalf of Cemetery Board by Cemetery Board vote on February 20, 2013.

COMMONWEALTH OF MASSACHUSETTS

Bristol, ss

3/5 ,20/3

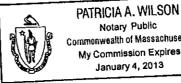

On this <u>5</u>// day of <u>masch</u>, 20/3 before me, the undersigned notary public, personally appeared <u>Sonuthan F. Mitchen</u> proved to me through satisfactory evidence of identification, which were <u>personal</u> <u>(howhope</u>, to be the person whose name is signed on the preceding or attached document, and acknowledged to me that she signed it voluntarily for its stated purpose.

Sunch Ingas (official signature and seal of notary) SANDY DOUGLAS Notary Public COMMONWEALTH OF MASSACHUSETTS My Commission Expires April 28, 2017

The undersigned LSP hereby certifies that he executed the aforesaid Activity and Use Limitation Opinion attached hereto as Exhibit C and made a part hereof and that in his Opinion this Notice of Activity and Use Limitation is consistent with the terms set forth in said Activity and Use Limitation Opinion.

Date: 10/22/2012

illiam R. Swanson, P.E., LSP



COMMONWEALTH OF MASSACHUSETTS

Middlesex Gunty Bristor, ss Bristor, ss Bat. 22, 2012

On this $2d^{nod}$ day of October, 20/2, before me, the undersigned notary public, personally appeared William R. Swanson proved to me through satisfactory evidence of identification, which were $MRDrivers \angle icense$, to be the person whose name is signed on the preceding or attached document, and acknowledged to me that she signed it voluntarily for its stated purpose.

Satistical . National signature and seal of notary)

Commonwealth of Massachusetts My Commission Expires January 4, 2013

Exhibit A

LEGAL DESCRIPTION AUL Area – Liberty Street NEW BEDFORD, MASSACHUSETTS

Beginning at a point at the northeasterly corner of the intersection of Liberty Street and Parker Street, said point being the southwesterly corner of Lot 2, Map 70, land of the City of New Bedford, it being the southwesterly corner of the area herein described;

- **THENCE:** N 28° 18' 30" W a distance of 1,777.2' along the easterly sideline of Liberty Street to a point;
- **THENCE:** N 81° 14' 30" E a distance of 130.9' to a point;
- **THENCE:** S 22° 30' 50" E a distance of 39.7' to a point;
- THENCE: S 28° 33' 46" E a distance of 537.9' to a point;
- **THENCE:** S 27° 18' 04" E a distance of 72.7' to a point;
- THENCE: S 28° 36' 51" E a distance of 131.5' to a point;
- **THENCE:** S 28° 05' 27" E a distance of 295.4' to a point;
- **THENCE:** S 28° 31' 29" E a distance of 79.4' to a point;
- **THENCE:** S 28° 16' 20" E a distance of 215.4' to a point;
- **THENCE:** S 28° 06' 06" E a distance of 276.4' to a point;
- **THENCE:** S 28° 00' 23" E a distance of 129.9' to a point in the easterly sideline of Parker Street;
- **<u>THENCE:</u>** S 82° 24' 40" W a distance of 126.7' along the northerly side line of Parker Street to the point of beginning.

Said AUL area contains 4.910 +/- acres.

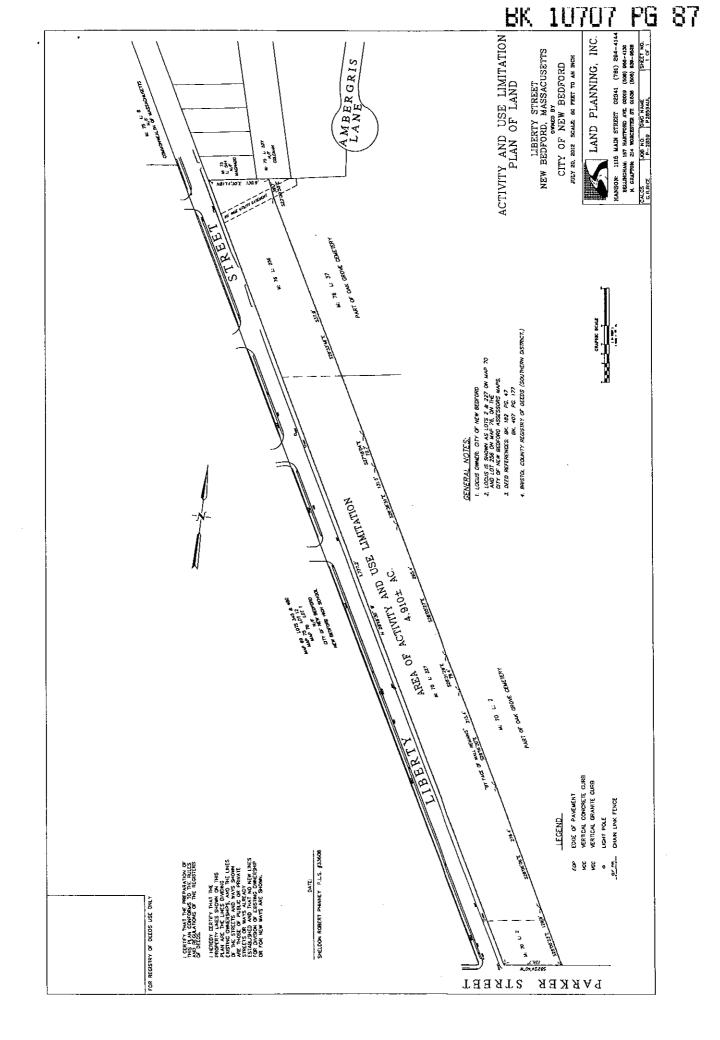

Said Area of Activity And Use Limitation is shown on a plan entitled: "Activity And Use Limitation Plan Of Land Liberty Street New Bedford, Massachusetts" dated: July 20, 2012; Prepared by Land Planning, Inc.; to be recorded at the Bristol County Registry of Deeds Southern District.

Exhibit B

.

-

Site Plan

Exhibit C Activity and Use Limitation Opinion

In accordance with the requirements of 310 CMR 40.1074, this Licensed Site Professional (LSP) Opinion has been prepared to support a Notice of Activity and Use Limitation (AUL) for the Liberty Street parcel property ("the Property") for the site listed as RTN 4-15685 (partial) located on Liberty Street in New Bedford, Massachusetts.

Site History

The site is a relatively narrow parcel located along and between Liberty Street and Oak Grove Cemetery in New Bedford, Massachusetts. The New Bedford High School (NBHS) is located across Liberty Street to the west. The site is currently owned by the City of New Bedford and operated as a maintenance and storage yard for the Department of Public Infrastructure (DPI) and Public Facilities (DPF). The proposed future use of the site is for solar panels. A site plan is provided in **Exhibit B**.

The subject site (Liberty Street Parcel) is managed by Massachusetts Department of Environmental Protection (MassDEP) under Release Tracking Number (RTN) 4-15685. The overall site for RTN 4-15685 consists of multiple properties owned by the City. The RTN has a Special Project Designation by the MassDEP.

The compounds of concern for the overall site for RTN 4-15685 are polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and metals related to impacted fill material. The data collected to date indicates the historic fill compounds at the Liberty Street Parcel are mainly related to coal/coal ash and slag. The data collected within the Liberty Street Parcel indicate that PCBs are not a compound of concern for this portion of the site. The highest concentration of PCBs detected on-site was 3.9 ppm. All other PCB data was below the S-1/GW-3 standard of 2 ppm. The average PCB concentration at the 1-3' depth was 1.1 ppm.

The presence of coal/coal ash has been observed in both the TRC borings and the CDM Smith test pits. During the November 2011 test pit program, 2 samples were collected for analysis of coal/coal ash. The data from the suspect coal ash material collected at a depth of approximately 4 feet confirmed the presence of coal ash using microscopy techniques. PAHs were detected below the applicable Method 1 standards.

In the surficial samples collected by CDM Smith, metals were detected below the S-1/GW-3 standards. In the Transect B data set (sub-surface samples), lead was detected at concentrations in excess of the S-2/GW-3 standard (300 ppm). All other metals were below the S-2/GW-3 standard. Lead concentrations ranged from 2.5 ppm to 5580 ppm. One sample collected by TRC at location SB-212 exhibited a concentration of lead in excess of the UCL of 3,000 ppm with a concentration of 5580 ppm. The hot spot analysis of this location included averaging the original sample and the duplicate along with the new data collected by CDM Smith in May 2012. Only data above 300 ppm were considered to be part of the hot spot and used in the average. The average concentration of the hot spot was 1333 ppm which is below the lead UCL (3000 ppm).

Groundwater is not a media of concern for this portion of RTN 4-15685. The proposed use of this parcel is for solar panels whose installation will not encounter groundwater which is located at approximately 7 feet below ground surface.

Reason for Activity and Use Limitation

Based on the conclusions of the Method 1 Risk Characterization, a condition of No Significant Risk exists for the current use of the site as a DPI and DPF storage yard and for the proposed future use for solar panels. Site exposure point concentrations were not below the most stringent S-1 criteria, therefore an AUL is required to restrict future residential use of the property. In addition, the AUL requires a Soil Management Plan and Health and Safety Plan for any future excavation of soil. The Soil Management Plan must include provisions for the management of urban fill material in accordance with the applicable MassDEP policies.

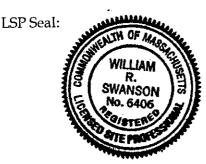
Permitted Activities and Uses Set Forth in this AUL Opinion

This AUL Opinion provides that a condition of No Significant Risk to health, safety, public welfare or the environment exists for any foreseeable period of time (pursuant to 310 CMR 40.0000) so long as any of the following activities and uses occur on the Property:

- Activities consistent with use of the property as a DPI and DPF maintenance yard including but not limited to parking, storage of equipment and materials such as road salt and sand and use of the property for solar panels;
- (ii) Site maintenance that does not cause or result in the removal of soil. Future construction activities, if any, are required to be accomplished under plans described in (iv) below;
- (iii) Any emergency utility repair, construction and/or other work (5 working days or less) in soil of any depth provided that promptly following the completion of the project such soils are returned to their original location or are properly disposed of off-site and are replaced with acceptable soil as determined by a Licensed Site Professional (LSP);
- (iv) Any subsurface utility, construction and/or other work, other than emergency repairs, in soil of any depth provided that appropriate Soil Management and Health and Safety Plans are developed and implemented prior to initiation of such activities and provided that following the completion of the project such soils are returned promptly to their original location or properly disposed of off-site and are replaced with acceptable soil as determined by an LSP;
- (v) Such other activities or uses which, in the opinion of an LSP, shall present no greater risk of harm to health, safety, public welfare or the environment than the activities and uses set forth in this paragraph; and
- (vi) Such other activities and uses not identified in the following paragraph as being Activities and Uses Inconsistent with the AUL.

Activities and Uses Inconsistent with this AUL Opinion

Activities and uses which are inconsistent with the objectives of this AUL Opinion, and which, if implemented at the Property, may result in a significant risk of harm to health, safety, public welfare or the environment are as follows:


- (i) Use of the Property for residential use;
- (ii) Use of contaminated site soils for cultivation of fruits, vegetables or other produce destined for human consumption; and
- (iii) Activities and/or uses which involve the disturbance of the urban fill material, other than emergency repairs, without prior development of a Soil Management Plan and Health and Safety Plan in accordance with the Obligations and Conditions described below.

Obligations and Conditions Set Forth in the AUL Opinion

If applicable, obligations and/or conditions to be undertaken and/or maintained at the Property to maintain a condition of No Significant Risk as set forth in this AUL Opinion shall include the following:

- Prior to the performance of any non-emergency intrusive subsurface activities within the designated AUL area including, but not limited to, excavation of any soil, a written Soil Management Plan and a written Health and Safety Plan must be implemented in accordance with the following guidelines:
 - (a) The Soil Management Plan shall be prepared by a LSP and must describe soil excavation, handling, storage, transport and disposal procedures, and must include a description of the engineering controls and air monitoring procedures needed to protect off-site receptors from exposures to fugitive dust and particulates and exposures to contaminated material via dermal contact. Workers who may come in contact with the soil should be appropriately trained on the requirements of the Soil Management Plan, and the Soil Management Plan must remain available on site throughout the course of the project; and
 - (b) The Health and Safety Plan must be prepared by a Certified Industrial Hygienist or other qualified professional familiar with worker health and safety procedures and requirements. The Health and Safety Plan should specify the type of personal protection, engineering controls, and environmental monitoring necessary to prevent worker and other potential receptor exposures to soil through ingestion, dermal contact and inhalation. Workers who may come in contact with the soil should be appropriately trained on the requirements of the Health and Safety Plan, and the Health and Safety Plan must remain available on site throughout the course of the project.

William R. Swanson, P.E., LSP

201 Date

A true copy of instrument as recorded in Birstol County (S.D.) Registry of Deeds in Book /0 70 Page 79 ATTEST: REGISTER

Notice of Interest Holders January 14, 2013

ENVIRONMENTAL STEWARDSHIP DEPARTMENT/

NEW BEDFORD CONSERVATION COMMISSION

CITY OF NEW BEDFORD JONATHAN F. MITCHELL, MAYOR

January 14, 2013

Certified Mail, Return Receipt Requested

Howland Place Realty Trust Attn. John E. Williams and Curtis J. Mello, Trustees 651 Orchard Street New Bedford, MA 02744

Re: Notice of Activity and Use Limitation Liberty Street parcel (Map 76, Lot 256, and Map 70, Lots 2 [portion] and 227) New Bedford, MA 02740 Release Tracking Number 4-15685

Dear Mr. Williams and Mr. Mello,

The City of New Bedford intends to place a Notice of Activity and Use Limitation (AUL) on the three lots or portions of lots listed above and shown on the attached site plan (the "Property"), of which the City is the owner. This notification is being provided to you pursuant to the Massachusetts Contingency Plan (MCP), 310 CMR 40.1074 (1)(e), as a current holder of a record interest in the area subject to the AUL. The AUL is intended to cover the entire Property.

According to a title review, the record interest in the Property held by you is described as Easement "B" in a deed from the City of New Bedford to Howland Place Realty Trust on April 16, 2004, and recorded in the Bristol County Registry of Deeds, Book 6904, Page 76. I have attached a copy of this document for your reference.

Response actions have been conducted at the Property under the oversight of a Licensed Site Professional (LSP) pursuant to the MCP. The City anticipates filing a Partial Response Action Outcome (RAO) Statement and an AUL for the Property with the Massachusetts Department of Environmental Protection (MassDEP) within the next two months, in support of regulatory closure.

Activities and Uses Consistent with the AUL will likely include:

(i) Activities consistent with use of the property as a Department of Public Infrastructure (DPI) and Department of Public Facilities (DPF) maintenance yard including but not limited to parking, storage of equipment and materials such as road salt and sand and use of the property for solar panels.

(ii) Site maintenance that does not cause or result in the removal of soil. Future construction activities, if any, are required to be accomplished under plans described in (iv) below;

(iii) Any emergency utility repair, construction and/or other work (5 working days or less) in soil of any depth provided that promptly following the completion of the project such soils are returned to their original location or properly disposed of off-site and are replaced with acceptable soil as determined by a LSP;

(iv) Any subsurface utility, construction and/or other work, other than emergency repair, in soil of any depth provided that appropriate Soil Management and Health and Safety Plans are developed and implemented prior to initiation of such activities and provided that following the completion of the project such soils are returned promptly to their original location or properly disposed of off-site and are replaced with acceptable soil as determined by an LSP;

(v) Such other activities or uses which, in the Opinion of an LSP, shall present no greater risk of harm to health, safety, public welfare or the environment than the activities and uses set forth in this Paragraph; and

(vi) Such other activities and uses not identified in Paragraph 2 as being Activities and Uses Inconsistent with the AUL.

Activities and Uses Inconsistent with the AUL will likely include:

(i) Use of the Property for residential use;

(ii) Use of site soils for cultivation of fruits, vegetables or other produce destined for human consumption; and

(iii) Activities and/or uses which involve the disturbance of the urban fill material, other than emergency repairs, without prior development of a Soil Management Plan and Health and Safety Plan in accordance with the Obligations and Conditions of this Notice.

Obligations and Conditions of the AUL will likely include:

(i) Prior to the performance of any non-emergency intrusive subsurface activities within the designated AUL area including, but not limited to, the excavation of soil at any depth, a written Soil Management Plan and a written Health and Safety Plan must be implemented in accordance with the following guidelines:

(a) The Soil Management Plan shall be prepared by a LSP and must describe soil excavation, handling, storage, transport and disposal procedures, and must include a description of the engineering controls and air monitoring procedures needed to protect off-site receptors from exposures to fugitive dust and particulates and exposures to contaminated material via dermal contact. Workers who may come in contact with the soil should be appropriately trained on the requirements of the Soil Management Plan, and the Soil Management Plan must remain available on site throughout the course of the project. The Soil Management Plan must be in accordance with the LSP Opinion attached hereto as Exhibit C; and

(b) The Health and Safety Plan must be prepared by a Certified Industrial Hygienist or other qualified professional familiar with worker health and safety procedures and requirements. The Health and Safety Plan should specify the type of personal protection,

engineering controls, and environmental monitoring necessary to prevent worker and other potential receptor exposures to soil through ingestion, dermal contact and inhalation. Workers who may come in contact with the soil should be appropriately trained on the requirements of the Health and Safety Plan, and the Health and Safety Plan must remain available on site throughout the course of the project.

This notification provides you with a 30-day review period from date of receipt to provide comments on the proposed AUL terms, unless you choose to waive the 30-day period by providing me a written statement to that effect. Please contact me if you have any questions. The City of New Bedford intends to record the Notice of AUL in the Registry of Deeds on or after February 22, 2013.

Respectfully,

Cheryl L. Henlin Environmental Planner (508) 961-4576 – office direct Cheryl.Henlin@newbedford-ma.gov

Attachments: Site Plan Recorded Easement

Copies of Notification and Public Notice per 40.1403(7)

Murphy, Kathleen G.

From:	Cheryl L. Henlin [CHenlin@newbedford-ma.gov]
Sent:	Monday, April 01, 2013 1:53 PM
То:	Brenda Weis
Cc:	Molly Cote; Murphy, Kathleen G.
Subject:	Liberty Street Slim AUL
Attachments:	Slim AUL as recorded_cert copy_031113.pdf

Board of Health Attn. Director Brenda Weis 1213 Purchase Street New Bedford, MA 02740

Re: Notice of Activity and Use Limitation Liberty Street "Slim" Parcel Liberty Street and Parker Street (northeast corner) New Bedford, Massachusetts 02740 Release Tracking Number RTN 4-15685 (partial)

Dear Dr. Weis,

On March 11, 2013, a Notice of Activity and Use Limitation (AUL), a copy of which is attached, was recorded with the Bristol County Registry of Deeds (Southern District) in Book 10707, Pages 79 through 90, for the above referenced property. The AUL encompasses a portion of Map 70, Lot 2, and all of the parcels noted by the City of New Bedford's Assessors Office as Map 70, Lot 227, and Map 76, Lot 256. It identifies certain activities and uses which are inconsistent with maintaining a condition of No Significant Risk at the Site in order to prevent exposure and relocation of urban fill material located at depth. The AUL also identifies those activities and uses which are consistent with maintaining a condition of No Significant Risk as well as those obligations and conditions necessary to ensure that a condition of No Significant Risk continues to exist at the property for the foreseeable future.

This public notice is being provided pursuant to the Massachusetts Contingency Plan, 310 CMR 40.1090 and 310 CMR 40.1403(7)(a). If you have any questions, please do not hesitate to contact me.

Respectfully,

Cheryl Henlin Environmental Planner

ec: Molly Cote, Massachusetts Department of Environmental Protection Kathleen Murphy, P.E., LSP, CDM Smith

Murphy, Kathleen G.

From:	Cheryl L. Henlin [CHenlin@newbedford-ma.gov]			
Sent:	Monday, April 01, 2013 1:50 PM			
То:	Mayor Jon Mitchell			
Cc:	Mikaela A. McDermott; Molly Cote; Murphy, Kathleen G.			
Attachments:	Slim AUL as recorded_cert copy_031113.pdf			

Mayor Jonathan Mitchell 133 William Street New Bedford, MA 02740

Re: Notice of Activity and Use Limitation Liberty Street "Slim" Parcel Liberty Street and Parker Street (northeast corner) New Bedford, Massachusetts 02740 Release Tracking Number RTN 4-15685 (partial)

Dear Mayor,

On March 11, 2013, a Notice of Activity and Use Limitation (AUL), a copy of which is attached, was recorded with the Bristol County Registry of Deeds (Southern District) in Book 10707, Pages 79 through 90, for the above referenced property. The AUL encompasses a portion of Map 70, Lot 2, and all of the parcels noted by the City of New Bedford's Assessors Office as Map 70, Lot 227, and Map 76, Lot 256. It identifies certain activities and uses which are inconsistent with maintaining a condition of No Significant Risk at the Site in order to prevent exposure and relocation of urban fill material located at depth. The AUL also identifies those activities and uses which are consistent with maintaining a condition of No Significant Risk as well as those obligations and conditions necessary to ensure that a condition of No Significant Risk continues to exist at the property for the foreseeable future.

This public notice is being provided pursuant to the Massachusetts Contingency Plan, 310 CMR 40.1090 and 310 CMR 40.1403(7)(a). If you have any questions, please do not hesitate to contact me.

Respectfully,

Cheryl Henlin Environmental Planner

ec: Molly Cote, Massachusetts Department of Environmental Protection Kathleen Murphy, P.E., LSP, CDM Smith

Murphy, Kathleen G.

From:	Cheryl L. Henlin [CHenlin@newbedford-ma.gov]				
Sent:	Monday, April 01, 2013 1:55 PM				
То:	Danny Romanowicz				
Cc:	Molly Cote; Murphy, Kathleen G.				
Subject:	Liberty Street Slim AUL				
Attachments:	Slim AUL as recorded_cert copy_031113.pdf				

Inspectional Services Attn. Commissioner Danny Romanowicz 133 William Street New Bedford, MA 02740

Re: Notice of Activity and Use Limitation Liberty Street "Slim" Parcel Liberty Street and Parker Street (northeast corner) New Bedford, Massachusetts 02740 Release Tracking Number RTN 4-15685 (partial)

Dear Commissioner Romanowicz,

On March 11, 2013, a Notice of Activity and Use Limitation (AUL), a copy of which is attached, was recorded with the Bristol County Registry of Deeds (Southern District) in Book 10707, Pages 79 through 90, for the above referenced property. The AUL encompasses a portion of Map 70, Lot 2, and all of the parcels noted by the City of New Bedford's Assessors Office as Map 70, Lot 227, and Map 76, Lot 256. It identifies certain activities and uses which are inconsistent with maintaining a condition of No Significant Risk at the Site in order to prevent exposure and relocation of urban fill material located at depth. The AUL also identifies those activities and uses which are consistent with maintaining a condition of No Significant Risk as well as those obligations and conditions necessary to ensure that a condition of No Significant Risk continues to exist at the property for the foreseeable future.

This public notice is being provided pursuant to the Massachusetts Contingency Plan, 310 CMR 40.1090 and 310 CMR 40.1403(7)(a). If you have any questions, please do not hesitate to contact me.

Respectfully,

Cheryl Henlin Environmental Planner

ec: Molly Cote, Massachusetts Department of Environmental Protection Kathleen Murphy, P.E., LSP, CDM Smith

NOTICE OF ACTIVITY AND USE LIMITATION

Site Name: Liberty Street Parcel Site Address: Parker Street and Liberty Street New Bedford, MA 02740 MADEP Release Tracking Number 4-15685 (partial)

Pursuant to the Massachusetts Contingency Plan (310 CMR 40.1073(7)), a **NOTICE OF ACTIVITY AND USE LIMITATION** on the above disposal site has been recorded with the **BRISTOL COUNTY REGISTRY OF DEEDS (Southern District)** on **March 11, 2013** in Book 10707, Pages 79 to 90.

The **NOTICE OF ACTIVITY AND USE LIMITATION** ("AUL") limits the following activities and uses on that portion of the above property in the AUL as the "AUL Area":

(i) Use of the Property for residential use;

(ii) Use of site soils for cultivation of fruits, vegetables or other produce destined for human consumption; and

(iii) Activities and/or uses which involve the disturbance of the urban fill material, other than emergency repairs, without prior development of a Soil Management Plan and Health and Safety Plan in accordance with the Obligations and Conditions of the AUL.

Any person interested in obtaining additional information or reviewing the **NOTICE OF ACTIVITY AND USE LIMITATION** and the disposal site file may contact Ms. Cheryl Henlin, Environmental Planner with the **CITY OF NEW BEDFORD**, **133 WILLIAM STREET**, **ROOM 304**, **NEW BEDFORD**, **MA 02740** at **508-991-6188**. The Standard-Times, New Bedford, MA

FRIDAY, APRIL 5, 2013 Page C5

			· · · · · · · · · · · · · · · · ·		
		Legals	Legals	Legals	Legals
	D PROTECTION	DEPARTMENT	NOTICE of PETITION	MORTGAGEE'S SALE	time and date appointed for
COM		OF ENVIRONMENTAL PROTECTION	for TERMINATION OF PARENTAL RIGHTS	OF HEAL ESTATE	the sale and to further post- pone at any adjourned sale
/ / / / / / /	SBY	Waterways Regulation	G.L.C.210 SECTION 3	765 Kempton Street, New Bedford, MA 02740	date by public announce-
	D PROTECTION TION OF L RIGHTS S BY TION	Program	DOCKET NUMBER:	By virtue and in execution	date by public announce- ment at the time and date
14 H	VN PARENT(S)) NUMBER:	Notice of License Application pursuant to	BR13A0026CW Commonwealth	tained in a certain mort-	appointed for the us
	NE	M.G.L. Chapter 91	of Massachusetts	0200 Civen by Johns Vasie	The dremises will de solo
NOCTO	ONWEALTH	Waterways License Application Number	The Trial Court Probate and Family Court	to Louity One Inc. by and	subject to and with the ben- efit of all rights, restrictions,
)ecter	SACHUSETTS In County	W13-3813	Bristol Probate	gage Electronic Registra-	easements, improvements,
And the second	anile Court	Catherine Bragg Lanier		tion Systems, Inc. dated	orders or condition, out-
l by alphabet titles, 🛛 🕻	Sixth Street	Notification Date:	Office of Register Suite 240	November 29, 2004, and uscorded with the Bristol	standing tax titles, munici- pal or other public taxes.
-Trout bout has all the 🕻	fassachusetts	Apr 8	AN ATTOHNET IF TOO	NORTH LINE OF KENT	pal or other public taxes, be pain by the reaction of the lime and place of the
humdinger of a fight. 🏘	Trial Court	NOTICE OF ACTIVITY	SON. An indigent person is	WO AND FOUR TENTH	- the time and place of early.
	stol Probate	AND USE LIMITATION	defined by SJC RULE	(32.4) FEET TO THE	The balance of the pur- chase price is to be paid by the Purchaser by certified
rout in the role as boxer	e of Register	Site Name: Liberty Street Parcel	ciudes but is not limited to	PLACE OF BEGINNING	the Purchaser by certified check and/or bank cash-
ing the hitten I		Site Address:	persons receiving AFDC	SOLIARE BODS MORE	= ter's cneck within thirty (30)
ith a record of 26-0, with	oadway Street on. MA 02780	Parker Street and Liberty Street	EAEDC, poverty related veteran's benefits, food	UOR LESS.	days thereafter, which time o period may be reasonably
lvarez is still a kid at 2	8)977-6040	New Bedford, MA 02740	stamps, refugee resettle	RECORDED WITH TH	E extended by the Montoac-
f 41-0-1, with 30 KOs.	IO BH12P1771EA	MassDEP Release Tracking Number 4-15685	ment benefits, Medicald	BRISTOL COUNTY	e in its sole discretion, at
own victories over	ETITION FOR	(partial)	termine if you are indigent) the offices of Harry Castle- T man, Esquire, Michienzie &
amers on their resumes	ADJUDICATION	Pursuant to the Massachu	Bonnana	BOOK 7302, PAGE 63.	Sawin LLC, 745 Boylston
off an upset win over	Eveline Powell	(310 CMR 40.1073(7)), a	cial Case Manager/Adop-		n Street, Boston, MA 02116. - Other terms to be an-
December while	eath: 02/06/2012	(310 CMR 40.1073(7)), a NOTICE OF ACTIVITY	or before the date listed		
December, while	n has been filed	AND USE LIMITATION on the above disposal site has	above to obtain the neces	Bristol County (Southern	n The Bank of New York Mel-
ually impressive in a ision over Shane Mosley	Schall, Public	been recorded with the	WITNESS:		b) Ion fka The Bank of New 5 York as successor trustee
ision over Shahe Mosley	New Bedford, MA	ISTRY OF DEEDS	Hon. Anthony R Nesi	and Book 9639, Page 163	to JPMorgan Chase Bank
	formal Decree	(Southern District) on March 11, 2013 in Book	First Justice of this Court Gina L. DeRossi	and Book 10191, Page 54	, N.A., as Trustee for the
otto and Mosley have	r of testacy and	March 11, 2013 in Book 10707, Pages 79 to 90.	Dich States and a second	Itity the Internal Revenue	e holders of Popular ABS
o, but they are still	in the Petition.	The NOTICE OF ACTIVITY	March 26, 2013	Service of the sale pursu	- Inc. Mortgage Pass- 5 Through Certificates Series
is fighters, with a world	requesting that	The NOTICE OF ACTIVITY AND USE LIMITATION ("AUL") limits the following	Apr. 5, 8, 15	18/11 10 20 0.5.0.A. 9742	2005-2
	Bediord, MA be	activities and uses on that		The description of the	
holds a knockout	ediord, MA be as Personal	portion of the above prop-		premises contained in said mortgage shall control in	
mer world welterweight	berve With Cor-	erty in the AUL as the "AUL Area":	Looking	the event of an error in thi	s Harry Castleman, Esquire
os Boldomir, becoming	serve With Cor-	(i) Use of the Property for	Loowing	notice. The Mortgagee reserve	MICHIENZIE & SAWIN
fighter to stop Baldomir	ine right to ob-	(ii) Use of site soils for culti-		the right to postpone the	a 745 Boviston Street
knock him out, as in	Petitioner or a	vation of fruits, vegeta		sale to a later date by pub	 Boston, MA 02116 Mar. 29, Apr. 5, 12
e kid can hit.	 You have a ject to this pro- 	bles or other produce		lic announcement at the	,
n the fight have been	io do so, you o	sumption; and	Local Herrs		Legal Notice Cross Road Storage
ivided. I've never seen	hey must file a pearance and				Self Storage Facility
aw, in action, so I'm not	If this Court be	bance of the urban fill		Looking for an	Auction Sale Self Storage Facility Oper-
der a prediction. But	a.m. on 04/26	material, other than	Dusiness		ator's Sale for non-pay-
beat Cotto convincingly	put a deadline	emergency repairs, with out prior development of	 Obituaries 	Open House?	ment of Storage Charges pursuant to the power of
t be good.	ou must file a	a Soil Management Plan	Weather		sale contained in M.G.L.
lvarez a couple of times	you object to	and Health and Safety Plan in accordance with		an search and a search and	Chapter 105 A, Section 4. The following property will
mpressed with his	Cino , if you fai	the Obligations and Con-	Lanonais		be sold at Public Auction
n a young age. So was	and objection	Ante manager intermeted in	Entertainment		at 11AM on April 24, 2018 on the premises of Cross
	an Affidavit'o	Any person interested in obtaining additional infor- mation or reviewing the NOTICE OF ACTIVITY	Food		Road Storage, 50 Cross
e with the top (fighters),"	of the return	mation or reviewing the			Road, North Dartmouth,
er his loss to Alvarez.					MA. All household furni- ture, trunks, books, clothes,
fast Cotto and all	ther notice to	the disposal site file may	Primetime		tools, miscellaneous goods
fought, he's up there	is being ad	the disposal site file may contact Ms. Cheryl Henlin Environmental Planner	Crossian	1	held for Shawn Dupras B067, Kristen Ferreira
U , P	under forma	with the CITY OF NEW BEDFORD, 133 WILLIAM	OI OBOHI OI G		D142, Ryan E. Karpuska
of most fights between	Intative under	BEDFORD, 133 WILLIAM STREET, ROOM 304	Horoscope		119054 Nichelle Stattoe
uncher, it's going to	chusetts Uni	STREET, ROOM 304 NEW BEDFORD, MA 02740 at 508-991-6188.		OPEN /	D145, John Furlong B044, Patricia Henegan B043, Brian Silva F241, Sale per order of Orden B050, Strat.
ho controls the tempo.	te Code with Vision by the	02740 at 508-991-6188.		HOUSE	Brian Silva F241. Sale per
rest on his ability, or	intory and ac				
Vit and womey, or	HOSE				

aren't measured and the Alvarezingredients of a h This is a classic

puncher, with Tro and Alvarez being Trout is 27, with

14 knockouts. Al with a record of

Both fighters o future Hall-of-Fa Trout is coming of Miguel Cotto in I Alvarez was equa unanimous decis last May.

Yeah, both Cot lost a step or two cagey, dangerous of experience.

Alvarez also he victory over form champion Carlos only the second f and the first to k counted out. The

.

Predictions on about equally div Trout, a southpay qualified to rende the fact that he b tells me he must

I have seen Alv and have been in progress at such Mosley.

"He's up there said Mosley after "Mayweather's fa those guys I've fo with them."

As in the case (a boxer and a put come down to wh Trout's hopes r