RELEASE ABATEMENT MEASURE PLAN SOIL EXCAVATION AND REMOVAL

NEW BEDFORD HIGH SCHOOL NEW BEDFORD, MASSACHUSETTS

Release Tracking Number 4-15685

Prepared for:

City of New Bedford

133 William Street New Bedford, Massachusetts

Prepared by:

TRC

Wannalancit Mills 650 Suffolk Street Lowell, MA 01854 (978) 970-5600

April 2011

TABLE OF CONTENTS

Section	o <u>n</u>	Page
1.0	INTRODUCTION	1-1
1.1	Background Information	1-2
1.2	Work Summary	
1.3	Regulatory Status	
2.0	PARTY ASSUMING RESPONSIBILITY FOR THE RAM	2-1
3.0	RELEASE DESCRIPTION, SITE CONDITIONS & SURROUNDING	
	RECEPTORS	3-1
3.1	Site Description	3-1
3.2	Surrounding Receptors	
3.3	Release Description	
4.0	OBJECTIVE, PLAN & IMPLEMENTATION SCHEDULE	
4.1	Objective	
4.1	Plan	
	1.2.1 Soil Excavation/Removal	
	2.2. Soil Excavation Design, Assumptions, Calculations	
	2.3 Site Preparation	
	2.4 Excavation Activities	
4	2.5 Backfilling/Compaction	4-5
4	2.6 Extent of Asphalt Pavement	4-5
	2.2.7 Excavated Asphalt and Concrete On-Site Crushing and Reuse as Backfill	
	2.2.8 Stormwater Management	
	2.2.9 Wetland Considerations	
	2.10 Dust Suppression	
4.3	Implementation Schedule	4-/
5.0	REMEDIATION WASTE MANAGEMENT STATEMENT	5-1
5.1	Soil Management	5-1
5.2	Off-Site Reuse, Recycling, and/or Disposal	
5.3	Groundwater Management	5-2
6.0	ENVIRONMENTAL MONITORING PLAN	6-1
6.1	Protection of Land Resources	6-1
6	5.1.1 Temporary Protection of Disturbed Areas	6-1
6	5.1.2 Erosion and Sedimentation Control Procedures	6-1
	5.1.3 Soil Stockpile	
	5.1.4 Noise Protection	
6.2	\mathcal{C}	
	5.2.1 Jar-Headspace Field Screening of Soils	
6.3	Air Monitoring	
0	5.3.1 Instrumented Air Monitoring for Dust	o-2

6	.3.2 Instrumented VOC Air Monitoring	6-3
	.3.3 Instrumented Metrological Monitoring	
7.0	FEDERAL, STATE & LOCAL PERMITS	
7.1	Federal Permit Requirements	7-1
7.2	State Permit Requirements	
7.3	<u> </u>	
7.4	Miscellaneous Fees, Notices, and Transportation Documentation	
8.0	SEAL & SIGNATURE OF LICENSED SITE PROFESSIONAL	8-1
9.0	CERTIFICATION OF FINANCIAL RESOURCES	9-1
10.0	OTHER RELEVANT INFORMATION	10-1
10.1	Public Involvement	10-1
11.0	REFERENCES	11-1

L2011-058 ii

TABLES

Table 3-1	Summary of Analytical Detected Results for Soil – Children's Playground Area
	(HS-1)
Table 3-2	Summary of Analytical Detected Results for Soil – Fenced Playing Field Area
	(HS-2)
Table 3-3	Summary of Analytical Detected Results for Soil– Unfenced Playing Field Area
	(HS-3)
Table 3-4	Summary of Analytical Detected Results for Soil – Gym Area (HS-4)
Table 3-5	Summary of Analytical Detected Results for Soil – Flag Pole Area (HS-5)
Table 3-6	Summary of Analytical Detected Results for Soil – House Area (HS-6)
Table 3-7	Summary of Analytical Detected Results for Soil – Student Congregating Area
	(HS-7)
Table 3-8	Summary of Analytical Detected Results for Soil-Junior High School Gym Class
	Area (HS-8)
Table 3-9	Summary of Analytical Detected Results for Soil – Beneath Pavement/Building
	Area (HS-9)
Table 3-10	Summary of Analytical Detected Results for Soil – Tree Belts Area (HS-10)
Table 3-11	Summary of Analytical Detected Results for Soil – Miscellaneous Samples (HS-
	11)
Table 3-12	Summary of Analytical Results for Dioxin Investigation Soil Samples
Table 3-13	Summary of Analytical Results for Dioxin Investigation Soil Sample HB-2 (5-7)
14010 3 13	building of that from Results for Brown investigation bon bumple Tib 2 (5 1)

FIGURES

Figure 1 Site Location Map

Figure 2 Exposure Point Areas and Sample Location Map

APPENDICES

Appendix A Remediation Drawings and Details

Appendix B Soil Management Plan

Appendix C RAM Plan Fee Documentation

Appendix E Municipal Notification Letters

L2011-058 iii

1.0 INTRODUCTION

TRC Environmental Corporation (TRC) prepared this Release Abatement Measure (RAM) Plan for soil remediation activities proposed on behalf of the City of New Bedford (City) for the New Bedford High School (NBHS) campus. For the purposes of this RAM Plan, the Site is defined as the NBHS campus. This RAM was prepared per 310 CMR 40.0440 of the Massachusetts Contingency Plan (MCP).

The proposed RAM activities include the following:

- Excavation Excavation of impacted soil that contributes to Exposure Point Concentrations (EPCs) in excess of MCP Method 1/Method 2 S-1 soil standards in the top 3 feet in landscaped areas as well as excavation of impacted soil with a benzo(a)pyrene Upper Concentration Limit (UCL) exceedance at sample location SB-308 (5 feet at SB-308).
- Paving Expansion of paved surfaces in select areas to prevent direct contact exposure to impacted soil, and excavation and grading of soil in support thereof.
- Recycling On-site crushing of asphalt and concrete materials generated from the removal of existing surfaces and reuse of material as construction material consistent with the Massachusetts Department of Environmental Protection (MassDEP) asphalt, brick and concrete (ABC) policy and associated Massachusetts solid waste regulations.
- Soil Management Temporary soil stockpiling and stockpile management at an off-site City-owned location prior to disposal.
- **Disposal** Off-site disposal of excavated soil at appropriately licensed facilities.
- Restoration Backfilling of soil excavations with documented contaminant-free fill
 material screened in advance for the presence of regulated chemicals in excess of Method 1
 S-1 soil standards.

Areas were identified for targeted soil removal or installation/expansion of paving exposure barriers. Following soil removal in areas targeted for remediation or prevention of direct contact exposure, TRC used a Method 1/Method 2 risk characterization approach to demonstrate that a Condition of No Significant Risk will exist for soil at the Site for the top 3 feet of soil in unpaved areas, which was then verified using a Method 3 risk characterization approach. Ultimately, when the RAM actions have been completed and a Condition of No Significant Risk has been achieved for the top 3 feet of soils in unpaved areas, an Activity and Use Limitation (AUL) will need to be placed on the property to control certain site uses and activities and to mitigate/control potential exposure to impacted soils greater than three feet below ground surface in unpaved areas and below paved surfaces where impacted soils will be present at shallower depths.

The proposed work to be performed under this RAM will serve to expedite the achievement of a Condition of No Significant Risk.

1.1 Background Information

The soil delineation and pre-determined excavation approach outlined in this RAM Plan is similar to that employed by TRC for the RAM at the Dr. Paul F. Walsh Athletic Field (TRC, 2009a). At the NBHS Campus, TRC conducted supplemental soil sampling to refine the delineation of impacted areas and to support remedial planning. TRC conducted soil sampling along concentric rings (i.e., step-out sampling) around sampling locations identified for potential excavation. The supplemental sampling investigation was performed to pre-define excavation boundaries. During this supplemental soil data collection and concurrent remedial planning phase, the remedial goals were EPCs less than or equal to Method 1/Method 2 S-1 soil standards focused on a vertical depth of up to three feet below ground surface in unpaved areas (i.e., targeting currently accessible soils). A summary of supplemental environmental sampling activities completed at NBHS is presented in the Phase II Comprehensive Site Assessment (Phase II) submitted to MassDEP on January 4, 2011 (TRC 2011).

The soil removal activities described in this 2011 RAM Plan do not address the volatile organic compound (VOC) impacts detected in groundwater and described in the Phase II (TRC 2011), but rather presents a risk-reduction measure targeting impacted soil on the campus separate from the groundwater VOC issue. Response actions addressing the VOC groundwater impacts and seepage into the Mechanical Room are coordinated under an Immediate Response Action (IRA) plan under Release Tracking Number (RTN) 4-22409. A site-specific Method 3 risk characterization will be used to support a partial Response Action Outcome (RAO-P) per the MCP.

A separate soil excavation event at the Site at sample location HF-31 will be performed in accordance with the *RAM Plan for Soil Removal at Sample Location HF-31*, submitted in October 2010 (TRC 2010a) and approved in writing by MassDEP on February 4, 2011.

1.2 Work Summary

Work to be performed under this RAM includes:

- Excavation Excavation of impacted soil that contributes to EPCs in excess of MCP Method 1/Method 2 S-1 soil standards in the top 3 feet in landscaped areas as well as excavation of impacted soil with a benzo(a)pyrene UCL exceedance at sample location SB-308 (5 feet at SB-308).
- Paving Expansion of paved surfaces in select areas to prevent direct contact exposure to impacted soil, and excavation and grading in soil in support thereof.
- Recycling On-site crushing of asphalt and concrete materials generated from the removal of existing surfaces and reuse of material as construction material consistent with the MassDEP ABC policy and associated Massachusetts solid waste regulations.
- **Soil Management -** Temporary soil stockpiling and stockpile management at an off-site City-owned location prior to disposal.
- Disposal Off-site disposal of excavated soil at appropriately licensed facilities;.

Restoration - Backfilling of soil excavations with documented contaminant-free fill
material screened in advance for the presence of regulated chemicals in excess of Method 1
S-1 soil standards.

The remaining sections of this RAM Plan include information pertaining to the following:

- Party assuming responsibility for the RAM (Section 2);
- Release description, site conditions and surrounding receptors (Section 3);
- Objective, plan and implementation schedule of the RAM (Section 4);
- Information pertaining to remediation waste management (Section 5);
- Environmental monitoring (Section 6);
- Federal, State, and Local permits (Section 7);
- Seal and signature of the Licensed Site Professional (Section 8);
- Certification of financial resources (Section 9);
- Relevant information (Section 10); and
- References (Section 11).

Supporting appendices include remediation drawings and details (Appendix A), soil management plan (Appendix B), RAM Plan fee documentation (Appendix C), and municipal notification letters (Appendix D).

1.3 Regulatory Status

The NBHS Campus is part of the Site being managed under RTN 4-15685. MassDEP has assigned other RTNs applicable to response actions undertaken at the NBHS Campus including 4-21847, 4-21872, and 4-22409. RTNs 4-21847 and 4-21872 are associated with activities previously implemented at the NBHS Campus. IRA activities associated with RTN 4-22409 are currently ongoing and this RAM does not apply to those activities. The current status of IRA activities for RTN 4-22409 is discussed in the *Immediate Response Action Status Report, New Bedford High School Substantial Release Migration/Critical Exposure Pathway* dated November 2010 (TRC 2010b). Response actions at the Site are conducted under a Special Project designation (310 CMR 40.0060) due to logistical complexities.

2.0 PARTY ASSUMING RESPONSIBILITY FOR THE RAM

The party undertaking this RAM is:

City of New Bedford 133 William Street New Bedford, Massachusetts 02740

The point of contact for the City is:

Mr. Scott Alfonse Director of the Department of Environmental Stewardship (508) 979-1487

3.0 RELEASE DESCRIPTION, SITE CONDITIONS & SURROUNDING RECEPTORS

3.1 Site Description

This RAM Plan is for the NBHS Campus, which is composed of the following land parcels in the City of New Bedford: map 75 block 12, map 69 block 345, and map 70 block 1. The Site is located on the north side of Parker Street between Hathaway Boulevard on the west and Liberty Street on the east, and south of the Hetland Rink Property.

Properties in the vicinity of the Site include a state-owned ice arena (Hetland Rink), City-owned storage yards and maintenance facilities, a New Bedford Housing Authority complex, a church, the Keith Middle School (KMS), vacant land (the Nemasket Street Lots and Acquired Residential Properties), single family residences and a sporting goods store. The approximate Universal Transverse Mercator (UTM) coordinates for the NBHS Campus are 4,612,139 meters north and 337,806 meters east in Zone 19. The latitude and longitude of the Site are 41.644559 latitude and -70.947316 longitude. A site location map is provided in Figure 1.

Review of the United States Geological Survey (USGS) Topographic Quadrangles for New Bedford South dated 1977 and New Bedford North dated 1979 indicates that the Site is located at approximately 90 feet above mean sea level (amsl). Site topography is level with hills to the east and west. New Bedford Harbor is located approximately 1.3 miles east of the Site.

NBHS consists of a single 529,192 square foot building (with a footprint of approximately 233,903 square feet) surrounded by paved parking areas and road/pathways, lawn and landscaped areas for recreational use, and paved tennis courts. Approximately 48-percent of the Site is covered by impervious surfaces (e.g., pavement or building). An ice skating rink and isolated wetland area, located along Durfee Street, exist beyond the northern boundary of the NBHS property. The NBHS building has three main sections: (1) the gym; (2) the auditorium; and (3) the "Houses". The gym is located at the southern end of the campus. The grassy area in front (west) of the gym is used for outdoor gym classes. Fenced playing fields (a volley ball court, baseball field, and basketball and tennis courts) are located to the rear (east) of the gym. To the north of the gym is the main entrance to the high school, marked by a flag pole and traffic circle. The auditorium is housed in this central portion of the NBHS building. An unfenced field, used as a practice area, is located to the rear (east) of the auditorium. Further to the north are the classrooms, arranged as a series of four "Houses" (A-Block) around a central core (B-Block). The grassy outdoor areas to the east of the "Houses" is a congregating area for students. The grassy field to the north of the "Houses", between two large parking lots, is used for gym classes by KMS, which is located to the west of the NBHS Campus across Hathaway Boulevard.

NBHS is heated via natural gas-fired boilers. Back-up electric power is provided by a natural gas fueled generator. The boilers were formerly fired using fuel oil stored in underground storage tanks (USTs), which were removed in 1999 (Oliveira, 2009). Building maintenance, high school science laboratories, and the wood and automotive shops store small quantities of chemical substances/products on site. Small quantities of small arms ammunition and associated maintenance products are stored and utilized at an indoor shooting range.

For the purposes of the risk characterization, the Site was divided into the following distinct potential exposure points:

- HS-1: Children's Playground Area
- HS-2: Fenced Playing Field Area
- HS-3: Unfenced Playing Field Area
- HS-4: Gym Area
- HS-5: Flag Pole Area
- HS-6: House Area
- HS-7: Student Congregating Area
- HS-8: Junior High School Gym Class Area
- HS-9: Beneath Pavement/Building Area
- HS-10: Tree Belts Area
- HS-11: Miscellaneous Samples of Unknown Location

This RAM Plan discusses analytical results by the above-defined exposure area, which area depicted on Figure 2.

3.2 Surrounding Receptors

Land uses at properties surrounding the Site are described under Section 3.1.

Groundwater categories at the Site include current or potential GW-2, depending upon proximity to occupied structures (groundwater is encountered at approximately 4 to 7 feet below ground surface based on recent groundwater monitoring well installations at the Site by TRC), and GW-3, which applies to all groundwater throughout the Commonwealth per the MCP.

Based on review of on-line MassDEP Priority Resource Map data available from Massachusetts Geographic Information System (MassGIS), the Site is not located within a Current or Potential Drinking Water Source Area (MassGIS, 2008).

The Site is not located in a wetland resource area. No other documented sensitive ecological receptor areas (e.g., Areas of Critical Environmental Concern [ACEC]) are known to be located at or near the site. No municipal or residential wells are known to be within 500 feet of the Site

3.3 Release Description

As described previously, the NBHS Campus is part of the Site being managed under RTN 4-15685. The Site was subject to land disturbance or disposal activity in the 1930s through the 1960s. Historical documentation indicates that the Site was an undeveloped wetland prior to the land disturbance or disposal activities.

The nature and extent of impacted soil is discussed as separate exposure point areas based on the identification of varied activities and uses throughout the different areas of the Site, and in

consideration of future remedial actions. The exposure point area boundaries and sample locations are illustrated in Figure 2.

Supplemental environmental sampling was conducted by TRC to address data gaps and supplement previous work at the Site by Vanasse Hangen Brustlin, Incorporated (VHB) and the BETA Group, Incorporated (BETA), and to refine the delineation of impacted soil areas and support remedial planning.

In locations where soils have been previously excavated under an IRA (see the Phase II; TRC 2011), the sample results are not included in the tables of results. These excavated sample locations continue to be identified in Figure 2.

A portion of the supplemental sampling was performed at BETA sampling locations that were only analyzed for polychlorinated biphenyls (PCBs), and a composite was collected from two or three locations for the analysis of metals. If the BETA results indicated elevated levels of metals in a composite sample, then TRC collected individual samples in the vicinity of the sample locations that comprised the composite analyzed by BETA to further evaluate those sample locations.

The evaluation and delineation of impacted soil in the landscaped areas focused on the 0 to 1 foot below ground surface horizon, 1 to 3 feet below ground surface horizon, and greater than 3 feet below ground surface horizon. The 0 to 1 foot horizon is considered to be directly accessible with a high potential for contact by people. The 1 to 3 feet horizon is considered to be not immediately accessible, with lower potential for contact by people (potential for contact by maintenance or construction personnel when performing activities that require digging below the ground surface exists). In some exposure point areas, the intervals of some samples collected by BETA encompass more than one soil horizon. Where the sample interval includes surficial soil (for example sampling interval 0 to 2 feet), the sampling interval was considered to be part of the 0 to 1 foot soil horizon. Where a sample interval does not completely include the 0-1 foot soil horizon (for example 0.5 to 1.5 feet), the sampling interval was considered to be part of the 1 to 3 feet soil horizon. The BETA data, and their respective interval assignments, are included in Tables 3-1 through 3-11.

All analyses of soil samples submitted by TRC for polycyclic aromatic hydrocarbons (PAHs), PCB Aroclors, and MCP metals and mercury, were conducted in accordance with the MassDEP Compendium of Analytical Methods (CAM). Analyses of soil samples submitted by TRC for PCB homologs were conducted in accordance with EPA Method 680.

Samples submitted by BETA for metals analyses were analyzed for the RCRA 8 metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver). BETA also submitted soil samples for analysis of PCB Aroclors, volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), pesticides, herbicides, total petroleum hydrocarbons (TPH), toxicity characteristics leaching procedure (TCLP) metals, flashpoint, reactivity, and dibenzofuran.

A Method 1/Method 2 risk characterization approach was utilized initially to evaluate soil impacts to support remedial planning. The delineation sampling investigations were performed to determine pre-defined excavation boundaries for the lateral and vertical extent necessary to achieve the remedial goal (i.e., EPCs less than or equal to Method 1/Method 2 S-1 soil standards). Method 2 soil standards were developed for chemicals lacking tabulated MCP Method 1 soil standards using methods and assumptions described in 310 CMR 40.0983 and 40.0884 of the MCP. The use of Method 2 to develop Method 1 S-1/GW-2 and S-1/GW-3 soil standards for dibenzofuran, carbazole, 1,2,3-trichlorobenzene, 4-bromophenyl phenyl ether, 4-methylphenol, alpha-BHC, benzoic acid, endosulfan sulfate, and dinoseb was documented in the Appendix F of the Interim Phase II (TRC 2009b). TRC verified the suitability of the soil removal remedial approach originally delineated using Method 1/Method 2 risk characterization protocols using a site-specific Method 3 risk characterization approach as described in the Phase II (TRC, 2011).

The soil chemical concentration units in the following discussion are in milligrams per kilogram (mg/kg). The results are presented by soil exposure point area (see Figure 2). Laboratory detection limits were below the Method 1/Method 2 standards, unless otherwise noted and discussed in the Phase II (TRC 2011).

The Phase II (TRC 2011) presents a complete description of the Site Investigative History, Site-Geologic/Hydrologic Conditions, prior immediate response actions, and the Nature and Extent of Chemical Impacts. Data summary tables indentifying soils to be removed and/or where paved surfaces will be expanded to prevent direct contact exposure to impacted soils, are included in Tables 3-1 through 3-11 for exposure point areas HS-1 to HS-11, respectively. A summary of the results of the dioxin and dioxin-like compound sampling results are included in Tables 3-12 and 3-13.

4.0 OBJECTIVE, PLAN & IMPLEMENTATION SCHEDULE

4.1 Objective

Work to be performed under this RAM includes:

- Excavation Excavation of impacted soil that contributes to EPCs in excess of MCP Method 1/Method 2 S-1 soil standards in the top 3 feet in landscaped areas as well as excavation of impacted soil with a benzo(a)pyrene UCL exceedance at sample location SB-308 (5 feet at SB-308).
- Paving Expansion of paved surfaces in select areas to prevent direct contact exposure to impacted soil, and excavation and grading in soil in support thereof.
- **Recycling -** On-site crushing of asphalt and concrete materials generated from the removal of existing surfaces and reuse of material as construction material consistent with the MassDEP ABC policy and associated Massachusetts solid waste regulations.
- Soil Management Temporary soil stockpiling and stockpile management at an off-site City-owned location prior to disposal.
- **Disposal** Off-site disposal of excavated soil at appropriately licensed facilities;.
- Restoration Backfilling of soil excavations with documented contaminant-free fill
 material screened in advance for the presence of regulated chemicals in excess of Method 1
 soil standards.

Currently, soil EPCs under baseline conditions indicate that a Condition of No Significant Risk has not been achieved for soil within the 0 to 3 foot interval in landscaped areas under current and future use scenarios for HS-3, HS-4, HS-6, and HS-10. The Children's Playground Area (HS-1), the Fenced Playing Field Area (HS-2), and the Student Congregating Area (HS-7) do not require further action to achieve a Condition of No Significant Risk for the top three feet of soil. The Flag Pole Area (HS-5), the Junior High School Gym Class Area (HS-8), a portion of the Tree Belt Area (HS-10), and the areas identified as Beneath Pavement/Buildings (HS-9) will be covered or remain covered by pavement to prevent direct contact exposures to underlying soil as part of the remedial action.

The objective of these RAM activities is to mitigate the current and future risks associated with the Site soil as supported by the risk characterization included in the Phase II (TRC 2011). Drawings illustrating the areas targeted for the remedial measures set forth in this RAM Plan are presented in Appendix A.

4.2 Plan

The aforementioned RAM activities necessary to achieve a condition of No Significant Risk at the Site are detailed in this section of the plan.

4.2.1 Soil Excavation/Removal

RAM activities for the Site include excavation of soil in certain areas identified as being targeted for removal of soil and excavation and grading in support of expansion of paved surfaces that will serve as exposure barriers to underlying impacted soils. Safety, security and erosion/sedimentation control measures will be implemented prior to remedial activities. Following soil removal, the excavations will be backfilled with documented-clean backfill, topped with approximately six inches of loam, and re-seeded or finished with the installation of new sod.

It is anticipated that several of the targeted areas can be excavated and backfilled within a single work day. Excavations that will be left open overnight will be secured with temporary chain-link fencing and/or covered with plating to be protective of public safety.

Approximately 90,670 square feet of surface area will be removed and replaced. The vertical and horizontal extent of impacted soils to be removed is identified in Appendix A. The approximate total volume of soil to be excavated (4,860 cubic yards) is summarized below by sample(s) location/area.

- SS-32 7 cubic yards
- HF-40 112 cubic yards
- HF-43, HE-44 136 cubic yards
- HJ-42-42 cubic yards
- HD-19, HD-20, HD-21 298 cubic yards
- HF-14 353 cubic yards
- HH-13 171 cubic yards
- HA-19 160 cubic yards
- HB-39, HB-40 103 cubic yards
- HB-23, HC-22 357 cubic yards
- SS-36 118 cubic yards
- SB-360 193 cubic yards
- SB-308 -79 cubic yards
- SB-270 107 cubic yards
- Excavation for paving in HS-5-1,160 cubic yards
- Excavation for paving in HS-10 1,463 cubic yards

4.2.2 Soil Excavation Design, Assumptions, Calculations

The extent of the planned soil excavations are shown in figures provided in Appendix A.

Pre-defined excavation boundaries for the lateral and vertical extent of soil removal were established as described herein (i.e., EPCs less than or equal to Method 1/Method 2 S-1 soil standards, also supported by Method 3 risk analysis). Based on the risk characterization results,

the supplemental sampling investigations were focused on a vertical depth of up to three feet below ground surface, targeting currently accessible soils. For the areas targeted as being considered for excavation, the excavation limits were determined by recalculating the EPCs for each targeted area after the samples within the excavation boundaries were eliminated from the data set, confirming that a condition of No Significant Risk would be achieved for the targeted areas following excavation. An excavation to 5 feet will be performed at SB-308 to eliminate a UCL condition.

The risk characterization included an initial evaluation of the baseline (i.e., pre-excavation) conditions at exposure point areas HS-3, HS-4, HS-6, and HS-10. As demonstrated in the Phase II (TRC 2011), the Children's Playground Area (HS-1), the Fenced Playing Field Area (HS-2), and the Student Congregating Area (HS-7) do not require further action to achieve a Condition of No Significant Risk for the top three feet of soil. This conclusion was verified in the Method 3 risk characterization. Due to concentrations of PCBs detected in HS-2 at sample location SS-32 (18.5 mg/kg at 1.5 feet), this area will be excavated as an added risk reduction measure. In addition, the Flag Pole Area (HS-5), the Junior High School Gym Class Area (HS-8), a portion of the Tree Belt Area (HS-10), and the areas identified as Beneath Pavement/Buildings (HS-9) will be covered or remain covered by pavement to prevent direct contact exposures to underlying soil as part of the remedial action. The data for each exposure point area were summarized to generate baseline EPCs. The baseline EPCs were then compared to MCP Method 1/Method 2 S-1 soil standards. Chemicals with maximum detected concentrations below MassDEP background concentrations for natural soil (MassDEP, 2002) were evaluated further consistent with MassDEP risk characterization guidance.

Soil EPCs under baseline conditions indicate a condition of No Significant Risk has not been achieved for soil under current and future use scenarios for HS-3, HS-4, HS-6, and HS-10. Future risks associated with exposure to soils greater than three feet below ground surface will be controlled through the implementation of an AUL. Current risks associated with soil within three feet of ground surface within these identified areas will be addressed through excavation.

The limits of excavation were pre-defined using risk characterizations as described herein. To confirm that a Condition of No Significant Risk would be achieved when the pre-defined areas with contaminants of potential concern (COPC) were excavated, EPCs were recalculated for each exposure point area after the samples within the excavation boundary were eliminated from the data set to represent the excavation. Again, chemicals with maximum detected concentrations below MassDEP background concentrations for natural soil were not evaluated further.

See the Phase II (TRC 2011) for other supporting risk characterization information.

4.2.3 Site Preparation

Planned excavation areas, as shown on figures provided in Appendix A, will be pre-marked in the field by a surveyor prior to remedial activities. All other customary utility mark-out procedures, including the use of Dig-Safe, will be employed to establish the locations of known subsurface utilities within the vicinity of remedial activities. Locations of utilities will be clearly marked.

During soil removal activities, procedures will be implemented to monitor and control potential releases of site COPC impacted soils. Such procedures include air monitoring and dust suppression for fugitive dust, control of precipitation run-on and run-off, and decontamination of equipment and vehicles that contact impacted soil.

Control of precipitation of run-on and run-off will be achieved by minimizing the time of exposure of impacted soils. Sampling and analysis has been performed to fully define the limits of excavation prior to initiation of soil removal activities. As the lateral and vertical limits of excavation are pre-determined, this will allow for excavations to be rapidly backfilled with clean soil materials upon completion of required excavation.

Uncontrolled off-site transport of impacted materials via vehicle traffic will be prevented through removal of soil materials from the body and tires of all vehicles prior to exiting the Site. Vehicles will be visually inspected to ensure no visible soil materials are present on the body or on the tires.

4.2.4 Excavation Activities

During all excavation and dewatering activities, site health and safety monitoring will be conducted in accordance with a Health and Safety Plan (HASP). Security will be maintained to prevent access by unauthorized and non-essential personnel within the work area. Excavation dewatering is not anticipated to be necessary as the proposed limit of the excavation for planned soil removal is above the groundwater table. However, a limited number of excavations for storm drainage improvements may require some groundwater management discussed elsewhere in this RAM Plan. Measures will be implemented to minimize impacts to the environment.

As the lateral and vertical limits of excavation have been pre-determined, this will allow for backfilling of the excavations with documented contaminant-free materials shortly after completion of required excavations. Imported materials will be considered contaminant-free if the source has documentation that the following analyses were performed and any detections encountered were below the current MCP Method 1 S-1 standards:

- Volatile Organic Compounds via SW-846 Method 8260B;
- Semivolatile Organic Compounds via SW-846 Method 8270C;
- Volatile Petroleum Hydrocarbons/Extractable Petroleum Hydrocarbons via MassDEP methodologies;
- Polychlorinated Biphenyls via SW-846 Method 8082;
- RCRA-8 Metals (via SW-846 Methods 6010B/7471A); and
- Pesticides/Herbicides via SW-846 Methods 8081B/8151A.

Lacking such documentation, the City may undertake appropriate sampling and analysis to guard against importation of impacted soil and evaluate the suitability of the soil for its intended use.

Excavation and backfilling activities will progress along the portions of larger excavation areas in stages as opposed to performing excavation in all areas prior to any backfilling. This will minimize related safety concerns and the impact of rainfall events on site operations.

The impacted soil is planned to be directly loaded into trucks and transported to an off-site location for stockpiling and, as needed, stabilization. Excavated soil will be managed as described in the *Soil Management Plan* in Appendix B. Analytical data collected during the previous investigations from the excavation areas may be used to obtain pre-approval of soil acceptance, where necessary, from a disposal facility prior to excavation activities. TRC anticipates that certain soil stockpiles will require sampling and analysis prior to transport, in order to characterize the soils for evaluation of disposal options, including consideration of onsite treatment prior to disposal. Trucks will be decontaminated, if necessary, following the procedures outlined in the *Soil Management Plan* located in Appendix B.

4.2.5 Backfilling/Compaction

Once excavation activities are completed, backfilling will occur. The certified clean granular replacement material and topsoil from off-site sources will be used as the backfill materials. The fill will be placed into the excavation and compacted in successive layers until the required elevations are achieved. The imported backfill will be brought up on essentially level lifts not exceeding twelve inches in un-compacted thickness and will be compacted by standard methods (e.g., WackerNeuson RT Trench Compactor). Each lift of material will be compacted so as to secure a dense, stable and thoroughly compacted mass. Filling operations will continue until the fill has been brought up to the finished grade, making proper allowances for six inches of topsoil, and re-seeding.

4.2.6 Extent of Asphalt Pavement

The areas for RAM activities for which prevention of direct contact exposure to impacted soils by paving are HS-5, HS-8, and portions of HS-10 based on the risk analysis. Available data for each of these areas indicated that soil removal activities would need to extend over a significant portion of the area in order to achieve remedial objectives. These areas will be covered by asphalt pavement to meet and match existing pavement in the surrounding areas. The lateral extent of pavement in area HS-8 does not cover the entire footprint of the area. Grassed spaces are to remain along most of the perimeter of the paved area to aid in drainage run off control given the proposed increase in impervious area. Soil from areas adjacent to the limits of the proposed asphalt cover in area HS-8 will be graded beneath the new paved areas in order to support the necessary drainage features around the cover system and leveling of the new parking surface. For area HS-5 and areas of HS-10, the soil excavated to support new paving without an elevation increase will be transported off-site for stockpiling and, as needed, stabilization. The areas to be paved are shown on Drawing C-105 located in Appendix A.

4.2.7 Excavated Asphalt and Concrete On-Site Crushing and Reuse as Backfill

Existing asphalt or concrete surfaces removed during remedial actions, as outlined in Section 4.2.2, will be managed as described in the *Soil Management Plan* in Appendix B and in this section.

The asphalt and concrete removed in support of new paving will be broken up to a 6-inch maximum size using a suitable excavator attachment ("nibbler"), or other suitable machine/equipment, and be used as backfill for grading in area HS-8 pursuant to the MassDEP Site Assignment Regulations for Solid Waste Facilities (310 CMR 16.00), specifically the asphalt pavement, brick and concrete recycling operations detailed in 310 CMR 16.05(3)(e). The City will file an On-Site Rubble Crushing Notification Form with the MassDEP and City of New Bedford Board of Health in accordance with 310 CMR 16.05(3)(e)6.

4.2.8 Stormwater Management

Design of the final site grades will provide for positive drainage of surface water runoff away from the paved areas during construction activities and under post-construction conditions. Design efforts include delineation of drainage flow paths, estimation of runoff flows associated with the design storm and the design of drainage swales sufficient to convey the estimated flows of the design storm. The existing stormwater drainage features will be examined to determine if there is sufficient capacity to handle the increased runoff that will result from the added impermeable surfaces. The percent of impervious surfaces resulting from paving and the on-site cover will increase from approximately 48-percent to approximately 58-percent. Any proposed subsurface utilities to be located within the paved area will be constructed with clean backfill in order to create a clean utility corridor. Given that the area of disturbed soil is greater than one acre, a Stormwater Pollution Prevention Plan (SWPP) will be prepared and submitted to the U.S. EPA and to the New Bedford Conservation Commission prior to construction. In addition, the Massachusetts Stormwater Management Guidelines will be met to the maximum extent practicable.

4.2.9 Wetland Considerations

A wetland abuts the paved area to the north in area HS-8, behind the Hetland Memorial Skating Rink, on a parcel of land owned by the Commonwealth of Massachusetts. A portion of the area to be paved is located within the 100 foot buffer zone and is therefore, subject to regulation under the Wetlands Protection Act (WPA), 310 CMR 10.00. A Request for Determination of Applicability will be prepared and submitted to the New Bedford Conservation Commission. If required, a full Notice of Intent (NOI) will be prepared and submitted to the Commission.

4.2.10 Dust Suppression

During activities that involve the movement or other disturbance of potentially impacted soils, dust suppression consisting of water sprays will be routinely applied, and potential fugitive dust emissions will be monitored simultaneously (see Section 6.4). Water sprays will be applied as a heavy mist, rather than a water stream, to ensure the water is aerosolized to maximize dust capture/interception and thus suppression. Increased water sprays (e.g., additional hoses and/or water volume) will be implemented based on visual observations of effectiveness and instrumented monitoring. Where wind conditions are present that render dust suppression ineffective based on instrument readings and/or visual observations (based on the professional judgment of environmental oversight personnel), those activities will be suspended until

favorable wind conditions resume/return or dust suppression suitable for the conditions can be reliably implemented.

4.3 Implementation Schedule

The RAM activities are scheduled to begin upon approval of this plan and be completed in approximately five (March-August) months (sooner if practicable and assuming favorable weather conditions). A RAM Status Report will be submitted within 120 days of the RAM Plan submittal to MassDEP. TRC anticipates submittal of a RAM Completion Report within 60 days of the completion of all RAM activities, or an additional RAM Status Report if the outcomes of activities do not warrant a RAM Completion Report.

At the City's option, work will be performed incrementally after school hours, over weekends, and during holidays to meet schedule objectives (completion before the start of school in the Fall of 2011). The project schedule will be refined as resources are aligned and/or contracted for the performance of the work.

5.0 REMEDIATION WASTE MANAGEMENT STATEMENT

This section describes procedures for the on-site management and off-site reuse, recycling, and/or disposal of remediation waste generated during this RAM. Remediation waste management will be conducted in accordance with the applicable sections of the MCP, MassDEP *Interim Remediation Waste Management Policy for Petroleum Contaminated Soils*, WSC-94-400 and MassDEP Policy COMM#97-001 *Reuse and Disposal of Contaminated Soils and Sediments at Massachusetts Landfills*, and 40 CFR Part 761, where applicable.

The estimated volume of excavated soil that could be potentially transported from the Site as part of this RAM is approximately 2,095 cubic yards. The *Soil Management Plan* provided in Appendix B outlines the plan for soil management at the Site.

5.1 Soil Management

Impacted soil excavation will take place with qualified field oversight personnel. Contractors will be required to implement means to prevent fugitive dust generation (e.g., water sprays).

Excavated soils associated with the RAM will be temporarily stored off-site at the City of New Bedford Transfer Station located at 1103 Shawmut Avenue, New Bedford, Massachusetts. The route of transportation from the NBHS Campus to the City of New Bedford Landfill will most likely be Durfee Street to Shawmut Avenue. Where segregation is possible based on existing data, soil may be segregated into the following soil types by the degree of impact and proposed disposal facility:

- Type A Pre-characterized soils for reuse on-site; excess Type-A soil also suitable for off-site reuse as cover material at a lined or unlined landfill facility. On-site reuse is restricted to the location from which the soils were excavated. Any other placement requires prior approval of the LSP;
- Type B Suitable for unlined or lined landfill Reuse (chemically unsuited for reuse onsite);
- Type C Suitable for asphalt batch recycling (geotechnically unsuited for reuse on-site and/or chemically unsuited for reuse on-site or off-site);
- Type D Non-hazardous waste landfill disposal (chemically unsuited for on-site or off-site reuse, and off-site recycling); and
- Type E Soil requiring segregation and off-site treatment prior to disposal as a hazardous waste.
- Type F Soil requiring disposal at TSCA chemical waste landfill

Soils types are further discussed in *Soil Management Plan* provided in Appendix B. The soil will be stockpiled on a minimum of 6-mil-thick polyethylene. Stockpiled materials will also be securely covered at the end of each work day or during periods of prolonged inactivity with a minimum of 6-mil-thick polyethylene overlapped and weighted to form a continuous waterproof barrier over the material. The cover will be maintained throughout the stockpile period to control

water entering the stockpiled materials and to limit fugitive dust generation. The Site or work area will be secured by a temporary fence around the perimeter that limits unauthorized entry and contact with stored materials by trespassers. Lined and covered roll-offs may be utilized for other excavations. If roll-offs will be used, they will be lined with polyethylene and covered to prevent leakage and storm water accumulation. Roll-offs will be of appropriate specification to allow over the road transport of the soils stockpiled therein as a contingency. If stockpiles require more than 120-days to process, then they will continue to be managed per this RAM Plan and supporting soil management plan.

5.2 Off-Site Reuse, Recycling, and/or Disposal

Excavated soil that will be transported from the Site will be characterized as appropriate for off-site reuse, recycling, and/or disposal at a suitable facility. Several suitable off-site facilities are being considered, but the facility locations have not been finalized and will be coordinated through the City's selected remediation contractor. Analytical data collected during the previous investigations at the Site will be used to explore disposal and pre-treatment options. Samples of stockpiled soil will be taken and submitted for laboratory analysis in order to characterize the excavated soil. The soil sample laboratory data will initially be compared against Massachusetts reuse, recycle, and disposal criteria in accordance to MassDEP Policy# COMM-97-001 and Interim Policy #WSC-94-400. Existing asphalt or concrete surfaces removed during remedial actions, as outlined in Section 4.2.2, will be managed as described in the *Soil Management Plan* in Appendix B and in this section.

Use of MassDEP COMM-97-001 and WSC-94-4000 tabulated acceptance criteria does not preclude the use of out-of-state facilities that offer similar reuse (e.g., landfill daily cover) or recycling (e.g., asphalt batch) opportunities. Such opportunities may be evaluated and/or utilized on a case-by-case basis assuming facility acceptance criteria can be met and the facility is currently permitted within its regulatory jurisdiction for the reuse and/or recycling service provided.

Transportation of all materials from the Site will be performed using a MassDEP Bill of Lading (BOL), Material Shipping Record (MSR) or Hazardous Waste Manifest, as appropriate, and will be performed within 120 days of stockpiling in accordance with 310 CMR 40.0030 of the MCP.

The transport of impacted materials from the Site to the disposal facility will be in accordance with DOT, EPA, and MassDEP regulations, as appropriate. The hauler(s) will be licensed in states affected by the transport of Site soil.

5.3 Groundwater Management

A small amount of groundwater dewatering will take place for the installation of stormwater utilities to accommodate additional runoff from the expansion of impervious surfaces on the northern end of the NBHS Campus, and will be managed as a Utility Related Abatement Measure (URAM). Where water is encountered within utility trenching and excavations, it will be discharged to the ground surface or subsurface and/or groundwater at a point within 100 feet of the point of withdrawal in a manner that will not exacerbate existing conditions, or prevent or impair the performance of remedial actions, at the disposal site. Per the MCP, these activities

will be described in status reports and/or completion reports submitted to MassDEP (concentration data, pumping rate, volume, etc.) per 310 CMR 40.0465 and 40.0466.

6.0 ENVIRONMENTAL MONITORING PLAN

Appropriately trained personnel will be on-site during the excavation and off-site transport for reuse, recycling and/or disposal of impacted soil and will conduct environmental monitoring activities as described herein.

This section summarizes the protective measures that will be employed to minimize and control any potential pollution releases and to preserve environmental conditions at the Site.

Remedial activities at the Site will be conducted in the areas shown in figures provided in Appendix A. All applicable work zones will be delineated and maintained throughout the duration of the project to closely monitor site activities, quality control and safety to ensure that the project objectives are achieved. In addition, access to the work zone will be regulated to prevent unauthorized entry.

6.1 Protection of Land Resources

The activities covered under this environmental monitoring plan specifically include all areas associated with soil excavation activities at the Site. Protection of areas will be performed during mobilization, excavating, staging, treatment of materials, and demobilization. Disturbed areas will be restored as necessary to their pre-existing condition following completion of remedial activities.

Trucks and heavy equipment will be decontaminated prior to leaving the Site to ensure that any loose soil debris does not impact outside roadways and properties. Heavy equipment will be decontaminated at an area that will be established in advance. This area will be used to support dry decontamination procedures (i.e., brushing-off of soil, etc.). Vehicles/equipment leaving the Site must stop and be inspected by environmental oversight personnel to evaluate the removal of soil or debris from the vehicle body and tires.

6.1.1 Temporary Protection of Disturbed Areas

Preventative erosion and sedimentation control measures will be implemented in order to limit and retard run-off within the established work zone limits, as necessary based on field observations. Disturbed areas will be protected as described in the Erosion Control and Sedimentation procedures in Section 6.1.2.

6.1.2 Erosion and Sedimentation Control Procedures

Erosion and sedimentation controls may be installed, depending on field observations, and as required to protect the wetland north of the property. As the Site generally exhibits a flat topography, and there are no catch basins located in the vicinity of most excavations, the use of sedimentation and erosion control measures will not be needed in all areas. If required based on field observations, specific details pertaining to the design and installation of the sedimentation and erosion controls are provided in Appendix A, Figure C-103. Controls will be inspected daily to maintain compliance and to avoid siltation of surface water and drainage ways. At the completion of remedial activities, sedimentation and erosion control measures will be removed,

and the area will be restored to its pre-existing condition, if not otherwise altered by the design of the response actions.

6.1.3 Soil Stockpile

Prior to excavation work, a temporary soil storage area will be established off-site for the impacted excavated soil. The storage area will be lined with 6 mil (or higher) gauge polyethylene sheeting. In addition, the stockpiled soil will be covered with 6-mil (or higher) gauge polyethylene sheeting and will be surrounded by straw bales and/or silt fencing to prevent runoff. The polyethylene will be adequately secured to prevent damage or loss by wind or other elements. In the event of extreme weather conditions, additional actions will be taken to ensure appropriate containment of stockpiled soil. Surface water runoff will be directed away from the stockpile to prevent erosion and deterioration of materials.

6.1.4 Noise Protection

Protection against the effects of noise exposure will be provided when the sound levels exceed those limits as established by 29 CFR 1929.52 (Occupational Noise Exposure Standards). Each contractor or party will be responsible for the hearing protection of its employees.

6.2 Field Screening Associated with Soil Removal

Field screening of soil will be conducted by environmental oversight personnel as part of the RAM to monitor soil conditions and excavation progress.

6.2.1 Jar-Headspace Field Screening of Soils

VOCs are not contaminants of potential concern for Site soil targeted by this RAM Plan. As a precaution, soil samples will be periodically screened via the MassDEP jar-headspace method for the potential presence of VOCs based on professional judgment.

6.3 Air Monitoring

On-site air monitoring will be conducted by environmental oversight personnel to evaluate Site working conditions to minimize exposures to workers and nearby residents, as well as to collect and record data on general conditions.

6.3.1 Instrumented Air Monitoring for Dust

Air monitoring will be performed using a combination of real-time dust monitoring upwind and downwind of the work area, and at a point near the closest receptor. When impacted soils are encountered during RAM-related impacted soil excavation and management activities, field screening of breathing zone dust levels will be conducted using direct reading instruments that are designed to monitor air quality on a real-time basis. A second instrument will be used to monitor dust levels downwind of the excavation. A third dust monitor will be placed towards the nearest receptor, regardless of wind direction.

The dust monitoring units will be TSI DustrakTM units, or equivalent, equipment with size-selective inlet for particles of 10 micrometers in diameter or less (PM₁₀). Background samples will be collected for at least 15 minutes at each location prior to the start of site activities. The continuous dust monitor uses a light scattering photometer to quantify particles and converts the counts to a concentration in units of milligrams per cubic meter (mg/m³). This instrumentation has an accuracy of 0.001 mg/m^3 . The dust monitoring instruments will be placed in weatherproof cases with an omni-directional probe to minimize wind interference. The dust monitoring instruments will be zeroed daily before use and at the end of the day. Data will be logged at 60-second intervals and will be monitored periodically by field personnel during RAM-related excavation activities. Data will be downloaded daily.

If sustained ambient dust levels exceed the EPA National Ambient Air Quality Standard (NAAQS) of $150~\mu g/m^3$, or possible more stringent action levels in the HASP, at downwind sampling locations (a sustained reading would consist of a reading lasting 15 minutes or longer), dust suppression activities will be increased with a greater usage of water sprays. Monitoring levels are subject to change and may be made more stringent as additional soil data are obtained and evaluated.

As noted in Section 4.2.6, during activities that involve the movement or other disturbance of potentially impacted soil, dust suppression consisting of water sprays will be routinely implemented, and potential fugitive dust emissions will be monitored simultaneously. Increased water sprays (e.g., additional hoses and/or water volume) will be implemented based on visual observations of effectiveness and instrumented monitoring. Where wind conditions are present that render dust suppression ineffective based on instrument readings and/or visual observations (based on the professional judgment of environmental oversight personnel), those activities will be suspended until favorable wind conditions resume/return or dust suppression suitable for the conditions can be reliably implemented.

6.3.2 Instrumented VOC Air Monitoring

VOC air monitoring will be performed using a photo-ionization detector (PID) to monitor for the presence of VOCs within the work area breathing zone. Based on previously existing site data, significant VOC emissions are not expected during construction, but field monitoring of the breathing zone for VOCs will be conducted as a precaution.

Instrument readings from breathing zones within the work zone will be used to help evaluate the need for instituting additional safety measures or upgrading personal protective equipment (PPE) levels.

6.3.3 Instrumented Metrological Monitoring

A portable digital meteorological station will be deployed during the execution of the RAM to monitor and record temperature, wind speed and direction, wind chill, daily and accumulated rainfall, barometric pressure, humidity, and dew point. These data will be collected continuously and downloaded for record preservation regularly. Field oversight personnel will also periodically manually record instrument readings during the progress of the work to monitor field conditions and provide a basis for checking the recorded data. Conditions at the time of a

weather-related suspension of field activities (e.g., excessive winds impacting the effectiveness of dust suppression) will also be recorded manually and checked against the data recorded by the instrument.

7.0 FEDERAL, STATE & LOCAL PERMITS

7.1 Federal Permit Requirements

Stormwater permitting/planning will be managed per Federal and State requirements.

7.2 State Permit Requirements

Stormwater permitting/planning will be managed per Federal and State requirements. Management of recycled pavement will be per State solid waste regulations and associated policies (i.e., ABC).

7.3 Local Permit Requirements

A wetland abuts the on-site paved area to the north in HS-8, to the east of the Hetland Memorial Skating Rink, on a parcel of land owned by the Commonwealth of Massachusetts. A portion of the paved area is located within the 100-foot buffer zone and is therefore, subject to regulation under the Wetlands Protection Act (WPA), 310 CMR 10.00. TRC will consult with the Conservation Commission as to required permitting and notification needs. If determined to be required, a Request for Determination of Applicability will be prepared and submitted to the New Bedford Conservation Commission. Or if required, a Notice of Intent (NOI) will be prepared and submitted to the New Bedford Conservation Commission.

There are no other known Local environmental permit requirements. Implementation of the ABC recycling policy will require notice to the health department.

7.4 Miscellaneous Fees, Notices, and Transportation Documentation

Because the Site is not Tier Classified under the MCP, an \$800 RAM Plan fee must be submitted to MassDEP concurrent with this RAM Plan. The \$800 fee has been submitted to the MassDEP lock box at DEP, P.O. Box 4062, Boston, MA, 02211-4062. Appendix C contains a copy of the check for the RAM Plan fee for documentation purposes.

Massachusetts Dig-Safe must be notified at least 72 hours prior to commencing the excavation activities described in this RAM Plan. The City or City's contractor will be responsible for construction/refurbishment related Dig-safe notifications.

All soil material that is transported from the Site must be transported under a MassDEP BOL that contains the signature and seal of the LSP of record for the site, or under a MSR or hazardous waste manifest as appropriate.

8.0 SEAL & SIGNATURE OF LICENSED SITE PROFESSIONAL

The Licensed Site Professional (LSP) overseeing this RAM is:

David M. Sullivan, LSP, CHMM LSP License Number: 1488 TRC Environmental Corporation Wannalancit Mills 650 Suffolk Street Lowell, Massachusetts 01854 (978) 656-3565

This RAM Plan has been prepared in accordance with 310 CMR 40.0444 as set forth in the MCP.

David M. Sullivan, LSP, CHMM
TRC Environmental Corporation

Licensed Site Professional No. 1488

1/6/2011 Date

SIPLIVAN No. 1488 PEGISTERED SITE PROTES

Stamp

9.0 CERTIFICATION OF FINANCIAL RESOURCES

In accordance with 310 CMR 40.0442(5) of the MCP, the City of New Bedford attests to the availability of sufficient financial resources for the excavation, management, transportation, and recycling or disposal of excess and unsuitable soil.

10.0 OTHER RELEVANT INFORMATION

10.1 Public Involvement

As required by 310 CMR 40.1403(3)(d), the Mayor and the Board of Health for the City of New Bedford were notified in writing of the proposed RAM activities. Copies of the notification letters that were sent to the Mayor and Board of Health are provided in Appendix D.

Citizens had a 30-day public comment period during which they were welcome to submit questions and comments about this RAM plan to the City for consideration. The City prepared written responses to the questions and comments received, and the City provided a copy of those responses to both citizens and MassDEP before the plan was finalized and submitted to MassDEP.

L2011-058 10-1

11.0 REFERENCES

MassGIS, 2008	Massachusetts Geographic Information System (MassGIS), On-line MassDEP Priority Resource Map. Accessed July 28, 2008. http://maps.massgis.state.ma.us/21e/viewer.htm
MassDEP, 1997	COMM#97-001 Reuse and Disposal of Contaminated Soils and Sediments at Massachusetts Landfills.
MassDEP, 2002	Technical Update – Background Levels of Polycyclic Aromatic Hydrocarbons and Metals in Soil. Prepared by the Massachusetts Department of Environmental Protection (MassDEP) Office of Research and Standards. May 2002.
Oliveira, 2009	Personal Correspondence between R. Niles of TRC and L. Oliveira of the New Bedford School Department, May 11, 2009.
TRC 2009a	Release Abatement Measure Plan, Contaminated Soil Removal at the Walsh Field Athletic Complex, Parker Street Waste Site, New Bedford, Massachusetts. Prepared for the City of New Bedford. Prepared by TRC, Lowell, Massachusetts. October 2009
TRC 2009b	Interim Phase II Comprehensive Site Assessment, Parker Street Waste Site, New Bedford High School and Dr. Paul F. Walsh Memorial Field, New Bedford, Massachusetts. Release Tracking Number 4-15685. Prepared for the City of New Bedford. Prepared by TRC, Lowell, Massachusetts, July 2009.
TRC 2010a	Release Abatement Measure Plan, Soil Removal at Sample Location HF-31, New Bedford High School, Parker Street Waste Site, New Bedford, Massachusetts. Prepared for the City of New Bedford. Prepared by TRC, Lowell, Massachusetts. September 2010
TRC 2010b	Immediate Response Action Status Report, New Bedford High School Substantial Release Migration/Critical Exposure Pathway, New Bedford, Massachusetts. Prepared for the City of New Bedford. Prepared by TRC, Lowell, Massachusetts. November 2010
TRC 2011	Phase II Comprehensive Site Assessment, New Bedford High School Campus at the Parker Street Waste Site, New Bedford, Massachusetts. Prepared for the City of New Bedford. Prepared by TRC, Lowell, Massachusetts. January 2011

L2011-058 11-1

TABLES

TABLE 3-1
Summary of Detected Analytical Results for Soil Samples
New Bedford High School - Children's Playground Area (Exposure Point Area HS-1)
New Bedford, Massachusett

Analysis	Analyte					Sam	ole Location:	PG-1	PG-2	PG-2A	PC	i-3	PG-4	PG-5	PC	j-6	SS-63	SS-64	SS-65
1						Sampl	e Depth (ft.):	0-0.5	0-0.5	1-3	0-0.5	0,5-1,5	0-0.5	0-0.5	0-0.5	0.5-3	0-0.5	0-0.5	0-0.5
							Sample Date:	2/22/2006	2/22/2006	4/7/2009	2/22/2006	2/22/2006	2/22/2006	2/22/2006	2/22/2006	2/22/2006	12/15/2008	12/15/2008	12/15/2008
		S-1/GW-2	W-2 S-1/GW-3 S-2/GW-2 S-2/GW-3 RC S-1 TSCA																
Metais																			
(mg/kg)	Arsenic	20	20	20	20	20	N/A	NA	NA	2.78 U	NA	1.22	NA	NA	NA	0.786	3.02 U	4.64 U	3.75 U
li i	Barium	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	7.39	NA	43	NA	NA	NA	4.93	15.5	18.8	41.2
	Cadmium	2	2	30	30	2	N/A	NA	NA	0.28 U	NA	0.36	NA	NA	NA	0.36 U	0.31 U	0.47 U	0.38 U
	Chromium	30	30	200	200	30	N/A	NA	NA	2,74	NA	26	NA	NA	NA	1.72	3.84	5.45	8.43
1	Lead	300	300	300	300	300	N/A	NA	NA	3.64	NA	3.24	NA	NA	NA	2.93	6.35	15.7	16.9
	Nickel	20	20	700	700	20	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.02	4.51	10.4
	Vanadium	600	600	1,000	1,000	600	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	7.21	9.28 U	11.9
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	26.0	27.6	32.3

Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected,

RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

TABLE 3-2 Summary of Detected Analytical Results for Soil Samples New Bedford High School - Fenced Playing Field (Exposure Point Area HS-2) New Bedford, Massachusetts

(F		r				· · · · · ·	Di Kamilani	110.420	1101	7.00	I 1101: 20	LIDE 20 A	1107'00	TID	rine	I DD	HRG27 H		
Analysis	Analyse						ple Location; e Depth (ft.);	HRA30 0,75-1	0.67-1	1-3	HRF-30 1-2	HRF-30A	HRG23 2.5-3	0.5-3	1-3	0.5-3	1-3	HRG29 0.75-1	
Anatysis	Analyte	l						2/22/2006	2/22/2006	4/7/2009	2/22/2006	4/7/2009	2/21/2006	2/21/2006	4/7/2009	2/21/2006	4/7/2009	2/22/2006	
		S-1/GW-2	S-1/GW-3	S-2/GW-2	C 2/GW 2	RC S-I	Sample Date:	2/22/2000	2/22/2000	4/1/2009	2/22/2000	4///2009	2/21/2000	2/21/2000	4/1/2009	2/21/2000	4/1/2009	2/22/2000	
VOCs		5-1/GW-2	3-1/GW-3	3-2/GW-2	3-2/GW-3	KC 5-1	ISCA												
	Anatono	50	400	50	400	6.0	N/A	NA	NA	NA	NA	NA	NA	0.55	NA	NA	NA	NA	
(mg/kg)	Acetone Chloromethane	NS	NS NS	NS NS	NS	100	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.33	NA NA	NA NA	NA NA	NA NA	
		40	500	40	1,000	4		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.15	NA NA	NA NA	NA NA	NA NA	
	Naphthalene	70	500	70	900	2	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.13 0.062 U	NA NA	NA NA	NA NA	NA NA	
	1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene	400*	20*	NS NS	NS	NS	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.062 U	NA NA	NA NA	NA NA	NA NA	
PAHs	1,2,5-1Fichiorobenzene	400**	20"	149	149	1/2	N/A	IVA	INA	IVA	INA	INA	IVA	0.002 0	IVA	IVA	IVA	INA	
II 3	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	NA	NA	0.183 U	NA	0.191 U	NA	NA	0.190 U	NA	0.188 U	NA	
(mg/kg)			1 '		1 '	1	N/A N/A	NA NA	NA NA		NA NA	0.191 U	NA NA	NA NA	0.190 U 0.193	NA NA	20701	NA NA	
1	Acenaphthylene	600	10	600	10				NA NA	0.183 U			NA NA		0.193	NA NA	0.188 U 0.188 U	NA NA	
ll .	Anthracene	1,000 7	1,000	3,000	3,000 40	1,000	N/A	NA		0.183 U	NA NA	0.191 U		NA,			1.5		
1	Benzo(a)anthracene		7	40		7	N/A	NA	NA NA	0.183 U	NA NA	0.191 U	NA NA	NA.	1.86	NA.	0.188 U	NA NA	
11	Benzo(a)pyrene	2	2	4	4	2	N/A	NA	NA NA	0.183 U	NA NA	0.191 U	NA	NA.	1.73	NA NA	0.188 U	NA NA	
1	Benzo(b)fluoranthene	7	7	40	40	7	N/A	NA NA	NA NA	0.183 U	NA NA	0.191 U	NA NA	NA.	1.85	NA NA	0.188 U	NA NA	
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	0.183 U	NA	0.191 U	NA	NA	1.02	NA NA	0.188 U	NA NA	
II .	Benzo(k)fluoranthene	70	70	400	400	70	N/A	NA	NA	0.183 U	NA	0.191 U	NA	NA	0.710	NA	0.188 U	NA	
1	Chrysene	70	70	400	400	70	N/A	NA	NA	0.183 U	NA	0.191 U	NA	NA	2.36	NA	0.188 U	NA	
1	Dibenz(a,h)anthracene	0.7	0.7	4	4	1	N/A	NA	NA	0.183 U	NA	0.191 U	NA	NA	0.321	NA	0.188 U	NA	
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	0.183 U	NA	0.230	NA	NA	3.11	NA	0.188 U	NA	
1	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	0.183 U	NA	0.191 U	NA	NA	0.386	NA	0.188 U	NA	
1	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	NA	NA	0.183 U	NA	0.191 U	NA	NA	1.26	NA	0.188 U	NA	
1	2-Methylnaphthalene	80	300	80	500	0.7	N/A	NA	NA	0.183 U	NA	0.191 U	NA	NA	0.190 U	NA	0.188 U	NA	
1	Naphthalene	40	500	40	1,000	4	N/A	NA	NA	0.183 U	NA	0.191 U	NA	NA	0.190 U	NA	0.188 U	NA	
	Phenanthrene	500	500	1,000	1,000	10	N/A	NA	NA	0.183 U	NA	0.234	NA	NA	4.38	NA	0.188 U	NA	
	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	0.183 U	NA	0.370	NA	NA	4.37	NA	0.188 U	NA	
PCBs						_								0.00		22-0			
(mg/kg)	Aroclor 1254	2	2	3	3	2	1,	0.99	0.82	0.0527 U	1.1	0.234 J	0.16 U	0.30	0.0559 U	3.79	0.0548 U	0.64	
1	Aroclor 1260	2	2	3	3	2	1,	0.94	0.028 U	0.0527 U	0.029 U	0.0539 U	0.16 U	0.13 U	0.0559 U	0.11 U	0.0548 U	0.11 U	
	Total PCBs	2	2	3	3	2	1	1.93	0.82	0.0527 U	1.1	0.234 J	0.31 U	0.3	0.0559 U	3.79	0.0548 U	0.64	
PCB Hom																			
	Tetrachlorobiphenyl	NS	NS	NS	NS	NS	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Pentachlorobiphenyl	NS	NS	NS	NS	NS	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Hexachlorobiphenyl	NS	NS	NS	NS	NS	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
1	Heptachlorobiphenyl	NS	NS	NS	NS	NS	N/A	NA.	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	
100	Total PCBs	2	2	3	3	2	1	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA.	NA	
Metals		0.0		20		20	5	27.1	27.1		37.1	27.1	27.1	27.1	27.1				
(mg/kg)	Mercury	20	20	30	30	20	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
1	Arsenic	20	20	20	20	20	N/A	NA	NA	2.74 U	NA	2.86 U	NA	NA	9.74	NA NA	2.81 U	NA	
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	6.64	NA	11.1	NA	NA	74.8	NA	15.2	NA	
	Beryllium	100	100	200	200	100	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	
	Cadmium	2	2	30	30	2	N/A	NA	NA	0.28 U	NA	0.29 U	NA	NA	0.53	NA	0.29 U	NA	
	Chromium	30	30	200	200	30	N/A	NA	NA	1.96	NA	2.13	NA	NA	8.61	NA	2.84	NA	
	Lead	300	300	300	300	300	N/A	NA	NA	3.51	NA	5.77	NA	NA	315	NA	7.06	NA	
	Nickel	20	20	700	700	20	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Silver	100	100	200	200	100	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Vanadium	600	600	1,000	1,000	600	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
GRO	Garatina Parasa Ossasia	1,000	1.000	2.000	2.000	1.000	NYA	ATA .	27.4	27.4	NIA	274	NTA.	17.3	10.2	N/A	214	27.4	
(mg/kg)	Gasoline Range Organics	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	17.3	17.3	NA	NA	NA	

All units in mg/kg unless otherwise specified.

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

NS - No standard available for this compound.

U - Compound was not detected at specified quantitation limit,

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method 1 standards.

Values shown in bold and outlined exceed TSCA but are less than the listed Method 1 standards..

VOCs - Volatile Organic Compounds.

PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls.

GRO - Gasoline Range Organics

RC - Reportable Concentration

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

- sample location to be excavated.

TABLE 3-2 Summary of Detected Analytical Results for Soil Samples New Bedford High School - Fenced Playing Field (Exposure Point Area HS-2) New Bedford, Massachusetts

	Ţ					Sam	ple Location:	HR	G-29	HRI23	HRI27	HRI29	HRJ-26	HRJ-30	NBHS-SS-7 SB-366					
Analysis	Analyte						e Depth (ft.):	1-3	1-3	2-3	1.25-3	1,5-3	2.5-4	2-3.5	0-0.5	1	1-3	4	7	
, í	,						Sample Date:	4/7/2009	4/7/2009	2/21/2006	2/21/2006	2/21/2006	2/21/2006	2/21/2006	8/6/2008	2/26/2009	2/26/2009	2/26/2009	2/26/2009	
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1	TSCA		Field Dup											
VOCs																			1-5-5	
(mg/kg)	Acetone	50	400	50	400	6.0	N/A	NA	NA	NA	NA	0.36 U	NA	NA	NA	NA	NA	NA	NA	
	Chloromethane	NS	NS	NS	NS	100	N/A	NA	NA	NA	NA	0.14 U	NA	NA	NA	NA	NA	NA	NA	
	Naphthalene	40	500	40	1,000	4	N/A	NA	NA	NA	NA	0.26	NA	NA	NA	NA	NA	NA	NA	
	1,2,4-Trichlorobenzene	70	500	70	900	2	N/A	NA	NA.	NA	NA	0.17	NA	NA	NA	NA	NA	NA	NA	
	1,2,3-Trichlorobenzene	400*	20*	NS	NS	NS	N/A	NA	NA	NA	NA	0.21	NA	NA	NA	NA	NA	NA	NA	
PAHs																				
(mg/kg)	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	0.191 U	0.188 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Acenaphthylene	600	10	600	10	1	N/A	0.191 U	0.188 U	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	0.191 U	0.188 U	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	
	Benzo(a)anthracene	7	7	40	40	7	N/A	0.511	0.540	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Benzo(a)pyrene	2	2	4	4	2	N/A	0.528	0.472	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	0.571	0.452	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	0.506	0.389	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	0.222	0.188 U	NA	NA NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA	
	Chrysene	70	70	400	400	70	N/A	0.572	0.602	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	
	Dibenz(a,h)anthracene	0.7	0.7	4	4	1 1 000	N/A	0.191 U	0.188 U	NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA			
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	0.782	0.701	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	
	Fluorene	1,000	1,000 7	3,000	3,000	1,000	N/A	0.191 U	0.188 U	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
	Indeno(1,2,3-cd)pyrene	7 80	300	40 80	40 500	7 0.7	N/A	0.548 0.191 U	0.418 0.188 U	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
	2-Methylnaphthalene	40	500	40	1,000	4	N/A N/A	0.191 U	0.188 U	NA NA	NA NA	0.260	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
	Naphthalene Phenanthrene	500	500	1,000	1,000	10	N/A N/A	0.191 0	0.788	NA NA	NA NA	0.200 NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
	Pyrene	1.000	1,000	3,000	3,000	1,000	N/A	1.28	1,31	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
PCBs	17,10,10	11000	1,000	51000	3,000	21000	1071	1,20	1,01		1,11	- 1111			1111					
(mg/kg)	Aroclor 1254	2	2	3	3	2	1	0.0561 U	0.0578 U	0.14 U	0.11 U	0.12 U	0.25	0.25	0.102 J	0.282 Ј	0.238 J	0.0587 U	0.220 UJ	
	Aroclor 1260	2	2	3	3	2	1	0.0561 U	0.0578 U	0.14 U	0.11 U	0.12 U	0.27	0.17	0.0567 U	0.0632 U	0.107 J	0.0587 U	0.220 UJ	
	Total PCBs	2	2	. 3	3	2	i	0.0561 U	0.0578 U	0.28 U	0.22 U	0.25 U	0.52	0.42	0.102 J	0.282 J	0.345 J	0.0587 U	0.220 UJ	
PCB Hom	ologs																			
(mg/kg)	Tetrachlorobiphenyl	NS	NS	NS	NS	NS	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΛ	
	Pentachlorobiphenyl	NS	NS	NS	NS	NS	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Hexachlorobiphenyl	NS	NS	NS	NS	NS	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Heptachlorobiphenyl	NS	NS	NS	NS	NS	N/A	NA.	NA	NA	NA	NA	NA	NA	NA	NΛ	NA	NA	NA	
	Total PCBs	2	2	3	3	2	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Metals																1				
(mg/kg)	Mercury	20	20	30	30	20	N/A	NA	NA	NA	NA	NA	NA	NA	NA	0.051	0.016	0.420	0.134	
	Arsenic	20	20	20	20	20	N/A	2.86 U	2.81 U	NA	NA	NA	NA	NA	NA	3.68	2.68 U	12.0	9.97 U	
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	29.6	26.4	NA	NA	NA	NA	NA	NA	40.4	21.7	783	153	
	Beryllium	100	100	200	200	100	N/A	NA	NA	NA	NA	NA	NA	NA	NA	0.33 U	0.27 U	0.64	1.00 U	
	Cadmium	2	2	30	30	2	N/A	0.29 U	0.29 U	NA	NA	NA	NA	NA	NA	0.33 U	0.27 U	9.17	1.00 U	
	Chromium	30	30	200	200	30	N/A	11.0	3.90	NA	NA NA	NA NA	NA	NA	NA NA	19.3	2,77	44.3	3.27	
	Lead	300	300	300	300	300	N/A	84.2	56.2	NA	NA	NA NA	NA	NA	NA NA	28.3	37.5	2,360	56.2	
	Nickel	20	20	700	700	20	N/A	NA	NA NA	NA	NA.	NA NA	NA	NA	NA NA	8.83	2.57	15.7	14.4	
	Silver	100	100	200	200	100	N/A	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	0.66 U	0.54 U	0.60 U	2.00 U	
	Vanadium Zinc	600 2,500	600 2,500	1,000 3,000	1,000 3,000	600 2,500	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	18.4 33.7	5.35 U 28.2	23.2 958	20.0 U 375	
GRO	ZIIIC	2,300	2,300	5,000	3,000	2,300	IV/A.	INA	INA	INA	INA	IVA	NA	IVA	IVA	33./	40.4	736	- 313	
(mg/kg)	Gasoline Range Organics	1.000	1,000	3,000	3,000	1.000	N/A	NA	NA	NA	NA	9.4	NA	NA	NA	NA	NA	NA	NA	
mg/kg/	Pousonne Range Organics	1,000	1,000	3,000	3,000	1,000	TANT	TAV	11//1	1371	11/7	2.7	14/7	7.47.7	7417	14/1	14/7	141.7	7,177	

All units in mg/kg unless otherwise specified,

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

NS - No standard available for this compound.

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected. Values shown in Bold and sladled type exceed one or more of the listed Method 1 standards. Values shown in bold and outlined exceed TSCA but are less than the listed Method 1 standards.. VOCs - Volatile Organic Compounds.

PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls. GRO - Gasoline Range Organics

RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

- sample location to be excavated.

TABLE 3-2 Summary of Detected Analytical Results for Soil Samples New Bedford High School - Fenced Playing Field (Exposure Point Area HS-2) New Bedford, Massachusetts

						Sami	ple Location;		SB-	-367		SS-9 SS-10 SS-11				SS-II SS			S-12 SS-13			SS-14	
Analysis	Analyte						e Depth (ft.):	1	1-3	5-6	8-9	0-0.5	0-0.5	0.5-1	0-0.5	0.5	2	0.5	2	0.5	1.5	0.5	2
1 ' '	,						Sample Date:	2/26/2009	2/26/2009	2/26/2009	2/26/2009	7/23/2001	7/23/2001	7/23/2001	7/23/2001	8/6/2008	8/6/2008	8/6/2008	8/6/2008	8/6/2008	8/6/2008	8/6/2008	8/6/2008
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1	TSCA																
VOCs			100		400																		
(mg/kg)	Acetone	50	400	50	400	6.0	N/A	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
4 '	Chloromethane	NS	NS	NS	NS	100	N/A	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
A '	Naphthalene	40	500	40	1,000	4	N/A	NA	NA	NA	NA	NA	NA	NA.	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
4 '	1,2,4-Trichlorobenzene	70 400*	500 20*	70	900	2	N/A	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA.	NA	NA NA	NA NA	NA NA	NA NA	NA NA
PAHs	1,2,3-Trichlorobenzene	400**	20**	NS	NS	NS	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
IIS I	Aganaphthana	1,000	1.000	3,000	3,000	4	N/A	NA	NA	NA	NA	NA	NA	NA	NA	0.173 U	0.182 U	0.180 U	0.177 U	0.202 U	0.197	0.205 U	0.178 U
(mg/kg)	Acenaphthene	600	1,000	600	10	1 1	N/A	NA NA	NA NA	NA NA	NA NA	NA NA			NA NA	0.173 U	0.182 U	0.180 U	0.177 U	0.202 U	0.197	0.203 U	0.178 U
4 !	Acenaphthylene Anthracene	1,000	1,000	3,000	3,000	1,000	N/A N/A	NA NA	NA NA	NA NA	NA NA	i ii	NA NA	NA NA	NA NA	0.173 U	0.182 U	0.180 U	0.177 U	0.202 U	1.21	0.205 U	0.178 U
1 '	Benzo(a)anthracene	7	7	40	40	7,000	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.173 U	0.182	0.180 U	0.177 U	0.202 U	3.40	0.205 U	0.178 0
4 '	` '	2	2	40	40	2	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.173 U	0.299	0.180 U	0.177 U	0.202 U	2,16	0.205 U	0.217
	Benzo(a)pyrene Benzo(b)fluoranthene	7	7	40	40	7	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.173 U	0.299	0.180 U	0.177 U	0.202 U	2.41	0.205 U	0.217
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3.000	1.000	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.173 U 0.173 U	0.292	0.180 U	0.177 U	0.202 U 0.202 U	1.20	0.205 U	0.186
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	0.173 U	0.182 U	0.180 U	0.177 U	0.202 U	1.73	0.205 U	0.200 0.178 U
1 !	Chrysene	70	70	400	400	70	N/A	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	0.173 U	0.313	0.180 U	0.177 U	0.202 U	2.55	0.205 U	0.178
1 !	Dibenz(a,h)anthracene	0.7	0.7	4	4	1 70	N/A	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	0.173 U	0.182 U	0.180 U	0.177 U	0.202 U	0.240	0.205 U	0.178 U
1 !	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	0.173 U	0.182 0	0.309	0.177 U	0.202	6.71	0.205 U	0.178
1 !	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	0.173 U	0.182 U	0.180 U	0.177 U	0.213 0.202 U	0.442	0.205 U	0.431 0.178 U
4 !	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	NA NA	NA NA	NA NA	NA	NA NA	NA.	NA NA	NA NA	0.173 U	0.162	0.180 U	0.177 U	0.202 U	1.57	0.205 U	0.178
4 !	2-Methylnaphthalene	80	300	80	500	0,7	N/A	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	0.173 U	0.182 U	0.180 U	0.177 U	0.202 U	0.180 U	0.205 U	0.181 0.178 U
4 !	Naphthalene	40	500	40	1.000	4	N/A	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	0.173 U	0.182 U	0.180 U	0.177 U	0.202 U	0.180 U	0.205 U	0.178 U
4 !	Phenanthrene	500	500	1,000	1,000	10	N/A	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	0.173 U	0.673	0.193	0.177 U	0.202 U	5.85	0.205 U	0.280
4 !	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	NA.	NA NA	NA NA	NA	NA NA	NA.	NA NA	NA NA	0.173 U	0.725	0.330	0.177 U	0.202 U	5.53	0.205 U	0.428
PCBs							i									-							
(mg/kg)	Aroclor 1254	2	2	3	3	2	I ⁿ	0.1160 J	0.0687 J	0.0698 U	0.140 U	0.100 U	0.111	0.116	0.100 U	0.0500 U	0.497 J	0.491 J	0.0511 U	0.0978 J	1.15 J	0.0575 U	0.945 J
/ · · · · /	Aroclor 1260	2	2	3	3	2	1	0.0567 U	0.0552 U	0.0698 U	0.140 U	0.100 U	0.100 U	0.100 U	0.100 U	0.0500 U	0.101 J	0.188 J	0.0511 U	0.0629 J	0.795 J	0.0575 U	0.0522 U
	Total PCBs	2	2	3	3	2	. 1	0.116 J	0.0687 J	0.0698 U	0.140 U	0.100 U	0.111	0.116	0.100 U	0.0500 U	0.598 J	0.679 J	0.0511 U	0.1607 J	1.945 J	0.0575 U	0.945 J
PCB Home	ologs																						
(mg/kg)	Tetrachlorobiphenyl	NS	NS	NS	NS	NS	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA
1 ·	Pentachlorobiphenyl	NS	NS	NS	NS	NS	N/A	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4 !	Hexachlorobiphenyl	NS	NS	NS	NS	NS	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
. '	Heptachlorobiphenyl	NS	NS	NS	NS	NS	N/A	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA
لـــــا	Total PCBs	2	2	3	3	2	1	NA.	NA NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals																							
(mg/kg)	Mercury	20	20	30	30	20	N/A	0.093	0.064	0.092	0.034 U	0.08 U	0.09	0.19	0.07 U	0.015 U	0.087	0.031	0.019 U	0.061	0.368	0.050	0.127
. !	Arsenic	20	20	20	20	20	N/A	3.06 U	2.70 U	22.1	4.18 U	2.06	1.61	2.29	1.85	2.59 U	2.87	2.69 U	2.65 U	3.03 U	3.87	4.46	2.66 U
11 1	Barium	1,000	1,000	3,000	3,000	1,000	N/A	41.8	29.7	382	14.6	18	19	23	27	5.18 U	84.3	9.17	11.9	19.5	77.6	88.2	53.0
. !	Beryllium	100	100	200	200	100	N/A	0.31 U	0.27 U	0.61	0.42 U	NA	NA	NA	NA	0.26 U	0.28 U	0.27 U	0.27 U	0.31 U	0.27 U	0.31 U	0.27 U
1 1	Cadmium	2	2	30	30	2	N/A	0.38	0.27 U	0.70	0.42 U	0.40 U	0.35 U	0.42	0.33 U	0.26 U	0.43	0.27 U	0.27 U	0.31 U	0.74	1.09	0.36
1 1	Chromium	30	30	200	200	30	N/A	10.0	4.19	27.2	7.33	5.03	4.13	5.28	9.76	2.02	9.51	2.58	1.92	5.74	13.0	15.6	5.27
1 7	Lead	300	300	300	300	300	N/A	65.0	36.1	425	2.91	27	43	0.35 U	16	1.86	137	42.9	4.03	43.2	338	363	58.8
	Nickel	20	20	700	700	20	N/A	4,27	3.31	49.3	6.13	NA	NA	NA	NA	1.52	5.15	1.53	2.07	3.04	8.23	10.0	3.98
1 1	Silver	100	100	200	200	100	N/A	0.62 U	0.54 U	0.70 U	0.84 U	0.40 U	0.35 U	0.35 U	0.33 U	0.52 U	0.85	0.54 U	0.53 U	0.86	1.16	1.31	0.86
	Vanadium Zina	600 2,500	600 2,500	1,000	1,000	600	N/A	11.4	5.40 U	56.1	8.36	NA NA	NA NA	NA NA	NA NA	5.18 U	7.30	5.38 U	5.30 U	10.3	14.9	18.7	5.70
GRO	Zinc	2,300	2,300	3,000	3,000	2,500	N/A	50.5	25.1	323	25.8	NA	NA	NA	NA	4.57	67.9	19.7	14.2	38.4	129	151	64.0
100	Gasoline Range Organics	1,000	1,000	3,000	3.000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

All units in mg/kg unless otherwise specified.

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

NS - No standard available for this compound.

U - Compound was not detected at specified quantitation limit,

Values in Bold indicate the compound was detected. Values shown in Bold and shaded type exceed one or more of the listed Method 1 standards. [Yalues shown in bold and outlined exceed TSCA but are less than the listed Method 1 standards...

VOCs - Volatile Organic Compounds

PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls.

GRO - Gasoline Range Organics.

RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

- sample location to be excavated.

f						Sami	ple Location:	SS	-15		SS-16		r ss	-17	22	-18		SS-19	
Analysis	Analyte						e Depth (ft.):	0.5	2	0.5	1	2	0,5	1.5	0.5	2	0.5	1	2
1 411413313	rularyte						Sample Date:	8/6/2008	8/6/2008	8/6/2008	8/6/2008	8/6/2008	8/6/2008	8/6/2008	8/6/2008	8/6/2008	8/7/2008	8/7/2008	8/7/2008
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1	TSCA	0,0,200	0.0.200	0.0.200	0.0,200								
VOCs		0.110112	D II G II G	02/01/2	52,011 5	3.001	100.1												
(mg/kg)	Acetone	50	400	50	400	6.0	N/A	NA	NA										
(mg/kg)	Chloromethane	NS	NS	NS	NS	100	N/A	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1	Naphthalene	40	500	40	1,000	4	N/A	NA	NA										
1	1,2,4-Trichlorobenzene	70	500	70	900	2	N/A	NA	NA										
1	1,2,3-Trichlorobenzene	400*	20*	NS	NS	NS	N/A	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
PAHs	1,210 11101101 0001112010			- 1,5															
(ing/kg)	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	0.180 U	0.177 U	0.179 U	0.200	0.172 U	0.180 U	0.174 U	0.178 U	0.171 U	0.176 U	0.933 U	0.170 U
ling, reg/	Acenaphthylene	600	10	600	10	1	N/A	0.180 U	0.177 U	0.179 U	0.182 U	0.172 U	0.180 U	0.174 U	0.178 U	0.171 U	0.176 U	0.933 U	0.170 U
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	0.180 U	0.177 U	0.179 U	0.845	0.172 U	0.180 U	0.174 U	0.178 U	0.171 U	0.176 U	0.964	0.170 U
	Benzo(a)anthracene	7	7	40	40	7	N/A	0.180 U	0.177 U	0.179 U	2.30	0.172 U	0.180 U	0.174 U	0.178 U	0.171 U	0.176 U	2.15	0.170 U
	Benzo(a)pyrene	2	2	4	4	2	N/A	0.180 U	0.177 U	0.179 U	1.99	0.172 U	0.180 U	0.174 U	0.178 U	0.171 U	0.176 U	1.89	0.170 U
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	0.180 U	0.177 U	0.179 U	2.11	0.172 U	0.180 U	0.174 U	0.178 U	0.171 U	0.176 U	2,24	0,170 U
	Benzo(g,h,i)perylene	1,000	1.000	3,000	3,000	1,000	N/A	0.180 U	0.177 U	0.179 U	1.06	0.172 U	0.180 U	0.174 U	0.178 U	0.171 U	0.176 U	1.43	0.170 U
II .	Benzo(k)fluoranthene	70	70	400	400	70	N/A	0.180 U	0.177 U	0.179 U	0.978	0.172 U	0.180 U	0.174 U	0.178 U	0.171 U	0.176 U	0.933 U	0.170 U
	Chrysene	70	70	400	400	70	N/A	0.180 U	0.177 U	0.179 U	2.12	0.172 U	0.180 U	0.174 U	0.178 U	0.171 U	0.176 U	2.13	0.170 U
	Dibenz(a,h)anthracene	0.7	0.7	4	4	1	N/A	0.180 U	0.177 U	0.179 U	0.303	0.172 U	0.180 U	0.174 U	0.178 U	0.171 U	0.176 U	0.933 U	0.170 U
	Fluoranthene	1.000	1.000	3.000	3,000	1,000	N/A	0.180 U	0.177 U	0.179 U	3.96	0.172 U	0.180 U	0.174 U	0.178 U	0.171 U	0.176 U	5.06	0.170 U
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	0.180 U	0.177 U	0.179 U	0.412	0.172 U	0.180 U	0.174 U	0.178 U	0.171 U	0.176 U	0.933 U	0.170 U
II.	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	0.180 U	0.177 U	0.179 U	1.24	0.172 U	0.180 U	0.174 U	0.178 U	0.171 U	0.176 U	1.51	0.170 U
ll .	2-Methylnaphthalene	80	300	80	500	0.7	N/A	0.180 U	0.177 U	0.179 U	0.182 U	0.172 U	0.180 U	0.174 U	0.178 U	0.171 U	0.176 U	0.933 U	0.170 U
	Naphthalene	40	500	40	1,000	4	N/A	0.180 U	0.177 U	0.179 U	0.182 U	0.172 U	0.180 U	0.174 U	0.178 U	0.171 U	0.176 U	0.933 U	0.170 U
l	Phenanthrene	500	500	1.000	1,000	10	N/A	0.180 U	0.177 U	0.179 U	3.25	0.172 U	0.180 U	0.174 U	0.178 U	0.171 U	0.176 U	4.42	0.170 U
1	Pyrene	1.000	1.000	3,000	3,000	1.000	N/A	0.180 U	0.177 U	0.179 U	3.41	0.172 U	0.180 U	0.174 U	0.178 U	0.171 U	0.176 U	4.48	0.170 U
PCBs	Tyrono	1,000	1,000	5,000	5,000	2,000	- 1111	01100	0.173	0.17,7									
(mg/kg)	Aroclor 1254	2	2	3	3	2	1	0.0528 U	0.0873 J	0.0526 U	3.43 J	0.0500 U	0.0518 U	0.0507 U	0.0502 U	0.0500 U	0.0512 U	4.93 J	0.0500 U
· · · · · · · · · · · · · · · · · ·	Aroclor 1260	2	2	3	3	2	1	0.0528 U	0.0520 U	0.0526 U	0.107 U	0.0500 U	0.0518 U	0.0507 U	0.0502 U	0.0500 U	0.0512 U	0.166 U	0.0500 U
	Total PCBs	2	2	3	3	2	. 1	0.0528 U	0.0873 J	0.0526 U	3.43 J	0.0500 U	0.0518 U	0.0507 U	0.0502 U	0.0500 U	0.0512 U	4.93 J	0.0500 U
PCB Hom	ologs																	111-2-2-0 4000	
(mg/kg)	Tetrachlorobiphenyl	NS	NS	NS	NS	NS	N/A	NA	NA	NA	0.32	NA	NA						
	Pentachlorobiphenyl	NS	NS	NS	NS	NS	N/A	NA	NA	NA	2.1	NA	NA						
1	Hexachlorobiphenyl	NS	NS	NS	NS	NS	N/A	NA	NA	NA	1.0	NA	NA						
	Heptachlorobiphenyl	NS	NS	NS	NS	NS	N/A	NA	NA	NA	0.036 J	NA	NA						
	Total PCBs	2	2	3	3	2	1	NA	NA	NA	3.5	NA	NA	NA	NA	NA.	NA	NA	NA
Metals																			
(mg/kg)	Mercury	20	20	30	30	20	N/A	0.013 U	0.181	0.015 U	0.313	0.020 U	0.015 U	0.021 U	0.024 U	0.017 U	0.020 U	0.616	0.017
	Arsenic	20	20	20	20	20	N/A	4.36	2.66 U	4.75	5.70	2.58 U	4.87	2.61 U	4.61	2.56 U	4.23	8.07	2.55 U
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	167	15.9	209	130	7.08	202	11.3	181	6.92	204	437	11.2
	Beryllium	100	100	200	200	100	N/A	0.27 U	0.27 U	0.27 U	0.28 U	0.26 U	0.27 U	0.27 U	0.27 U	0.26 U	0.27 U	0.28 U	0.47
	Cadmium	2	2	30	30	2	N/A	0.29	0.27 U	0.27 U	1.68	0.26 U	0.27 U	0.27 U	0.27 U	0.26 U	0.27 U	5.29	0.26 U
	Chromium	30	30	200	200	30	N/A	54.6	2.34	58.6	15.4	2.09	54.9	2.85	59.0	1.94	68.1	30.2	2.24
	Lead	300	300	300	300	300	N/A	0.97	13.7	0.81 U	342	4.07	0.81 U	2.78	0.87	2.31	4.02	671	4.41
	Nickel	20	20	700	700	20	N/A	33.6	2.25	29.1	10.0	1.87	23.3	2.12	25.1	2.42	30.9	21.4	2.70
	Silver	100	100	200	200	100	N/A	5.35	0.54	3.05	1.36	0.52 U	2.07	0.53 U	1.11	0.98	4.93	5.89	1.38
	Vanadium	600	600	1,000	1,000	600	N/A	39.1	5.31 U	49.2	14.1	5.16 U	48.0	5.22 U	47.2	5.12 U	50.3	24.6	5.10 U
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	24.0	14.9	30.0	190	6.75	30.4	8.27	30.5	7.51	49.6	562	9.06
GRO																			
(mg/kg)	Gasoline Range Organics	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA										

All units in mg/kg unless otherwise specified.

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable,

NS - No standard available for this compound-

U - Compound was not detected at specified quantitation limit,

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method 1 standards.

[Values shown in bold and outlined exceed TSCA but are less than the listed Method 1 standards...

VOCs - Volatile Organic Compounds.

PAHs - Polynuclear Aromatic Hydrocarbons. PCBs - Polychlorinated Biphenyls.

GRO - Gasoline Range Organics.

RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

		T				Com	ple Location;		SS	-70			-21	l SS-	-22	1 66	-23	<u> </u>	SS-24	
Analysis	Analyte	l					le Depth (ft.):	0,5	1	1 1	2	0.5	2	0.5	1.5	0.5	2	0.5	1.5	1-3
1 4447040						4	Sample Date:	8/7/2008	8/7/2008	8/7/2008	8/7/2008	8/7/2008	8/7/2008	8/7/2008	8/7/2008	8/7/2008	8/7/2008	8/7/2008	8/7/2008	3/31/2009
	1	S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-I	TSCA			Field Dup				7						
VOCs																				
(mg/kg)	Acetone	50	400	50	400	6.0	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Chloromethane	NS	NS	NS	NS	100	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA
1	Naphthalene	40	500	40	1,000	4	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	1,2,4-Trichlorobenzene	70	500	70	900	2	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	1,2,3-Trichlorobenzene	400*	20*	NS	NS	NS	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PAHs							27/1	0.450 77	0.105.77	0.400 ***	0.172 11	0.004 ***	1.02	0.404 77	0.101 11	0.106 11	0.156 11	0.100 77	0.104 77	0.020
(ing/kg)	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	0.178 U	0.185 U	0.183 U	0.173 U	0.201 U	1.93	0.191 U	0.181 U	0.196 U	0.176 U	0.198 U	0.184 U	0.920
1	Acenaphthylene	600	10	600	10	1	N/A	0.178 U	0.185 U	0.183 U	0.173 U	0.201 U	0.181 U	0.191 U	0.181 U	0.196 U	0.176 U	0.198 U	0.184 U	2,40
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	0.178 U	0.185 U	0.183 U	0.173 U	0.201 U	3.19	0.191 U	0.182	0.196 U	0.176 U	0.198 U	0.184 U	4.11
II .	Benzo(a)anthracene	7	7	40	40	7	N/A	0.178 U	0.473	0.228	0.173 U	0.398	4.16	0.191 U	0.789	0.196 U	0.176 U	0.198 U	0.184 U	6.33
Ħ	Benzo(a)pyrene	2	2	4	4	2	N/A	0.178 U	0.458	0.207	0.173 U	0.381	3.93	0.191 U	0.749	0.196 U	0.176 U	0.198 U	0.184 U	5.28
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	0.178 U	0.553	0.245	0.173 U	0.453	4.01	0.191 U	0.843	0.196 U	0.176 U	0.198 U	0.184 U	6.09
l .	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	0.178 U	0.394	0.183 U	0.173 U	0.303	3.13	0.191 U	0.508	0.196 U	0.176 U	0.198 U	0.184 U	2.47
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	0.178 U	0.202	0.183 U	0.173 U	0.201 U	1.66	0.191 U	0.325	0.196 U	0.176 U	0.198 U	0.184 U	2.42
1	Chrysene	70	70	400	400	70	N/A	0.178 U	0.460	0.185	0.173 U	0.404	4.05	0.191 U	0.795	0.196 U	0.176 U	0.198 U	0.184 U	5.98
1	Dibenz(a,h)anthracene	0.7	0.7	4	4	1	N/A	0.178 U	0.185 U	0.183 U	0.173 U	0.201 U	0.722	0.191 U	0.181 U	0.196 U	0.176 U	0.198 U	0.184 U	0.780
1	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	0.178 U	0.984	0.521	0.173 U	0.826	10.3	0.191 U	1.31	0.196 U	0.176 U	0.266	0.184 U	12.1
1	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	0.178 U	0.185 U	0.183 U	0.173 U	0.201 U	1.37	0.191 U	0.181 U	0.196 U	0.176 U	0.198 U	0.184 U	3.20
11	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	0.178 U	0.425	0.183 U	0.173 U	0.334	3.41	0.191 U	0.585	0.196 U	0.176 U	0.198 U	0.184 U	3.35
ll .	2-Methylnaphthalene	80	300	80	500	0.7	N/A	0.178 U	0.185 U	0.183 U	0.173 U	0.201 U	0.392	0.191 U	0.181 U	0.196 U	0.176 U	0.198 U	0.184 U	1.52
ll .	Naphthalene	40	500	40	1,000	4	N/A	0.178 U	0.185 U	0.183 U	0.173 U	0.201 U	0.658	0.191 U	0.181 U	0.196 U	0.176 U	0.198 U	0.184 U	2.55
1	Phenanthrene	500	500	1,000	1,000	10	N/A	0.178 U	0.541	0.283	0.173 U	0.610	11.2	0.191 U	0.853	0.196 U	0.176 U	0.198 U	0.184 U	18.9
-	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	0.178 U	1.03	0.470	0.173 U	0.897	11.2	0.209	1.43	0.196 U	0.176 U	0.278	0.184 U	11.1
PCBs					_							0.404 %	0.040 7		0 454 3					
(mg/kg)	Aroclor 1254	2	2	3	3	2	1	0.0519 U	0.307 J	0.500 J	0.0502 U	0.486 J	0.269 J	0.0543 U	0.654 J	0.0590 U	0.0522 U	0.0545 U	0.0524 U	0.0599 U
1	Aroclor 1260	2	2	3	3	2	1	0.0519 U	0.0541 U	0.0517 U	0.0502 U	0.0564 U	0.0523 U	0.0543 U	0.142 J	0.0590 U	0.0522 U	0.0545 U	0.0524 U	0.0599 U
N 47 N 17	Total PCBs	2	2	3	3	2	1	0.0519 U	0.307 J	0.500 J	0.0502 U	0.486 J	0.269 J	0.0543 U	0.796 J	0.0590 U	0.0522 U	0.0545 U	0.0524 U	0.0599 U
PCB Hon		110	210	NG	No		3744	27.1	27.1	27.1	27.4	57.4	27.4		37.4	27.1	274	374	27.4	374
(mg/kg)	Tetrachlorobiphenyl	NS	NS	NS	NS	NS	N/A	NA	NA	NA	NA	NA	NA	NA.	NA	NA.	NA	NA	NA	NA
	Pentachlorobiphenyl	NS	NS	NS	NS	NS	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Hexachlorobiphenyl	NS	NS	NS	NS	NS	N/A	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA NA
1	Heptachlorobiphenyl Total PCBs	NS 2	NS 2	NS 3	NS 3	NS 2	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Metals	Total PCBs			3	- 3		<u> </u>	IVA	IVA	IVA	IVA	INA	INA	NA.	INA	INA	INA	INA	IVA	INA
(ing/kg)	Moroury	20	20	30	30	20	N/A	0.026 U	0.081	0.086	0.019 U	0.117	0.021	0.050	0.263	0.044	0.020 U	0.056	0.022 U	NA
(ing/kg)	Mercury	20	20	20	20	20	N/A	4.65	3.13	3.36	2.59 U	4.51	2.72 U	3.80	4.12	3.55	2.64 U	3.19	2.76 U	7.05
ll .	Arsenic Barium	1.000	1.000	3,000	3,000	1,000	N/A N/A	244	3.13 44.1	56.2	9.38	56.4	14.9	36.4	174	39.2	9.27	22.2	14.4	277
		-,	-,	1 '				0.27 U	0.28 U	0.28 U	0.26 U	0.31 U	0.28 U	0.29 U	0.28 U	0.30 U	0.27 U	0.30 U	0.28 U	NA NA
	Beryllium	100	100	200 30	200 30	100	N/A N/A	0.27 U	0.28 0	2.74		0.31 0	0.28 U	0.29 U 0.29 U	1.74	0.30 U	0.27 U	0.30 U	0.28 U	1.28
	Cadmium	30	30			30		66.7	10.6	14.1	0.26 U 2.15	17.6	3.09	14.7		16.7	2.11	8.84		11.28
	Chromium	300	300	200 300	200 300	300	N/A N/A	1.75	77.7	79.6	2.15	11.6	19.1	36.1	11.8 355	21.9	3.50	31.5	2.41 9.45	401
	Lead Nickel	20	20	700	700	20	N/A N/A	29.5	6.58	8.95	2.41	9.71	3.39	8.27	9.98	9.02	2.57	6.17	2.79	NA
		100						5.31	2.44		1.07	4.36		2.78		2.56	1.04	1.91	1.17	NA NA
	Silver		100	200	200	100	N/A			3.01		19.6	1.31		3.11	20.3	-70.			I
	Vanadium Zinc	600 2,500	600	1,000 3,000	1,000 3,000	600 2,500	N/A N/A	59.3 39.4	14.6 48.1	16.1 80.3	5.17 U 8.34	19.6 84.4	5.43 U 23.4	19.9 33.2	11.6 174	20.3	5.28 U 7.90	14.3 21.8	5.52 U 17.1	NA NA
GRO	Zatte	2,300	2,300	.1,000	3,000	2,300	14//4	37.4	70.1	00.3	0.34	07.4	23.4	JJeli	1/9	43,1	7.20	21.0	1/.1	IVA
(mg/kg)	Gasoline Range Organics	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
mg/Kg/	Pousonne Mange Organies	1,000	1,000	1 5,000	2,000	1,000	14/21	11/1	14/1	1411	14/1		14/1	14/1	1417	1417	1417	14/7	11/1	11/1

All units in mg/kg unless otherwise specified.

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

NS - No standard available for this compound.

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected.

Values shown in Bold and shuded type exceed one or more of the listed Method 1 standards.

Values shown in bold and outlined exceed TSCA but are less than the listed Method 1 standards.

VOCs - Volatile Organic Compounds

PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls.

GRO - Gasoline Range Organics.

RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

						Sam	ple Location;	99	-25		SS-26			SS-27		T	SS-28		22	-29
Analysis	Analyte						e Depth (ft.):	0.5	1.5	0.5	1.5	2	0.5	2	1-3	0.5	1.5	1.5	0.5	2
2111013513	7 that yes						Sample Date:	8/7/2008	8/7/2008	8/7/2008	8/7/2008	8/7/2008	8/7/2008	8/7/2008	3/31/2009	8/7/2008	8/7/2008	8/7/2008	8/7/2008	8/7/2008
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1	TSCA	0///2000	0,,,2000	0,7,2000	0.772000	0177=000	0.772000	0///=000	5,02,200,			Field Dup		1
VOCs					2 2 3 11 3										-					
(mg/kg)	Acetone	50	400	50	400	6.0	N/A	NA	NA	NA	NA	NA	NA							
8-87	Chloromethane	NS	NS	NS	NS	100	N/A	NA	NA NA	NA	NA	NA	NA							
	Naphthalene	40	500	40	1,000	4	N/A	NA	NA NA	NA	NA	NA	NA							
	1,2,4-Trichlorobenzene	70	500	70	900	2	N/A	NA	NA	NA	NA	NA	NA							
I	1,2,3-Trichlorobenzene	400*	20*	NS	NS	NS	N/A	NA	NA	NA	NA	NA	NA							
PAHs																			i i	
(mg/kg)	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	0.200 U	0.189 U	0,204 U	0.652	0.176 U	0.188 U	0.196 U	0.200 U	0.203 U	0.189 U	0.195 U	0.200 U	0.208 U
	Acenaphthylene	600	10	600	10	1	N/A	0.200 U	0.189 U	0.204 U	0.271	0.176 U	0.188 U	0.196 U	0.200 U	0.203 U	0.189 U	0.195 U	0.200 U	0.208 U
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	0.200 U	0.189 U	0.204 U	2.23	0.176 U	0.188 U	0.196 U	0.224	0.203 U	0.189 U	0.214	0.200 U	0.208 U
	Benzo(a)anthracene	7	7	40	40	7	N/A	0.200 U	0.216	0.204 U	3.86	0.176 U	0.188 U	0.273	1.44	0.394	0.626	0.721	0.200 U	0.208 U
	Benzo(a)pyrene	2	2	4	4	2	N/A	0,200 U	0.214	0,204 U	3.09	0.176 U	0.188 U	0.254	1.26	0.372	0.599	0.657	0.200 U	0.208 U
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	0.200 U	0.189 U	0.204 U	3.10	0.176 U	0.188 U	0.298	1.85	0.203 U	0.639	0.724	0.200 U	0.208 U
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	0.200 U	0.189 U	0.204 U	2.49	0.176 U	0.188 U	0.196 U	0.712	0.352	0.461	0.463	0.200 U	0.208 U
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	0.200 U	0.189 U	0.204 U	1.26	0.176 U	0.188 U	0.196 U	0.640	0.203 U	0.224	0.265	0.200 U	0.208 U
11	Chrysene	70	70	400	400	70	N/A	0.200 U	0.237	0.204 U	3,53	0.176 U	0.188 U	0.291	1.67	0.378	0.635	0.734	0.200 U	0.208 U
	Dibenz(a,h)anthracene	0.7	0.7	4	4	1	N/A	0.200 U	0.189 U	0.204 U	0.675	0.176 U	0.188 U	0,196 U	0.204	0.203 U	0.189 U	0.195 U	0.200 U	0.208 U
	Fluoranthene	1,000	1.000	3,000	3,000	1,000	N/A	0.200 U	0.353	0.204 U	8.39	0.176 U	0.188 U	0.549	2.76	0.670	1.11	1.43	0.200 U	0.208 U
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	0.200 U	0.189 U	0.204 U	1.07	0.176 U	0.188 U	0.196 U	0.200 U	0.203 U	0.189 U	0.195 U	0.200 U	0.208 U
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	0,200 U	0.189 U	0.204 U	2.83	0.176 U	0.188 U	0,243	0.965	0.382	0.541	0.540	0,200 U	0.208 U
	2-Methylnaphthalene	80	300	80	500	0,7	N/A	0.200 U	0.189 U	0.204 U	0.487	0.176 U	0.188 U	0.196 U	0.200 U	0.203 U	0.189 U	0.195 U	0.200 U	0,208 U
	Naphthalene	40	500	40	1.000	4	N/A	0.200 U	0.189 U	0.204 U	0.584	0.176 U	0.188 U	0,196 U	0,200 U	0,203 U	0.189 U	0.195 U	0.200 U	0,208 U
	Phenanthrene	500	500	1,000	1,000	10	N/A	0.200 U	0.189 U	0.204 U	8.55	0.176 U	0.188 U	0.350	1.54	0.640	0.781	1,01	0.200 U	0.208 U
	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	0.200 U	0.412	0.204 U	7.93	0.176 U	0.188 U	0.521	2.75	0.729	1.09	1.28	0.200 U	0.208 U
PCBs													i							
(mg/kg)	Aroclor 1254	2	2	3	3	2	1	0.0592 U	0.208 J	0.0567 U	1.31 J	0.0519 U	0.0882 J	0.462 J	0.197 J	4.19 J	2.25 J	0.576 J	0.0578 U	0.187 J
1	Aroclor 1260	2	2	3	3	2	1	0.0592 U	0.0772 J	0.0567 U	0.343 J	0.0519 U	0.0564 U	0.175 J	0.0537 U	0.110 U	0.0537 U	0.0582 U	0.0578 U	0.245 J
	Total PCBs	2	2	3	3	2	1	0.0592 U	0.2852 J	0.0567 U	1.653 J	0.0519 U	0.0882 J	0.637 J	0.197 J	4.19 J	2.25 J	0.576 J	0.0578 U	0.432 J
PCB Hom	ologs									,										
(mg/kg)	Tetrachlorobiphenyl	NS	NS	NS	NS	NS	N/A	NA	0.027 U	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
	Pentachlorobiphenyl	NS	NS	NS	NS	NS	N/A	NA	0.034	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Hexachlorobiphenyl	NS	NS	NS	NS	NS	N/A	NA	0.027 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1	Heptachlorobiphenyl	NS	NS	NS	NS	NS	N/A	NA	0.041 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Total PCBs	2	2	3 .	3	2	1	NA NA	0.034	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals																				
(mg/kg)	Mercury	20	20	30	30	20	N/A	0.046	0.165	0.057	1.02	0.027	0.052	0.147	NA	0.107	0.343	0.725	0.059	0.792
	Arsenic	20	20	20	20	20	N/A	3.42	3.96	3.23	7.53	2.64 U	2.82 U	3,46	5.68	3.04 U	5.14	5.76	2.99 U	8.34
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	26.8	63.2	29.1	157	14.2	19.3	151	325	27.2	127	108	17.1	296
	Beryllium	100	100	200	200	100	N/A	0.30 U	0.29 U	0.31 U	0.29	0.27 U	0.29 U	0.30 U	NA	0.31 U	0.29 U	0.29	0.30 U	0.82
	Cadmium	2	2	30	30	2	N/A	0.30 U	0.69	0.31 U	2.43	0.27 U	0.42	0.73	1.17	0.39	1.72	1.66	0.30 U	0.72
	Chromium	30	30	200	200	30	N/A	15.7	10.5	16.9	13.5	2.24	6.33	7.85	7.09	6.99	11.5	15.8	5.19	13.0
	Lead	300	300	300	300	300	N/A	24.3	141	21.4	537	10.4	40.3	284	890	64.3	372	402	26.9	426
	Nickel	20	20	700	700	20	N/A	7.33	5.30	7.64	25.7	2.65	4.76	6.56	NA	4.56	8.12	9.19	3.28	12.4
	Silver	100	100	200	200	100	N/A	1.12	0.79	1.04	2.66	1.20	1.29	0.98	NA	0.89	1.47	1.69	0.68	1.19
	Vanadium	600	600	1,000	1,000	600	N/A	17.0	11.2	17.1	10.7	5.27 U	10.1	8.33	NA	11.1	10.4	12.6	9.87	23.4
-	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	24.3	140	22.7	279	28.1	79.7	244	NA	41.1	185	190	21.7	218
GRO (mg/kg)	Gasoline Range Organics	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA							

All units in mg/kg unless otherwise specified.

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

NS - No standard available for this compound.

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected.

Values shown in Bold and sludded type exceed one or more of the listed Method 1 standards.

[Values shown in bold and outlined exceed TSCA but are less than the listed Method 1 standards...

VOCs - Volatile Organic Compounds.

PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls.

GRO - Gasoline Range Organics RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

						Sam	ple Location:	77	-30		SS	-31			SS-32		SS-	32A	SS-	32B
Analysis	Analyte						e Depth (ft.):	0.5	1.5	0,5	2	1-3	1-3	0.5	1.5	1-3	0-1	1-3	0-1	1-3
7 thatysis	2 that yes						Sample Date:	8/7/2008	8/7/2008	8/7/2008	8/7/2008	3/31/2009	3/31/2009	8/7/2008	8/7/2008	3/31/2009	2/26/2009	2/26/2009	2/27/2009	2/27/2009
1 1		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-I	TSCA	(b)					Field Dup			THE TWENTED STORES			1	
VOCs		0 110112	0.00.0	3 2, 3 2	0 2000			(4)					,							
(mg/kg)	Acetone	50	400	50	400	6.0	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
(IIIB/IIB)	Chloromethane	NS	NS	NS	NS	100	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Naphthalene	40	500	40	1.000	4	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	1,2,4-Trichlorobenzene	70	500	70	900	2	N/A	NA	NA NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
	1,2,3-Trichlorobenzene	400*	20*	NS	NS	NS	N/A	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
PAHs	2,-,6									-										
(mg/kg)	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	0.188 U	0.175 U	0.195 U	0.212 U	0.189 U	0.192 U	0.203 U	0.195 U	0.185 U	NA	NA	NA	NA
(8-1-8)	Acenaphthylene	600	10	600	10	l i	N/A	0.188 U	0.175 U	0.195 U	0.212 U	0.189 U	0.192 U	0.203 U	0.195 U	0.185 U	NA	NA	NA	NA
	Anthracene	1,000	1.000	3,000	3,000	1,000	N/A	0.188 U	0.663	0.195 U	0.212 U	0.189 U	0.192 U	0.203 U	0.570	0.185 U	NA	NA	NA	NA
	Benzo(a)anthracene	7	7	40	40	7	N/A	0.188 U	0.965	0.195 U	0.212 U	0.189 U	0.192 U	0.203 U	1.44	0.204	NA	NA	NA	NA
	Benzo(a)pyrene	2	2	4	4	2	N/A	0,188 U	0.758	0.195 U	0,212 U	0.189 U	0.192 U	0,203 U	1.27	0.202	NA	NA	NA	NA
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	0.188 U	0.751	0.195 U	0.212 U	0.189 U	0.192 U	0.203 U	1.47	0.240	NA	NA	NA	NA
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	0.188 U	0,454	0.195 U	0.212 U	0.189 U	0.192 U	0.203 U	1.11	0.185 U	NA	NA	NA	NA
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	0.188 U	0.372	0.195 U	0.212 U	0.189 U	0.192 U	0.203 U	0.542	0.185 U	NA	NA	NA	NA
	Chrysene	70	70	400	400	70	N/A	0.188 U	0.875	0.195 U	0.212 U	0.189 U	0.192 U	0.203 U	1.42	0.207	NA	NA	NA	NA
	Dibenz(a,h)anthracene	0.7	0.7	4	4	l î	N/A	0.188 U	0.175 U	0.195 U	0.212 U	0.189 U	0.192 U	0.203 U	0.312	0.185 U	NA	NA	NA	NA
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	0.188 U	2.59	0.195 U	0.212 U	0.189 U	0.192 U	0.203 U	3.72	0.320	NA	NA	NA	NA
	Fluorene	1,000	1,000	3.000	3,000	1,000	N/A	0.188 U	0.286	0.195 U	0.212 U	0.189 U	0.192 U	0.203 U	0.229	0.185 U	NA	NA	NA	NA
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	0.188 U	0.559	0.195 U	0.212 U	0.189 U	0.192 U	0.203 U	1.21	0.185 U	NA	NA	NA	NA
1 1	2-Methylnaphthalene	80	300	80	500	0.7	N/A	0.188 U	0.175 U	0.195 U	0.212 U	0.189 U	0.192 U	0.203 U	0.195 U	0.185 U	NA	NA	NA	NA
	Naphthalene	40	500	40	1.000	4	N/A	0.188 U	0.175 U	0.195 U	0.212 U	0.189 U	0.192 U	0.203 U	0.218	0.185 U	NA	NA	NA	NA
1 1	Phenanthrene	500	500	1,000	1.000	10	N/A	0.188 U	3.01	0.195 U	0,212 U	0.189 U	0.192 U	0.203 U	2,45	0.300	NA	NA	NA	NA
	Pyrene	1,000	1,000	3,000	3,000	1.000	N/A	0.188 U	1.91	0.195 U	0.212 U	0.189 U	0.211	0.203 U	2.80	0.379	NA	NA	NA	NA
PCBs																				
(mg/kg)	Aroclor 1254	2	2	3	3	2	1	0.0566 U	0.0506 U	0.0664 J	0.0592 U	0.0575 U	0.0550 U	0.103 J	18.5 J	NA	0.0612 U	0.520 J	0.153 J	0.0583 U
	Aroclor 1260	2	2	3	3	2	1	0.0566 U	0.0506 U	0.0546 U	0.0592 U	0.0575 U	0.0550 U	0.0587 U	0.579 U	NA	0.0612 U	0.0555 U	0.0569 U	0.0583 U
	Total PCBs	2	2	3	3	2	1	0.0566 U	0.0506 U	0.0664 J	0.0592 U	0.0575 U	0.0550 U	0.103 J	18.5 J	NA	0.0612 U	0.520 J	0.153 J	0.0583 U
PCB Home	ologs															ĺ				
(mg/kg)	Tetrachlorobiphenyl	NS	NS	NS	NS	NS	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.
	Pentachlorobiphenyl	NS	NS	NS	NS	NS	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Hexachlorobiphenyl	NS	NS	NS	NS	NS	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Heptachlorobiphenyl	NS	NS	NS	NS	NS	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Total PCBs	2	2	3	3	2	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals										31 2				17						
(mg/kg)	Mercury	20	20	30	30	20	N/A	0.047	0.018	0.057	0.233	NA	NA	0.064	0.743	NA	NA	NA	NA	NA
	Arsenic	20	20	20	20	20	N/A	2.82 U	2.62 U	2.99	9.18	5.55	6.09	3.66	6.46	2.77 U	NA	NA	NA	NA
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	18.2	14.9	18.6	197	148	124	26.9	178	39.4	NA	NA	NA	NA
	Beryllium	100	100	200	200	100	N/A	0.29 U	0.27 U	0.30 U	0.32 U	NA	NA.	0.31 U	0.30 U	NA	NA	NA	NA	NA
	Cadmium	2	2	30	30	2	N/A	0.29 U	0.27 U	0.30 U	0.82	0.29 U	0.30	0.31 U	2.32	0.44	NA	NA	NA	NA
	Chromium	30	30	200	200	30	N/A	6.54	2.76	5.66	10.5	7.17	7.04	12.5	23.0	3.97	NA	NA	NA	NA
	Lead	300	300	300	300	300	N/A	22.7	52.4	31.7	302	137	219	28.2	805	96.6	NA	NA	NA	NA
	Nickel	20	20	700	700	20	N/A	4.67	3.09	6.18	12.7	NA	NA	7.00	16.3	NA	NA	NA	NA	NA
	Silver	100	100	200	200	100	N/A	2.01	1.26	1.89	3.47	NA	NA	2.48	3.79	NA	NA	NA	NA	NA
	Vanadium	600	600	1,000	1,000	600	N/A	12.3	5.34	11.9	25.9	NA	NA	18.1	17.9	NA	NA	NA	NA	NA
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	21.0	28.6	26.9	93.6	NA	NA	27.3	271	NA	NA	NA	NA	NA
GRO	0 1 0 0 1	1.000	1.000	2.000	0.000	1.000	3377			3.7.1	3.7.4	27.4	57.4	N	N. A	27.4	NT A	NT 4	N/A	D.T.A
(mg/kg)	Gasoline Range Organics	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA

All units in mg/kg unless otherwise specified.

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

J - Estimated value; below quantitation limit,

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

NS - No standard available for this compound.

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method 1 standards.

[Values shown in bold and outlined exceed TSCA but are less than the listed Method 1 standards.]

VOCs - Volatile Organic Compounds.
PAHs - Polynuclear Aromatic Hydrocarbons. PCBs - Polychlorinated Biphenyls.

GRO - Gasoline Range Organics.

RC - Reportable Concentration-

TSCA - Toxic Substances Control Act criteria

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

TABLE 3-2 Summary of Detected Analytical Results for Soil Samples New Bedford High School - Fenced Playing Field (Exposure Point Area HS-2) New Bedford, Massachusetts

Analysis VOCs	Analyte						ple Location;		32C		SS-32D		SS		SS			SS-35	
VOCs	,					Sampl	e Depth (ft.);	0-1	1-3	0-1	0-1	1-3	0.5	2	0.5	2	0.5	1.5	1-3
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	L.	Sample Date:	2/27/2009	2/27/2009	2/27/2009	2/27/2009 Field Dup	2/27/2009	8/7/2008	8/7/2008	8/7/2008	8/7/2008	8/7/2008	8/7/2008	3/31/2009
								-			•								
(mg/kg)	Acetone	50	400	50	400	6.0	N/A	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA
	Chloromethane	NS	NS	NS	NS	100	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Naphthalene	40	500	40	1,000	4	N/A	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA
	1,2,4-Trichlorobenzene	70	500	70	900	2	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	1,2,3-Trichlorobenzene	400*	20*	NS	NS	NS	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PAHs			i																
(mg/kg)	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	NA	NA	NA	NA	NA	0.203 U	0.184 U	0.195 U	0.177 U	0.197 U	0.184 U	0.184
/ · · · · · · · · · · · · · · · · · · ·	Acenaphthylene	600	10	600	10	1	N/A	NA	NA	NA	NA	NA	0.203 U	0.184 U	0.195 U	0.177 U	0.197 U	0.184 U	0.177 U
/ /	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	0.203 U	0.350	0.195 U	0.177 U	0.197 U	0.420	0.510
	Benzo(a)anthracene	7	7	40	40	7	N/A	NA	NA	NA	NA	NA	0.203 U	0.704	0.195 U	0.177 U	0.197 U	0.764	1.15
. 1	Benzo(a)pyrene	2	2	4	4	2	N/A	NA	NA	NA	NA	NA	0.203 U	0.662	0.195 U	0.177 U	0.197 U	0.647	1,11
/ V	Benzo(b)fluoranthene	7	7	40	40	7	N/A	NA	NA	NA	NA	NA	0.203 U	0.711	0.195 U	0.177 U	0.197 U	0.653	1.17
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	0.203 U	0.436	0,195 U	0.177 U	0.197 U	0.328	0.737
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	NA	NA	NA	NA	NA	0.203 U	0.281	0.195 U	0.177 U	0.197 U	0.276	0.407
	Chrysene	70	70	400	400	70	N/A	NA	NA	NA	NA	NΑ	0.203 U	0.686	0.195 U	0.177 U	0.197 U	0.723	1.25
/ /	Dibenz(a,h)anthracene	0.7	0.7	4	4	1	N/A	NA	NA	NA	NA	NA	0.203 U	0.184 U	0.195 U	0.177 U	0.197 U	0.184 U	0.177 U
/ I	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	0.203 U	1.53	0.195 U	0.177 U	0.197 U	1.68	2.39
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	0.203 U	0.184 U	0,195 U	0.177 U	0.197 U	0.184 U	0.208
. 1	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	NA	NA	NA	NA	NA	0.203 U	0.473	0.195 U	0.177 U	0.197 U	0.405	0.793
/ P	2-Methylnaphthalene	80	300	80	500	0.7	N/A	NA	NA	NA	NA	NA	0.203 U	0.184 U	0.195 U	0.177 U	0.197 U	0.184 U	0.177 U
/ /	Naphthalene	40	500	40	1,000	4	N/A	NA	NA	NA	NA	NA	0.203 U	0.184 U	0.195 U	0.177 U	0.197 U	0.184 U	0.177 U
/ P	Phenanthrene	500	500	1,000	1,000	10	N/A	NA	NA	NA	NA	NA	0.203 U	1.27	0.195 U	0.177 U	0.197 U	1.74	3.21
	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	0.203 U	1.33	0.195 U	0.177 U	0.197 U	1.46	3,37
PCBs																			
0 0	Aroclor 1254	2	2	3	3	2	I	0.0931 J	0.175 J	0.229 J	0.288 J	0.814 J	0.103 J	0.408 J	0.160 J	0.0525 U	0.161 J	0.472 J	0.0529 U
100	Aroclor 1260	2	2	3	3	2	1	0.0645 U	0.0548 U	0.0600 U	0.0637 U	0.0554 U	0.0576 U	0.130 J	0.0593 U	0.0525 U	0.0568 U	0.213 J	0.0529 U
	Total PCBs	2	2	3	3	2	1	0.0931 J	0.175 J	0.229 J	0.288 J	0.814 J	0.103 J	0.538 J	0.160 J	0.0525 U	0.161 J	0.685 J	0.0529 U
PCB Homo		110			310		57/1	27.7	577	555	54.1	377		577	27.1	27.1		27.1	374
	Tetrachlorobiphenyl	NS	NS	NS	NS	NS	N/A	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA NA
4.5	Pentachlorobiphenyl	NS	NS	NS	NS	NS	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Hexachlorobiphenyl	NS	NS	NS	NS	NS	N/A	NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA NA
4 Y	Heptachlorobiphenyl Total PCBs	NS 2	NS 2	NS 3	NS 3	NS 2	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Metals	Total FCBs							NA	NA	IVA	NA	INA	IVA	NA.	INA	INA	IVA	IVA	IVA
	Magazara	20	20	30	30	20	N/A	NA	NA	NA	NA	NA	0.084	0.315	0.084	0.022 U	0.063	0.162	NA
	Mercury Arsenic	20	20	20	20	20	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	3.04 U	2.75 U	3.09	2.66 U	2.96 U	5.15	2.66 U
	Barium	1.000	1,000	3,000	3,000	1,000	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	22.2	63.4	26.2	15.9	20.3	37.8	2.00 U
	Beryllium	100	1000	200	200	100	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	0.31 U	0.28 U	0.30 U	0.27 U	0.30 U	0.28 U	24.4 NA
	Cadmium	2	2	30	30	2	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	0.31 U	0.28 U	0.30 U	0.27 U	0.30 U	0.28 U	0.27 U
	Chromium	30	30	200	200	30	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	6.02	6.69	6.53	2.32	5.02	7.74	4.10
T.	Lead	300	300	300	300	300	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	37.0	130	90.4	4.28	37.1	109	45.0
	Nickel	20	20	700	700	20	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	4.71	5.77	5.39	2.67	3.76	5.45	NA
1	Silver	100	100	200	200	100	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	1.86	1.70	2.44	1.15	1.70	2.12	NA NA
100	Vanadium	600	600	1,000	1,000	600	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	11.8	8.77	13.0	5.31 U	10.9	10.1	NA NA
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	33.9	70.3	39.9	10.6	26.8	57.0	NA NA
GRO		-,500	-,500	5,555	5,000				2 12 8	A 12 A	1122			7,010		1000			- 11.
(F	Gasoline Range Organics	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

All units in mg/kg unless otherwise specified,

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

NS - No standard available for this compound.

U - Compound was not detected at specified quantitation limit,

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method 1 standards.

Values shown in bold and outlined exceed TSCA but are less than the listed Method 1 standards.

VOCs - Volatile Organic Compounds,

PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls,

GRO - Gasoline Range Organics

RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

						Sam	ple Location:	HRO	717	HRG21	HR	1-17	HRI-19	HRI21	HRJ.75-17	HRK-19		HRK-21	
Analysis	Analyte						e Depth (ft.):	2.5-3	1-3	2.5-3	2-3	1-3	1.5-2.5	0.5-2.5	1-2.5	1-3	1-3	1-3	1-3
Amarysis	7 Daily te						Sample Date:	2/21/2006	4/7/2009	2/21/2006	2/21/2006	4/7/2009	2/21/2006	2/21/2006	2/21/2006	2/21/2006	2/21/2006	2/21/2006	4/7/2009
II 1		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-I	TSCA	3, 2, 3, 2, 0, 0, 0, 0	0.72003									Field Dup	
VOCs		0 1/0 1/2	0 1/0 1/ 0	0 - 0 - 1	0 10 0 11 1														
	Benzene	30,0	30	200.0	200	2.0	N/A	l na l	NA	NA	NA	NA	NA	NA	0.036	NA	NA	l na l	NA
	Naphthalene	40	500	40	1,000	4	N/A	NA	NA	NA	NA	NA	NA	NA	11	NA	NA	l _{NA}	NA
II I	Toluene	500	500	1,000	1,000	30	N/A	NA	NA	NA	NA NA	NA.	NA	NA	0.041	NA	NA	NA	NA
	1,2,4-Trimethylbenzene	100(1)	100(1)	500(1)	500(1)	1,000	N/A	NA NA	NA	NA	NA	NA	NA	NA	0.046	NA	NA	NA	NA
SVOCs/PA		100(1)	100(1)	000(1)	200(2)						,								
	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	NA	0.182 U	NA	NA	0.196 U	NA	NA	NA	NA	NA	NA	0.332
II. 0 0	Acenaphthylene	600	10	600	10	l i	N/A	NA	0.182 U	NA	NA	0.196 U	NA	NA	NA	NA	NA	NA	0.255 U
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	NA	0.182 U	NA	NA	0.613	NA	NA	NA	NA	NA	NA	0.972
II 1	Benzo(a)anthracene	7	7	40	40	7	N/A	NA	0.182 U	NA	NA	1.97	NA	NA	NA	NA	NA	NA	1.72
11	Benzo(a)pyrene	2	2	4	4	2	N/A	NA	0.182 U	NA	NA	1.89	NA	NA	NA	NA	NA	NA	1.51
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	NA	0.182 U	NA	NA	2.13	NA	NA	NA	NA	NA	NA	1.76
	Benzo(g,h,i)perylene	1,000	1.000	3,000	3,000	1.000	N/A	NA	0.182 U	NA	NA	0.865	NA	NA	NA	NA	NA	NA	0.902
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	NA	0.182 U	NA	NA	0.851	NA	NA	NA	NA	NA	NA	0.657
	Chrysene	70	70	400	400	70	N/A	NA	0.182 U	NA	NA	2.01	NA	NA	NA	NA	NA	NA	1.84
	Dibenz(a,h)anthracene	0.7	0.7	4	4	1	N/A	NA	0.182 U	NA	NA	0.266	NA	NA	NA	NA	NA	NA	0.273
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	NA NA	0.182 U	NA	NA	3.12	NA	NA	NA	NA	NA	NA	3.47
11 1	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	NA	0.182 U	NA	NA	0.196 U	NA	NA	NA	NA	NA	NA	0.453
II I	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	NA	0.182 U	NA	NA	1.16	NA	NA	NA	NA	NA	NA	1.17
	2-Methylnaphthalene	80	300	80	500	0.7	N/A	NA	0,182 U	NA	NA	0.196 U	NA	NA	NA	NA	NA	NA	0.255 U
	Naphthalene	40	500	40	1,000	4	N/A	NA NA	0.182 U	NA	NA	0.196 U	NA	NA	NA	NA	NA	NA	0.367
	Phenanthrene	500	500	1,000	1,000	10	N/A	NA	0.182 U	NA	NA	2.60	NA	NA	NA	NA	NA	NA	4.69
II I	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	NA NA	0,182 U	NA	NA	3.64	NA	NA	NA	NA	NA	NA	3.59
PCBs		i																	
	Aroclor 1254	2	2	3	3	2	1	0.11 U	0.162 J	0.15	0.34	0.0940 J	0.23	0.12 U	0.76	0.04 U	0.041 U	0.037 U	0.0655 U
	Aroclor 1260	2	2	3	3	2	1	0.11 U	0.0524 U	0.13 U	0.03 U	0.0587 U	0.03 U	0.12 U	0.029 U	0.04 U	0.041 U	0.037 U	0.0655 U
1	Total PCBs	2	2	3	3	2	1	0.22 U	0.162 J	0.15	0.34	0.0940 J	0.23	0.24 U	0.76	0.04 U	0.041 U	0.037 U	0.0655 U
Metals		i																	
	Mercury	20	20	30	30	20	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Arsenic	20	20	20	20	20	N/A	NA	2.72 U	NA	NA	3.74	NA	NA	NA	NA	NA	NA	8.02
1	Barium	1,000	1,000	3,000	3,000	1,000	N/A	NA	9.14	NA	NA	106	NA	NA	NA	NA	NA	NA	223
1 1	Beryllium	100	100	200	200	100	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA
	Cadmium	2	2	30	30	2	N/A	NA	0.28 U	NA	NA	0.46	NA	NA	NA	NA	NA	NA	1.45
II. I	Chromium	30	30	200	200	30	N/A	NA	2.20	NA	NA	6.57	NA	NA	NA	NA	NA	NA	8.23
	Lead	300	300	300	300	300	N/A	NA	11.6	NA	NA	218	NA	NA	NA	NA	NA	NA	96.6
	Nickel	20	20	700	700	20	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Silver	100	100	200	200	100	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Vanadium	600	600	1,000	1,000	600	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

All units in mg/kg unless otherwise specified.

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

U - Compound was not detected at specified quantitation limit,

J - Estimated value; below quantitation limit.

B - Detected in associated laboratory method blank.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed MassDEP Method 1 Standar Values shown in bold and outlined exceed TSCA but are less than the listed MassDEP Method 1 standar

VOCs - Volatile Organic Compounds.

PAHs - Polynuclear Aromatic Hydrocarbons

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - MassDEP Method 1 standards and RC for C9-C10 aromatics used.

(2) - MassDEP RC for Dichloropropane used.

(3) - MassDEP RC for Dichloropropene used.

(4) - MassDEP RC for 1,3-Dichloropropene used.

* - TRC developed standards,

		T				Sam	ple Location:	HRK23	NBHS-SS-5	NBHS-SS-6	VSS-6	VSS-7	VSS-8	Massimon same		SB-360			SB-360A	SB-360B	SB-	360C
Analysis	Analyte					Sampl	e Depth (ft.):	0.5-3	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-1	1-3	1-3	5	8	1-3	1-3	1-3	1-3
1							Sample Date:	2/21/2006	8/6/2008	8/6/2008	7/23/2001	7/23/2001	7/23/2001	3/4/2009	3/4/2009	3/4/2009	3/4/2009	3/4/2009	3/24/2009	3/24/2009	3/24/2009	3/24/2009
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1	TSCA									Field Dup						Field Dup
VOCs																						
(mg/kg)	Benzene	30.0	30	200.0	200	2.0	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA						
1	Naphthalene	40	500	40	1,000	4	N/A	NA	NA	NA.	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1	Toluene	500	500	1,000	1,000	30	N/A	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA						
	1,2,4-Trimethylbenzene	100(1)	100(1)	500(1)	500(1)	1,000	N/A	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SVOCs/P.	2												27.1	0.006 77	0.000 11	0.006 11	0.004 77	0.000 11	27.1	274	27.4	371
(mg/kg)	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	NA	NA	NA	NA	NA	NA	0.206 U	0.229 U	0.236 U	0.301 U	0.230 U	NA NA	NA NA	NA	NA NA
	Acenaphthylene	600	10	600	10	1	N/A	NA	NA	NA	NA	NA	NA	0.206 U	0.229 U	0.236 U	0.301 U	0.230 U	NA NA	NA NA	NA	NA
1	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	NA NA	NA	NA	NA NA	NA	NA NA	0.206 U	0.229 U	0.236 U	0.301 U	0.230 U	NA NA	NA NA	NA NA	NA NA
	Benzo(a)anthracene	7	7	40	40	7	N/A	NA NA	NA	NA	NA	NA	NA NA	0.270	0.229 U	0.236 U	0.301 U	0.230 U	NA NA	NA NA		
	Benzo(a)pyrene	2	2	4	40	2	N/A	NA	NA	NA	NA	NA NA	NA	0.281 0.376	0.229 U 0.229 U	0.236 U 0.236 U	0.301 U 0.301 U	0.230 U 0.230 U	NA NA	NA NA	NA NA	NA NA
	Benzo(b)fluoranthene	1 000	′	40		7	N/A	NA	NA	NA	NA	NA	NA			0.236 U	0.10.038	1		NA NA	NA NA	
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	NA NA	NA	NA	NA NA	NA.	NA	0.206 U	0.229 U		0.301 U	0.230 U 0.230 U	NA NA	NA NA	NA NA	NA NA
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	NA NA	NA	NA NA	NA NA	NA	NA	0.206 U	0.229 U 0.229 U	0,236 U 0,236 U	0.301 U 0.301 U	0.230 U	NA NA	NA NA	NA NA	
	Chrysene	70	70	400	400	70	N/A	NA NA	NA	NA	NA	NA NA	NA NA	0.331		0.236 U 0.236 U		0.230 U	NA NA	NA NA	NA NA	NA NA
1	Dibenz(a,h)anthracene	0.7	0.7	2,000	2 000	1 1 000	N/A	NA NA	NA	NA NA	NA NA	NA NA	NA NA	0.206 U	0.229 U 0.229 U	0.236 U 0.367	0.301 U 0.301 U	0.230 U	NA NA	NA NA	NA NA	NA NA
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	NA NA	NA	NA NA	NA NA	NA NA	NA NA	0.611 0.206 U	0.229 U 0.229 U	0.367 0.236 U	0.301 U	0.230 U	NA NA	NA NA	NA NA	NA NA
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.206 U	0.229 U	0.236 U	0.301 U	0.230 U	NA NA	NA NA	NA NA	NA NA
	Indeno(1,2,3-cd)pyrene	80	,	40 80	40 500	0.7	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.206 U	0.229 U	0.236 U	0.301 U	0.230 U	NA NA	NA NA	NA NA	NA NA
l	2-Methylnaphthalene	40	300 500	40	1,000	4	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.206 U	0.229 U	0.236 U	0.301 U	0.230 U	NA NA	NA NA	NA NA	NA NA
	Naphthalene Phenanthrene	500	500	1,000	1,000	10	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.200	0.234	0.256	0.301 U	0.230 U	NA NA	NA NA	NA NA	NA NA
	Pyrene	1,000	1.000	3,000	3,000	1,000	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.502	0.229 U	0.334	0.301 U	0.230 U	NA NA	NA NA	NA NA	NA NA
PCBs	1 Jiene	1,000	1,000	3,000	3,000	1,000	- 1011					711.				- 0.00	0.004	- 5.255	1			
(mg/kg)	Aroclor 1254	2	2	3	3	2	1	0.13 U	0.0956 J	0.0524 U	0.100 U	0.100 U	0.100 U	0.634 J	0.0706 U	0.0632 U	0.0822 U	0.0578 U	NA	NA NA	NA	NA
(III g) Kg)	Aroclor 1260	2	2	3	3	2	1	0.13 U	0.0538 U	0.0524 U	0.100 U	0.100 U	0,100 U	0.163 J	0.0706 U	0.0632 U	0.0822 U	0.0578 U	NA	NA	NA	NA
	Total PCBs	2	2	3	3	2	î	0.25 U	0.0956 J	0.0524 U	0.100 U	0.100 U	0.100 U	0.797 J	0.0706 U	0.0632 U	0.0822 U	0.0578 U	NA	NA	NA	NA
Metals		1											1								i	
(mg/kg)	Mercury	20	20	30	30	20	N/A	NA	NA	NA	0.07 U	0.08 U	0.40	0.261	0.074	0.044	0.275	0.016	NA	NA	NA	NA
16467	Arsenic	20	20	20	20	20	N/A	NA	NA	NA	1.61	2.37	3.48	3.09 U	12.4	11.3	14.5	3.45 U	NA	NA	NA	NA
1	Barium	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	12	27	66	6.17 U	867	2,750	760	10.0	4,060	2,170	403	488
	Beryllium	100	100	200	200	100	N/A	NA	NA	NA	NA	NA	NA	0.31 U	1.45	1.12	0.97	0.35 U	NA	NA	NA	NA
1	Cadmium	2	2	30	30	2	N/A	NA	NA	NA	0.35 U	0.38 U	0.41	0.31 U	0.59	0.48	1.21	0.35 U	NA	NA	NA	NA
	Chromium	30	30	200	200	30	N/A	NA	NA	NA	4.59	5.09	6.45	0.62 U	15.9	39.2	16.6	4.30	54.0	17.2	12.8	13.2
	Lead	300	300	300	300	300	N/A	NA	NA	NA	18	65	162	0.93 U	8,110	39,600	6,870	5.53	20,200	26,700	350	422
	Nickel	20	20	700	700	20	N/A	NA	NA	NA.	NA	NA	NA	0.62 U	18.8	14.6	21.5	4.54	NA	NA	NA	NA
	Silver	100	100	200	200	100	N/A	NA	NA	NA	0,35 U	0.38 U	0.37 U	0.62 U	0.69 U	0.71 U	0.91 U	0.69 U	NA	NA	NA	NA
	Vanadium	600	600	1,000	1,000	600	N/A	NA	NA	NA	NA	NA	NA	6.17 U	37.1	24.7	49.4	6.89 U	NA	NA	NA	NA
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	NA	NA	NA	NA	NA	NA	1.59	712	577	423	30.7	NA	NA	NA	NA

Notes:

All units in mg/kg unless otherwise specified.

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm),

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

U - Compound was not detected at specified quantitation limit.

J - Estimated value; below quantitation limit.

B - Detected in associated laboratory method blank,

Values in Bold indicate the compound was detected,
Values shown in Bold and shaded type exceed one or more of the listed MassDEP Method I Standar

Values shown in bold and outlined exceed TSCA but are less than the listed MassDEP Method 1 standards.

VOCs - Volatile Organic Compounds.

PAHs - Polynuclear Aromatic Hydrocarbons

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria:

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

- (1) MassDEP Method 1 standards and RC for C9-C10 aromatics used.
- (2) MassDEP RC for Dichloropropane used.
- (3) MassDEP RC for Dichloropropene used. (4) - MassDEP RC for 1,3-Dichloropropene used.

* - TRC developed standards

		_			-	Sam	ple Location:	SB-360D	-SB-360E	SB-360F	SB-360G	SB-3601	SB-360J	SB-360K	SB-360L	SB-360M	SB-360O	SB-360Q	SB-360R
Analysis	Analyte	1				Samp	le Depth (ft.):	1-3	1-3	1-3	1-3	1-3	1-3	1-3	1-3	1-3	1-3	1-3	1-3
CONSTRUCTION OF THE PARTY OF TH	220320. 4 00.0						Sample Date:	3/4/2009	3/24/2009	3/24/2009	3/24/2009	5/21/2009	5/21/2009	5/21/2009	5/21/2009	7/6/2009	7/6/2009	7/6/2009	7/6/2009
	12	S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1	TSCA										Bening the or		
VOCs																			
(mg/kg)	Benzene	30.0	30	200.0	200	2.0	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Naphthalene	40	500	40	1,000	4	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Toluene	500	500	1,000	1,000	30	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	1,2,4-Trimethylbenzene	100(1)	100(1)	500(1)	500(1)	1,000	N/A	NA	NA	NA	NA_	NA	NA	NA	NA	NA	NA	NA	NA
SVOCs/P/	277															2.5			l
(mg/kg)	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	NA	NA	NA	NA I	NA	NA	NA	NA	NA	NA	NA	NA
	Acenaphthylene	600	10	600	10	1	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Benzo(a)anthracene	7	7	40	40	7	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Benzo(a)pyrene	2	2	4	4	2	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA	ΝA	NA	NA	NA	NA
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Chrysene	70	70	400	400	70	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Dibenz(a,h)anthracene	0.7	0.7	4	4	1	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1	2-Methylnaphthalene	80	300	80	500	0.7	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Naphthalene	40	500	40	1,000	4	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Phenanthrene	500	500	1,000	1,000	10	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs																			
(mg/kg)	Aroclor 1254	2	2	3	3	2	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Aroclor 1260	2	2	3	3	2	1	NA	NA	NA	NA	NA	NA	NA	ÑΑ	NA	NA	NA	NA
	Total PCBs	2	2	3	3	2	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals																			
(mg/kg)	Mercury	20	20	30	30	20	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Arsenic	20	20	20	20	20	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	376	1,050	1,250	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Beryllium	100	100	200	200	100	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Cadmium	2	2	30	30	2	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Chromium	30	30	200	200	30	N/A	10.7	21.0	74.7	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Lead	300	300	300	300	300	N/A	148	8,550	1,070	590	4,600	530	890	470	860	500	1,200	650
	Nickel	20	20	700	700	20	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Silver	100	100	200	200	100	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Vanadium	600	600	1,000	1,000	600	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

All units in mg/kg unless otherwise specified.

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

U - Compound was not detected at specified quantitation limit,

J - Estimated value; below quantitation limit.

B - Detected in associated laboratory method blank.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed MassDEP Method 1 Standar Values shown in bold and outlined exceed TSCA but are less than the listed MassDEP Method 1 standards.

VOCs - Volatile Organic Compounds.

PAHs - Polynuclear Aromatic Hydrocarbons

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria,

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

- (1) MassDEP Method 1 standards and RC for C9-C10 aromatics used,
- (2) MassDEP RC for Dichloropropane used.
- (3) MassDEP RC for Dichloropropene used.
- (4) MassDEP RC for 1,3-Dichloropropene used.
- * TRC developed standards.

TABLE 3-3

Summary of Detected Analytical Results for Soil Samples New Bedford High School - Unfenced Playing Field (Exposure Point Area HS-3) New Bedford, Massachusetts

		1				Sam	ple Location:	SB-360S	SB-360U	SB-360V	SB-360W	SB-	360X		SS-36		SS-	36A
Analysis	Analyte						e Depth (ft.):	1-3	1-3	1-3	1-3	1-3	1-3	0.5	2	1-3	0-1	1-3
	"						Sample Date:	7/6/2009	7/6/2009	7/6/2009	7/6/2009	8/19/2009	8/19/2009	8/7/2008	8/7/2008	3/31/2009	3/9/2009	3/9/2009
1100		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1	TSCA						Field Dup					
VOCs	D	20.0	20	200.0	200	2.0	N/A	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA NA
(mg/kg)	Benzene	30.0 40	30 500	200.0	1.000	2.0	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Naphthalene Toluene	500	500	1,000	1,000	30	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	1,2,4-Trimethylbenzene	100(1)	100(1)	500(1)	500(1)	1,000	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SVOCs/P		100(1)	100(1)	500(1)	300(1)	1,000	IVIA	1421	- IVA	1421	11/1	101	11/1	1771		1471		- 111
(mg/kg)	Acenaphthene	1.000	1,000	3,000	3,000	4	N/A	NA	NA	NA	NA	l NA	NA	0.198 U	0.643	0.229 U	NA	NA NA
(mg/kg)	Acenaphthylene	600	10	600	10	1	N/A	NA	NA NA	NA	NA	NA	NA	0.198 U	0.189	0.229 U	NA	NA
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA NA	NA	NA NA	NA NA	NA	0,198 U	1.35	0.229 U	NA	NA NA
	Benzo(a)anthracene	7	7	40	40	7	N/A	NA	NA	NA	NA	NA	NA	0.198 U	3.60	0.446	NA	NA
	Benzo(a)pyrene	2	2	4	4	2	N/A	NA	NA	NA	NA	NA	NA	0.198 U	3.07	0,383	NA	NA NA
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	NA	NA	NA	NA	NA	NA	0.198 U	4.09	0.549	NA	NA
1	Benzo(g,h,i)perylene	1.000	1.000	3.000	3,000	1.000	N/A	NA	NA	NA	NA	NA	NA	0.198 U	1.58	0.406	NA	NA
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	NA	NA	NA	NA	NA	NA	0.198 U	1.02	0.229 U	NA	NA
	Chrysene	70	70	400	400	70	N/A	NA	NA	NA	NA	NA	NA	0.198 U	3.81	0.825	NA	NA
	Dibenz(a,h)anthracene	0.7	0.7	4	4	1	N/A	NA	NA	NA	NA	NA	NA	0.198 U	0.403	0.229 U	NA	NA
ı	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	0.198 U	6.38	0.692	NA	NA
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	0.198 U	0.704	0.229 U	NA	NA
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	NA	NA	NA	NA	NA	NA	0.198 U	1.73	0.255	NA	NA
	2-Methylnaphthalene	80	300	80	500	0.7	N/A	NA	NA	NA	NA	NA	NA	0.198 U	0.209	0.259	NA	NA
	Naphthalene	40	500	40	1,000	4	N/A	NA	NA	NA	NA	NA	NA	0.198 U	0.431	0.229 U	NA	NA
	Phenanthrene	500	500	1,000	1,000	10	N/A	NA	NA	NA	NA	NA	NA	0.198 U	5.81	1.12	NA	NA
	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	0.198 U	5.42	0.792	NA	NA
PCBs													-					
(mg/kg)	Aroclor 1254	2	2	3	3	2	1	NA	NA	NA	NA	NA	NA	0.0583 U	0.0564 U	0.0733 U	NA	NA
	Aroclor 1260	2	2	3	3	2	1	NA	NA	NA	NA	NA	NA	0.0583 U	0.0564 U	0.0733 U	NA	NA
	Total PCBs	2	2	3	3	2	1	NA	NA	NA	NA	NA	NA	0.0583 U	0.0564 U	0.0733 U	NA	NA
Metals	Manne	20	20	30	30	20	N/A	NA	NTA	NA	NA	NA NA	NA NA	0.050	0.258	NA	NA	NA NA
(mg/kg)	Mercury Arsenic	20	20	20	20	20	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	6.97	23.1	21.8	NA NA	NA NA
	Barium	1,000	1.000	3,000	3,000	1,000	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	15.3	219	472	NA NA	NA NA
	Beryllium	1,000	1,000	200	200	1,000	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.30 U	0.29 U	NA	NA NA	NA NA
	Cadmium	2	2	30	30	2	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.30 U	0.29 0	0.98	NA NA	NA NA
	Chromium	30	30	200	200	30	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	5.76	14.2	11.8	NA NA	NA NA
	Lead	300	300	300	300	300	N/A	380	9.800	320	210	630	750	17.3	1270	NA	22.7	480
	Nickel	20	20	700	700	20	N/A	NA	NA	NA	NA NA	NA	NA	3.71	43.9	NA NA	NA	NA
	Silver	100	100	200	200	100	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1.74	2.30	NA NA	NA NA	NA NA
	Vanadium	600	600	1,000	1.000	600	N/A	NA NA	NA NA	NA	NA NA	NA NA	NA NA	11.3	28.0	NA NA	NA NA	NA NA
	Zinc	2,500	2,500	3.000	3,000	2,500	N/A	NA NA	NA NA	NA	NA NA	NA NA	NA NA	23.2	196	NA NA	NA	NA NA

Notes:

All units in mg/kg unless otherwise specified.

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

U - Compound was not detected at specified quantitation limit.

J - Estimated value; below quantitation limit.

B - Detected in associated laboratory method blank.

Values in **Bold** indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed MassDEP Method 1 Standar Values shown in Bold and outlined exceed TSCA but are less than the listed MassDEP Method 1 standards.

VOCs - Volatile Organic Compounds.

PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria,

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - MassDEP Method 1 standards and RC for C9-C10 aromatics used.

(2) - MassDEP RC for Dichloropropane used.

(3) - MassDEP RC for Dichloropropene used.

(4) - MassDEP RC for 1,3-Dichloropropene used.

* - TRC developed standards.

TABLE 3-3 Summary of Detected Analytical Results for Soil Samples

New Bedford High School - Unfenced Playing Field (Exposure Point Area HS-3)
New Bedford, Massachusetts

	100-3055						ple Location:	and the second second second	36B	ETHICATION TO THE PARTY OF THE	36C		SS-36D		SS-36E	SS-			36G
Analysis	Analyte						le Depth (ft.):	0-1	1-3	0-1	1-3	0-1	1-3	1-3	1-3	0-1	1-3	0-1	1-3
		0.1/00010	Lettoure	L o alconi a	0.00001.0		Sample Date:	3/9/2009	3/9/2009	3/9/2009	3/9/2009	3/9/2009	3/9/2009	3/9/2009	3/9/2009	3/9/2009	3/9/2009	3/9/2009	3/9/2009
1100		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1	TSCA		THE RESIDENCE			in the talls in the		Field Dup					
VOCs	D	20.0	10	200.0	200	2.0	DIT/A	NA	NA.	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA NA
(mg/kg)	Benzene	30.0 40	30	200,0	200 1,000	2.0	N/A		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Naphthalene	500	500 500	1,000	1,000	30	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Toluene 1,2,4-Trimethylbenzene	100(1)	100(1)	500(1)	500(1)	1,000	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SVOCs/P		100(1)	100(1)	500(1)	300(1)	1,000	10/2	INA	NA.	INA	IVA	IVA	1471	1417	1421	1171	1421	X111	101
(mg/kg)	Acenaphthene	1,000	1.000	3,000	3,000	4	N/A	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA	NA
(Hig/Kg)	Acenaphthylene	600	10	600	10	1	N/A	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA I	NA	NA NA	NA NA	NA NA	NA NA
	Benzo(a)anthracene	7	7	40	40	7	N/A	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
	Benzo(a)pyrene	2	2	4	4	2	N/A	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA	NA.
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA	NA NA
ll .	Benzo(g,h,i)perylene	1.000	1.000	3.000	3.000	1.000	N/A	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Chrysene	70	70	400	400	70	N/A	NA	NA.	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA
	Dibenz(a,h)anthracene	0.7	0.7	4	4	1	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Fluoranthene	1,000	1,000	3,000	3,000	1.000	N/A	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
1	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
l .	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	2-Methylnaphthalene	80	300	80	500	0.7	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1	Naphthalene	40	500	40	1,000	4	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Phenanthrene	500	500	1,000	1,000	10	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs		T		T															
(mg/kg)	Aroclor 1254	2	2	3	3	2	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Aroclor 1260	2	2	3	3	2	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Total PCBs	2	2	3	3	2	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals		1				14				4									2.5
(mg/kg)	Mercury	20	20	30	30	20	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Arsenic	20	20	20	20	20	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Beryllium	100	100	200	200	100	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Cadmium	2	2	30	30	2	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Chromium	30	30	200	200	30	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Lead	300	300	300	300	300	N/A	23.1	938	16.8	1,550	20.4	2,070	286	310	37.5	507	34.4	1,110
	Nickel	20	20	700	700	20	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Silver	100	100	200	200	100	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Vanadium	600	600	1,000	1,000	600	N/A	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA NA	NA NA
(<u> </u>	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

All units in mg/kg unless otherwise specified.

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

U - Compound was not detected at specified quantitation limit.

J - Estimated value; below quantitation limit.

B - Detected in associated laboratory method blank.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed MassDEP Method 1 Standay

[Values shown in bold and outlined exceed TSCA but are less than the listed MassDEP Method 1 standards.

VOCs - Volatile Organic Compounds.

PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - MassDEP Method 1 standards and RC for C9-C10 aromatics used.

(2) - MassDEP RC for Dichloropropane used.

(3) - MassDEP RC for Dichloropropene used

(4) - MassDEP RC for 1,3-Dichloropropene used,

* - TRC developed standards.

						Sam	nle Location:	SS-	36H	SS-36I	SS-36J	SS-36L	SS-	36N	SS-360	SS-36R	SS-36S	SS-36V	SS-36W
Analysis	Analyte	1				Sampl	le Depth (ft.):	0-1	1-3	1-3	1-3	1-3	1-3	1-3	1-3	1-3	1-3	1-3	1-3
							Sample Date:	3/9/2009	3/9/2009	5/21/2009	5/21/2009	5/21/2009	7/6/2009	7/6/2009	7/6/2009	7/6/2009	7/6/2009	7/6/2009	7/6/2009
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-I	TSCA							Field Dup		HO THAT HOUSE IN	ACT 0000 PT 100000		
VOCs					***			27.1		274	27.4	DYA	NA	NA	NA	NA	NA	NA	NA
(mg/kg)	Benzene	30.0	30	200.0	200	2.0	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Naphthalene	40	500	40	1,000	4	N/A	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Toluene 1,2,4-Trimethylbenzene	500 100(1)	500 100(1)	1,000 500(1)	1,000 500(1)	30 1,000	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.
SVOCs/P		100(1)	100(1)	300(1)	300(1)	1,000	14/71	1423	11/1	146	1471	101	- 1111	1111					
(mg/kg)	Acenaphthene	1.000	1.000	3,000	3,000	4	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA
(IIIg) Kg)	Acenaphthylene	600	10	600	10	1	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1	Benzo(a)anthracene	7	7	40	40	7	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Benzo(a)pyrene	2	2	4	4	2	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1	Benzo(b)fluoranthene	7	7	40	40	7	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Chrysene	70	70	400	400	70	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Dibenz(a,h)anthracene	0.7	0.7	4	4	1	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA
1	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA
1	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1	2-Methylnaphthalene	80	300	80	500	0.7 4	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Naphthalene	40 500	500 500	40 1.000	1,000 1,000	10	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Phenanthrene Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA	NA				
PCBs	Tyrene	1,000	1,000	5,000	5,000	1,000		- 1.1.1											
(mg/kg)	Aroclor 1254	2	2	3	3	2	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
(B,B)	Aroclor 1260	2	2	3	3	2	1	NA	NA	NA	NA	NA	NA	NA	ÑΑ	NA	NA	NA	NA
	Total PCBs	2	2	3	3	2	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals																			
(mg/kg)	Mercury	20	20	30	30	20	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Arsenic	20	20	20	20	20	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1	Barium	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA
	Beryllium	100	100	200	200	100	N/A	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Cadmium	2	2	30	30	2	N/A	NA	NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Chromium	30	30	200	200	30	N/A	NA 956	NA 20.8	NA 110	NA 2.700	NA 870	NA 480	920	NA 680	1,000	690	530	22
	Lead	300	300	300	300	300	N/A	856	20.8 NA	NA		NA	NA	NA	NA	NA	NA	NA	NA
	Nickel	20	20	700	700	20	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Silver	100 600	100 600	200 1,000	200 1,000	100 600	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Vanadium Zinc	2,500	2,500	3,000	3,000	2,500	N/A	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	ZIIIC	2,300	2,500	3,000	3,000	2,300	I IN/A	IVA	14/4	14/4	14/1	IAV	14/7	14/7	1471	14/1	13/1	1413	1111

Notes:

All units in mg/kg unless otherwise specified.

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm),

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

U - Compound was not detected at specified quantitation limit.

J - Estimated value; below quantitation limit-

B - Detected in associated laboratory method blank.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed MassDEP Method 1 Standar

Values shown in bold and outlined exceed TSCA but are less than the listed MassDEP Method 1 standards.

VOCs - Volatile Organic Compounds.

PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - MassDEP Method 1 standards and RC for C9-C10 aromatics used.

(2) - MassDEP RC for Dichloropropane used.

(3) - MassDEP RC for Dichloropropene used. (4) - MassDEP RC for 1,3-Dichloropropene used.

* - TRC developed standards.
- sample location to be excavated.

		T				Sam	ple Location:		SS-37			SS-38			SS-39		I SS	-40	SS	-41
Analysis	Analyte					Sampl	le Depth (ft.):	0.5	2	2	0,5	1.5	1-3	0.5	2	1-3	0.5	2	0.5	2
							Sample Date:	8/8/2008	8/8/2008	8/8/2008	8/8/2008	8/8/2008	3/31/2009	8/8/2008	8/8/2008	3/31/2009	8/8/2008	8/8/2008	8/8/2008	8/8/2008
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1	TSCA			Field Dup										
VOCs	D	30.0	30	200.0	200	2.0	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA
(mg/kg)	Benzene Naphthalene	40	500	40	1,000	4	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Toluene	500	500	1.000	1,000	30	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	1,2,4-Trimethylbenzene	100(1)	100(1)	500(1)	500(1)	1,000	N/A	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.
SVOCs/P.	12.7	100(1)	100(1)	300(1)	500(1)	2,000	1711		7								-			
(mg/kg)	Acenaphthene	1.000	1,000	3,000	3,000	4	N/A	0.192 U	0.424	0,188 U	0.198 U	0.197 U	0.214 U	0.187 U	0.175 U	0.183 U	0.195 U	0.210 U	0.188 U	0.175 U
	Acenaphthylene	600	10	600	10	1	N/A	0.192 U	0.870	0.188 U	0.198 U	0.197 U	0.214 U	0.187 U	0.175 U	0.183 U	0.195 U	0.210 U	0.188 U	0.175 U
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	0.192 U	4.23	0.228	0.198 U	0.197 U	0.214 U	0.187 U	0.175 U	0.183 U	0.195 U	0.362	0.188 U	0.175 U
	Benzo(a)anthracene	7	7	40	40	7	N/A	0.192 U	6.12	0.493	0.198 U	0.258	0.214 U	0.187 U	0.175 U	0.183 U	0.195 U	1.15	0.188 U	0.175 U
	Benzo(a)pyrene	2	2	4	4	2	N/A	0.192 U	6.76	0.421	0.198 U	0,317	0.214 U	0.187 U	0.175 U	0.183 U	0.195 U	1,11	0.188 U	0.175 U
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	0.192 U	7.26	0.481	0.198 U	0.382	0.214 U	0.187 U	0.175 U	0.183 U	0.195 U	1.25	0.188 U	0,175 U
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	0.192 U	3.92	0.317	0.198 U	0.303	0.214 U	0.187 U	0.175 U	0.183 U	0.195 U	0.851	0.188 U	0,175 U
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	0.192 U	2.33	0.188 U	0.198 U	0.197 U	0.214 U	0.187 U	0.175 U	0.183 U	0.195 U	0.494	0.188 U	0.175 U
	Chrysene	70	70	400	400	70	N/A	0.192 U	5.45	0.493	0.198 U	0.323	0,214 U	0.187 U	0.175 U	0.183 U	0.195 U	1.17	0.188 U	0.175 U
	Dibenz(a,h)anthracene	0.7	0.7	4	4	1	N/A	0.192 U	1.01	0.188 U	0.198 U	0.197 U	0.214 U	0.187 U	0.175 U	0.183 U	0,195 U	0.217	0.188 U	0.175 U
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	0.192 U	17.1	0.965	0.275	0.349	0.214 U	0.187 U	0.175 U	0.183 U	0.195 U	2.40	0.188 U	0.175 U
16	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	0.192 U	1.49	0.188 U	0.198 U	0.197 U	0.214 U	0.187 U	0.175 U	0.183 U	0.195 U	0.210 U	0.188 U	0.175 U
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	0.192 U	5.32	0.321	0.198 U	0.305	0.214 U	0.187 U	0.175 U	0.183 U	0.195 U	0.929	0.188 U	0.175 U
	2-Methylnaphthalene	80	300	80	500	0.7	N/A	0.192 U	0.186 U	0.188 U	0.198 U	0.197 U	0.214 U	0.187 U	0.175 U	0.183 U	0.195 U	0.210 U	0.188 U	0.175 U
	Naphthalene	40	500	40	1,000	4	N/A	0.192 U	0.258	0.188 U	0.198 U	0.197 U	0.214 U	0.187 U	0.175 U	0.183 U	0.195 U	0.210 U	0.188 U	0.175 U
	Phenanthrene	500	500	1,000	1,000	10	N/A	0.192 U	18.2	0.884	0.198 U	0.254	0.214 U	0.187 U	0.175 U	0.183 U	0.195 U	1.71	0.188 U	0.175 U
	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	0.192 U	13.8	0.856	0.281	0.346	0.214 U	0.187 U	0.175 U	0.193	0.195 U	2.49	0.188 U	0.175 U
PCBs																				
(mg/kg)	Aroclor 1254	2	2	3	3	2	1	0.0551 U	0.144 J	0.160 J	0.611 J	0.580 J	0.0640 U	0,0541 U	0.0562 U	0.0501 U	0.0589 U	0.444 J	0.0539 U	0.0516 U
	Aroclor 1260	2	2	3	3	2	1	0.0551 U	0.0541 U	0.0546 U	0.0574 U	0.0568 U	0.0640 U	0.0541 U	0.0562 U	0.0501 U	0.0589 U	0.174 J	0.0539 U	0.0516 U
	Total PCBs	2	2	3	3	2	1	0.0551 U	0.144 J	0.160 J	0.611 J	0.580 J	0.0640 U	0.0541 U	0.0562 U	0.0501 U	0.0589 U	0.618 J	0.0539 U	0.0516 U
Metals												0.000		0.005	0.014 77		0.000	0.674	0.02=	0.010 77
(ıng/kg)	Mercury	20	20	30	30	20	N/A	0.039	0.171	0.270	0.175	0.280	NA	0.026	0.013 U	NA NA	0.032	0.654	0.037	0,018 U
	Arsenic	20	20	20	20	20	N/A	4.09	5.48	4.10	4.10	16.0	14.6	2.80 U	2.62 U	2.74 U	2.93 U	7.24	2.97	2.62 U
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	13.0	105	83.7	58.6	311	801	9.21	5.94	45.2	13.4	410	9.05	6.93
	Beryllium	100	100	200	200	100	N/A	0.29 U	0.28 U	0.29 U	0.30 U	0.79	NA	0.28 U	0.27 U	NA 0.50	0.30 U	0.43	0.29 U	0.27 U
	Cadmium	2	2	30	30	2	N/A	0.29 U	0.35	0.37	0.47	1.05	0.86	0.28 U	0.27 U	0.52	0.30 U	1.53	0.29 U	0.27 U
	Chromium	30	30	200	200	30	N/A	5.68	7.35	7.01	6.89	12.6	18.0	5.06	2.52	4.64	5.66	15.4	5.21	3.01
	Lead	300	300	300	300	300	N/A	14.7	302	270	167	605	865	8.45	2.93	103	13.9	819	9.69	12.1
	Nickel	20	20	700	700	20	N/A	4.00	7.03	6.43	3.95	11.2	NA	3.32	2.23	NA	3.01	10.7	2.93	2.45
	Silver	100	100	200	200	100	N/A	1.69	2.21	2.55	0.81	1.00	NA	0.85	0.53 U	NA NA	0.82	1.05	1.04	0.52
	Vanadium	600	600	1,000	1,000	600	N/A	10.1	14.2 112	10.2 113	10.9 101	18.6 269	NA NA	9.18 10.4	5.24 U 8.18	NA NA	9.43 16.4	20.9 506	7.92 11.3	5.23 U 11.9
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	17.7	112	113	101	209	NA	10.4	8.18	I NA	10.4	500	11.3	11.9

Notes:

All units in mg/kg unless otherwise specified.

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

- U Compound was not detected at specified quantitation limit.
- J Estimated value; below quantitation limit.
- B Detected in associated laboratory method blank.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed MassDEP Method 1 Standar [Values shown in bold and outlined exceed TSCA but are less than the listed MassDEP Method 1 standards.

VOCs - Volatile Organic Compounds.

PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

- (1) MassDEP Method 1 standards and RC for C9-C10 aromatics used.
- (2) MassDEP RC for Dichloropropane used.
- (3) MassDEP RC for Dichloropropene used:
- (4) MassDEP RC for 1,3-Dichloropropene used.
- * TRC developed standards.

	T					Sam	ple Location:	HE44	HB	44B	HE-	44C	HE-44F	HE31=0.5=1+2.5=3	HF-	31A	HF-	31B	781 E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	HESTE	
Analysis	Analyte						e Depth (ft.):	1.5-3	0-1	1-3	0-1	1-3	0-1	0.5-3	0-1	1-3	0-1	1-3	0-1	1-3	1-3
							Sample Date:	12/30/2004	3/31/2009	3/31/2009	3/31/2009	3/31/2009	3/31/2009	12/30/2004	4/2/2009	4/2/2009	4/2/2009	4/2/2009	4/2/2009	4/2/2009	4/2/2009
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1**	TSCA														Field Dup
SVOCs/P/	AHs																				
(mg/kg)	4-Bromophenyl phenyl ether	0.3*	0.3*	NS	NS	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Di-n-butylphthalate	NS	NS	NS	NS	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	bis(2-Ethylhexyl)phthalate	200	200	700	700	200	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Dibenzofuran	10*	10*	NS	NS	100	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA
1	Acenaphthene	1,000	1,000	3,000	3,000	4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Acenaphthylene	600	10	600	10	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Anthracene	1,000	1,000	3,000	3,000	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Benzo(a)anthracene	7	7	40	40	7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Benzo(a)pyrene	2	2	4	4	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Benzo(b)fluoranthene	7	7	40	40	7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Benzo(k)fluoranthene	70	70	400	400	70	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Chrysene	70	70	400	400	70	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Dibenz(a,h)anthracene	0.7	0.7	4	4	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Fluoranthene	1.000	1,000	3,000	3,000	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Fluorene	1,000	1,000	3,000	3,000	1,000	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	NA.	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA
1	2-Methylnaphthalene	80	300	80	500	0.7	NA	NA	NA	NA.	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA.	NA	NA	NA
	Naphthalene	40	500	40	1.000	4	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA.	NA	NA	NA
	Phenanthrene	500	500	1,000	1.000	10	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA	NA	NA NA
1	Pyrene	1,000	1.000	3,000	3,000	1.000	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA NA
PCBs	Tyrono	1,000	1,000	5,000	5,000	1,000	- 1111			- 111											
(mg/kg)	Aroclor 1254	2.	2	3	3	2	1	0.057 U	0.349 Л	1.63 J	0.0571 U	0.756 J	NA	2.26	1.35 J	2.49 J	0.310 J	2.66 J	2.88 J	5.32 J	7.31 J
(11.6/1.6)	Aroclor 1260	2	2	3	3	2	1.	0.057 U	0.0515 U	0.106 U	0.0571 U	0.0556 U	NA	0.056 U	0.291 J	0,217 U	0.0554 U	0,219 U	0.571 U	0.376 U	0.550 U
	Aroclor 1262	2	2	3	3	2	î	0.057 U	NA	NA NA	NA	NA	NA	0.293	NA	NA	NA	NA	NA	NA	NA
	Total PCBs	2	2	3	3	2	î	0.113 U	0.349 J	1.63 J	0.0571 U	0.756 J	NA.	2,553	1.641 J	2.49 J	0.310 J	2.66 J	2.88 J	5.32 J	7.31 J
PCB Hom			-					0,115 0	0.542 3	1105 j	0.0371	0.750 3	1171		1.011		O.D.T.O. D		2.00	1995	
(mg/kg)	Trichlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
(Ing/kg)	Pentachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Hexachlorobiphenyl	N/A N/A	N/A N/A	N/A	N/A	N/A	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Heptachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Total PCBs	2	2	3	3	2	1 1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Metals	Total Lebs	-			,			14/1	1421	1471	1771	1471	1421	1471	1421	1111	1111	TUL	1111	1011	1177
(mg/kg)	Mercury	20	20	30	30	20	N/A	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA
ling/kg)	Arsenic	20	20 20	20	20	20	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1	Barium	1.000	1.000	3,000	3,000	1,000	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1		-/		· '	· '										NA NA	NA NA	NA NA		NA NA	NA NA	NA NA
	Beryllium	100	100	200	200	100	N/A	NA NA	NA A RA	NA 0.00	NA 0.20 II	NA 0.42	NA NA	NA NA	0.51	0.47	0.41	NA 0.49	0.29	0.34	NA NA
1	Cadmium	2	30	30 200	30	2	N/A	NA NA	0.80	0.99	0.29 U		NA NA	NA NA		1				0.34 NA	NA NA
	Chromium	30			200	30	N/A	NA NA	NA	NA 202	NA 160	NA 254	NA	NA NA	NA 104	NA 160	NA 70.7	NA 164	NA 21.5		
	Lead	300	300	300	300	300	N/A	NA NA	990	292	169	354	310	NA NA	194	168	79.7	164	31.5	82.9	NA NA
	Nickel	20	20	700	700	20	N/A	NA	NA	NA	NA	NA.	NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA	NA
I	Silver	100	100	200	200	100	N/A	NA	NA	NA NA	NA	NA.	NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA
	Vanadium	600	600	1,000	1,000	600	N/A	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA	NA
77	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals, To		270	, ve	3.70	N70	170	5.000(1)	374	5.74	3.7.4	27.4	3.7.4	374	37.4	37.4	N7.4	374	STA	574	27.4	27.4
(ug/L)	Lead	NS	NS	NS	NS	NS	5,000(1)	NA NA	NA	NA	NA.	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

ug/L - micrograms per liter.

B - Detected in associated laboratory method blank.

J - Estimated value; below quantitation limit. NA - Sample not analyzed for the listed analyte,

N/A - Not applicable.

NS - No standard available for this compound,

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed MassDEP Method 1 standards or TCLP criter Values shown in bold and outlined exceed TSCA but are less than the listed MassDEP Method 1 standards.

SVOCs - Semivolatile Organic Compounds

PCBs - Polychlorinated Biphenyls,

RC - Reportable Concentration

TCLP - Toxicity Characteristic Leaching Procedure.

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic .

* - TRC developed standards

** - for Reference purposes only.

Analysis							Sami	ple Location:	in the second state	31D	HF-31G	HF-31H	HF35	HIF-	35A	HF-	35B		HF-35C		HF.	-35D
STOCLYP Hs	nalysis	Analyte														0-1	1-3	1-0	1-3	1-3	0-1	1-3
SVOCAPHE									4/2/2009	4/2/2009	4/2/2009	4/2/2009	12/30/2004	4/1/2009	4/1/2009	4/1/2009	4/1/2009	4/1/2009	4/1/2009	4/1/2009	4/1/2009	4/1/2009
6m/pkg			S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1**	TSCA												Field Dup		
Dis-th-sutyphthalate	OCs/PAI	Hs	i — —																U.S.			
bis/c2-Eirsplings/piphtslasize 200 200 700 700 200 NA MA NA NA NA NA NA NA	/kg) 4	4-Bromophenyl phenyl ether	0.3*	0.3*	NS	NS	100	NA	NA	NA	NA	NA	NA	NA						NA	NA	NA
Diberrosistram	E	Di-n-butylphthalate	NS	NS	NS	NS	50	NA	NA		NA									NA	NA	NA
Acceptablene	b	bis(2-Ethylhexyl)phthalate	200	200	700	700	200	NA	NA	NA										NA	NA	NA
Acenaphthylene 600 10 600 3.00 3.000			10*	10*			100													NA	NA	NA
Anthriseene	Α	Acenaphthene		1 '	1 ' 1															NA	NA NA	NA
BenoxQhaptrineene	Α	Acenaphthylene																		NA	NA NA	NA
Benzo(a)pyrene	Α	Anthracene	1,000	1 '	.,		1 1								1			1 1		NA	NA NA	NA
Benzition-filterinathene	В	Benzo(a)anthracene	7	· '	40		' '													NA	NA NA	NA
Benzz(g,hi)perylene					4															NA	NA NA	NA
Benze(k)fluoranthene	2.3	[2] 20 P. (1 P. 1 M.) [2] 1 H. (1 M.) [2] 2 H. (1 M.) [2] 2 H. (2) [2		l '	l '* I						1.0									NA	NA NA	NA NA
Chrysene 70 70 400 400 70 NA							· ′													NA NA	NA NA	NA NA
Dibenz(a,h)anthracene	100				'													1 1		NA	NA NA	NA NA
Fluoranthene														11,1						NA NA	NA NA	NA NA
Filtorene					1 7 1															NA NA	NA NA	NA NA
Indenot(1,2,3-ed)pyrene	100	PRESENTED AND ADDRESS																		NA NA	NA NA	NA NA
2-Methylnaphthalene	-		1,000				· ′													NA NA	NA	NA NA
Naphthalene		그리고 보고 있는 이 경에 가장 살아서 하고 있는 것이 되었다. 그렇게 되었다.	90	· ·	'-													1 1		NA NA	NA NA	NA NA
Phenanthrene	192	Same and the same																		NA NA	NA NA	NA NA
Pyrene	4.5				l '"															NA	NA NA	NA NA
PCBs Close	.00	THE PROPERTY OF THE PROPERTY O																		NA	NA NA	NA
Comp/kg Aroclor 1254		Tytene	1,000	1,000	5,000	5,000	1,000		- 1.11.1	- 111												
Aroclor 1260		Aroclor 1254	2	2	3	3	2	1	0.597 J	71.6 J	0.334 J	0.565 J	1.58	0.0547 U	0.0585 U	0.118 J	0.786 J	0.133 J	0.899 J	0.735 J	0.0597 U	0.228 J
Aroclor 1262 2 2 3 3 2 1 NA NA NA NA NA NA NA			2	2	3	3	2	1	0.0532 U	3.36 U	0.0535 U	0.355 J	0.057 U	0.0547 U	0.819 J	0.0543 U	0.0557 U	0.0540 U	0.468 J	0.343 J	0.0597 U	0.0558 U
Total PCBs 2 2 3 3 2 1 0.597 J 71.6 J 0.334 J 0.920 J 1.844 0.0547 U 0.819 J 0.118 J 0.786 J 0.133 J 1.367 J			2	2	3	3	2	1	NA	NA	NA	NA	0.264	NA	NA	NA	NA	NA]	NA	NA	NA	NA
Trichlorobiphenyl			2	2	3	3	2	1	0.597 J	71.6 J	0.334 J	0.920 J	1.844	0.0547 U	0.819 J	0.118 J	0.786 J	0.133 J	1.367 J	1.078 J	0.0597 U	0.228 J
Pentachlorobiphenyl	B Homol	logs	i																			
Hexachlorobiphenyl Hexachlorobiphenyl Hexachlorobiphenyl Hexachlorobiphenyl Hexachlorobiphenyl Hexachlorobiphenyl N/A	/kg) T	Trichlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NΛ	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Heptachlorobiphenyl N/A	P	Pentachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA				NA	NA	NA
Total PCBs 2 2 3 3 2 1 NA	H	Hexachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA		NA									NA	NA	NA
Metals	H							N/A												NA	NA	NA
(mg/kg) Mercury 20 20 30 30 20 N/A NA		Total PCBs	2	2	3	3	2	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		-				20	00	.,,,			,	3.71	,,,	371	27.5	N. 1	27.4	, ,, I	NT A	NT A	NTA .	NT A
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		*														1				NA NA	NA NA	NA NA
Arsenic 20 20 20 20 N/A NA NA NA NA NA NA N																				NA NA	NA NA	NA NA
Barium 1,000 1,000 3,000 3,000 1,000 N/A NA NA NA NA NA NA N				· '			1 ′ 1			1										NA NA	NA NA	NA NA
		v																		2.21	0.31 U	0.71
																	****			NA	0.31 U NA	NA NA
																				661	24.2	471
Lead 300 300 300 300 300 300 N/A 192 341 NA NA NA 42.7 154 16.9 151 26.2 525 Nickel 20 20 700 700 20 N/A NA NA NA NA NA NA N																			11 110000	NA	NA	NA
Nickel 20 20 700 700 20 N/A NA										17								1 1		NA NA	NA NA	NA NA
Vanadium 600 600 1,000 1,000 600 N/A NA																				NA	NA NA	NA
																				NA NA	NA NA	NA
Metals, TCLP		Carre	-,500	-,,,,,,,	2,000	,	-,500	~ 1/ 4 /	1			- 12.2										
(ug/L) Lead NS NS NS NS NS NS NA			NS	l _{NS}	l NS	l _{NS}	NS	5,0000	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

ug/L - micrograms per liter:

B - Detected in associated laboratory method blank.

J - Estimated value; below quantitation limit-NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

NS - No standard available for this compound.

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected. Values shown in Bold and shaded type exceed one or more of the listed MassDEP Method 1 standards or TCLP criter Values shown in bold and outlined exceed TSCA but are less than the listed MassDEP Method 1 standards.

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration,

TCLP - Toxicity Characteristic Leaching Procedure

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic

* - TRC developed standards.

** - for Reference purposes only.

						Sam	ple Location:	HF-38	HF35+HF40	HF40	Herene Britis	HF-40A		HF-	40B	HF-	40C	HF-	40D	HF	-40E
Analysis	Analyte						e Depth (ft.):	1-3	2.5-3.5	2.5-3	0-1	1-3	1-3	0-1	1-3	0-1	1-3	0-1	1-3	0-L	1-3
* ·							Sample Date:	4/2/2009	12/30/2004	12/30/2004	3/10/2009	3/10/2009	3/10/2009	3/9/2009	3/9/2009	3/10/2009	3/10/2009	3/9/2009	3/9/2009	3/10/2009	3/10/2009
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1**	TSCA						Field Dup								
SVOCs/PA	AHs																				
(mg/kg)	4-Bromophenyl phenyl ether	0.3*	0.3*	NS	NS	100	NA	0.065 U	0.065 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
l - 1	Di-n-butylphthalate	NS	NS	NS	NS	50	NA	0.56 B	0.56 B	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	bis(2-Ethylhexyl)phthalate	200	200	700	700	200	NA	0.11 J	0.11 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
I 1	Dibenzofuran	10*	10*	NS	NS	100	NA	NA	0.12	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Acenaphthene	1,000	1,000	3,000	3,000	4	NA	0.176 U	0.15	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1	Acenaphthylene	600	10	600	10	1	NA	0.176 U	0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Anthracene	1,000	1,000	3,000	3,000	1,000	NA	0.176 U	0.49	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1 1	Benzo(a)anthracene	7	7	40	40	7	NA	0.176 U	1.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1	Benzo(a)pyrene	2	2	4	4	2	NA	0.176 U	2.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1 1	Benzo(b)fluoranthene	7	7	40	40	7	NA	0.176 U	4.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	NA	0.176 U	0.065 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Benzo(k)fluoranthene	70	70	400	400	70	NA	0.176 U	1.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Chrysene	70	70	400	400	70	NA	0.176 U	1.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1 1	Dibenz(a,h)anthracene	0.7	0.7	4	4	1	NA	0.176 U	0.065 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	NA	0.176 U	0.065 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1 1	Fluorene	1,000	1,000	3,000	3,000	1,000	NA	0.176 U	0.19	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1 1	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	NA	0.176 U	0.065 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1	2-Methylnaphthalene	80	300	80	500	0.7	NA	0.176 U	0.096	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Naphthalene	40	500	40	1,000	4	NA	0.176 U	0.16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1 1	Phenanthrene	500	500	1,000	1,000	10	NA	0.176 U	2	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
10210	Pyrene	1,000	1,000	3,000	3,000	1,000	NA	0.176 U	5.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs	Aroclor 1254	2.	2	2	2	2	,	0.0524 U	NA	24.9	0.0614 U	3.10 J	1.44 .	9.32 J	15.2 J	0.216 J	4.93 J	0.233 J	0.277 J	NA	NA
(mg/kg)	Aroclor 1260	2	2	3 3	3	2	1	0.0524 U	NA NA	0.068 U	0.0014 U	0.192 U	0.0608 U	0.576 U	0.562 U	0.210 J 0.0572 U	0.221 U	0.233 J 0.0615 U	0.0531 U	NA NA	NA NA
	Aroclor 1262	2	2	3	3	2	1	0.0324 U	NA NA	0.566	NA	0.192 U	NA NA	NA	0.502 G NA	NA	NA NA	NA	NA	NA NA	NA NA
	Total PCBs	2	2	3	3	2	1	0.0524 U	NA NA	25.466	0.0614 U	3.10 J	1.44 J	9.32 J	15.2 J	0.216 J	4.93 J	0.233 J	0.277 J	NA NA	NA NA
PCB Home								0.0324 0	IVA	25.400	0.0014 0	J.10. J	1.77 3	7.52 3	15.2 ,	0,210 g		0.200 g	0,277	101	1111
(mg/kg)	Trichlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
(IIIg/Kg)	Pentachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA
	Hexachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
	Heptachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA
II 1	Total PCBs	2	2	3	3	2	1	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals																					
(mg/kg)	Мегсигу	20	20	30	30	20	N/A	NA	0.403	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
0 0	Arsenic	20	20	20	20	20	N/A	2.64 U	8.58	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	14.7	242	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
l l	Beryllium	100	100	200	200	100	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Cadmium	2	2	30	30	2	N/A	0.27 U	3.67	NA	0.32 U	1.22	NA	0.42	1.57	0.29 U	0.28 U	0.31 U	0.28 U	0.29 U	3.14
	Chromium	30	30	200	200	30	N/A	2.50	14	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Lead	300	300	300	300	300	N/A	3.58	683	NA	23.2	449	NA	90.5	201	36.1	85.3	48.4	29.8	54.8	643
	Nickel	20	20	700	700	20	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Silver	100	100	200	200	100	N/A	NA	0.42	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Vanadium	600	600	1,000	1,000	600	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals, TO							124								i de la composición della comp		12.54				
(ug/L)	Lead	NS	NS	NS	NS	NS	5,0000	NA	2,560	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

ug/L - micrograms per liter.

B - Detected in associated laboratory method blank,

J - Estimated value; below quantitation limit... NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

NS - No standard available for this compound.

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed MassDEP Method 1 standards or TCLP criter Values shown in bold and outlined exceed TSCA, but are less than the listed MassDEP Method 1 standards.

SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration.

TCLP - Toxicity Characteristic Leaching Procedure.

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic

* - TRC developed standards

** - for Reference purposes only.

						Sam	ple Location:	FIF:	40F	HF-	40G	HF-	40H	HF-40I	HF-40J	HF43	HF-	43A	HF-	43B
Analysis	Analyte						le Depth (ft.):	0-1	1-3	0-1	1-3	0-1	1-3	1-3	1-3	2.5+3	0-1	1-3	0-1	1-3
							Sample Date:	3/9/2009	3/9/2009	3/10/2009	3/10/2009	3/9/2009	3/9/2009	4/9/2009	4/9/2009	12/30/2004	4/1/2009	4/1/2009	3/31/2009	3/31/2009
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1**	TSCA	all handley family								letrollove by the				
SVOCs/P	2011-000	0.04	0.04			100	.,,	274	374	27.4	NT 4	274	274	27.4	27.4	D.T.A	D.T.A	NA	NIA	NT A
(mg/kg)	4-Bromophenyl phenyl ether	0.3*	0.3*	NS	NS	100	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Di-n-butylphthalate	NS 200	NS 200	NS 700	NS 700	50 200	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	bis(2-Ethylhexyl)phthalate Dibenzofuran	200 10*	10*	NS NS	NS	100	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		1.000	1,000	3,000	3,000	4	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Acenaphthene	600	1,000	600	10	1 1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
I .	Acenaphthylene Anthracene	1,000	1,000	3,000	3.000	1,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Benzo(a)anthracene	7	7	40	40	7	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Benzo(a)pyrene	2	2	40	40	2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Benzo(b)fluoranthene	7	7	40	40	7	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
	Benzo(g,h,i)perylene	1.000	1.000	3,000	3,000	1,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA				
	Benzo(k)fluoranthene	70	70	400	400	70	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Chrysene	70	70	400	400	70	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1	Dibenz(a,h)anthracene	0.7	0.7	4	4	1	NA NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA
1	Fluoranthene	1,000	1.000	3,000	3,000	1,000	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA	NA	NA
1	Fluorene	1.000	1,000	3,000	3,000	1.000	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	NA NA	NA	NA	NA.	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA
	2-Methylnaphthalene	80	300	80	500	0.7	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA	NA	NA
	Naphthalene	40	500	40	1.000	4	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA
1	Phenanthrene	500	500	1,000	1,000	10	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA
	Pyrene	1,000	1,000	3,000	3,000	1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs																				
(mg/kg)	Aroclor 1254	2	2	3	3	2	1	1.66 J	3.93 J	NA	NA	NA	NA	NA	NA	0.516	0.0564 U	2.60 J	0.0953 J	0.489 J
	Aroclor 1260	2	2	3	3	2	1	1.13 U	1.22 U	NA	NA	NA	NA	NA	NA	0.054 U	0.0564 U	0.177 U	0.0577 U	0.0557 U
1	Aroclor 1262	2	2	3	3	2	1	1.13 U	1.22 U	NA	NA	NA	NA	NA	NA	0.133	NA	NA	NA	NA
	Total PCBs	2	2	3	3	2	1	1.66 J	3.93 J	NA	NA	NA	NA	NA	NA	0.649	0.0564 U	2.60 J	0.0953 J	0.489 J
PCB Hom																				
(mg/kg)	Trichlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Pentachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1	Hexachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
l l	Heptachlorobiphenyl	N/A 2	N/A 2	N/A	N/A	N/A 2	N/A	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
21-4-1-	Total PCBs			3	3	2	<u> </u>	NA	NA	NA	NA	NA	IVA	NA.	IVA	IVA	INA	IVA	INA	NA
Metals	Maranen	20	20	30	30	20	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
(mg/kg)	Mercury Arsenic	20	20	20	20	20	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1	Barium	1,000	1,000	3,000	3,000	1,000	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Beryllium	1,000	100	200	200	100	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Cadmium	2	2	30	30	2	N/A	0.28 U	0.57	0.28 U	0.30	0.32 U	0.28 U	0.33	1.15	NA NA	0.29 U	0.85	0.31 U	0.55
	Chromium	30	30	200	200	30	N/A	0.28 U NA	NA	0.26 U NA	NA	NA	NA NA	NA	NA	NA NA	0.29 U NA	NA	NA	NA
	Lead	300	300	300	300	300	N/A	15.2	770	40.8	86.9	24.2	4.06	43.3	218	NA NA	13.7	629	52.2	134
	Nickel	20	20	700	700	20	N/A	NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA
	Silver	100	100	200	200	100	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Vanadium	600	600	1,000	1,000	600	N/A	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	NA NA	NA	NA.	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA
Metals, To		-,200			7															
	Lead	NS	NS	NS	NS	NS	5,000(1)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
0 -/																				

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

ug/L - micrograms per liter.

B - Detected in associated laboratory method blank.

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte. N/A - Not applicable.

NS - No standard available for this compound.

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed MassDEP Method 1 standards or TCLP criter Values shown in bold and outlined exceed TSCA but are less than the listed MassDEP Method 1 standards.

SVOCs - Semivolatile Organic Compounds,

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration.

TCLP - Toxicity Characteristic Leaching Procedure.

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic

* - TRC developed standards

** - for Reference purposes only.

						Sam	ple Location:	G-100	43D	HE	43G	I HF-43H	HEASTHEAS	HF44	HF44+HG44	HG-31	HG44	HH43	HH43+HI42	HH44
Analysis	Analyte						le Depth (ft.):	0-1	I 1-3	0-1	1-3	1-3	1.5-3	0.5-3	0.5-3	1-3	1-3	1.5-3	1.5-3	2.5-3
Tildiyolo	Timuly to						Sample Date:	4/1/2009	4/1/2009	4/1/2009	4/1/2009	4/1/2009	12/30/2004	12/30/2004	12/30/2004	4/2/2009	12/30/2004	12/30/2004	12/30/2004	12/30/2004
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1**	TSCA													= :: -
SVOCs/P.	AHs																			
(mg/kg)	4-Bromophenyl phenyl ether	0.3*	0.3*	NS	NS	100	NA	NA	NA	NA	NA	NA	0.059 U	NA	0.057 U	NA	NA NA	NA	0.078	NA
1.78 1.87	Di-n-butylphthalate	NS	NS	NS	NS	50	NA	NA	NA	NA	NA	NA	0.2 B	NA	0.17 U	NA	NA	NA	0.084 JB	NA
	bis(2-Ethylhexyl)phthalate	200	200	700	700	200	NA	NA	NA	NA	NA	NA	0.072 Ј	NA	0.17 U	NA	NA	NA	0.19 U	NA
	Dibenzofuran	10*	10*	NS	NS	100	NA	NA	NA	NA	NA	NA	0.059 U	NA	0.057 U	NA	NA	NA	0.064 U	NA
	Acenaphthene	1,000	1,000	3,000	3,000	4	NA	NA	NA	NA	NA	NA	0.059 U	NA	0.31	0.179 U	NA	NA	0.064 U	NA
l .	Acenaphthylene	600	10	600	10	1	NA	NA	NA	NA	NA	NA	0.059 U	NA	0.12	0.179 U	NA	NA	0.064 U	NA
1	Anthracene	1,000	1,000	3,000	3,000	1,000	NA	NA	NA	NA	NA	NA	0.1	NA	4	0.179 U	NA	NA	0.064 U	NA
l .	Benzo(a)anthracene	7	7	40	40	7	NA	NA	NA	NA	NA	NA	0.25	NA	7.9	0.179 U	NA	NA	0.15	NA
1	Benzo(a)pyrene	2	2	4	4	2	NA	NA	NA	NA	NA	NA	0.24	NA	6.9	0.179 U	NA	NA	0.064 U	NA
1	Benzo(b)fluoranthene	7	7	40	40	7	NA	NA	NA	NA	NA	NA	0.3	NA	8.9	0.179 U	NA	NA	0.2	NA
1	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	NA	NA	NA	NA	NA	NA	0.15	NA	1.7	0.179 U	NA	NA	0.064 U	NA
	Benzo(k)fluoranthene	70	70	400	400	70	NA	NA	NA	NA	NA	NA	0.087	NA	3.3	0.179 U	NA	NA	0.064 U	NA
	Chrysene	70	70	400	400	70	NA	NA	NA	NA	NA	NA	0.21	NA	6.7	0.179 U	NA	NA	0.16	NA
1	Dibenz(a,h)anthracene	0.7	0.7	4	4	1	NA	NA	NA	NA	NA	NA	0.059 U	NA	0.71	0.179 U	NA	NA	0.064 U	NA
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	NA	NA	NA	NA	NA	NA	0.54	NA	15	0.179 U	NA	NA	0.27	NA
	Fluorene	1,000	1,000	3,000	3,000	1,000	NA	NA	NA	NA	NA	NA	0.059 U	NA	0.22	0.179 U	NA	NA	0.064 U	NA
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	NA	NA	NA	NA	NA	NA	0.16	NA	1.8	0.179 U	NA	NA	0.064 U	NA
	2-Methylnaphthalene	80	300	80	500	0.7	NA	NA	NA	NA	NA	NA	0.059 U	NA	0.079	0.179 U	NA	NA	0.064 U	NA
ll.	Naphthalene	40	500	40	1,000	4	NA	NA	NA	NA	NA	NA	0.059 U	NA	0.092	0.179 U	NA	NA	0.064 U	NA
	Phenanthrene	500	500	1,000	1,000	10	NA	NA	NA	NA	NA	NA	0.4	NA	1.2	0.179 U	NA	NA	0.22	NA
	Pyrene	1,000	1,000	3,000	3,000	1,000	NA	NA	NA	NA	NA	NA	0.41	NA	15	0.179 U	NA	NA	0.41	NA
PCBs										į.										
(mg/kg)	Aroclor 1254	2	2	3	3	2	1	0.0606 U	26.7 J	0.142 J	0.0516 U	7.13 J	NA	1.08 U	NA	0.0615 J	0.565	0.899	NA	0.157
	Aroclor 1260	2	2	3	3	2	1;	0.0606 U	1.13 U	0.0550 U	0.0516 U	0.561 U	NA	1.08 U	NA	0.0526 U	0.058 U	0.067 U	NA	0.053 U
	Aroclor 1262	2	2	3	3	2	1	NA	NA	NA	NA	NA	NA	1.08 U	NA	NA	0.279	0.292	NA NA	0.053 U
	Total PCBs	2	2	3	3	2	1	0.0606 U	26.7 J	0.142 J	0.0516 U	7.13 J	NA	2.17 U	NA	0.0615 J	0.844	1.191	NA	0.157
PCB Hom					1															
(mg/kg)	Trichlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Pentachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Hexachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Heptachlorobiphenyl	N/A 2	N/A 2	N/A 3	N/A	N/A 2	N/A	NA NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Matala	Total PCBs	2	2	3	3	2	1	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	INA
Metals	Manazami	20	20	30	30	20	NT/A	NIA	NIA	NIA	NIA	NA	0.243	NA	0.147	NA	NA	NA	0.223	NA
(mg/kg)	Mercury	20	20	20	20	20	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	6.02	NA NA	3.66	2.68 U	NA NA	NA NA	5.25	NA NA
	Arsenic Barium	1.000	1,000	3,000	3,000	1,000	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	355	NA NA	86	28.2	NA NA	NA NA	344	NA NA
	Beryllium	1,000	100	200	200	100	N/A N/A	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA
	Cadmium	2	2	30	30	2	N/A N/A	0.31 U	1.21	0.32	NA 0.82	NA NA	8.59	NA NA	0.83	0.27 U	NA NA	NA NA	1.78	NA NA
	Chromium	30	30	200	200	30	N/A	NA	NA NA	NA	NA	NA NA	8.67	NA NA	7.31	3.64	NA NA	NA NA	36	NA NA
	Lead	300	300	300	300	300	N/A N/A	26.3	1.460	82.8	273	281	1.910	NA NA	149	45.8	NA NA	NA NA	665	NA NA
	Nickel	20	20	700	700	20	N/A N/A	20.3 NA	NA	02.0 NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA NA
	Silver	100	100	200	200	100	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	0.4	NA NA	0.34 U	NA NA	NA NA	NA NA	0.39 U	NA NA
	Vanadium	600	600	1,000	1,000	600	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA
	Zinc	2.500	2,500	3,000	3,000	2,500	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Metals, T		2,500	2,500	5,000	5,000	2,200	1771	101	1771	1477	1113	1721	11/1	7175	31/1	11/1	177	1,121	13/1	11/21
(ug/L)	Lead	NS	NS	NS	NS	NS	5,000(1)	NA	NA	NA	NA	NA	9,670	NA	450	NA	NA	NA	420	NA
(nB r)	1 comb	1.10	1 10	110		. 10		- 441		4447	*41.7	1 11/1		11/1	100	1 1111	11/1	7471		1123

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm),

ug/L - micrograms per liter.

B - Detected in associated laboratory method blank.

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte. N/A - Not applicable.

NS - No standard available for this compound.

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed MassDEP Method 1 standards or TCLP criter Values shown in hold and outlined exceed TSCA but are less than the listed MassDEP Method 1 standards.

SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration.

TCLP - Toxicity Characteristic Leaching Procedure.

TSCA - Toxic Substances Control Act criteria,

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic

* - TRC developed standards

** - for Reference purposes only.

						Sam	ple Location:	HH44+HI44	HI42	HI43	HI44	FJ42	HJ-	42A	HJ-4	42B	HJ-	42C	н)-	42D	HI424HE3I
Analysis	Analyte	l				Sampl	le Depth (ft.):	1-3	2.5-3	1.5-3	1-3	2.5+3	0-1	1-3	0-1	1-3	0-1	1-3	0-1	1-3	0.5-3
,							Sample Date:	12/30/2004	12/30/2004	12/30/2004	12/30/2004	12/30/2004	4/2/2009	4/2/2009	4/2/2009	4/2/2009	4/2/2009	4/2/2009	4/1/2009	4/1/2009	12/30/2004
	L	S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1**	TSCA					Enither before intent									
SVOCs/P	■																				
(mg/kg)	4-Bromophenyl phenyl ether	0.3*	0.3*	NS	NS	100	NA	0.059 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.06 U
	Di-n-butylphthalate	NS	NS	NS	NS	50	NA	0.18 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.17 JB
	bis(2-Ethylhexyl)phthalate	200	200	700	700	200	NA	0.18 U	NA	NA	NA	NA	NA	NA	NA	NΛ	NA	NA	NA	NA	0.15 J
	Dibenzofuran	10*	10*	NS	NS	100	NA	0.059 U	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	0.12
	Acenaphthene	1,000	1,000	3,000	3,000	4	NA	0.059 U	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	0.27
	Acenaphthylene	600	10	600	10	1	NA NA	0.11	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA	0.077
1	Anthracene	1,000	1,000	3,000	3,000	1,000	NA	0.21	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	0.59
	Benzo(a)anthracene	/	1 '	40	40	7	NA	1.2	NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	1.8
	Benzo(a)pyrene	2	2 7	4	4	2	NA	1.3	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	1.7
	Benzo(b)fluoranthene	1,000		40	40	7	NA NA	1.7	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	2.4
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	NA NA	0.43	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA	NA NA	0.87
	Benzo(k)fluoranthene	70 70	70 70	400 400	400	70 70	NA NA	0.52	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.77
	Chrysene Dibanz(a h)anthracene	0.7	0.7	400	400 4	10	NA NA	1.1 0.059 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1.4 0.06 U
	Dibenz(a,h)anthracene Fluoranthene	1.000	1,000	3,000	3,000	1,000	NA NA	0.059 U 2.1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	3.4
1	Fluorene	1,000	1,000	3,000	3,000	1,000	NA NA	0.059 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	0.26
1	Indeno(1,2,3-cd)pyrene	7	7	40	3,000 40	7	NA NA	0.039 0	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.26
1	2-Methylnaphthalene	80	300	80	500	0.7	NA NA	0.47 0.059 U	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.11
	Naphthalene	40	500	40	1,000	4	NA NA	0.059 U	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.11
1	Phenanthrene	500	500	1,000	1,000	10	NA NA	0.039 0	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	2.8
	Pyrene	1.000	1.000	3.000	3,000	1,000	NA	2.7	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA I	NA NA	NA NA	NA NA	NA NA	NA NA	7.1
PCBs	-																	-			
(mg/kg)	Aroclor 1254	2	2	3	3	2	1	NA	0.538	1.31 U	1.5	0.94	0.0561 U	0.0540 U	0.0536 U	0.125 J	0.0527 U	0.676 J	0.0532 U	0.136 J	NA
	Aroclor 1260	2	2	3	3	2	1	NA	0.056 U	1.31 U	1.12 U	0.07 U	0.0561 U	0.0540 U	0.0536 U	0.121 J	0.0527 U	0.190 J	0.0532 U	0.0572 U	NA
1	Aroclor 1262	2	2	3	3	2	1	NA	0.155	1.31 U	1.12 U	0.277	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Total PCBs	2	2	3	3	2	1	NA	0.693	2.63 U	1.5	1.217	0.0561 U	0.0540 U	0.0536 U	0.246 J	0.0527 U	0.866 J	0.0532 U	0.136 J	NA
PCB Hom																					
(mg/kg)	Trichlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1	Pentachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1	Hexachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Heptachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
27.4.1	Total PCBs	2	2	3	3	2		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals		20	20	20	20	20	27/4	0.15	27.4	27.4	27.4		27.4	274		27.1	27.4	27.4	27.1		1.05
(mg/kg)	Mercury	20	20	30	30	20	N/A	0.15	NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA	1.25
1	Arsenic	20	20	20	20	20	N/A	4.87	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA	17
II .	Barium	1,000 100	1,000 100	3,000 200	3,000 200	1,000	N/A	135 NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	340
	Beryllium Cadmium	200	2	30	30	100	N/A N/A	2.24	NA NA	NA NA	NA NA	NA NA	NA 0.28 U	NA 0.27 U	NA 0.30 U	NA 0.28 U	NA 0.27 U	NA 2.66	NA 0.27 U	NA 0.28 U	NA 4.92
	Chromium	30	30	200	200	30	N/A N/A	9.3	NA NA	NA NA	NA NA	NA NA	0.28 U NA	0.27 U NA	0.30 O NA	0.28 U NA	0.27 U NA	Olimpia de la compansa de la compans	0.27 U NA	0.28 U NA	36
	Lead	300	300	300	300	300	N/A N/A	351	NA NA	NA NA	NA NA	NA NA	7.41	106	8.36	26.4	6.83	NA 247	12.3	16.8	993
	Nickel	20	20	700	700	20	N/A	NA	NA NA	NA NA	NA NA	NA NA	7.41 NA	4.06 NA	NA	20.4 NA	0.65 NA	NA	12.3 NA	10.8 NA	NA
	Silver	100	100	200	200	100	N/A	0.32 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.48
	Vanadium	600	600	1,000	1,000	600	N/A	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Zinc	2,500	2,500	3,000	3.000	2,500	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Metals, To	ELP					,															
	Lead	NS	NS	NS	NS	NS	5,0000	120	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1,280

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

ug/L - micrograms per liter.

B - Detected in associated laboratory method blank.

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte. N/A - Not applicable.

NS - No standard available for this compound.

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed MassDEP Method 1 standards or TCLP criter Values shown in bold and outlined exceed TSCA but are less than the listed MassDEP Method 1 standards.

SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls,

RC - Reportable Concentration

TCLP - Toxicity Characteristic Leaching Procedure.

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic

* - TRC developed standards.

** - for Reference purposes only.

115058_NBHS_New Bedford, MA

	1					Sam	ple Location:	HJ44	HJ44+HI43	HS-7	HS-9	HS-10		SB-267		r		SB-	365		
Analysis	Analyte					Sampl	e Depth (ft.);	2.75-3	1.5-3	0-0.5	0-0.5	0-0.5	1	3.5	9	0-1	1-3	5-7	5-7	9	12
						5	Sample Date:	12/30/2004	12/30/2004	9/9/2004	9/9/2004	9/9/2004	7/14/2008	7/14/2008	7/14/2008	3/4/2009	3/4/2009	3/4/2009	3/4/2009	3/4/2009	3/4/2009
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1**	TSCA												Field Dup		
SVOCs/P/																1973	r etc.				
(mg/kg)	4-Bromophenyl phenyl ether	0.3*	0.3*	NS	NS	100	NA	NA	0.06 U	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
	Di-n-butylphthalate	NS	NS	NS	NS	50	NA	NA II	0.13 JB	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA
	bis(2-Ethylhexyl)phthalate	200	200	700	700	200	NA	NA	0.076 J	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
	Dibenzofuran	10*	10*	NS	NS	100	NA	NA	0.06 U	NA	NA	NA	NA	NA 0 007 TI	NA 0 100 H	NA 0 100 II	NA 0.170 H	NA 0.415 II	NA 0.970	NA 0.007 H	NA NA
	Acenaphthene	1,000	1,000	3,000	3,000	4	NA	NA	0.06 U	NA	NA	NA	0.169 U	0.207 U	0.199 U 0.199 U	0.188 U	0.178 U 0.178 U	0.415 U 0.415 U	0.970 0.534 U	0.897 U 0.897 U	NA NA
	Acenaphthylene	600	10	600	10	1 000	NA	NA	0.06 U	NA NA	NA NA	NA NA	0.169 U 0.169 U	0.207 U 0.207 U	0.199 U 0.199 U	0.188 U 0.188 U	0.178 U	0,415 U 0,415 U	2.11	0.897 U	NA NA
	Anthracene	1,000	1,000	3,000	3,000 40	1,000	NA	NA	0.14	NA NA	NA NA	NA NA	0.169 0	0.207 U	0.199 U	0.188 U	0.178 U	0.415	3.52	0.897 U	NA NA
	Benzo(a)anthracene	/	2	40 4	40	2	NA NA	NA NA	0.51 0.5	NA NA	NA NA	NA NA	0.200	0.207 U	0.199 U	0.188 U	0.178 U	0.503	2.91	0.897 U	NA NA
	Benzo(a)pyrene Benzo(b)fluoranthene	2	7	40	40	7	NA NA	NA NA	0.5	NA NA	NA NA	NA	0.343	0.207	0.199 U	0.188 U	0.178 U	0.717	4,24	0.897 U	NA NA
	State of the state	1,000	1,000	3,000	3,000	1.000	NA NA	NA NA	0.71	NA NA	NA NA	NA NA	0.343 0.338 U	0.273 0.413 U	0.199 U	0.188 U	0.178 U	0.415 U	0.963	0.897 U	NA NA
	Benzo(g,h,i)perylene Benzo(k)fluoranthene	70	70	400	400	70	NA NA	NA NA	0.27	NA NA	NA NA	NA NA	0.338 U 0.169 U	0.413 U 0.207 U	0.397 U	0.188 U	0.178 U	0.415 U	1,61	0.897 U	NA NA
	Chrysene	70	70	400	400	70	NA	NA NA	0.44	NA NA	NA NA	NA NA	0.325	0.682	0.199 U	0.188 U	0.178 U	0.624	3.46	0.897 U	NA NA
1	Dibenz(a,h)anthracene	0.7	0.7	4	4	1	NA	NA	0.06 U	NA	NA	NA.	0.338 U	0.413 U	0.397 U	0.188 U	0.178 U	0.415 U	0.534 U	0.897 U	NA
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	NA	NA NA	0.92	NA	NA	NA	0.523	0.207 U	0.199 U	0.188 U	0.178 U	1.01	7.37	0.897 U	NA
	Fluorene	1,000	1,000	3,000	3,000	1,000	NA	NA	0.06 U	NA	NA	NA	0.169 U	0.207 U	0.199 U	0.188 U	0.178 U	0.415 U	1.19	0.897 U	NA
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	NA	NA	0.06 U	NA	NA	NA	0.338 U	0.413 U	0.397 U	0.188 U	0.178 U	0.415 U	1.21	0.897 U	NA
	2-Methylnaphthalene	80	300	80	500	0.7	NA	NA	0.06 U	NA	NA	NA	0.169 U	0.207 U	0.199 U	0.188 U	0.178 U	0.415 U	0.534 U	0.897 U	NA
	Naphthalene	40	500	40	1,000	4	NA	NA	0.06 U	NA	NA	NA	0.169 U	0.207 U	0.199 U	0.188 U	0.178 U	0.415 U	0.534 U	0.897 U	NA
	Phenanthrene	500	500	1,000	1,000	10	NA	NA	0.7	NA	NA	NA	0.230	0.846	0.199 U	0.188 U	0.178 U	1.69	9.22	0.897 U	NA
	Pyrene	1,000	1,000	3,000	3,000	1,000	NA	NA	1.5	NA	NA	NA	0.585	0.289	0.199 U	0.188 U	0.178 U	1.00	5.67	0.897 U	NA
PCBs									N												
(mg/kg)	Aroclor 1254	2	2	3	3	2	1	1.13	NA	0.12 U	0.11 U	0.11 U	0.0500 U	0.0586 U	0.0584 U	0.0574 U	0.0518 U	0.329 J	0.501 J	0.266 UJ	0.0576 U
	Aroclor 1260	2	2	3	3	2	1	0.056 U	NA	0.12 U	0.11 U	0.11 U	0.0500 U	0.0586 U	0.0584 U	0.0574 U	0.0518 U	0.0612 U	0.189 J	0.266 UJ	0.0576 U
	Aroclor 1262	2	2	3	3	2	1	0.193	NA	0.12 U	0.11 U	0.11 U	NA	NA	NA 0.0504	NA	NA NA	NA	NA	NA	NA 0.0576 VI
	Total PCBs	2	2	3	3	2	1	1.323	NA	0.23 U	0.22 U	0.22 U	0.0500 U	0.0586 U	0.0584 U	0.0574 U	0.0518 U	0.329 J	0.690 J	0.266 UJ	0.0576 U
PCB Hom	A CONTRACTOR OF THE CONTRACTOR	27/1					37/1	3.7.4	374	27.4	27.4	NT 4	374		N. 1	27.4	NT A	NT4	NTA	NTA	
(mg/kg)	Trichlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
	Pentachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Hexachlorobiphenyl Heptachlorobiphenyl	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Total PCBs	2.	2	3	3 3	2	19/74	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA -	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Metals	101111 000														101						- 101
(mg/kg)	Mercury	20	20	30	30	20	N/A	NA	0.103	NA	NA	NA	0.079	0.078	0.012 U	0.049	0.014 U	0.606	0.658	0.163	NA
, , , , , , , , , , , , , , , , , , ,	Arsenic	20	20	20	20	20	N/A	NA NA	3.85	NA	NA	NA	3.19	14.3	4.84	2.82 U	2.67 U	15.3	53.4	13.5 U	NA NA
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	NA NA	176	NA.	NA	NA	14.0	200	7.59	17.7	10.9	1,500	755	181	NA
	Beryllium	100	100	200	200	100	N/A	NA	NA NA	NA	NA	NA	0.26 U	0.31 U	0.30 U	0.29 U	0.27 U	0.32 U	0.40 U	1.35 U	NA
	Cadmium	2	2	30	30	2	N/A	NA	1.96	NA	NA	NA	0.26 U	0.31 U	0.30 U	0.29 U	0.27 U	3.54	5.59	1.35 U	NA
	Chromium	30	30	200	200	30	N/A	NA	11	NA	NA	NA	5.14	5.30	3.81	6.20	2.04	29.1	43.5	7.14	NA
	Lead	300	300	300	300	300	N/A	NA	447	NA	NA	NA	47.9	209	3.13	15.7	3.05	741	1,590	19.0	NA
	Nickel	20	20	700	700	20	N/A	NA	NA	NA	NA	NA	3.98	11.7	4.02	3.16	2.89	47.9	44.7	4.26	NA
	Silver	100	100	200	200	100	N/A	NA	0.34 U	NA	NA	NA	2.22	3.94	1.17	0.57 U	0.54 U	0.63 U	5.20	2.69 U	NA
	Vanadium	600	600	1,000	1,000	600	N/A	NA	NA	NA	NA	NA	10.6	18.3	5.95 U	9.87	5.34 U	219	60.1	26.9 U	NA
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	NA	NA	NA	NA	NA	33.8	25.3	14.1	28.6	16.3	1,050	935	96.3	NA
Metals, TO							5.00000			Ĭ									in a second		
(ug/L)	Lead	NS	NS	NS	NS	NS	5,000(1)	NA	360	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

ng/L - micrograms per liter.

B - Detected in associated laboratory method blank,

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte. N/A - Not applicable.

NS - No standard available for this compound.

U - Compound was not detected at specified quantitation limit,

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed MassDEP Method 1 standards or TCLP criter

Values shown in bold and outlined exceed TSCA but are less than the listed MassDEP Method 1 standards.

SVOCs - Semivolatile Organic Compounds,

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration.

TCLP - Toxicity Characteristic Leaching Procedure:

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic.

* - TRC developed standards.

** - for Reference purposes only

						Sam	ple Location:	NBI	15-1	I NRHS	S-SS-8	NBHS-SS-9	VS	S-12	SS-42	SS-43	SS-44	SS-45	SS-46
Analysis	Analyte						e Depth (ft.):	8	12	0-0.5	0-0.5	0-0.5	0-0.5	1-2	0-0.5	0-0.5	0-0.5	- 0-0.5	0-0,5
1 111413 010	, mary to						Sample Date:	7/29/2008	7/29/2008	8/6/2008	8/6/2008	8/6/2008	7/23/2001	7/23/2001	12/2/2008	12/2/2008	12/2/2008	12/2/2008	12/2/2008
1		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1**	TSCA	77272000	772772000	0/0/2000	Field Dup	0,0,2000	772372001	112312001	12/2/2000	12/2/2000	12/2/2008	12/2/2000	12/2/2000
SVOCs/P	AHs		3 1/3 // 2				15511				11010 15 017								
(mg/kg)	4-Bromophenyl phenyl ether	0.3*	0.3*	NS	NS	100	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA NA
(8/8/	Di-n-butylphthalate	NS	NS	NS	NS	50	NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA.	NA	NA
	bis(2-Ethylhexyl)phthalate	200	200	700	700	200	NA NA	NA	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA.	NA NA	NA.
1	Dibenzofuran	10*	10*	NS	NS	100	NA	NA	NA	NA.	NA NA	NA NA	NA	NA.	NA	NA.	NA.	NA NA	NA NA
1	Acenaphthene	1,000	1,000	3,000	3,000	4	NA NA	0.321	0.665 U	NA.	NA NA	NA	NA	NA.	0.199 U	0.199 U	0.201 U	0.207 U	0,206 U
	Acenaphthylene	600	10	600	10	l i	NA	0.200 U	0.665 U	NA	NA	NA	NA	NA	0.199 U	0.199 U	0.201 U	0.207 U	0.206 U
	Anthracene	1,000	1,000	3,000	3,000	1,000	NA	0,929	0.665 U	NA	NA	NA	NA	NA	0.199 U	0.199 U	0.201 U	0.207 U	0.206 U
	Benzo(a)anthracene	7	7	40	40	7	NA	3.21	0.665 U	NA	NA	NA	NA	NA	0.199 U	0.199 U	0.201 U	0.207 U	0.206 U
1	Benzo(a)pyrene	2	2	4	4	2	NA NA	2.86	0.665 U	NA NA	NA NA	NA NA	NA	NA	0.199 U	0.199 U	0.201 U	0.207 U	0,206 U
	Benzo(b)fluoranthene	7	7	40	40	7	NA	3,42	0.665 U	NA	NA	NA	NA	NA	0.199 U	0,257	0,201 U	0.207 U	0,206 U
	Benzo(g,h,i)perylene	1,000	1,000	3.000	3,000	1,000	NA	2.30	0.665 U	NA NA	NA NA	NA	NA	NA NA	0.199 U	0.199 U	0.201 U	0,207 U	0.206 U
	Benzo(k)fluoranthene	70	70	400	400	70	NA NA	1,07	0.665 U	NA NA	NA NA	NA	NA	NA	0.199 U	0,199 U	0.201 U	0.207 U	0.206 U
	Chrysene	70	70	400	400	70	NA NA	3.08	0.665 U	NA	NA NA	NA NA	NA	NA NA	0.199 U	0.199 U	0.201 U	0.207 U	0.206 U
1	Dibenz(a,h)anthracene	0.7	0.7	4	4	1	NA	0.643	0.665 U	NA	NA	NA	NA	NA	0,199 U	0.199 U	0.201 U	0.207 U	0.206 U
	Fluoranthene	1,000	1.000	3,000	3,000	1,000	NA	3.87	0.665 U	NA	NA	NA	NA	NA	0.199 U	0.437	0.201 U	0.207 U	0,206 U
	Fluorene	1,000	1,000	3,000	3,000	1,000	NA	0.401	0.665 U	NA	NA	NA	NA	NA	0.199 U	0.199 U	0.201 U	0.207 U	0.206 U
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	NA	2.60	0.665 U	NA	NA	NA	NA	NA	0.199 U	0.199 U	0.201 U	0,207 U	0.206 U
	2-Methylnaphthalene	80	300	80	500	0.7	NA	0,200 U	0.665 U	NA	NA	NA	NA	NA	0.199 U	0.199 U	0.201 U	0.207 U	0.206 U
	Naphthalene	40	500	40	1.000	4	NA	0.290	0.665 U	NA	NA	NA	NA	NA	0.199 U	0.199 U	0,201 U	0.207 U	0,206 U
	Phenanthrene	500	500	1.000	1.000	10	NA	3.78	0.665 U	NA	NA	NA	NA	NA	0.199 U	0.344	0.201 U	0.207 U	0.206 U
	Pyrene	1,000	1,000	3,000	3,000	1,000	NA	5.35	0.665 U	NA	NA	NA	NA	NA	0.199 U	0.258	0.201 U	0.207 U	0.206 U
PCBs													•						
(mg/kg)	Aroclor 1254	2	2	3	3	2	1	0.479 J	0.230 UJ	0.0523 U	0.0530 U	0.0508 U	0.100 U	0.497	0.0549 U	0.0581 U	0.0598 U	0.0580 U	0.0617 U
	Aroclor 1260	2	2	3	3	2	1	1.33 J	0.230 UJ	0.0523 U	0.0530 U	0.0508 U	0.100 U	0.100 U	0.0549 U	0.0581 U	0.0598 U	0.0580 U	0.0617 U
	Aroclor 1262	2	2	3	3	2	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Total PCBs	2	2	3	3	2	1	1.809 J	0.230 UJ	0.0523 U	0.0530 U	0.0508 U	0.100 U	0.497	0.0549 U	0.0581 U	0.0598 U	0.0580 U	0.0617 U
PCB Hom																			
(mg/kg)	Trichlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	0.025	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Pentachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	0.028 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1	Hexachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	0.039	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Heptachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	0.081	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Total PCBs	2	2	3	3	2	1	0.17	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals				,															
(mg/kg)	Mercury	20	20	30	30	20	N/A	0.423	0.089 U	NA	NA	NA NA	0.07 U	0.17	0.044	0.046	0.041	0.049	0.040
	Arsenic	20	20	20	20	20	N/A	34.0	9.97 U	NA	NA	NA.	2.20	3.89	3.00	2.98 U	3.01 U	3.29	3.33
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	370	39.5	NA	NA	NA	25	119	17.5	29.1	17.7	24.9	21.3
	Beryllium	100	100	200	200	100	N/A	0.30 U	1.00 U	NA	NA	NA	NA	NA	0.30 U	0.30 U	0.31 U	0.32 U	0.31 U
	Cadmium	2	2	30	30	2	N/A	8.78	1.00 U	NA	NA	NA	0.37 U	0.81	0.30 U	0.30 U	0.31 U	0.32 U	0.31 U
	Chromium	30	30	200	200	30	N/A	154	13.7	NA	NA	NA	5.52	96	5.29	7.92	4.87	7.13	7.08
	Lead	300	300	300	300	300	N/A	2,780	12.1	NA	NA	NA	26	87	17.5	55.2	22.2	23.4	21.1
	Nickel	20	20	700	700	20	N/A	173	9.95	NA	NA	NA NA	NA	NA	2.64	4.20	2.28	3.39	3.17
	Silver	100	100	200	200	100	N/A	29.0	2.00 U	NA	NA	NA	0.37 U	0.34 U	0.60 U	0.60 U	0.61 U	0.63 U	0.62 U
	Vanadium	600	600	1,000	1,000	600	N/A	18.2	20.0 U	NA	NA	NA	NA	NA	11.7	12.7	10.6	13.5	14.5
16 . 1	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	1670	28.7	NA	NA	NA	NA	NA	27.7	54.9	36.9	30.4	31.5
Metals, To	•	NO	NTO.	N70	NO	210	5,000(0)		374			,,,			,,				
(ug/L)	Lead	NS	NS	NS	NS	NS	3,000**	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

ug/L - micrograms per liter.

B - Detected in associated laboratory method blank

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte. N/A - Not applicable.

NS - No standard available for this compound

U - Compound was not detected at specified quantitation limit.

Values shown in Bold and shaded type exceed one or more of the listed MassDEP Method 1 standards or TCLP criter Values shown in Bold and outlined exceed TSCA but are less than the listed MassDEP Method 1 standards.

SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls,

RC - Reportable Concentration.

TCLP - Toxicity Characteristic Leaching Procedure.

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic.

* - TRC developed standards,

** - for Reference purposes only.

Analysis	Analyte	8.1000				Samp	ple Location: le Depth (ft.): Sample Date:	HA29 1-2.5 12/30/2004	HA29+HB29 1-3 12/30/2004	HB23+HB27 MSB 0.75-3 12/30/2004	HB25 1-3 12/30/2004	HB254HB26 0.5-3 12/30/2004	HB26 0.5-3 12/30/2004	HB27 1-3 12/30/2004	HB28 1,5-3 12/30/2004	HB28+HB27 1-3 12/30/2004	1-3 1-2/30/2004	29 1-3 12/28/2004 Field Dup	HS-5 0-0.5 9/9/2004	HS-6 0-0.5 9/9/2004	COMP SS-13- A.F.S.T 0.5-4 9/2/2004	COMP \$S-13- AC.AD.AE.AF 0.5-4 9/2/2004	COMP SS-13 - AG, AK, AO, AR 0.5-4 9/2/2004	COMP SS-13- ALBA,BB,BC,B 1-4 9/2/2004	COMP SS-13- AQ.AM,AN,AJ.AL 1-4 9/2/2004
EPH (mg/kg)	Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(ghi)perylene C19 - C36 Aliphatics C11 - C22 Aromatics	500 1,000 1,000 1,000 7 70 7 70 7 70 2 0.7 1,000 3,000 1,000	500 1,000 1,000 1,000 7 70 7 70 2 0.7 1,000 3,000 1,000	\$-2/GW-2 1000 3,000 3,000 3,000 40 400 40 400 4 3,000 5,000 3,000	1.000 3,000 3,000 3,000 40 400 40 400 4 4 3,000 5,000 3,000	10 1,000 1,000 1,000 7 70 7 70 2 0.7 1,000 3,000 1,000	N/A	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N
SVOCs/P (mg/kg)	AHS 4-Methylphenol Di-n-butylphthalate bis(2-Ethylhexyl)phthalate Dibenzofuran Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluoranthene Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene Naphthalene Phenanthrene Phenanthrene Pyrene	200* NS 200 10* 1,000 600 1,000 7 2 7 1,000 70 0,7 1,000 1,000 7 80 40 500 1,000	5* NS 200 10* 1,000 10 1,000 7 2 7 1,000 70 0.7 1,000 1,000 7 300 500 500 1,000	NS NS 700 NS 3,000 600 3,000 40 4 40 3,000 400 40 4 80 40 3,000 3,000 40 80 40 1,000 3,000 3,000	NS NS 700 NS 3,000 10 3,000 40 4 40 400 4 400 40 500 1,000 1,000 3,000 1,000 3,000 1,000 3,000 1,000 3,000	500 50 200 100 4 1 1,000 7 2 7 1,000 70 1 1,000 7 0,7 4 10 1,000	NA N	NA N	0.074 0.41 B 0.43 0.98 1.6 0.27 4 5 6.4 5.1 2.1 3.3 7.2 0.06 U 9.5 1.6 2.4 0.38 0.64 7.7 9.4	NA N	NA N	0.062 U 0.19 B 0.19 0.25 0.42 0.17 1.4 4.8 3.7 6.1 1.4 1.9 3.7 0.062 U 7.8 0.52 1.5 0.11 0.14 5.8 7.8	NA	NA N	NA N	0,064 U 1 B 0.1 J 0.35 0.49 0.12 2.3 5.5 4.7 7.5 1.2 2.8 4.1 0.5 11 0.69 1.4 0.096 0.13 7.4 19	NA N	NA N	NA N	NA	NA 2.1 U 4.2 U 2.9 2.6 2.1 U 10 17 7.7 13 6.2 13 16 2.7 47 3.9 6 2.1 U 2.1 U 42 38	NA 0.4 U 0.8 U 0.62 0.4 U 0.64 1.1 1.7 0.93 1 1 1.6 1.6 0.45 4.4 0.58 0.95 0.4 U 0.4 U 4.4 4.0	NA 0.38 U 0,76 U 0,38 U 0,38 U 0,38 U 0.63 1.4 0.95 1.2 1.1 1.4 1.5 0.44 3.3 0.38 U 0.94 0.38 U 0.94 0.38 U 0.38 U 4.3.1	NA 0.41 U 0.82 U 0.41 U 0.61 0.42 1.7 3.6 3.3 3.6 2.1 2.4 3.5 1.1 9.5 0.7 2 0.41 U 0.41 U 6.6 8.4	NA 2.1 U 4.2 U 2.1 U 2.1 U 2.1 U 4.6 6.9 5.8 5.6 3.8 5 6.2 2.1 U 19 3 3.4 2.1 U 2.1 U 19 16
PCBs (mg/kg)	Aroclor 1254 Aroclor 1260 Aroclor 1262 Total PCBs	2 2 2 2	2 2 2 2	3 3 3 3	3 3 3 3	2 2 2 2	1 1 1	2.37 0.059 U 0.26 2.63	NA NA NA NA	NA NA NA NA	1,24 U 1,24 U 1,24 U 2,49 U	NA NA NA	4.73 0.062 U 0.438 5.168	2.88 0.062 U 0.489 3.369	2.43 0.061 U 0.366 2.796	NA NA NA NA	6.11 0.062 U 0.366 6.476	1.53 0.061 U 0.194 1.724	0.629 0.11 U 0.11 U 0.629	3.11 1.13 U 1.13 U 3.11	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA
Metals (mg/kg)	Arsenic Barium Beryllium Cadmium Chronium Lead Mercury Nickel Selenium Silver Vanadium Zinc	20 1,000 100 2 30 300 20 20 400 100 600 2,500	20 1,000 100 2 30 300 20 20 400 100 600 2,500	20 3,000 200 30 200 300 30 700 800 200 1,000 3,000	20 3,000 200 30 200 300 30 700 800 200 1,000 3,000	20 1,000 100 2 30 300 20 20 400 100 600 2,500	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	NA N	9.58 742 NA 5.94 61 8.47 1.37 NA 0.7 U 0.7 NA NA	91 875 NA 82 143 985 2.33 NA 75 75 NA NA	NA N	14 1,010 NA 7,14 91 1,790 0,715 NA 0,82 U 1,64 NA	NA N	NA N	NA N	9.19 789 NA 5.82 66 1.310 1.44 NA 0.84 U 0.76 NA	NA N	NA N	NA N	NA N	31 130 NA 2.4 17 590 0.54 NA 2.5 U 0.59 NA NA	10 140 NA 2.1 22 530 0.46 NA 2.4 U 0.48 U NA	6.8 230 NA 1.2 22 450 0.42 NA 2.2 U 0.56 NA NA	20 430 NA 2.2 31 1,200 1.2 NA 4.9 1.2 NA NA	10 310 NA 2 27 750 0.95 NA 2.4 U 1.1 NA
Metals, T (ug/L)	CLP Lead, TCLP Mercury, TCLP	NS NS	NS NS	NS NS	NS NS	NS NS	5,000 ⁽¹⁾ 200 ⁽¹⁾	NA NA	550 NA	NA NA	NA NA	2,270 NA	NA NA	NA NA	NA NA	1,500 NA	NA NA	NA NA	NA NA	NA NA	770 NA	NA NA	NA NA	NA NA	NA NA

All units in mg/kg unless otherwise specified,

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

NA - Sample not analyzed for the listed analyte

U - Compound was not detected at specified quantitation limit

U - Compound was not detected at specified quantitation limit.

J - Estimated value; below quantitation limit.

B - Detected in associated laboratory method blank.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method 1 standards or TCLP standard, as applicable.

[Values shown in bold and outlined exceed TSCA standard.

SVOCs - Semivolatile Organic Compounds.

SPIL (Extractable Patroleum Methographos.

EPH - Extractable Petroleum Hydrocarbons

PCBs - Polychlorinated Biphenyls

RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic .

* - TRC developed standards.
- sample locations to be covered by pavement.

Analysis	Analyte	S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	Sampl	ple Location: le Depth (ft.): Sample Date: TSCA	COMP SS-13-A 0.5-4 9/2/2004	0.5-4 9/2/2004 Field Dup	COMP SS-13- AW,AX,AY,AZ 0.5-4 9/2/2004	COMP SS-13- E.L.K.B 0.5-4 9/2/2004	COMP SS-13- G.H.I.J 0.5-4 9/2/2004	COMP SS-13- M.N,O,P 1-4 9/2/2004	COMP SS-13+ Q.R.C.D 1-4 9/2/2004	COMP SS-13- U.Z.AA.AB 1-4 9/2/2004	COMP SS-13- V, W, X, Y 0.5-4 9/2/2004	COMP SS-13- V.W. X. Y 0.5-4 9/2/2004	SS-13-A 0.5-4 9/2/2004	SS-13-AA 1-4 9/2/2004	SS-13-AB 2.5-4 9/2/2004	SS-13-AC 2-4 9/2/2004	SS-13-AD 1-4 9/2/2004	SS-13-AE 1-4 9/2/2004	SS-13-AF 0.5-4 9/2/2004	SS-13-AG 1-4 9/2/2004
EPH (mg/kg)	Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(ghi)perylene C19 - C36 Aliphatics C11 - C22 Aromatics	500 1,000 1,000 1,000 7 70 7 70 2 0.7 1,000 3,000 1.000	500 1,000 1,000 1,000 7 70 7 70 2 0.7 1,000 3,000 1,000	1000 3,000 3,000 3,000 40 400 40 400 4 3,000 5,000 3,000	1,000 3,000 3,000 3,000 40 40 40 40 4 4 3,000 5,000 3,000	10 1,000 1,000 1,000 7 70 7 70 2 0.7 1,000 3,000 1,000	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	NA N	NA N	NA N	NA N	NA N	NA N	NA	NA	NA N	NA N	NA N	NA N	NA N	NA	NA N	NA N	NA N	NA N
SVOCs/P (mg/kg)	AHs 4-Methylphenol Di-n-butylphthalate bis(2-Ethylhexyl)phthalate Dibenzofuran Acenaphthene Acenaphthylene Anthracene Benzo(a)nthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene Naphthalene Phenanthrene Phenanthrene Pyrene	200* NS 200 10* 1,000 600 1,000 7 2 7 1,000 70 0,7 1,000 1,000 7 80 40 500 1,000	5* NS 200 10* 1,000 10 1,000 7 2 7 1,000 70 0,7 1,000 1,000 7 300 500 500 1,000	NS NS 700 NS 3,000 600 3,000 40 40 400 400 400 3,000 40 80 40 1,000 3,000 3,000	NS NS 700 NS 3,000 10 3,000 40 4 40 3,000 400 400 40 500 1,000 3,000 1,000 3,000 1,000 3,000	500 500 200 100 4 1 1,000 7 2 7 1,000 70 70 1 1,000 7 0.7 4 10 1,000	NA N	NA 0,42 U 0,83 U 0,42 U 0,42 U 0,42 I 0,85 2 1,9 2,1 1,4 1,9 2,1 0,62 4,7 0,42 U 1,2 0,42 U 0,42 U 3,2 4,5	NA 0.42 U 0.83 U 0.5 0.85 0.52 2.8 5.1 4.9 2.8 3.1 5.1 1.4 0.93 2.7 0.42 U 0.42 U 11	NA 0.43 U 0.85 U 0.43 U 0.55 0.43 U 1.4 3.9 3.4 3.3 2.2 3.6 1.2 9.4 0.53 2 0.43 U 0.43 U 5.8 8.2	NA 0.4 U 0.8 U 0.4 U 0.4 U 0.85 2 1.8 1.9 1.3 1.5 2 0.64 4.3 0.4 U 1.2 0.4 U 0.4 U 0.4 U	NA 0.39 U 0.78 U 0.39 U 0.39 U 1 2.2 2 1.5 1.8 2.2 0.76 5.1 0.39 U 1.4 0.39 U 0.39 U 3.6 5	NA 0.45 U 0.9 U 0.45 U 0.56 0.45 U 1.3 2.8 2.4 1.6 2.2 2.8 0.72 6.5 0.52 1.4 0.45 U 0.45 U 5.2 5.9	NA 0,37 U 0,74 U 0,56 0,37 U 4 2,2 10 11 8,4 6,3 14 11 2,5 33 1,1 5,6 0,37 U 0,37 U 14 25	NA 2.1 U 4.3 U 2.1	NA N	NA 0,4 U 0,8 U 0,4 U 0.55 1.5 2.0 3.6 2.1 2.8 2.6 3.5 4.3 1.1 2.3 8.6 40 7.5 8.8	NA N	NA N	NA N	NA	NA N	NA N	NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N
PCBs (mg/kg)	Aroclor 1254 Aroclor 1260 Aroclor 1262 Total PCBs	2 2 2 2	2 2 2 2	3 3 3 3	3 3 3 3	2 2 2 2	1 1 1	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	0.0379 U 0.0379 U 0.0379 U 0.0379 U	0.045 U 0.045 U 0.045 U 0.045 U	0.0988 0.0412 U 0.0412 U 0.0988	0.352 0.187 0.0366 U 0.539	0.0476 U 0.0476 U 0.0476 U 0.0476 U	0.0444 U 0.172 0.0444 U 0.172	12.6 0.855 U 0.855 U 12.6	0.0584 0.0351 U 0.0351 U 0.0584
Metals (mg/kg)	Arsenic Barium Beryllium Cadmium Chromium Lead Mercury Nickel Selenium Silver Vanadium Zinc	20 1.000 100 2 30 300 20 20 400 100 600 2,500	20 1,000 100 2 30 300 20 20 400 100 600 2,500	20 3,000 200 30 200 300 30 700 800 200 1,000 3,000	20 3,000 200 30 200 300 30 700 800 200 1,000 3,000	20 1,000 100 2 30 300 20 20 400 100 600 2,500	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	17 400 NA 2.6 44 860 0.95 NA 2.4 U 1.1 NA	17 230 NA 2.5 42 1,600 1.1 NA 3.1 1 NA NA	19 250 NA 1.7 32 6-10 0.76 NA 2.6 U 0.59 NA NA	48 22 NA 2.6 53 720 76 NA 2.4 U 0.77 NA NA	19 500 NA 2.4 73 1.100 0.73 NA 12 U 1 NA NA	16 380 NA 2.7 36 1.300 0.79 NA 2.7 U 0.89 NA NA	6 120 NA 1 8.9 560 0.32 NA 2.2 U 0.44 U NA NA	27 390 NA 33 38 1,500 0.5 NA 2.6 U 1.3 NA NA	NA	10 380 NA 4 39 1,000 1.5 NA 2.4 U 0.54 NA	NA NA NA NA A 2,200 NA NA NA NA NA NA	NA NA NA NA 1.800 NA NA NA NA NA NA	NA NA NA NA A 2,200 NA NA NA NA NA NA NA	NA NA NA NA S20 NA NA NA NA NA	NA NA NA NA 160 NA NA NA NA NA NA	NA NA NA NA NA 370 NA NA NA NA NA	NA NA NA NA 1,100 NA NA NA NA NA NA NA	NA NA NA NA A.6 NA NA NA NA
Metals, T (ug/L)	CLP Lead, TCLP Mercury, TCLP	NS NS	NS NS	NS NS	NS NS	NS NS	5,000 ⁽¹⁾ 200 ⁽¹⁾	NA NA	NA NA	NA NA	600 2	7,100 NA	2,400 NA	2,000 NA	1,500 NA	5,200 NA	NA NA	22,000 NA	1,500 NA	2,900 NA	2,000 NA	NA NA	NA NA	NA NA	NA NA

All units in mg/kg unless otherwise specified,
mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).
NA - Sample not analyzed for the listed analyte.
U - Compound was not detected at specified quantitation limit.

J - Estimated value; below quantitation limit.

J - Estimated value; below quantitation limit.
B - Detected in associated laboratory method blank.
Values in Bold indicate the compound was detected.
Values shown in Bold and shaded type exceed one or more of the listed Method 1 standards or TCLP standard, as applicable.
[Values shown in bold and outlined exceed TSCA standard.

SVOCs - Semivolatile Organic Compounds.

SVOCs - Semivolatile Organic Compounds.

EPH - Extractable Petroleum Hydrocarbons

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic.

* - TRC developed standards

	90 CALLS						ple Location:	SS-13-AI	SS-13-AJ	SS-13-AK	SS-13-AL	SS-13-AM	SS-13-AN	SS-13-AO	SS-13-AQ	SS-13-AR	SS-13-AS	SS-13-AT	SS-13-AU	SS-13-AV	SS-13		SS-13-AX 0.5-4	SS-13-AY 0.5-4	SS-13-AZ 0.5-4
Analysis	Analyte	S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3		e Depth (ft.): Sample Date: TSCA	9/2/2004	1-4 9/2/2004	0.5-1.5 9/2/2004	1-4 9/2/2004	9/2/2004	1-4 9/2/2004	9/2/2004	9/2/2004	0.5-1.5 9/2/2004	0.5-4 9/2/2004	1-4 9/2/2004	1-4 9/2/2004	1-4 9/2/2004	1-4 9/2/2004	1-4 9/2/2004 Field Dup	9/2/2004	9/2/2004	9/2/2004
EPH (mg/kg)	Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(ghi)perylene C19 - C36 Aliphatics C11 - C22 Aromatics	500 1,000 1,000 1,000 7 70 7 70 2 0.7 1,000 3,000 1,000	500 1,000 1,000 1,000 7 70 7 70 2 0.7 1,000 3,000 1,000	1000 3.000 3.000 3.000 40 400 40 400 4 4 3,000 5,000 3,000	1,000 3,000 3,000 3,000 40 40 40 40 4 4 3,000 5,000 3,000	10 1,000 1,000 1,000 7 70 7 70 2 0.7 1,000 3,000 1,000	N/A	NA N	NA	NA N	NA N	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA N	NA N	NA N	NA N
SVOCs/P (mg/kg)	AHS 4-Methylphenol Di-n-butylphthalate bis(2-Ethylhexyl)phthalate bis(2-Ethylhexyl)phthalate Dibenzofuran Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Pyrene Pyrene Pyrene Dibenz(a,h)anthracene Pyrene Pyrene Pyrene Pyrene Pyrene Dibenz(a,h)anthracene Pyrene Pyrene	200* NS 200 10* 1,000 600 1,000 7 2 7 1,000 70 0,7 1,000 1,000 7 80 40 500 1,000	5* NS 200 10* 1,000 10 1,000 7 2 7 1,000 70 0.7 1,000 1,000 7 300 500 500 1,000	NS NS 700 NS 3,000 600 3,000 40 40 400 4 400 40 80 40 80 40 1,000 3,000 3,000	NS NS 700 NS 3,000 10 3,000 40 40 400 400 400 400 500 1,000 1,000 3,000 3,000	500 50 200 100 4 1 1,000 7 2 7 1,000 70 1 1,000 7 0,7 4 10 1,000	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N
PCBs (mg/kg)	Aroclor 1254 Aroclor 1260 Aroclor 1262 Total PCBs	2 2 2 2 2	2 2 2 2 2	3 3 3 3	3 3 3 3	2 2 2 2	1 1 1	1,44 0.796 0,211 U 2.236	0.719 0.341 0.0412 U 1.06	0.298 0.135 0.0351 U 0.433	0.47 0.461 0.0402 U 0.931	4.56 0.427 U 0.427 U 4.56	1.57 0.208 U 0,208 U 1.57	4.87 0.383 U 0.383 U 4.87	5.48 0.417 U 0.417 U 5.48	0.425 0.242 0.0379 U 0.667	0.439 0.23 0.0463 U 0.669	1.56 0.0417 U 0.0417 U 1.56	0.139 0.0804 0.0417 U 0.2194 .	0.234 0.139 0.0374 U 0.373	1.66 0,219 U 0,219 U 1.66	0.597 0.358 0.0433 U 0.955	2,21 0,228 U 0,228 U 2,21	0.13 0.0523 0.045 U 0.1823	0.0444 U 0.0444 U 0.0444 U 0.0444 U
Metals (mg/kg)	Arsenic Barium Beryllium Cadmium Chromium Lead Mercury Nickel Selenium Silver Vanadium Zinc	20 1,000 100 2 30 300 20 20 400 100 600 2,500	20 1,000 100 2 30 300 20 20 400 100 600 2,500	20 3,000 200 30 200 300 30 700 800 200 1,000 3,000	20 3,000 200 30 200 300 30 700 800 200 1,000 3,000	20 1,000 100 2 30 300 20 20 400 100 600 2,500	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	NA NA NA NA 2,100 NA NA NA NA	NA NA NA NA 960 NA NA NA NA NA NA	NA NA NA NA 250 NA NA NA NA NA	NA NA NA NA NA 1,400 NA NA NA NA NA NA NA NA NA	NA NA NA NA 970 NA NA NA NA NA NA NA	NA NA NA NA 1.800 NA NA NA NA NA NA NA NA	NA NA NA NA 1.200 NA NA NA NA NA NA NA NA	NA NA NA NA 720 NA NA NA NA	NA NA NA NA S60 NA NA NA NA NA NA	NA NA NA NA HID NA NA NA NA NA NA	NA NA NA NA 4,200 NA NA NA NA NA NA	NA NA NA NA SHO NA NA NA NA NA NA NA	NA NA NA NA S-40 NA NA NA NA NA NA	NA NA NA O990 NA NA NA NA NA NA	NA N	NA NA NA NA 1,000 NA NA NA NA NA NA NA	NA NA NA NA SS0 NA NA NA NA NA NA	NA NA NA NA I30 NA NA NA NA NA NA NA
Metals, T (ug/L)	CLP Lead, TCLP Mercury, TCLP	NS NS	NS NS	NS NS	NS NS	NS NS	5,000 ^(T) 200 ⁽¹⁾	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA

All units in mg/kg unless otherwise specified.

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

NA - Sample not analyzed for the listed analyte.

NA - Sample not analyzed for the fisted analyte.

U - Compound was not detected at specified quantitation limit.

J - Estimated value; below quantitation limit.

B - Detected in associated laboratory method blank.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method 1 standards or TCLP standard, as applicable.

Values shown in bold and outlined exceed TSCA standard.

SVOCe, Semiyalatile freamic Compounds.

SVOCs - Semivolatile Organic Compounds.
EPH - Extractable Petroleum Hydrocarbons.

PCBs - Polychlorinated Biphenyls RC - Reportable Concentration

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.
(1) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic.

* - TRC developed standards.
- sample locations to be covered by pavement.

115058_New Bedford

Analysis	Analyte	S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	Sampl	ple Location: le Depth (ft.): Sample Date:	\$\$.13-B 0,5-4 9/2/2004	SS-13-BA 1-4 9/2/2004	SS-13-BB 1-4 9/2/2004	SS-13-BC 1-4 9/2/2004	SS-13-BD 1-4 9/2/2004	SS-13-C 1-4 9/2/2004	SS-13-D 1-4 9/2/2004	SS-13-E 1-4 9/2/2004	\$\$-13-F 0.5-4 9/2/2004	SS-13-G 0.5-4 9/2/2004	SS-13-H 1-4 9/2/2004	\$\$-13-I I-4 9/2/2004	\$\$-13-J 2-4 9/2/2004	SS-13-K 0.5-4 9/2/2004	SS-13-L 0.5-4 9/2/2004	SS-13-M 1-4 9/2/2004	SS-13-N 1-4 9/2/2004
EPH (mg/kg)	Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(ghi)perylene C19 - C36 Aliphatics C11 - C22 Aromatics	500 1,000 1,000 1,000 7 70 7 70 2 0,7 1,000 3,000 1,000	500 1,000 1,000 1,000 7 70 7 70 2 0.7 1,000 3,000 1,000	1000 3,000 3,000 3,000 40 40 40 40 40 4 4 3,000 5,000 3,000	1.000 3.000 3.000 3.000 40 40 40 40 4 4 3,000 5.000 3.000	10 1,000 1,000 1,000 7 70 7 70 2 0.7 1,000 3,000 1,000	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	NA	NA	NA N	NA	NA	NA	NA	NA N	NA	NA N	NA N	NA N	NA N	NA	NA	NA	NA N
SVOCs/P (mg/kg)	AHs 4-Methylphenol Di-n-butylphthalate bis(2-Ethylhexyl)phthalate Dibenzofuran Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluoranthene Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene	200* NS 200 10* 1,000 600 1,000 7 2 7 1,000 70 0,7 1,000 1,000 7 80 40 500 1,000	5* NS 200 10* 1.000 10 1,000 70 70 0.7 1,000 70 300 500 500 1,000	NS NS 700 NS 3,000 600 3,000 40 40 4 40 3,000 400 400 40 40 80 40 1,000 3,000 3,000	NS NS 700 NS 3,000 10 3,000 40 40 4 40 3,000 40 40 500 1,000 1,000 3,000	500 50 200 100 4 1 1,000 7 2 7 1,000 70 1 1,000 7 0,7 4 10 1,000	NA N	NA	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA	NA	NA N	NA	NA N	NA	NA	NA
PCBs (mg/kg)	Aroclor 1254 Aroclor 1260 Aroclor 1262 Total PCBs	2 2 2 2 2	2 2 2 2 2	3 3 3 3	3 3 3 3	2 2 2 2 2	1 1 1	0.298 0.346 0.0358 U 0.644	0.427 0.21 0.0402 U 0.637	0.124 0.0575 0.0412 U 0.1815	0.219 0.342 0.0417 U 0.561	0,221 0,0427 U 0,0427 U 0,221	0.0541 0.212 0.0402 U 0.2661	0.0406 U 0.0406 U 0.0406 U 0.0406 U	0.045 U 0.045 U 0.045 U 0.045 U	0.0731 0,0444 U 0.0444 U 0.0731	0.0351 U 0.0351 U 0.0351 U 0.0351 U	0.358 0.0956 0.0412 U 0.4536	1,25 0,592 0,228 U 1,842	1.53 1.22 0.196 U 2.75	0.133 0.0397 U 0.0397 U 0.133	0.572 0.143 0.0433 U 0.715	0.0467 0.0459 0.0433 U 0.0926	0,0427 U 0,0427 U 0,0427 U 0.0427 U
(mg/kg)	Arsenic Barium Beryllium Cadmium Chromium Lead Mercury Nickel Selenium Silver Vanadium Zine	20 1,000 100 2 30 300 20 20 400 100 600 2,500	20 1,000 100 2 30 300 20 20 400 100 600 2,500	20 3,000 200 30 200 300 30 700 800 200 1,000 3,000	20 3,000 200 30 200 300 30 700 800 200 1,000 3,000	20 1,000 100 2 30 300 20 20 400 100 600 2,500	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	NA NA NA NA NA 930 NA NA NA NA NA NA	NA	NA NA NA NA NA I,600 NA NA NA NA NA NA NA	NA NA NA NA NA S30 NA NA NA NA NA NA	NA NA NA NA O20 NA NA NA NA NA NA	NA NA NA NA NA MA NA NA NA NA NA NA NA	NA NA NA NA NA S80 NA NA NA NA NA	NA NA NA NA A90 NA	NA NA NA NA 660 NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA A NA NA NA NA NA NA NA	NA NA NA NA NA I,600 NA NA NA NA NA NA NA NA NA	NA NA NA NA NA T2 NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA 1,300 NA NA NA NA NA
Metals, T	CLP Lead, TCLP Mercury, TCLP	NS NS	NS NS	NS NS	NS NS	NS NS	5,000 ⁽¹⁾ 200 ⁽¹⁾	1,000 NA	NA NA	NA NA	NA NA	NA NA	2,000 NA	500 U NA	530 NA	2,100 NA	NA NA	3,300 NA	2,300 NA	1,900 NA	NA NA	900 NA	3,900 NA	610 NA

All units in mg/kg unless otherwise specified.

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

NA - Sample not analyzed for the listed analyte.

U - Compound was not detected at specified quantitation limit.

J - Estimated value; below quantitation limit. B - Detected in associated laboratory method blank.

B - Detected in associated interratory memod trains.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method I standards or TCLP standard, as applicable.

[Values shown in bold and outlined exceed TSCA standard.

SVOCs - Semivolatile Organic Compounds.

EPH - Extractable Petroleum Hydrocarbons

PCBs - Polychlorinated Biphenyls

RC - Reportable Concentration

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic

* - TRC developed standards
- sample locations to be covered by pavement

							ple Location:	SS-13-O	SS-13-P	SS-13-Q	SS-13-R	SS-13-S	SS-13-T	SS-13-U	SS-13-V	SS-13-W	SS-13-X	SS-1		SS-13-Z			SB-349		
Analysis	Analyte	S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3		e Depth (ft.): Sample Date: TSCA	1-4 9/2/2004	1-4 9/2/2004	1-4 9/2/2004	1-4 9/2/2004	1-4 9/2/2004	0.5-4 9/2/2004	1-4 9/2/2004	0.5-1.5 9/2/2004	1-4 9/2/2004	0.5-4 9/2/2004	0.5-4 9/2/2004	0.5-4 9/2/2004 Field Dup	1-4 9/2/2004	8/21/2008	8/21/2008	8/21/2008 Field Dup	8/21/2008	8/21/2008
EPH (mg/kg)	Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(ghi)perylene C19 - C36 Aliphatics C11 - C22 Aromatics	500 1,000 1,000 1,000 7 70 7 70 2 0.7 1,000 3,000 1.000	500 1.000 1.000 1.000 7 7 7 7 7 2 0,7 1,000 3,000 1.000	1000 3,000 3,000 3,000 40 400 400 4 400 4 3,000 5,000 3,000	1,000 3,000 3,000 3,000 40 40 400 4 4 3,000 5,000 3,000	10 1,000 1,000 1,000 7 70 7 70 2 0,7 1,000 3,000 1,000	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA	NA	NA	NA	NA N	NA	NA N	NA N	NA N	NA N	NA N
SVOCs/P (mg/kg)	AHs 4-Methylphenol Di-n-butylphthalate bis(2-Ethylhexyl)phthalate Dibenzofuran Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene	200* NS 200 10* 1,000 600 1,000 7 2 7 1,000 70 0.7 1,000 7 80 40 500 1,000	5* NS 200 10* 1,000 10 1,000 7 2 7 1,000 70 0,7 1,000 1,000 7 300 500 500 1,000	NS NS 700 NS 3,000 600 3,000 40 4 40 3,000 400 4 4 3,000 3,000 40 40 40 3,000 40 40 3,000	NS NS 700 NS 3,000 10 3,000 40 4 40 3,000 400 400 4 3.000 3,000 40 500 1,000 1,000 1,000 3,000	500 500 200 100 4 1 1,000 7 2 7 1,000 70 70 1 1,000 7 0,7 4 10 1,000	NA N	NA N	NA N	NA N	NA	NA	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA NA NA NA 0.240 U 0.251 0.771 0.715 0.762 0.649 0.296 0.851 0.240 U 1.53 0.240 U 0.679 0.240 U 0.240 U 0.240 U 1.169	NA NA NA 0,206 U 0,206 U 0,466 1,24 1,13 0,864 0,442 1,26 0,206 U 2,56 0,206 U 0,206 U 0,206 U 0,206 U 0,206 U 0,206 U	NA NA NA NA O.627 U	NA
PCBs (ing/kg)	Aroelor 1254 Aroelor 1260 Aroelor 1262 Total PCBs	2 2 2 2	2 2 2 2	3 3 3 3	3 3 3 3	2 2 2 2	1 1 1	0.0436 0.0427 U 0.0427 U 0.0436	0,0463 U 0,0463 U 0,0463 U 0,0463 U	0.0344 U 0.0344 U 0.0344 U 0.0344 U	0.0347 U 0.0347 U 0.0347 U 0.0347 U	1.34 0.519 0.225 U 1.859	0.184 0.048 0.0417 U 0.232	0.0463 U 0.0463 U 0.0463 U 0.0463 U	0.134 0.0391 0.0351 U 0.1731	0.0494 0.0899 0.0422 U 0.1393	0.0438 U 0.0779 0.0438 U 0.0779	0.671 0.296 0.0417 U 0.967	0.367 0.226 0.0438 U 0.593	0.045 U 0.045 U 0.045 U 0.045 U	2.50 J 1.72 J NA 4.22 J	0.174 J 0.0704 UJ NA 0.174 J	0.323 J 0.181 J NA 0.504 J	0.186 UJ 0.186 UJ NA 0.186 UJ	NA NA NA NA
Metals (mg/kg)	Arsenic Barium Beryllium Cadmium Chromium Lead Mercury Nickel Selenium Silver Vanadium Zinc	20 1,000 100 2 30 300 20 20 400 100 600 2,500	20 1,000 100 2 30 300 20 20 400 100 600 2,500	20 3,000 200 30 200 300 30 700 800 200 1,000 3,000	20 3,000 200 30 200 300 30 700 800 200 1,000 3,000	20 1,000 100 2 30 300 20 20 400 100 600 2,500	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	NA NA NA NA 420 NA	NA NA NA NA SSO NA NA NA NA NA NA NA	NA NA NA NA NA 4.4 NA	NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA IIIII NA NA NA NA NA NA NA	NA NA NA NA NA S50 NA NA NA NA NA	NA NA NA NA 140 NA NA NA NA NA NA NA NA	NA NA NA NA 48 NA NA NA NA NA NA NA NA	NA NA NA NA 11,000 NA NA NA NA NA NA NA NA	NA NA NA NA NA S,900 NA NA NA NA NA NA	NA NA NA OIU NA NA NA NA NA NA NA NA	NA N	NA NA NA NA 280 NA NA NA NA NA NA	NA N	10.9 212 0.46 1.74 22.7 571 0.098 48.1 7.19 U 6.99 24.3 2.670	10.8 147 0.33 0.63 23.3 374 0.140 23.1 6.16 U 11.0 19.6 385	14.5 152 0.94 U 0.94 U 27.0 207 0.304 39.3 18.8 U 8.92 27.7 665	2.97 U 5,94 U 0.30 U 0.30 U 2.90 2.75 0.016 U 1.96 5,94 U 0.60 U 5.94 U 7.34
Metals, T (ug/L)	CLP Lead, TCLP Mercury, TCLP	NS NS	NS NS	NS NS	NS NS	NS NS	5,000 ⁽¹⁾ 200 ⁽¹⁾	950 NA	500 U NA	NA NA	NA NA	2,900 NA	1,300 NA	500 U NA	NA NA	32,000 NA	30,000 NA	640 NA	2,500 NA	880 NA	NA NA	NA NA	NA NA	NA NA	NA NA

All units in mg/kg unless otherwise specified.

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm),
NA - Sample not analyzed for the listed analyte

U - Compound was not detected at specified quantitation limit,
J - Estimated value; below quantitation limit.
B - Detected in associated laboratory method blank.

Values in Bold indicate the compound was detected.

Values in Bold indicate the compound was detected.

Values shown in Bold and shuded type exceed one or more of the listed Method I standards or TCLP standard, as applicable.

[Values shown in bold and outlined exceed TSCA standard.

SVOCs - Semivolatile Organic Compounds EPH - Extractable Petroleum Hydrocarbons

PCBs - Polychlorinated Biphenyls, RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summay of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.
(1) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic.

* - TRC developed standards.
- sample locations to be covered by pavement.

													ET SEAS
							ple Location:		VSS-13		SS-47	SS-48	SS-49
Analysis	Analyte						e Depth (ft.): Sample Date:	0-0.5 7/23/2001	0.5-1 7/23/2001	1-2 7/23/2001	0-0.5	0-0.5 12/2/2008	0-0.5 12/2/2008
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-I	TSCA		023/2001	77277200			
EPH	The Code with	500	500	1000	1,000	10	N/A	NA	NA	3.4	NA	NA	NA
(mg/kg)	Phenanthrene Anthracene	500 1,000	500 1,000	1000 3,000	3,000	1,000	N/A N/A	NA NA	NA NA	1.0	NA NA	NA NA	NA NA
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	NA NA	NA	5.4	NA	NA NA	NA.
	Pyrene	1,000	1,000	3,000	3,000	1.000	N/A	NA	NA	5.1	NA	NA	NA
	Benzo(a)anthracene	7	7	40	40	7	N/A	NA	NA	1.8	NA	NA	NA
	Chrysene	70	70	400	400	70	N/A	NA	NA	2.0	NA	NA	NA
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	NA	NA	1.6	NA	NA	NA
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	NA	NA	0.90	NA	NA	NA
	Benzo(a)pyrene	2	2	4	4	2	N/A	NA	NA	2.0	NA	NA	NA
	Dibenzo(a,h)anthracene	0.7	0.7	4	4	0.7	N/A	NA	NA	1.2	NA	NA	NA
	Benzo(ghi)perylene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	1.3	NA	NA	NA
	C19 - C36 Aliphatics	3,000	3,000	5,000	5,000	3,000	N/A	NA	NA	59	NA	NA	NA
OVO O ID	C11 - C22 Aromatics	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	31	NA	NA	NA
SVOCs/P. (mg/kg)	AHS 4-Methylphenol	200*	5*	NS	NS	500	NA	NA	NA	0.53 U	NA	NA	NA
(ing/kg)	Di-n-butylphthalate	NS	NS	NS	NS	50	NA	NA	NA	1.6 U	NA	NA	NA
	bis(2-Ethylhexyl)phthalate	200	200	700	700	200	NA	NA	NA	1.6 U	NA	NA	NA
	Dibenzofuran	10*	10*	NS	NS	100	NA	NA	NA	1.0	NA	NA	NA
	Acenaphthene	1,000	1,000	3,000	3,000	4	NA	0.210 U	0,208 U	1.7	0,210 U	0.208 U	0.211 U
	Acenaphthylene	600	10	600	10	1	NA	0.210 U	0,208 U	0.53 U	0.210 U	0.208 U	0.211 U
	Anthracene	1,000	1,000	3,000	3,000	1,000	NA	0,210 U	0,208 U	3.9	0.210 U	0,208 U	0.211 U
	Benzo(a)anthracene	7	7	40	40	7	NA	0,210 U	0,208 U	5.2	0.210 U	0.208 U	0.211 U
	Benzo(a)pyrene	2	2	4	4	2	NA	0.210 U	0.208 U	3.3	0,210 U	0,208 U	0,211 U
	Benzo(b)fluoranthene	7	7	40	40	7	NA	0.210 U	0,208 U	4.7	0.210 U	0.208 U	0,211 U
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	NA	0.210 U	0,208 U	1.7	0.210 U	0.208 U 0.208 U	0,211 U
	Benzo(k)fluoranthene	70	70 70	400	400 400	70 70	NA NA	0.210 U 0.210 U	0,208 U 0,208 U	1.4 3.9	0.210 U 0.210 U	0,208 U 0.208 U	0.211 U 0.211 U
	Chrysene	70 0.7	0.7	400 4	400	1	NA NA	0.210 U	0.208 U	0.53 U	0.210 U	0.208 U	0.211 U
	Dibenz(a,h)anthracene Fluoranthene	1,000	1,000	3.000	3,000	1,000	NA NA	0.345	0.208 U	12	0.345	0.208 U	0.211 U
	Fluorene	1,000	1,000	3,000	3,000	1,000	NA NA	0.210 U	0.208 U	1.6	0.210 U	0.208 U	0.211 U
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	NA	0.210 U	0.208 U	2.3	0.210 U	0.208 U	0.211 U
	2-Methylnaphthalene	80	300	80	500	0.7	NA	0.210 U	0.208 U	0.53 U	0.210 U	0.208 U	0.211 U
	Naphthalene	40	500	40	1,000	4	NA	0,210 U	0.208 U	0.59	0,210 U	0.208 U	0.211 U
	Phenanthrene	500	500	1,000	1,000	10	NA	0.210 U	0,208 U	12	0,210 U	0.208 U	0.211 U
	Pyrene	1,000	1,000	3,000	3,000	1,000	NA	0.246	0,208 U	8.4	0.246	0.208 U	0,211 U
PCBs					_			0.004	0 100 TI	0.100 11		0.0501 11	0.108 *
(mg/kg)	Aroclor 1254	2	2	.3	3	2	I	0.221	0.100 U	0.100 U	1.64 0.0583 U	0.0581 U 0.0581 U	0.108 * 0.077 *
	Aroclor 1260 Aroclor 1262	2 2	2 2	3	3 3	2 2	1 1	0.100 U NA	NA	0.657 NA	0.0583 U NA	NA NA	0.077 ** NA
	Total PCBs	2	2 2	3	3	2	i i	0.221	1.34	0.657	1.64	0.0581 U	0.185
Metals	Total Tebs						<u> </u>	0.221	1:54	0.057	1.04	0.0301	0.705
(mg/kg)	Arsenic	20	20	20	20	20	N/A	2,92	6.47	8,89	3.48	3.50	3.98
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	65	348	255	52.9	33.5	86.0
	Beryllium	100	100	200	200	100	N/A	NA	NA	NA	0.32 U	0,32 U	0.32 U
	Cadmium	2	2	30	30	2	N/A	0.59	1.60	1.38	0.60	0.34	0.72
	Chromium	30	30	200	200	30	N/A	8.70	16	18	9.34	7.73	13.0
	Lead	300	300	300	300	300	N/A	154	1,010	777	105	47.4	253
	Mercury	20	20	30	30	20	N/A	0.15	0.57	0.24	0.107	0.096	0.094
	Nickel	20	20	700	700	20	N/A	NA 0.70 II	NA O.C. II	NA	4.98	3.69	6.74
	Selenium	400	400	800	800	400	N/A	0.70 U	0.68 U 0.34 U	0.71 U	6.28 U 0.63 U	6,24 U	6.33 U
	Silver	100	100	200	200	100	N/A	0.35 U		0,35 U NA	55.00	0.63 U	0.64 U
	Vanadium Zine	600 2,500	600 2,500	1,000 3,000	1.000 3.000	600 2.500	N/A N/A	NA NA	NA NA	NA NA	14.8 78.3	14.8 47.9	17.6 151
Metals, T	CLP	4,500	2,,,000	2,000	2,000	2,300	14/71	1417	1472	14/7	10.5	71.7	131
(ug/L)	Lead, TCLP	NS	NS	NS	NS	NS	5.000(1)	NA	NA	NA	NA	NA	NA
[" J)	Mercury, TCLP	NS	NS	NS	NS	NS	20011	NA	NA	NA	NA	NA	NA

All units in mg/kg unless otherwise specified.

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).
NA - Sample not analyzed for the listed analyte.

U - Compound was not detected at specified quantitation limit.

J - Estimated value; below quantitation limit.

J - Estimated value, below quantitation limit,
B - Defected in associated laboratory method blank,
Values in Bold indicate the compound was detected.
Values shown in Bold and shaded type exceed one or more of the
listed Method I standards or TCLP standard, as applicable.

[Values shown in bold and outlined exceed TSCA standard.]

EPH - Extractable Petroleum Hydrocarbons PCBs - Polychlorinated Biphenyls

RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic

* - TRC developed standards.
- sample locations to be covered by pavement.

			-			Sam	ple Location:	HB23+HD23	HD19		HD-19A		HD-	-19B	HD-	-19C	HD-	-19D	+HD21		н	020	
Analysis	Analyte	e Lew 2	Le rewa	Le acura	Leagura.	Sampl	e Depth (ft.): Sample Date:	0.75-3 12/29/2004	2-3 12/29/2004	0-1 3/9/2009	1-3 3/9/2009	1-3 3/9/2009 Field Dup	0-1 3/9/2009	1-3 3/9/2009	0-1 3/9/2009	1-3 3/9/2009	0-1 3/9/2009	1-3 3/9/2009	1-3 12/29/2004	1.5-3 12/29/2004	0-1 4/2/2009	1-3 4/2/2009	1-3 4/2/2009 Field Dup
SVOCs/P	AHs	S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1^	TSCA	fina and and a				rieid Dup			CHEST VIEW CONTRACTOR	MILITAN DE RIGHTE				Berrings menocial			rieid Dup
(mg/kg)	Di-n-butylphthalate	NS	NS	NS	NS	50	N/A	0.81 U	NA	NA	ÑA	NA	NA	NA	NA	NA	NA	NA	0.93 U	NA	NA	NA	NA
	Dibenzofuran	10*	10*	NS	NS	100	N/A	0.27 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.87	NA	0.390 U	4.06 U	4.09 U
	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	0.27 U	NA	0.196 U	0.198 U	NA	0.187 U	0.189 U	0.191 U	0.387 U	0.204 U	0.188 U	1.1	NA	0.192 U	2.03 U	3.25
1	Acenaphthylene	600	10	600	10	1	N/A	0.27 U	NA	0.196 U	0.198 U	NA,	0.187 U	0.189 U	0.191 U	0.387 U	0.204 U	0.188 U	1.8	NA	0.192 U	2.03 U	2.05 U
1	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	0.27 U	NA	0.196 U	0.198 U	NA	0.187 U	0.189 U	0.191 U	0.387 U	0.204 U	0.467	6.7	NA NA	0.192 U	2.03 U	8.58
	Benzo(a)anthracene	7	7	40	40	7	N/A	0.41	NA	0.407	0.198 U	NA.	0.187 U	0.189 U	0.191 U	0.387 U	0,204 U	1.07 0.942	33	NA NA	0.192 U	2.03 U 2.03 U	14.6 12.0
	Benzo(a)pyrene	2 7	2 7	40	4	2	N/A	0.27 U	NA	0.414	0.198 U	NA NA	0.187 U 0.187 U	0,189 U 0.189 U	0.191 U 0.191 U	0.387 U 0.387 U	0.204 U 0.204 U	1.31	33 25	NA NA	0,192 U 0,192 U	2.03	17.3
	Benzo(b)fluoranthene	1,000	1,000	3,000	40 3,000	7 1,000	N/A N/A	0.27 U 0.27 U	NA NA	0.510 0.196 U	0.198 U 0.198 U	NA NA	0.187 U	0.189 U	0.191 U	0.387 U	0.204 U	0.439	33	NA NA	0.192 U	2.03 U	5.04
	Benzo(g,h,i)perylene Benzo(k)fluoranthene	70	70	400	400	70	N/A N/A	0.27 U	NA NA	0.190	0.198 U	NA NA	0.187 U	0.189 U	0.191 U	0.387 U	0.204 U	0.557	15	NA NA	0.192 U	2.03 U	6.34
	Chrysene	70	70	400	400	70	N/A	0.27	NA NA	0.408	0.198 U	NA NA	0.187 U	0.189 U	0.191 U	0.387 U	0.204 U	1.07	25	NA NA	0.192 U	2.03 U	14.7
	Dibenz(a,h)anthracene	0.7	0.7	4	4		N/A	0.27 U	NA	0.196 U	0.198 U	NA NA	0.187 U	0.189 U	0.191 U	0.387 U	0.204 U	0.188 U	0,31 U	NA	0.192 U	2.03 U	2,05 U
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	0.95	NA	1.17	0.389	NA	0.196	0.189 U	0.223	0.565	0.204 U	3.31	36	NA	0.192 U	3.40	31.0
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	0.27 U	NA	0.196 U	0.198 U	NA	0.187 U	0.189 U	0.191 U	0.387 U	0.204 U	0.188 U	1.8	NA NA	0.192 U	2.03 U	4.24
1	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	0.27 U	NA	0.196 U	0.198 U	NA	0.187 U	0.189 U	0.191 U	0.387 U	0,204 U	0.577	22	NA	0.192 U	2.03 U	5.96
	2-Methylnaphthalene	80	300	80	500	0.7	N/A	0.27 U	NA	0.196 U	0.198 U	NA	0.187 U	0.189 U	0.191 U	0.387 U	0.204 U	0.188 U	0.31	NA	0.192 U	2.03 U	2.05 U
1	Naphthalene	40	500	40	1,000	4	N/A	0.27 U	NA	0.196 U	0.198 U	NA	0.187 U	0.189 U	0.191 U	0.387 U	0,204 U	0.188 U	0.42	NA	0,192 U	2.03 U	2.05 U
-	Phenanthrene	500	500	1,000	1,000	10	N/A	0.3	NA	0.543	0.245	NA	0.187 U	0.189 U	0.204	0.447	0.204 U	2.03	25 35	NA NA	0.192 U	2.94 3.43	38.0 22.0
DCD.	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	0.74	NA	0.820	0.322	NA	0.187 U	0.189 U	0.191 U	0.603	0,204 U	2.02	35	NA	0,192 U	3,43	22.0
PCBs (mg/kg)	Aroclor 1248	2	2	3	3	2	1	NA	0.053 U	0.0574 U	0.0569 U	0.0567 U	0.0556 U	0.0536 U	0.0577 U	0.0553 U	0.0591 U	0.0546 U	NA	0.066 U	NA	NA	NA
(IIIg/Kg)	Aroclor 1254	2	2.	3	3	2	î	NA.	14.7	0.242 J	0.252 J	0.115 J	0.226 J	0.0536 U	0.0577 U	0.668 J	0.0591 U	0.250 J	NA	0.698	NA	NA	NA
	Aroclor 1260	2	2	3	3	2	ì	NA	0.053 U	0.0574 U	0.132 J	0.0818 J	0.0556 U	0.0536 U	0.0577 U	0.0553 U	0.0591 U	0.0826 J	NA	0.066 U	NA	NA	NA
1	Aroclor 1262	2	2	3	3	2	1	NA	3.96	NΛ	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.31	NA	NA	NA
	Total PCBs	2	2	3	3	2	1	NA	18.66	0.242 J	0.384 J	0.1968 J	0.226 J	0.0536 U	0.0577 U	0.668 J	0.0591 U	0.3326 J	NA	1.008	NA	NA	NA
PCB Hom																							
(mg/kg)	Pentachlorobiphenyl Total PCBs	N/A 2	N/A 2	N/A 3	N/A 3	N/A 2	N/A 1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Metals	3 0													2.02 **	205 71		0.04		0.40		2.07 11	- VP3	
(mg/kg)	Arsenic	20	20	20	20	20	N/A	2.59	NA	3.68	5.76	NA	2.80 U	2.83 U	2.87 U	14.4	3.06 U	4.11 146	8.19 776	NA NA	2.87 U 18.7	34.6 378	33.6 519
	Barium	1,000 2	1,000	3,000	3,000 30	1,000 2	N/A N/A	209 1.95	NA NA	174 0.65	316 1.21	NA NA	89.8 0.55	15.3 0.29 U	17.4 0.29 U	321 1.55	23.4 0.31 U	0.42	6.51	NA NA	0.29 U	2.36	1.71
	Cadmium Chronium	30	30	200	200	30	N/A N/A	21	NA NA	20.7	246	NA NA	11.1	1.90	4.78	24.1	5.77	17.6	77	NA NA	5.81	37.9	53.9
	Lead	300	300	300	300	300	N/A	183	NA NA	205	432	NA NA	156	5.32	20.3	525	20.8	195	1,220	NA	13.2	2,760	4,000
	Mercury	20	20	30	30	20	N/A	0.166	NA	0.277	0.316	NA	0.319	0.019 U	0.029	0.168	0.047	0.170	0.62	NA	NA	NA	NA
	Nickel	20	20	700	700	20	N/A	NA	NA	7.03	18.5	NA.	4.32	1.52	2.48	14.9	2.73	7.82	NA	NA	NA	NA	NA
	Silver	100	100	200	200	100	N/A	0.29 U	NA	0.59 U	0.60 U	NA	0.56 U	0.57 U	0.58 U	0.58 U	0.62 U	0.57 U	0.95	NA	NA	NA	NA
	Vanadium	600	600	1,000	1,000	600	N/A	NA	NA	17.2	68.8	NA.	10.5	5.65 U	7.68	18.6	11.4	13.7	NA	NA	NA	NA	NA
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	NA	NA	230	165	NA	84.1	16.4	20.8	262	20.8	91.4	NA	NA	NA	NA	NA
	Chromium (VI)	30	30	200	200	30	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals, T		NIC		110	110		100 000	27.4	27.4	D.T.A.	NIA	NI A	NTA.	NIA	N/A	NIA	N/A	N/A	NA.	NA	NIA	NI A	NI A
(ug/L)	Barium	NS	NS	NS	NS	NS NO	100,000	NA NA	NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Chromium Lead	NS NS	NS NS	NS NS	NS NS	NS NS	5,000 ⁽ⁱ⁾ 5,000 ⁽ⁱⁱ⁾	NA 440	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1.390	NA NA	NA NA	NA NA	NA NA
Oxidation	Reduction Potential	110	149	140	-149	110	5,000	110	11/1	11/1	1121	1171	1171	1421	1411	11/1	1111	****	1,000	1111	741		1
(mV)	Oxidation/Reduction Potential	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
pH (s.u.)	рН	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NANA	NA	NA	NA	NA	NA	NA	NA	NA

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

ug/L - micrograms per liter,

mV - milliVolt. s.u. - Standard unit.

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

NS - No MassDEP standards exist for this compound.

NS - NO MASSLEE Standards exist for this compound,
U - Compound was not detected at specified quantitation limit,
Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method 1 standards or TCLP standard, as applicable.

Values shown in Bold and outlined exceed TSCA but are less than the listed MassDEP Method 1 standards.

SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration

TCLP - Toxicity Characteristic Leaching Procedure.

TSCA - Toxic Substances Control Act critería.

2004 and 2005 Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic .

(a) - The sample was re-collected on 3/31/2009 and analyzed for dibenzofuran.

* - The sample exhibits altered PCB pattern; best possible Aroclor match reported.

** - TRC developed standards...

^ - For reference purposes only,
- sample location to be excavated,

						Sam	ple Location:	HD-	20A		HD-20B		HD-	20C	HD	-20D	HD-20E	HD-20F	HD-20G	HD-20H		HD21	
Analysis	Analyte						e Depth (ft.): Sample Date:	0-1 5/19/2009	1-3 5/19/2009	0-1 5/19/2009	1-3 5/19/2009	1-3 5/19/2009	0-1 5/19/2009	1-3 5/19/2009	0-1 5/19/2009	1-3 5/19/2009	1-3 5/19/2009	1-3 5/19/2009	1-3 5/19/2009	1-3 5/19/2009	1-3 12/29/2004	0-1 4/2/2009	1-3 4/2/2009
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1^	TSCA					Field Dup			Brad Stephanes				CHIDIDEE THE				
SVOCs/P (mg/kg)	AHs Di-n-butylphthalate	NS	NS	NS	NS	50	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA
	Dibenzofuran	10*	10*	NS	NS	100	N/A	NA	NA	NA	NA	NA	NA	NA	NA 0.40	NA NA	NA NA	NA	NA	NA.	NA	0.440 U	2.11 U
	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	0.20 U	0.47	0.20 U	0.41 U	0.21 U	0,20 U	0.20 U	0.19 U	0.42 U	NA NA	NA NA	NA NA	NA NA	NA NA	0.220 U 0.220 U	1.06 U 1.06 U
	Acenaphthylene	600	10	600 3,000	10	1 000	N/A	0.20 U	0.40 U	0.20 U 0.20 U	0.41 U 0.41 U	0.21 U 0.21 U	0.20 U 0.20 U	0.20 U 0.34	0.19 U 0.19 U	0.42 U 0.78	NA NA	NA NA	NA NA	NA NA	NA NA	0.220 U	1.56
	Anthracene Page (a) enthregene	1,000	1,000	40	3,000 40	1,000	N/A N/A	0.31 0.98	1.1 1.6	0.20 U	0.41 U	0.21 U	0,20 U	1.1	0.19 U	1.8	NA NA	NA NA	NA NA	NA NA	NA NA	0.341	5.64
1	Benzo(a)anthracene Benzo(a)pyrene	2	2	4	40	2	N/A	0.76	1.3	0.20 U	0.41 U	0.21 U	0.20 U	1.0	0.19 U	1.6	NA NA	NA	NA NA	NA	NA	0.220 U	4.94
1	Benzo(b)fluoranthene	7	7	40	40	7	N/A	1.0	1.6	0,20 U	0.41 U	0.21 U	0.20 U	1.5	0.19 U	1.9	NA NA	NA	NA	NA	NA	0.403	6,90
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	0.38	0.74	0.20 U	0.41 U	0.21 U	0.20 U	0.46	0.19 U	0.82	NA	NA	NA	NA	NA	0.220 U	2.09
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	0.40	0.67	0.20 U	0.41 U	0.21 U	0,20 U	0.57	0.19 U	0.75	NA	NA	NA	NA	NA	0.220 U	2.70
	Chrysene	70	70	400	400	70	N/A	0.98	1.6	0,20 U	0.41 U	0.21 U	0.20 U	1.2	0.19 U	1.9	NA	NA	NA	NA	NA	0.344	5.70
	Dibenz(a,h)anthracene	0.7	0.7	4	4	1	N/A	0.20 U	0.40 U	0.20 U	0.41 U	0.21 U	0,20 U	0.20 U	0.19 U	0,42 U	NA	NA	NA	NA	NA	0.220 U	1,06 U
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	1.8	3.1	0,20 U	0.41 U	0.21 U	0.20 U	2.0	0.19 U	3.4	NA	NA	NA	NA	NA	0.447	8.84
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	0.20 U	0.56	0.20 U	0.41 U	0.21 U	0,20 U	0.20 U	0.19 U	0.42 U	NA	NA	NA	NA	NA	0.220 U	1.06 U
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	0.46	0.59	0,20 U	0.41 U	0.21 U	0.20 U	0.56	0.19 U	1.0	NA NA	NA	NA	NA NA	NA	0,220 U	2.73
1	2-Methylnaphthalene	80	300	80 40	500	0.7 4	N/A	0.20 U	0.40 U	0.20 U 0.20 U	0.41 U	0.21 U	0,20 U 0,20 U	0.20 U	0.19 U 0.19 U	0.42 U 0.42 U	NA NA	NA NA	NA NA	NA NA	NA NA	0.220 U 0.220 U	1.06 U 1.06 U
	Naphthalene	40 500	500 500	1.000	1,000 1,000	10	N/A N/A	0.20 U 1.2	0.43 4.1	0.20 U	0.41 U 0.41 U	0.21 U 0.21 U	0.20 U	0.20 U 1.6	0.19 U	3.4	NA NA	NA NA	NA NA	NA NA	NA NA	0.495	6.94
	Phenanthrene Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	1.6	2.3	0.20 U	0.41 U	0.21 U	0.20 U	1.4	0.19 U	3.1	NA NA	NA	NA NA	NA NA	NA.	0.579	7.33
PCBs	1 yield	1,000	1,000	3,000	3,000	1,000				0,20					.,								
(mg/kg)	Aroclor 1248 Aroclor 1254	2 2	2	3	3	2	1	0.0556 U 0.105 J	0.376 U	0.0595 U 0.0595 U	0.0639 U	0.0629 U 0.408 J	0.0585 U 0.924 J	0.616 U 0.616 U	0.0567 U 0.069 J	0.0608 U	0,541 UJ 10.2 J	NA NA	NA NA	NA NA	0.057 U	NA NA	NA NA
	Aroclor 1260	2	2	3	3	2	i	0.0556 U	4.69 J	0.0595 U	0.395	0.334 J	0.0585 U	0.616 U	0.0567 U	0.0608 U	0,541 UJ	NA	NA	NA	0.057 U	NA	NA
	Aroclor 1262	2	2	3	3	2	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.057 U	NA	NA
	Total PCBs	2	2	3	3	2	1	0.105 J	10.80 J	0.0595 U	2.065 J	0.742 J	0.924 J	0.616 U	0.069 J	1.66 J	10.2 J	NA	NA	NA	1.525	NA	NA
PCB Hon	7 0																						
(mg/kg)	Pentachlorobiphenyl Total PCBs	N/A 2	N/A 2	N/A 3	N/A 3	N/A 2	N/A 1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Metals		00	20	20	20	20	27/1	0.0 ***		2.4		100	2.5	10	20.11		20 11	20 11	10	0.5	NIA	2.00 11	37/31
(mg/kg)	Arsenic	20	20	20	20	20	N/A	2.9 U 26	12 490	3.1	570	86 720	3.6 37	12 2,100	2.9 U 38	14 510	2.8 U 170	2.8 U 86	10 370	8.5 1,300	NA NA	3,29 U 160	24.2 3,520
	Barium Cadmium	1,000 2	1,000	3,000 30	3,000 30	1,000 2	N/A N/A	0.29 U	5.3	0.30 U	3.5	2.8	0.33	2,100	0.29	2.9	1.2	0.29	3.4	4.1	NA NA	0.38	5.67
	Chromium	30	30	200	200	30	N/A	6.4	57	6.7	66	42	8.4	99	6,9	58	NA	NA	NA	NA	NA.	10.4	595
	Lead	300	300	300	300	300	N/A	29	820	20	670	610	25	1,000	41	1,200	220	74	2,400	1,100	NA	88.5	1,740
1	Mercury	20	20	30	30	20	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nickel	20	20	700	700	20	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Silver	100	100	200	200	100	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Vanadium	600	600	1,000	1,000	600	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
N.C. 4 1 700	Chromium (VI)	30	30	200	200	30	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals, T	i -	NIC	No	NIC	NIO	NIG.	100.0000	NI A	NT A	NT A	NIA	NI A	NI A	NT A	NT A	NI A	NTA	NT A	NA	NA	NA	NA	NA
(ug/L)	Barium Chromium	NS NS	NS NS	NS NS	NS NS	NS NS	100,000 ^m	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Lead	NS NS	NS NS	NS NS	NS NS	NS NS	5,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Oxidation	Reduction Potential		- 110	1	- 1.5	-115																	
(mV) pH	Oxidation/Reduction Potential	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
(8.u.)	pН	N/A	N/A	N/A.	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

ug/L - micrograms per liter.

mV - milliVolt. s.u. - Standard unit.

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

NS - No MassDEP standards exist for this compound.

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method 1 standards or TCLP standard, as applicable.

Values shown in Bold and outlined exceed TSCA but are less than the listed MassDEP Method 1 standards.

SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration.

TCLP - Toxicity Characteristic Leaching Procedure.

TSCA - Toxic Substances Control Act criteria.

2004 and 2005 Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic .

(a) - The sample was re-collected on 3/31/2009 and analyzed for dibenzofuran-

* - The sample exhibits altered PCB pattern; best possible Aroclor match reported.

** - TRC developed standards.

^ - For reference purposes only.

TABLE 3-6

Summary of Detected Analytical Results for Soil Samples New Bedford High School - House Area (Exposure Point Area HS-6)

_			` 1
	New	Redford.	Massachusetts

						Sam	ple Location:	HD-	21A	HD-	21B		HD-21C		HD-	21D	HD-21E	HD-21F	HD-21G	HD-21H	Commence of the Control of the Contr	-21K	HD-210
Analysis	Analyte	S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3		e Depth (ft.): Sample Date: TSCA	0-1 5/20/2009	1-3 5/20/2009	0-1 5/20/2009	1-3 5/20/2009	0-1 5/20/2009	1-3 5/20/2009	1-3 5/20/2009 Field Dup	0-1 5/20/2009	1-3 5/20/2009	1-3 5/20/2009	1-3 5/20/2009	1-3 5/20/2009	1-3 5/20/2009	1-3 7/6/2009	1-3 7/6/2009 Field Dup	1-3 7/6/2009
SVOCs/P/	AHs	0 17077.2	0.11011.0	0.00.0	0.41011.4					agest Africa and a second													
(mg/kg)	Di-n-butylphthalate	NS	NS	NS	NS	50	N/A	NA	NA	NA	NΛ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Dibenzofuran	10*	10*	NS	NS	100	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA
	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	0.19 U	2.1 U	0.38 U	5.1 U	0.39 U	0.40 U	2.1 U	0.19 U	2.2	NA.	0.18 U	0,39 U	0.38 U	0.19 U	0.30	NA
	Acenaphthylene	600	10	600	10	1	N/A	0.19 U	2.1 U	0.38 U	12	0.39 U	0.40 U	2.1 U	0.19 U	2.0 U	NA	0.18 U	0.39 U	0.38 U	0.19 U	0.20 U	NA
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	0.19 U	2.1 U	0.38 U	35	0.86	0.40 U	4.0	0.19 U	8.5	NA	0.18 U	1.4	1.1	0.19 U	0.74	NA
	Benzo(a)anthracene	7	7	40	40	7	N/A	0.19 U	2.1 U	1.2	150	4.3	0.69	16	0.19 U	12	NA	0.18 U	7.4	5.5	0.60	2.1	NA
	Benzo(a)pyrene	2	2	4	4	2	N/A	0.19 U	2.1 U	1.1	130	4.1	0.83	16	0.19 U	8.9	NA	0.18 U	7.5	5.6	0.60	1.9	NA
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	0.19 U	2.1 U	1.3	160	5.3	0.89	21	0.19 U	- 11	NA	0.18 U	9.1	7.7	0.76	2.7	NA
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	0.19 U	2.1 U	0.48	43	1.5	0.60	5.5	0.19 U	3.2	NA	0.18 U	3.5	2,4	0.30	0.82	NA
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	0.19 U	2.1 U	0.54	57	1.9	0.40 U	8.4	0.19 U	4.4	NA	0.18 U	3.5	3,1	0.31	0.96	NA
	Chrysene	70	70	400	400	70	N/A	0.19 U	2.1 U	1.3	150	4,9	0.75	16	0.19 U	12	NA:	0.18 U	7.8	5,8	0.64	2.1	NA
	Dibenz(a,h)anthracene	0.7	0.7	4	4	1	N/A	0.19 U	2.1 U	0.38 U	14	0.40	0.40 U	2.1 U	0.19 U	2,0 U	NA	0.18 U	1.0	0.71	0.19 U	0.26	NA
	Fluoranthene	1,000	1,000	3,000	3.000	1,000	N/A	0.19 U	2.1 U	1.5	240	6.0	1.0	25	0.22	19	NA	0.18 U	12	8.3	1.0	3.6	NA
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	0.19 U	2.1 U	0.38 U	10	0.39 U	0.40 U	2.1 U	0.19 U	3.6	NA	0.18 U	0.40	0.38 U	0.19 U	0.36	NA
1	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	0.19 U	2.1 U	0.61	59	1.7	0.69	7.8	0.19 U	3.9	NA.	0.18 U	4.5	3.1	0.37	1.1	NA
	2-Methylnaphthalene	80	300	80	500	0.7	N/A	0.19 U	2.1 U	0.38 U	5.1 U	0.39 U	0.40 U	2.1 U	0.19 U	3.1	NA	0.18 U	0.39 U	0.38 U	0.19 U	0.20 U	NA
	Naphthalene	40	500	40	1,000	4	N/A	0.19 U	2.1 U	0.38 U	5.1 U	0.39 U	0.40 U	2.1 U	0.19 U	4.7	NA	0.18 U	0.39 U	0.38 U	0.19 U	0.32	NA
	Phenanthrene	500	500	1,000	1,000	10	N/A	0.19 U	2.1 U	0.84	150	3.3	0.84	16	0.19 U	32	NA	0.18 U	5.3	4.2	0.69	3.2	NA
	Pyrene	1,000	1.000	3,000	3,000	1,000	N/A	0.19 U	2.1 U	1.8	280	6.8	1.1	20	0.24	23	NA	0.18 U	11	6.8	0.90	2.7	NA
PCBs	r yrene	1,000	1,000	5,000	5,000	1,000	- 1111	3123															
(mg/kg)	Aroclor 1248	2	2	3	3	2	î.	0.0592 U	0.0578 U	0.116 U	0.122 U	0.0588 U	0.0583 U	0.181 U	0.117 U	0.229 U	NA	NA	NA	NA	NA	NA	NA
(IIIg/Kg)	Aroclor 1254	2	2	3] 3]	2	i i	0.561 J	1.20 J	1.87 J	0.649 J	0.699 J	0.494 J	0.181 UJ	2.44 J	0.229 U	NA	NA	NA	NA	NA	NA	NA
	Aroclor 1260	2	2	3] 3]	2	Ê	0.0592 U	0.0578 U	0.893 J	0.418 J	0.0588 U	0.498 J	2.77 J	0.117 U	0.229 U	NA	NA	NA	NA	NA	NA	NA
	Aroclor 1262	2	2	3	3	2	i	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Total PCBs	2	2	3] 3	2	î	0.561 J	1.20 J	2.763 J	1.07 J	0.699 J	0.992 J	2.77 J	2.44 J	0,229 U	NA	NA -	NA	NA	NA	NA	NA
PCB Hom					1					2611/1/06/11/15/6				10-10-10-10-10-10-10-10-10-10-10-10-10-1									
(mg/kg)	Pentachlorobiphenyl Total PCBs	N/A	N/A	N/A	N/A	N/A	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Metals	Total i CDs				-			1(71	TOT	101	103	107	101	701			7127	102	- 101				
(mg/kg)	Aronio	20	20	20	20	20	N/A	2.8 U	25	3.0	341	4.5	5.7	24	3.1	11	10	2.7 U	25	22	NA	NA	NA
(mg/kg)	Arsenic Barium	1,000	1,000	3,000	3,000	1,000	N/A	33	6,000	130	1,600	470	590	2,100	140	7,700	2,400	13	630	1,000	NA	NA	NA
		2	2	30	30	2	N/A	0.28 U	5.6	0.50	2.8	0.72	1.3	4.4	0.66	2.3	2.9	0.27 U	2.0	2.1	NA	NA	NA
	Cadmium Chromium	30	30	200	200	30	N/A N/A	4.8	1,300	15	3,800	34	46	640	20	260	310	2.1	51	54	NA	NA NA	NA
		300	300	300	300	300	N/A	36	2,200	200	2,500	540	540	1.800	110	470	1,600	4.6	680	1300	400	970	1,400
	Lead	20	20	300	300	20	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Mercury Nickel	20	20	700	700	20	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA.	NA	NA NA	NA NA	NA.
	Silver	100	100	200	200	100	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA.	NA	NA NA	NA NA	NA
		600	600	1.000	1.000	600	N/A N/A		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA
	Vanadium			1 '	1 ' 1	2,500	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
	Zinc Chromium (VI)	2,500 30	2,500	3,000 200	3,000 200	30	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Metals, To		50	30	200	200	30	14/74	14/7	14/7	1472	14/7	11/7	IVA	MA	A 17 k	14/3	11/21	2321	177	. 121	177		. 11.4
		NS	NS	NS	NS	NS	100,000(1)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
(ug/L)	Barium		ı	NS NS			5.000 ⁽ⁱ⁾		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Chromium Lead	NS NS	NS NS	NS NS	NS NS	NS NS	5,000 ⁽¹⁾	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Ovidation	Reduction Potential	1/2	IND	INO	119	149	3,000	INA	INA	INA	19/3	IVA	IVA	IVA	IVA	1777	14//	14/3	7372	1177	1371	1775	1147
(mV)	Oxidation/Reduction Potential	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA NA	NA	NA	NA.	- NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
pH (s.u.)	рН	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

ug/L - micrograms per liter.

mV - milliVolt.

s.u. - Standard unit.

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

NS - No MassDEP standards exist for this compound.

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method 1 standards or TCLP standard, as applicable.

Values shown in Bold and outlined exceed TSCA but are less than the listed MassDEP Method 1 standards.

SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration

TCLP - Toxicity Characteristic Leaching Procedure.

TSCA - Toxic Substances Control Act criteria.

2004 and 2005 Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic +

(a) - The sample was re-collected on 3/31/2009 and analyzed for dibenzofuran.

* - The sample exhibits altered PCB pattern; best possible Aroclor match reported-

** - TRC developed standards.

^ - For reference purposes only.
- sample location to be excavated.

Page 3 of 8

TABLE 3-6 Summary of Detected Analytical Results for Soil Samples New Bedford High School - House Area (Exposure Point Area HS-6)

New Bedford, Massachusetts

Analysis	A NA	HF-14D 1-3 3/11/2009 NA	0-1 3/11/2009 NA NA 0.184 U 0.184 U 0.184 U 0.184 U 0.187	NA NA 0.381 U 0.754 6.81	1-3 3/11/2009 Field Dup NA NA 0.186 U 0.186 U 0.671 1.07
SVOCKP AHS	A NA	NA	NA NA 0.184 U 0.184 U 0.184 U 0.184 U 0.184 U 0.187	NA NA 0.381 U 0.754 6.81	3/11/2009 Field Dup NA NA 0.186 U 0.186 U 0.671
Section Sect	A NA NA NA O.176 U A O.176 U A O.366 A O.377 A O.290 A O.176 U A O.367 A O.176 U A O.367 A O.176 U A O.367 A O.176 U A O.533	NA NA NA NA NA NA NA NA	NA NA 0.184 U 0.184 U 0.184 U 0.184 U 0.187	NA NA 0.381 U 0.381 U 0.754 6.81	NA NA 0.186 U 0.186 U 0.671
SYOCAPAHS	A NA 0.176 U 0.176 U 0.176 U 0.339 A 0.366 A 0.377 A 0.290 A 0.176 U 0.367 A 0.176 U A 0.367 A 0.176 U A 0.533	NA U NA NA NA NA NA NA NA NA	NA 0.184 U 0.184 U 0.184 U 0.184 U 0.187	NA 0.381 U 0.381 U 0.754 6.81	NA NA 0.186 U 0.186 U 0.671
Dibenzofurian 10° 10° NS NS 100 N/A NA NA NA NA NA NA N	A NA 0.176 U 0.176 U 0.176 U 0.339 A 0.366 A 0.377 A 0.290 A 0.176 U 0.367 A 0.176 U A 0.367 A 0.176 U A 0.533	NA U NA NA NA NA NA NA NA NA	NA 0.184 U 0.184 U 0.184 U 0.184 U 0.187	NA 0.381 U 0.381 U 0.754 6.81	NA 0.186 U 0.186 U 0.671
Accaraphthene	A 0.176 U A 0.176 U A 0.176 U A 0.339 A 0.366 A 0.377 A 0.290 A 0.176 U A 0.367 A 0.176 U A 0.533	U NA U NA NA NA NA NA NA	0.184 U 0.184 U 0.184 U 0.184 U 0.187	0.381 U 0.381 U 0.754 6.81	0.186 U 0.186 U 0.671
Accessphitylene	A 0.176 U A 0.176 U A 0.339 A 0.366 A 0.377 A 0.290 A 0.176 U A 0.367 A 0.253	J NA J NA NA NA NA NA	0.184 U 0.184 U 0.184 U 0.187	0.381 U 0.754 6.81	0.186 U 0.671
Anthracene 1,000 1,000 3,000 3,000 1,000 N/A NA NA NA 0,241 0,423 1,44 NA 0,190 U 0,626 7.8 Benzo(a)pyrene 2 2 4 4 4 2 N/A NA NA NA 0,493 1,22 4.5 NA 0,190 U 1,24 2.5 Benzo(b)floramthene 7 7 40 40 7 N/A NA NA NA 0,493 1,22 4.5 NA 0,190 U 1,001 3,001 Benzo(b)floramthene 7 7 7 40 40 7 N/A NA NA NA 0,218 0,577 4.2 NA 0,190 U 1,003 3,401 Benzo(b)floramthene 7 7 7 40 40 7 N/A NA NA NA 0,2218 0,577 4.2 NA 0,190 U 0,362 21 Benzo(b)floramthene 7 7 7 40 40 7 N/A NA NA NA 0,2218 0,577 4.2 NA 0,190 U 0,362 21 Benzo(b)floramthene 7 7 40 40 7 N/A NA NA NA 0,239 0,622 2.1 NA 0,190 U 0,362 11 Chrysene 7 7 40 40 40 7 N/A NA NA NA 0,551 1,35 3,8 NA 0,190 U 0,362 21 Dibenz(a,hanthracene 0,7 40 40 7 N/A NA NA NA 0,99 U 0,191 U 0,29 U NA 0,190 U 0,206 U 0,30 U Floramthene 1,000 1,000 3,000 3,000 1,000 N/A NA NA 0,199 U 0,191 U 0,422 NA 0,190 U 0,206 U 0,31 U Benzo(b)floramthene 7 7 40 40 7 N/A NA NA NA 0,199 U 0,191 U 0,422 NA 0,190 U 0,206 U 0,31 U Floramthene 1,000 1,000 3,000 3,000 1,000 N/A NA NA NA 0,199 U 0,191 U 0,422 NA 0,190 U 0,206 U 0,420 U Benzo(b)floramthene 7 7 40 40 7 N/A NA NA NA 0,199 U 0,191 U 0,29 U NA 0,190 U 0,206 U 0	A 0.176 U 0.339 A 0.366 A 0.377 A 0.290 A 0.176 U A 0.367 A 0.290 A 0.176 U 0.533	U NA NA NA NA NA	0.184 U 0.184 U 0.187	0.754 6.81	0.671
Anthracene 1,000 1,000 3,000 3,000 1,000 N/A NA NA NA 0,241 0,423 1,4 NA 0,190 U 0,626 7.8 Benzo(a)pyrene 2 2 4 4 2 N/A NA NA NA 0,493 1,22 4.5 NA 0,190 U 1,001 2.5 Benzo(b)floranthene 7 7 40 40 7 N/A NA NA NA NA 0,493 1,22 4.5 NA 0,190 U 1,001 2.5 Benzo(b)floranthene 7 7 40 40 7 N/A NA NA NA 0,688 1,66 6.1 NA 0,190 U 1,001 3,44 1.0 Benzo(b)floranthene 7 7 40 40 7 N/A NA NA NA 0,218 0,577 4.2 NA 0,190 U 0,362 21 Benzo(b)floranthene 7 7 40 40 7 N/A NA NA NA 0,229 0,622 2.1 NA 0,190 U 0,362 21 Benzo(b)floranthene 7 7 40 40 7 N/A NA NA NA 0,218 0,577 4.2 NA 0,190 U 0,362 21 Benzo(b)floranthene 7 7 40 40 7 N/A NA NA NA 0,219 0,622 2.1 NA 0,190 U 0,362 21 Benzo(b)floranthene 7 7 40 40 7 N/A NA NA NA NA 0,551 1,35 3,8 NA 0,190 U 0,362 21 Benzo(b)floranthene 7 7 40 40 7 N/A NA NA NA 0,551 1,35 3,8 NA 0,190 U 0,362 21 Benzo(b)floranthene 7 7 40 40 7 N/A NA NA NA 0,199 U 0,191 U 0,29 U NA 0,190 U 0,206 U 0,30 U Floranthene 1,000 1,000 3,000 3,000 1,000 N/A NA NA NA 0,199 U 0,191 U 0,42 NA 0,190 U 0,206 U 0,31 U 0,42 NA 0,190 U 0,206 U 0,410 U	A 0.339 A 0.366 A 0.377 A 0.290 A 0.176 U A 0.367 A 0.176 U A 0.533	NA NA NA NA	0.184 U 0.187	6.81	
Benzo(a)pyrene	A 0.366 A 0.377 A 0.290 A 0.176 U A 0.367 A 0.176 U A 0.533	NA NA NA	0.187		1.07
Benzo(a)pyrene	A 0.377 A 0.290 A 0.176 U A 0.367 A 0.176 U O.533	NA NA			1 1.07
Betrizo(jh)tiporanthene	A 0.377 A 0.290 A 0.176 U A 0.367 A 0.176 U O.533	NA NA		5.85	0.912
Benzo(g,h,i)perylene	A 0.290 A 0.176 U A 0.367 A 0.176 U O.533	NA	0.209	7.54	1.02
Benzo(k)fluoranthene	A 0.176 U A 0.367 A 0.176 U A 0.533		0.184 U	2.43	0.415
Chrysene	A 0.367 A 0.176 U A 0.533	2 11/1	0.184 U	2.76	0.397
Dibenz(a,h)anthracene	A 0.176 U A 0.533	NA	0.188	6.11	1.03
Fluoranthene	A 0.533	J NA	0.184 U	0.833	0.186 U
Fluorene		NA NA	0.242	8.44	1.75
Indeno(1,2,3-cd)pyrene	/s I U.1/0 U	J NA	0.242 0.184 U	0.381 U	0.276
2-Methylnaphthalene					
Naphthalene		NA	0.184 U	3.79	0.545
Phenanthrene	A 0.176 U	J NA	0.184 U	0.381 U	0.186 U
Pyrene	A 0.176 U	J NA	0.184 U	0.381 U	0.295
PCBs (mg/kg) Aroclor 1248 2 2 3 3 2 1 NA 0.061 U 0.0546 U 0.168 U NA 0.054 U NA NA NA 1.14 U 1 Aroclor 1254 2 2 3 3 2 1 NA 4.79 0.132 J 2.42 J NA NA NA NA NA 0.72 1 Aroclor 1260 2 2 3 3 2 1 NA 0.0546 U 0.168 U NA	A 0.368	NA	0.184 U	1.43	2.24
(mg/kg) Aroclor 1248 2 2 3 3 2 1 NA 0.061 U 0.0546 U 0.168 U NA 0.054 U NA NA 1.14 U 1 Aroclor 1254 2 2 3 3 2 1 NA 4.79 0.132 J 2.42 J NA NA NA NA 0.72 1 Aroclor 1260 2 2 2 3 3 2 1 NA 0.061 U 0.0546 U 0.168 U NA N	A 0.670	NA	0.308	9.19	1.94
Aroclor 1254 2 2 3 3 3 2 1 NA 4.79 0.132 J 2.42 J NA 3.74 NA NA 0.72 1 Aroclor 1260 2 2 3 3 3 2 1 NA 0.054 U NA NA NA NA 1.14 U 1 Aroclor 1262 2 2 3 3 3 2 1 NA 0.654 NA 0.720 J NA 0.054 U NA			0.0500 **	0.150 77	0.015 7
Aroclor 1260 2 2 3 3 3 2 1 NA 0.061 U 0.0546 U 0.168 U NA 0.054 U NA NA 1.14 U 1 Aroclor 1262 2 2 3 3 3 2 1 NA 0.654 NA			0.0580 U	0.172 U	0.215 U
Aroclor 1262 2 2 3 3 3 2 1 NA 0.654 NA NA NA 0.418 NA NA NA 1.14 U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A 1.41 J		0.0580 U	3.00 J	3.31 J
Total PCBs 2 2 3 3 2 1 NA 5.444 0.132 J 2.42 J NA 4.158 NA NA 0.720 1 PCB Homologs (mg/kg) Pentachlorobiphenyl N/A N/A N/A N/A N/A N/A N/A N/A NA	A 0.613 J		0.0580 U	1.59 J	2.10 J
PCB Homologs (mg/kg) Pentachlorobiphenyl N/A N/A <th< td=""><td>A NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></th<>	A NA	NA	NA	NA	NA
(mg/kg) Pentachlorobiphenyl N/A	A 2.023 J	NA	0.0580 U	4.59 J	5.41 J
Total PCBs 2 2 3 3 2 1 NA					No.
	A NA A NA	NA NA	NA NA	NA NA	NA NA
	A NA	NA	2,76 U	6.37	2.85
Barium 1,000 1,000 3,000 3,000 1,000 N/A NA NA S8.8 218 899 NA 36.5 385 6,700 2,5		8,480	38.0	1,300	203
Cadmium 2 2 30 30 2 N/A NA NA 0.38 1.26 4.71 NA 0.29 U 1.35 12 3		4.26	0.28 U	1.31	0.45
Chromium 30 30 200 200 30 N/A NA NA 10.9 22.9 52 NA 7.09 28.8 1,290 9		857	6.08	160	31.4
The state of the s	88.6	1,200	62.1	1,020	552
	A NA	NA	0.071	0.279	0.230
	A NA	NA	NA	NA	NA
	A NA	NA	NA	NA	NA
	A NA	NA	NA.	NA	NA
	A NA	NA	NA	NA	NA
	A NA	NA	NA	NA	NA
Metals, TCLP					
	A NA	NA	NA	NA	NA
	A NA	NA	NA	NA	NA
	A NA	NA	NA	NA	NA
Oxidation/Reduction Potential					
mV) Oxidation/Reduction Potential N/A N/A N/A N/A N/A N/A N/A NA		NA	NA	NA	NA
8.0.) pH N/A N/A N/A N/A N/A N/A NA	A NA	NA	-NA	NA	NA

mg/Kg - milligrams per kilogram (dry weight) or parts per million (ppm).
ug/L - micrograms per liter,
mV - milliVolt.

s.u. - Standard unit.

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable

NS - No MassDEP standards exist for this compound.

U - Compound was not detected at specified quantitation limit:

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded (type exceed one or more of the listed Method 1 standards or TCLP standard, as applicable.

Values shown in bold and outlined exceed TSCA but are less than the listed MassDEP Method 1 standards.

SVOCs - Semivolatile Organic Compounds

PCBs - Polychlorinated Biphenyls

RC - Reportable Concentration

TCLP - Toxicity Characteristic Leaching Procedure.

TSCA - Toxic Substances Control Act criteria.

2004 and 2005 Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic -

(a) - The sample was re-collected on 3/31/2009 and analyzed for dibenzofuran.

* - The sample exhibits altered PCB pattern; best possible Aroclor match reported. ** - TRC developed standards.

^ - For reference purposes only.

		<u> </u>				Sam	ple Location:	tre tre	-14G	HF-	1411	HF-141		нн13		нн	-13A		HH-13AA		ни	-13B
Analysis	Analyte	S-1/GW-2	S-UGW-3	l saigwa	S-2/GW-3	Sampl	e Depth (ft.): Sample Date:	0-1 3/11/2009	1-3 3/11/2009	0-1 3/11/2009	1-3 3/11/2009	1-3 4/8/2009	1.5-3 12/29/2004	0-1 4/3/2009	1-3 4/3/2009	0-1 3/11/2009	1-3 3/11/2009	1-3 5/20/2009	1-3 5/20/2009	3.5-4 5/20/2009	0-1 3/11/2009	1-3 3/11/2009
SVOCs/P (mg/kg)	AHs Di-n-butylphthalate Dibenzofuran Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene	NS 10* 1,000 600 1,000 7 2 7 1,000 70 0.7 1,000 1,000 7 80	NS 10* 1,000 10 1,000 7 2 7 1,000 70 0.7 1,000 1,000 7 300	NS NS 3,000 600 3,000 40 4 40 400 400 400 400 400 80	NS NS 3,000 10 3,000 40 4 40 3,000 400 400 4 400 4 5,000 500	50 100 4 1 1,000 7 2 7 1,000 70 70 1 1,000 7 0.7	N/A	NA NA O.203 U	NA NA 0.981 U 0.981 U 0.981 U 1.13 0.981 U 1.21 0.981 U 0.981 U 1.17 0.981 U 1.87 0.981 U 0.981 U	NA 0.380 U 0.198 U	NA 0.370 U 0.182 U	NA N	38 U 28 46 13 U 150 400 360 460 140 200 280 13 U 790 46 140	NA 0.400 U NA	NA 6.60 NA	NA NA 0.196 U 0.196 U	NA NA 0.385 U 0.385 U	NA N	NA N	NA N	NA NA 0.222 U 0.222 U 0.294 0.621 0.528 0.672 0.281 0.250 0.621 0.222 U 1.09 0.222 U 0.341 0.222 U	NA NA 0.443 0.198 U 0.754 1.37 1.17 1.42 0.564 0.513 1.34 0.198 U 2.53 0.366 0.714 0.198 U
PCBs (mg/kg)	Naphthalene Phenanthrene Pyrene Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Total PCBs	40 500 1,000 2 2 2 2 2 2	500 500 1,000 2 2 2 2 2 2	3 3 3 3 3 3 3	1,000 1,000 3,000 3 3 3 3 3 3	4 10 1,000 2 2 2 2 2 2	N/A N/A N/A 1 1 1 1	0.203 U 0.203 U 0.203 U 0.0563 U 0.322 J 0.121 J NA 0.443 J	0.981 U 2.10 1.67 0.138 U 0.949 J 0.565 J NA 1.514 J	0.198 U 0.198 U 0.198 U 0.0555 U 0.129 J 0.0555 U NA 0.129 J	0.182 U 0.182 U 0.182 U 0.0540 U 0.439 J 0.262 J NA 0.701 J	NA NA NA NA NA NA NA	53 1,000 780 0.065 U 1.21 0.065 U 0.065 U 1.21	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	0.196 U 0.196 U 0.196 U 0.0585 U 0.104 J 0.0585 U NA 0.104 J	0.385 U 0.385 U 0.385 U 0.0538 U 1.02 J 0.0538 U NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	0.222 U 1.23 1.08 0.0636 U 0.833 J 0.0636 U NA 0.833 J	0.198 U 3.10 2.62 0.0547 U 0.210 J 0.0547 U NA 0.210 J
PCB Hon (mg/kg)	lologs Pentachlorobiphenyl Total PCBs	N/A 2	N/A 2	N/A 3	N/A 3	N/A 2	N/A 1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Metals (mg/kg)	Arsenic Barium Cadmium Chromium Lead Mercury Nickel Silver Vanadium Zinc Chromium(VI)	20 1,000 2 30 300 20 20 100 600 2,500 30	20 1,000 2 30 300 20 20 100 600 2,500 30	20 3,000 30 200 300 30 700 200 1,000 3,000 200	20 3,000 30 200 300 30 700 200 1,000 3,000 200	20 1,000 2 30 300 20 20 100 600 2,500 30	N/A N/A N/A N/A N/A N/A N/A N/A N/A	4.82 71.1 0.40 11.6 54.7 0.079 NA NA NA	10.1 3,330 2.42 1,180 579 0.222 NA NA NA NA	2.97 U 22.6 0.30 U 5.55 18.1 0.045 NA NA NA	2.73 U 22.5 0.28 U 5.94 17.7 0.022 NA NA NA NA	NA 6,550 2.39 1,250 8,860 NA NA NA NA	25 2,910 4.81 1,100 333 0.38 NA 0.38 U NA NA	NA N	NA N	2.94 U 20.0 0.30 U 4.57 10.0 NA NA NA NA NA	10.9 1,280 0.63 492 216 NA NA NA NA NA	NA NA NA 350 NA NA NA NA NA	NA NA NA 390 NA NA NA NA NA	NA NA NA 2000 NA NA NA NA NA NA	40.0 7,920 2.01 1,960 543 NA NA NA NA NA	2.97 U 142 0.37 17.2 72.3 NA NA NA NA NA NA
Metals, T (ug/L)	Barium Chromium	NS NS	NS NS	NS NS	NS NS	NS NS	100,000 ⁽¹⁾ 5,000 ⁽¹⁾	NA NA	NA NA	NA NA	NA NA	NA NA	2,660 30	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Oxidation	Lead Reduction Potential Oxidation/Reduction Potential	NS N/A	NS N/A	NS N/A	NS N/A	NS N/A	5,000 ⁽¹⁾ N/A	NA NA	NA NA	NA NA	NA NA	NA NA	160 NA	NA NA	NA NA	NA NA	NA NA	170	NA 250	NA 250	NA NA	NA NA
pH (s.u.)	pH	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	7.0	7.1	7.4	NA	NA

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm)

ug/L - micrograms per liter. mV - milliVolt:

s.u. - Standard unit.

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte,

N/A - Not applicable.

NS - No MassDEP standards exist for this compound.

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method 1 standards or TCLP standard, as applicable.

Values shown in bold and outlined exceed TSCA but are less than the listed MassDEP Method 1 standards.

SVOCs - Semivolatile Organic Compounds. PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration

TCLP - Toxicity Characteristic Leaching Procedure.

TSCA - Toxic Substances Control Act criteria.

2004 and 2005 Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristics

(a) - The sample was re-collected on 3/31/2009 and analyzed for dibenzofuran.

* - The sample exhibits altered PCB pattern; best possible Aroclor match reported.

** - TRC developed standards.

^ - For reference purposes only - sample location to be excavated.

TABLE 3-6 Summary of Detected Analytical Results for Soil Samples New Bedford High School - House Area (Exposure Point Area HS-6)

New Bedford, Massachusetts

						Sam	ple Location:	нн-	3BB	нн	-13C	НН-	13CC		HH-13D			13DD		I-13E		-13F
Analysis	Analyte	1					e Depth (ft.); Sample Date:	1-3 5/20/2009	3-4 5/20/2009	0-1 3/11/2009	1-3 3/11/2009	1-3 5/20/2009	3-4 5/20/2009	0-1 3/11/2009	1-3 3/11/2009	1-3 3/11/2009	1-3 5/20/2009	3.5-4 5/20/2009	0-1 3/11/2009	1-3 3/11/2009	0-1 3/11/2009	1-3 3/11/2009
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1^	TSCA		Manager Inc							Field Dup						
SVOCs/P	· Control of the cont									2								37.1		27.4	274	27.4
(mg/kg)	Di-n-butylphthalate	NS	NS	NS	NS	50	N/A	NA	NA	NA	NA	NA										
	Dibenzofuran	10*	10*	NS	NS	100	N/A	NA	NA	NA	NA	NA										
	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	NA	NA	0.193 U	1.85	NA	NA	0.192 U	0.421	0.448	NA	NA	NA	NA	NA	NA
	Acenaphthylene	600	10	600	10	1	N/A	NA	NA	0.193 U	0.538 U	NA	NA	0.192 U	0.409 U	0.429 U	NA	NA	NA	NA	NA	NA
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	0.193 U	4.31	NA	NA	0.192 U	1.03	1.20	NA	NA	NA	NA	NA	NA
	Benzo(a)anthracene	7	7	40	40	7	N/A	NA	NA	0,193 U	8.08	NA	NA	0.192 U	2.43	3.00	NA	NA	NA	NA	NA	NA
	Benzo(a)pyrene	2	2	4	4	2	N/A	NA	NA	0,193 U	6.85	NA	NA	0.192 U	2.14	2.69	NA	NA	NA	NA	NA	NA
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	NA	NA	0.193 U	9.60	NA	NA	0.192 U	2.74	3.61	NA	NA	NA	NA	NA	NA,
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	0.193 U	2,61	NA	NA	0.192 U	0.973	1.13	NA	NA	NA	NA	NA	NA
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	NA	NA	0.193 U	3.67	NA	NA	0.192 U	1.09	1.34	NA	NA	NA	NA	NA	NA
	Chrysene	70	70	400	400	70	N/A	NA	NA	0.193 U	8.23	NA	NA	0.192 U	2.40	3.01	NA	NA	NA	NA	NA	NA
	Dibenz(a,h)anthracene	0.7	0.7	4	4	1 1	N/A	NA	NA	0.193 U	0.822	NA	NA	0.192 U	0.409 U	0.429 U	NA	NA	NA	NA	NA	NA
	Fluoranthene	1,000	1.000	3,000	3,000	1,000	N/A	NA	NA	0.193 U	17.6	NA	NA	0.192 U	4.41	5.32	NA	NA	NA	NA	NA	NA.
	Fluorene	1.000	1,000	3,000	3.000	1,000	N/A	NA	NA	0.193 U	2.21	NA	NA	0.192 U	0.456	0.484	NA	NA	NA	NA	NA	NA
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	NA	NA	0.193 U	3.49	NA	NA	0.192 U	1.28	1.43	NA	NA	NA	NA	NA	NA
	2-Methylnaphthalene	80	300	80	500	0.7	N/A	NA	NA	0.193 U	0.675	NA	NA	0.192 U	0.409 U	0.429 U	NA	NA	NA	NA	NA	NA
	Naphthalene	40	500	40	1.000	4	N/A	NA	NA	0.193 U	0.982	NA	NA	0.192 U	0.409 U	0.429 U	NA	NA	NA	NA	NA	NA
	Phenanthrene	500	500	1.000	1,000	10	N/A	NA	NA	0.193 U	21.0	NA.	NA	0.192 U	4.04	4.94	NA	NA	NA	NA	NA	NA
	Pyrene	1,000	1.000	3.000	3,000	1,000	N/A	NA	NA	0.193 U	11.8	NA	NA	0,192 U	3.88	4.52	NA	NA	NA	NA	NA	NA
PCBs	Tytene	1,000	1,000	2,000	5,000	1,000				01170												
(mg/kg)	Aroclor 1248	2	2	3	3	2	i i	NA	NA	0.0556 U	0.0575 U	NA	NA	0.0546 U	18.1 J	4.67 J	NA	NA	NA	0.636 U	NA	NA.
mg/kg)	Aroclor 1254	2	2	3	3	2	î	NA	NA NA	0.142 J	0.113 J	NA	NA	0.67 J	27.9 J	20.7 J	NA	NA	NA	15.7 J	NA	NA
	Aroclor 1260	2	2	3	3	2	1	NA	NA	0.0556 U	0.0575 U	NA	NA	0.0546 U	1.31 U	3.08 J	NA	NA	NA	7.37 J	NA	NA
	Aroclor 1262	2	2	3	3	2	î	NA	NA.	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA
	Total PCBs	2	2	3	3	2		NA	NA.	0.142 J	0.113 J	NA NA	NA	0.67 J	46.0 J	28.45 J	NA	NA	NA	23.07 J	NA	NA
CB Hon				,	,			1473	1421	0.172 J	V.113 3	101	107	0.07 3	39.9	-	1111	1111	101	2500	7.0.2	
	. 0	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA										
(mg/kg)	Pentachlorobiphenyl Total PCB:	N/A	N/A	N/A	1N/A	N/A 2	1N/A	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
Metals	Total FCB	5			J			NA	1021	TUL	INA	1171	1411	11//	101	7,772		1121	1111	1		
	Assonia	20	20	20	20	20	N/A	NA	NA	2.90 U	31.9	NA	NA	2.88 U	16.7	14.5	NA	NA	2,93 U	29.9	2.86 U	3.74
mg/kg)	Arsenic			3,000	3,000	1,000	N/A	NA NA	NA NA	41.9	6,780	NA NA	NA NA	27.7	3,850	3,330	NA NA	NA	232	2,460	110	443
	Barium	1,000	1,000		3,000					0.29 U	40.6	NA NA	NA NA	0.48	7.47	8.09	NA NA	NA NA	0.30 U	4.95	0.29 U	0.52
	Cadmium	20	30	30 200		30	N/A	NA 220	NA 87	6.74	384	750	3,800	5.52	594	496	230	310	10.6	7,800	12.0	35.5
	Chromium	30		300	200	300	N/A N/A			21.9	3,250		NA	18.4	987	982	NA	NA	36.2	501	32.6	119
	Lead	300	300		300			NA NA	NA NA	l		NA NA	NA NA	NA		NA	NA NA	NA NA	NA	NA	NA	NA
	Mercury	20	20	30 700	30	20	N/A	NA NA	NA NA	NA NA	NA NA	NA NA										
	Nickel	20	20		700	20	N/A	NA	NA NA	NA NA	NA NA	NA NA			1		1	NA NA		NA NA	NA NA	NA NA
	Silver	100	100	200	200	100	N/A	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	1	NA NA			
	Vanadium	600	600	1,000	1,000	600	N/A	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA NA
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	NA 0.45 II	NA 10 H	NA NA	NA NA	NA 0.49	NA 0.39 U	NA NA	NA NA	NA NA	NA 1.1 U	NA 2.7	NA NA	NA NA	NA NA	NA NA
	Chromium (VI)	30	30	200	200	30	N/A	0.45 U	1.0 U	NA	NA	0.48	0.39 U	NA	NA	NA.	1,1 U	4.1	INA	IVA	INA	INA
	CLP			20.00			400.0000					.,,						N. A.	N7.4	27.4	, NT A	NT A
ug/L)	Barium	NS	NS	NS	NS	NS	100,000(1)	NA	NA	NA	NA NA	NA										
	Chromium	NS	NS	NS	NS	NS	5,000(1)	NA	NA	NA	NA	NA:										
	Lead	NS	NS	NS	NS	NS	5,000(1)	. NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Reduction Potential																4=0	4.26	332			
mV)	Oxidation/Reduction Potential	N/A	N/A	N/A	N/A	N/A	N/A	200	200	NA.	NA	240	120	NA	NA	NA	170	160	NA	NA	NA	- NA
H	nu nu	N/A	N/A	N/A	N/A	N/A	N/A	6,7	7,3	NA	NA	6.0	6.7	NA	NA	NA	7.6	7.2	NA	NA NA	NA	NA
s.u.)	pН	NIA	I IN/A	IV/A	IN/A	I IN/A	IN/A	υ./	1.0	INA	INA	1 0.0	0.7	14/4	1,47,7	INA	1 /.0	1.4	INA	I INA	14/7	74/7

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

ug/L - micrograms per liter.

mV - milliVolt.

s.u. - Standard unit.

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

NS - No MassDEP standards exist for this compound.

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method 1 standards or TCLP standard, as applicable.

Values shown in Bold and outlined exceed TSCA but are less than the listed MassDEP Method 1 standards.

SVOCs - Semivolatile Organic Compounds. PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration.

TCLP - Toxicity Characteristic Leaching Procedure,

TSCA - Toxic Substances Control Act criteria.

2004 and 2005 Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic .

(a) - The sample was re-collected on 3/31/2009 and analyzed for dibenzofuran.

* - The sample exhibits altered PCB pattern; best possible Aroclor match reported,

** - TRC developed standards.

^ - For reference purposes only.

TABLE 3-6

Summary of Detected Analytical Results for Soil Samples New Bedford High School - House Area (Exposure Point Area HS-6) New Bedford, Massachusetts

						Sam	ple Location:	НН-	13G	ни	13H	HH-13I	HH-13J	HH-30A	HJ-25A	HRE-10	HRG-12A	HRG-14A	HS-11	HS-12	NBHS-SS-1	NBHS-SS-2	NBHS-SS-3	NBHS-SS-4
Analysis	Analyte						le Depth (ft.):	0-1	1-3	0-1	1-3	1-3	1-3	1-3	1-3	1-3	1-3	1-3	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
7 111113010	Tinaryte						Sample Date:	3/11/2009	3/11/2009	3/11/2009	3/11/2009	4/8/2009	4/8/2009	4/2/2009	4/1/2009	3/31/2009	4/1/2009	4/1/2009	9/9/2004	9/9/2004	8/6/2008	8/6/2008	8/6/2008	8/6/2008
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1^	TSCA																	
SVOCs/I		NIO	NO	NO	NO	50	NT/A	NIA	NIA	NIA	NT A	NIA	NIA	NT A	N/A	NTA.	NIA	NTA.	NI A	NA	NA	NA	NA	NA
(mg/kg)	Di-n-butylphthalate Dibenzofuran	NS 10*	NS 10*	NS NS	NS NS	50 100	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1		1,000	1,000	3,000	3,000	100	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.177 U	0.175 U	0.177 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Acenaphthene Acenaphthylene	600	10	600	10	1	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.177 U	0.175 U	0.177 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	NA NA	NA.	NA NA	NA I	NA NA	NA NA	NA NA	NA NA	0.177 U	0.175 U	0.177 U	NA NA	NA NA	NA	NA NA	NA NA	NA NA
1	Benzo(a)anthracene	7	7	40	40	7	N/A	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.177 U	0.175 U	0.177 U	NA NA	NA NA	NA	NA NA	NA	NA NA
	Benzo(a)pyrene	2	2	4	4	2	N/A	NA	NA	NA	NA	NA	NA	NA NA	NA	0.177 U	0.175 U	0.177 U	NA	NA	NA	NA	NA	NA
1	Benzo(b)fluoranthene	7	7	40	40	7	N/A	NA	NA	NA NA	NA	NA.	NA	NA	NA	0.177 U	0.175 U	0.177 U	NA	NA	NA	NA	NA	NA
1	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA	NA	0.177 U	0.175 U	0.177 U	NA	NA	NA	NA	NA	NA
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	NA	NA	NA	NA	NA	NA	NA.	NA	0.177 U	0.175 U	0.177 U	NA	NA	NA	NA	NA	NA
	Chrysene	70	70	400	400	70	N/A	NA	NA	NA	NA	NA	NA	NA	NA	0.177 U	0.175 U	0.177 U	NA	NA	NA	NA	NA	NA
	Dibenz(a,h)anthracene	0.7	0.7	4	4	1	N/A	NA	NA	NA	NA	NA	NA	NA	NA	0.177 U	0.175 U	0.177 U	NA	NA	NA	NA	NA	NA
11	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA	NA	0.177 U	0.175 U	0.177 U	NA	NA	NA	NA	NA	NA
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA	NA	0.177 U	0.175 U	0.177 U	NA	NA	NA	NA	NA	NA
1	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	NA	NA	NA	NA	NA	NA	NA	NA	0.177 U	0.175 U	0.177 U	NA	NA	NA	NA	NA	NA
	2-Methylnaphthalene	80	300	80	500	0.7	N/A	NA	NA	NA	NA	NA	NA	NA	NA	0.177 U	0.175 U	0.177 U	NA	NA	NA	NA	NA	NA
	Naphthalene	40	500	40	1,000	4	N/A	NA	NA	NA	NA	NA	NA	NA	NA	0.177 U	0.175 U	0.177 U	NA	NA	NA.	NA	NA	NA
	Phenanthrene	500	500	1,000	1,000	10	N/A	NA	NA	NA	NA	NA	NA	NA	NA	0.177 U	0.175 U	0.177 U	NA	NA	NA	NA	NA	NA NA
	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA.	NA	NA	0.177 U	0.175 U	0.177 U	NA NA	NA	NA	NA	NA	NA
PCBs									3.54		374		0.501 77	0.0504 11	0.0510 11	0.0500 11	0.0500 **	0.0500 **	0.1.71	0.11 11	0.0567 11	0.0522 11	0.0500 11	0.0554 11
(mg/kg)	Aroclor 1248	2	2	3	3	2	1 1	NA	NA	NA	NA	NA	0.591 U	0.0524 U	0.0510 U	0,0500 U	0.0520 U	0.0520 U	0,1 U	0.11 U	0.0567 U	0.0533 U	0.0529 U	0.0554 U
	Aroclor 1254	2	2	3	3	2	1 1	NA	NA	NA	NA	NA	12.4 J	0.0702 J	0.0510 U	0.0500 U	0.0520 U	0.0520 U	0.131	0.438	0.0567 U	0,260 J 0,0533 U	0.316 J 0.0529 U	0.0554 U
1	Aroclor 1260	2 2	2	3	3	2 2	1	NA	NA NA	NA NA	NA NA	NA NA	0,591 U NA	0.0524 U NA	0.0510 U NA	0.521 J NA	0.0520 U NA	0.0520 U NA	0.1 U 0.1 U	0.11 U 0.11 U	0.0567 U NA	NA	NA	0.0554 U NA
1	Aroclor 1262 Total PCBs	2 2	2	3	3	2		NA NA	NA NA	NA NA	NA NA	NA NA	12.4 J	0.0702 J	0.0510 U	0.521 J	0.0520 U	0.0520 U	0.131	0.438	0.0567 U	0.260 J	0.316 J	0.0554 U
PCB Hor				3	3		-	14/1	NA	IVA	IVA	1373	Test of	0.0702 3	0.0310 0	0.521 3	0.0320 0	0.0320 0	0,151	0.430	0.0307 0	0.200 g	0.510 3	0.0334 0
(mg/kg)	Pentachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.081	NA
(Ing/kg)	Total PCBs	2	2	3	3	2	1	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	0.081	NA
Metals																								
(mg/kg)	Arsenic	20	20	20	20	20	N/A	3.62	14.0	3.10	2.65 U	NA	31.5	2.62 U	2.69 U	2.65 U	2.62 U	2.66 U	NA	NA	NA.	NA	NA	NA
1	Barium	1,000	1,000	3,000	3,000	1,000	N/A	226	3,390	48.3	26	639	12,800	15.4	6.73	19.3	28.1	6.91	NA	NA	NA	NA	NA	NA
	Cadmium	2	2	30	30	2	N/A	0.49	2.15	0.49	0.27 U	3.20	13.3	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	NA	NA	NA	NA	NA	NA
	Chromium	30	30	200	200	30	N/A	15.1	182	42.4	2.90	84.9	640	2.39	2.02	4.28	3.04	2.31	NA	NA	NA	NA	NA	NA
	Lead	300	300	300	300	300	N/A	146	136	79.4	7.45	NA	2,070	8.29	3.19	11.3	4.12	1.75	NA NA	NA	NA	NA	NA	NA NA
	Mercury	20	20	30	30	20	N/A	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA NA
1	Nickel	20 100	20 100	700 200	700 200	20 100	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Silver Vanadium	600	600	1,000	1,000	600	N/A N/A	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Chromium (VI)	30	30	200	200	30	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Metals, T	The state of the s			200	200	- 50						1												1
(ug/L)	Barium	NS	NS	NS	NS	NS	100,000(1)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Chromium	NS	NS	NS	NS	NS	5,000(1)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Lead	NS	NS	NS	NS	NS	5,000(1)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Oxidation	Reduction Potential																							
(mV) pH	Oxidation/Reduction Potential	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
(s.u.)	рН	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm), $\,$

ug/L - micrograms per liter. mV - milliVolt.

s.u. - Standard unit.

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte,

N/A - Not applicable.

NS - No MassDEP standards exist for this compound.

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method I standards or TCLP standard, as applicable.

[Values shown in Bold and outlined exceed TSCA but are less than the listed MassDEP Method I standards.

SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration

TCLP - Toxicity Characteristic Leaching Procedure.

TSCA - Toxic Substances Control Act criteria

2004 and 2005 Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic

(a) - The sample was re-collected on 3/31/2009 and analyzed for dibenzofurant

* - The sample exhibits altered PCB pattern; best possible Aroclor match reported-

** - TRC developed standards

^ - For reference purposes only, - sample location to be excavated.

TABLE 3-6 Summary of Detected Analytical Results for Soil Samples

New Bedford High School - House Area (Exposure Point Area HS-6) New Bedford, Massachusetts

						Sam	ple Location:	NBHS-SS-10		SB-361		VSS-5	SS-50	SS-51	SS	-52	SSHH	L-13B1	SSHH-13B2	SSHH-13B3	SSHH-13B4
Analysis	Analyte	S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3		e Depth (ft.): Sample Date: TSCA	0-0.5 8/6/2008	0-1 3/4/2009	1-3 3/4/2009	6.5 3/4/2009	0-0.5 7/23/2001	0-0.5 12/2/2008	0-0.5 12/2/2008	0-0.5 12/2/2008	1-3 3/31/2009	0-1 4/10/2009	0-1 4/10/2009 Field Dup	0-1 4/10/2009	0-1- 4/10/2009	0-1 4/10/2009
SVOCs/P	AHe	3-1/GW-2	3-1/UW-3	3-2/UW-2	3-2/UW-3	RC 3-1"	ISCA							-				ricia oup			
(mg/kg)	Di-n-butylphthalate	NS	NS	NS	NS	50	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
(Hig/Kg)	Dibenzofuran	10*	10*	NS	NS	100	N/A	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA
	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	NA NA	0.174 U	0.176 U	0.178 U	NA	0.257	0.210 U	0.208 U	0.542	NA	NA	NA	NA	NA
	Acenaphthylene	600	10	600	10	i	N/A	NA NA	0.174 U	0.176 U	0.178 U	NA	0.210 U	0.210 U	0.208 U	0.187 U	NA.	NA	NA	NA	NA NA
	Anthracene	1.000	1.000	3,000	3,000	1.000	N/A	NA	0.174 U	0.176 U	0.178 U	NA	0.900	0,210 U	0,208 U	1.62	NA	NA	NA	NA	NA
	Benzo(a)anthracene	7	7	40	40	7	N/A	NA	0.174 U	0.176 U	0.178 U	NA	2.03	0.210 U	0,208 U	1.42	NA	NA	NA	NA	NA
	Benzo(a)pyrene	2	2	4	4	2	N/A	NA	0.174 U	0.176 U	0.178 U	NA	1.65	0.210 U	0.208 U	1.17	NA	NA	NA	NA	NA
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	NA	0.174 U	0.176 U	0.178 U	NA	2.05	0.210 U	0.208 U	1.37	NA	NA	NA	NA	NA
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	NA	0.174 U	0.176 U	0.178 U	NA	0.905	0.210 U	0.208 U	0.448	NA	NA	NA	NA	NA
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	NA	0.174 U	0.176 U	0.178 U	NA	0.872	0,210 U	0.208 U	0.539	NA	NA	NA	NA	NA NA
1	Chrysene	70	70	400	400	70	N/A	NA	0.174 U	0.176 U	0.178 U	NA	1.80	0.210 U	0.208 U	1.38	NA	NA	NA	NA	NA.
	Dibenz(a,h)anthracene	0.7	0.7	4	4	1	N/A	NA	0.174 U	0.176 U	0.178 U	NA	0.221	0,210 U	0.208 U	0.187 U	NA	NA	NA	NA	NA
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	NA	0.174 U	0.176 U	0.178 U	NA	4.32	0.210 U	0.208 U	2.70	NA	NA	NA	NA	NA
1	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	NA	0.174 U	0.176 U	0.178 U	NA	0.380	0,210 U	0,208 U	0.944	NA	NA	NA	NA	NA
H	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	NA	0.174 U	0.176 U	0.178 U	NA	0.973	0.210 U	0.208 U	0.588	NA	NA	NA	NA	NA
II.	2-Methylnaphthalene	80	300	80	500	0.7	N/A	NA	0.174 U	0.176 U	0.178 U	NA	0.210 U	0,210 U	0.208 U	0.274	NA	NA	NA	NA	NA
	Naphthalene	40	500	40	1,000	4	N/A	NA	0.174 U	0.176 U	0.178 U	NA	0.210 U	0.210 U	0.208 U	0.505	NA	NA	NA	NA	NA
1	Phenanthrene	500	500	1,000	1,000	10	N/A	NA	0.174 U	0.176 U	0.178 U	NA	3.06	0.210 U	0.208 U	4.30	NA	NA	NA	NA	NA
	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	NA	0.174 U	0.176 U	0.178 U	NA	4.79	0.210 U	0.208 U	2.95	NA	NA	NA	NA	NA
PCBs									- 17												
(mg/kg)	Aroclor 1248	2	2	3	3	2	1	0.0544 U	0.0526 U	0.0531 U	0.0532 U	0.100 U	0.0587 U	0.0576 U	0.0612 U	0.164 U	NA	NA	NA	NA	NA
1	Aroclor 1254	2	2	3	3	2	1	0.192 J	0.0526 U	0.0531 U	0.0532 U	0,100 U	0.939 *	0.0717 *	0.179 J	3.18 J	NA	NA	NA	NA	NA
	Aroclor 1260	2	2	3	3	2	1	0.0544 U	0.0526 U	0.0531 U	0.0532 U	0.100 U	0.0587 U	0.0576 U	0.0612 U	0.164 U	NA	NA	NA	NA	NA NA
	Aroclor 1262	2	2	3	3	2	1 1	NA	NA	NA O 0521 TY	NA 0.0532 V	NA 0.100 H	NA 0.020	NA 0.0717	NA 0.170 T	NA	NA NA	NA	NA	NA	NA NA
DCD II	Total PCBs	2	2	3	3	2	1	0.192 J	0.0526 U	0.0531 U	0.0532 U	0.100 U	0.939	0.0717	0.179 J	3.18 J	NA	NA	NA	NA	NA
PCB Hon (mg/kg)	Pentachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
(Hig/Kg)	Total PCBs	2	2	3	3	2	1	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Metals	1041100	<u> </u>																			
(mg/kg)	Arsenic	20	20	20	20	20	N/A	NA	2.61 U	2.64 U	2.67 U	1.18	4.96	3.15 U	3.11 U	2.81 U	NA	NA	NA	NA	NA
0 0	Barium	1,000	1,000	3,000	3,000	1,000	N/A	NA	12.1	6.42	8.99	10	69.9	23.7	21.0	43.0	NA	NA	NA	NA	NA
	Cadmium	2	2	30	30	2	N/A	NA	0.27 U	0.27 U	0.27 U	0.35 U	0.42	0.32 U	0.32 U	0.29 U	NA	NA	NA	NA	NA NA
1	Chromium	30	30	200	200	30	N/A	NA	2.70	1.68	3.02	2.92	11.7	5,57	5.24	10.1	6.58	6.05	5.12	4.93	5.81
1	Lead	300	300	300	300	300	N/A	NA	11.7	2.12	3.67	11	73.0	21.6	19.4	36.5	NA	NA	NA	NA	NA
	Mercury	20	20	30	30	20	N/A	NA	0.016	0.012 U	0.016 U	0.07 U	0.102	0.045	0.046	NA	NA	NA	NA	NA	NA
1	Nickel	20	20	700	700	20	N/A	NA	2.19	1.90	2.79	NA	5.09	2.37	2.24	NA	NA	NA	NA	NA	NA
	Silver	100	100	200	200	100	N/A	NA	0.53 U	0.53 U	0.54 U	0.35 U	0.63 U	0.63 U	0.63 U	NA	NA	NA	NA	NA	NA
	Vanadium	600	600	1,000	1,000	600	N/A	NA	5.22 U	5.27 U	5.34 U	NA	18.3	10.5	9.82	NA	NA	NA	NA	NA	NA
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	NA	12.6	6.73	12.0	NA	60.2	24.8	23.1	NA	NA 0.27	NA	NA	NA	NA NA
	Chromium (VI)	30	30	200	200	30	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.37 U	0.39 U	0.38 U	0.38 U	0.38 U
Metals, T	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NO	NIC	NO	NG	NO	100.000	NTA	NTA	N13	NT A	NT A	NTA	NIA	NIA	NT A	NIA	NTA	NIA .	NI A	l NA I
(ug/L)	Barium	NS	NS	NS NC	NS	NS	100,000 ^(I)	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Chromium Lead	NS NS	NS NS	NS NS	NS NS	NS NS	5,000 ⁽¹⁾ 5,000 ⁽¹⁾	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Oxidation	Reduction Potential	149	749	149	IND:	149	2,000	11//1	1412	14/4	1473	1477	141/7	1477	14/3	NA	11/2	IVA.	MA	1412	11/3
(mV)	Oxidation/Reduction Potential	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	169	229	242	189	227
pH (s.u.)	рН	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.81	5.87	5.97	5.93	5.93

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

ug/L - micrograms per liter. mV - milliVolt.

s.u. - Standard unit

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

NS - No MassDEP standards exist for this compound.

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method 1 standards or TCLP standard, as applicable.

[Values shown in Bold and outlined exceed TSCA but are less than the listed MassDEP Method 1 standards.

SVOCs - Semivolatile Organic Compounds,

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration

TCLP - Toxicity Characteristic Leaching Procedure.

TSCA - Toxic Substances Control Act criteria.

2004 and 2005 Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic

(a) - The sample was re-collected on 3/31/2009 and analyzed for dibenzofurant

* - The sample exhibits altered PCB pattern; best possible Aroclor match reported.

** - TRC developed standards.

^ - For reference purposes only - sample location to be excavated.

TABLE 3-7
Summary of Detected Analytical Results for Soil Samples
New Bedford High School - Hang-Out Area (Exposure Point Area HS-7)
New Bedford, Massachusetts

		T				Sam	ple Location:	VSS-4	SS-53	SS-54	SS-55	SS-56	SS-57		SB-	-362			SB-363	
Analysis	Analyte	l				Sampl	e Depth (ft.):	0-0.5	0-0.5	0-0,5	0-0.5	0-0.5	0-0.5	0-1	1-3	5	6.5	0-1	1-3	.5
							Sample Date:	7/23/2001	12/2/2008	12/2/2008	12/2/2008	12/2/2008	12/2/2008	3/4/2009	3/4/2009	3/4/2009	3/4/2009	3/4/2009	3/4/2009	3/4/2009
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1	TSCA													
PAHs										100/00/			1 20						26	· 2
(mg/kg)	Benzo(a)anthracene	7	7	40	40	7	N/A	0.228	0.228	0.211 U	0.208 U	0.213 U	0.214 U	0.395	0.221 U	0.246	0.507 U	0.459 U	0.195 U	0.184 U
	Benzo(a)pyrene	2	2	4	4	2	N/A	0.216	0.216	0.211 U	0.208 U	0.213 U	0.214 U	0.348	0.221 U	0.215	0.507 U	0.459 U	0.195 U	0.184 U
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	0.269	0.269	0.211 U	0.208 U	0.213 U	0.214 U	0.410	0.221 U	0.244	0.507 U	0.459 U	0.195 U	0.184 U
	Chrysene	70	70	400	400	70	N/A	0.207	0.207	0.211 U	0.208 U	0.213 U	0.214 U	0.417	0.221 U	0.272	0.507 U	0.459 U	0.195 U	0.184 U
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	0.732	0.732	0.211 U	0.208 U	0.213 U	0.214 U	0.696	0.343	0.431	0.507 U	0.640	0.195 U	0.184 U
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	0.207 U	0.207 U	0.211 U	0.208 U	0.213 U	0.214 U	0.192	0.221 U	0.214 U	0.507 U	0.459 U	0.195 U	0.184 U
	Phenanthrene	500	500	1,000	1,000	10	N/A	0.252	0.252	0.211 U	0.208 U	0,213 U	0.214 U	0.621	0.264	0.501	0.507 U	0.607	0.195 U	0.184 U
	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	0.567	0.567	0.211 U	0.208 U	0.213 U	0.214 U	0.793	0.270	0.530	0.507 U	0.573	0.195 U	0.184 U
PCBs																				
(mg/kg)	Aroclor 1254	2	2	3	3	2	1	0.100 U	0.293 J	0.0959 J	0.148 J	0.0648 U	0.0597 U	0.509 J	0.0904 J	0.154 J	0.155 U	0.283 J	0.0582 U	0.0528 U
	Aroclor 1260	2	2	3	3	2	1	0.100 U	0.136 J	0.123 J	0.0606 U	0.0648 U	0.0597 U	0.0568 U	0.0615 U	0.0599 U	0.155 U	0.0642 U	0.0582 U	0.0528 U
	Total PCBs	2	2	3	3	2	1	0.100 U	0.429 J	0.2189 J	0.148 J	0.0648 U	0.0597 U	0.509 J	0.0904 J	0.154 J	0.155 U	0.283 J	0.0582 U	0.0528 U
Metals				1.5						0.050	0.000	0.440			0.000		0.400		0.040	0015
(mg/kg)	Mercury	20	20	30	30	20	N/A	0.07 U	0.070	0.063	0.088	0.149	0.052	0.213	0.088	0.120	0.183	0.211	0.048	0.016 U
	Arsenic	20	20	20	20	20	N/A	1.52	3.11 U	3.55	3.92	4.50	3.32	5.37	9.86	6.59	12.6	5.18	4.48	2.75 U
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	11	60.4	40.2	28.1	40.8	23.6	173	271	269	135	187	16.9	8.77
	Beryllium	100	100	200	200	100	N/A	NA	0.32 U	0.32 U	0.32 U	0.32 U	0.33 U	0.29 U	1.11	0.70	1.56	0.35 U	0.30 U	0.28 U
	Cadmium	2	2	30	30	2	N/A	0.32 U	0.34	0.33	0.32 U	0.32 U	0.33 U	0.84	0.59	1.35	5.77	2.78	0.30 U	0.28 U
	Chromium	30	30	200	200	30	N/A	3.74	10.6	9.16	8.59	14.2	10.9	15.0	21.5	18.8	47.7	34.1	10.8	3.63
	Lead	300	300	300	300	300	N/A	8.89	67.2	54.4	89.4	67.2	30.7	277	487	448	319	292	5.35	1.00
	Nickel	20	20	700	700	20	N/A	NA	4.99	4.42	4.52	8.62	5.21	9.37	18.0	10.5	40.3	8.03	5.02	2.36
	Vanadium	600	600	1,000	1,000	600	N/A	NA	15.5	17.2	17.3	21.4	18.6	18.3	25.1	19.4	17.8	24.4	14.3	5.62
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	NA	47.5	47.4	34.2	39.4	29.9	191	99.6	264	703	181	20.7	7.66

Notes

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

J - Estimated value.

N/A - Not applicable.

U - Compound was not detected at specified quantitation limit.

Values in **Bold** indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method 1 standards.

PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls.
RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria.

Analysis	Analyte	S.UGW.2	L S.J/GW.3	S-2/GW-2	1 \$.2/GW.3	Samp	mple Location: ple Depth (ft.): Sample Date: TSCA	11G2 1-3 12/29/2004	HG2/3 1-3 2/22/2005	HG2 5+HH2 5 1-3 2/22/2005	1-3 12/29/2004	1-3 2/22/2005	1-3 12/29/2004	G4 1-3 2/22/2005	HG4+HG3 1-3 12/29/2004	HG34HG4 1-3 2/22/2005	HG5 0.5-3 12/28/2004	HG6 0.5-3 12/28/2004	HG6+HG5 0.5-3 12/28/2004	11G7 0.75-3 12/28/2004	HG7+HH7 0.75-3 12/28/2004	HG8 1.5-3 12/28/2004	1,5-3 12/28/2004	G9 1.5-3 12/28/2004 Field Dup	HG10 2-3 12/28/2004	HG10#HG9 1.5-3 12/28/2004	1.5-3 2/22/2005
EPH (mg/kg)	C19 - C36 Aliphatics C11 - C22 Aromatics Acenaphthene Acenaphthylene Andhracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(g,h,i)perylene Benzo(a)dhoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	3,000 1,000 1,000 1,000 600 1,000 7 2 7 1,000 70 0.7 1,000 7 40 500 1,000	3,000 1,000 1,000 10 10 1,000 7 2 7 1,000 70 0.7 1,000 7 500 1,000	5.000 3,000 3,000 600 3,000 40 4 4 4 3,000 400 400 40 40 1,000 3,000	5,000 3,000 3,000 10 3,000 40 4 4 40 3,000 400 400 400 400 1,000 1,000 3,000	3,000 1,000 4 1 1,000 7 7 1,000 70 1 1,000 7 4 10	N/A	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA NA 0.12 0.064 0.31 1.1 1.7 0.57 0.39 0.93 0.062 U 1.9 0.062 U 0.069 1.4	NA N
SVOCs/E (ing/kg)	PAHs Benzoic Acid Dimethyl phthalate Di-n-butylphthalate Butyl benzyl phthalate bis(2-Ethylhexyl)phthalate bis(2-Ethylhexyl)phthalate Carbazole Dibenzofuran Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)nthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(g,hi)perylene Benzo(g,hi)perylene Benzo(ghiloranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene Naphthalene Phenanthrene Phenanthrene Phenanthrene	1,000* 50 NS NS NS 200 NS 10* 1,000 600 1,000 7 2 7 1,000 70 0.7 1,000 1,000 7 80 40 500	1,000** 600 NS NS S 200 NS 10** 1,000 10 1,000 7 1,000 70 0,7 1,000 1,000 7 300 500 500	NS 500 NS NS NS NS NS NS 3,000 600 3,000 40 40 400 400 400 400 400 400 400 4	NS 6000 NS NS NS NS NS 3,000 40 4 4 40 3,000 400 400 400 400 1,000 3,000 1,000	NS 30 50 100 200 NS 100 4 1 1,000 7 7 0 1 1,000 7 0 1 1,000 7 1 1,000 1,000 7 1 1,000 1,000 7 1 1,000 1,000 7 1 1,000 1,000 7 1 1,000 1,000 7 1 1,000 1,000 7 1 1,000 1,000 7 1 1,000 1,000 7 1 1,000 1,000 7 1 1,000 1,000 7 1 1,000 1,000 7 1 1,000	N/A	4.8 U 0.32 U 0.41 JB 0.32 U 0.96 U NA 0.32 U 0.32 U 0.32 U 0.32 U 0.69 2.4 2.2 2.2 0.32 U 1.5 1.9 0.32 U	NA N	NA 0,63 U 1,9 U 0,63 U 23 1,1 0,63 U 0,91 0,63 U 2,2 10 8,9 13 2 4,5 7,8 0,63 U 23 0,83 2,7 0,63 U 11 12	NA N	NA	NA N	NA N	20 U 1.3 U 4 U NA 1.3 U	NA 0.65 U 1.9 U 0.65 U 0.74 0.65 U 0.65 U 0.65 U 1.1 2.6 2.0 3.2 0.65 U 0.81 1.8 0.65 U 6 0.77 0.65 U 0.65 U 1.3 5.4 3.6	NA	NA N	NA N	NA	NA N	NA N	NA	NA	NA N	2.4 0.35 1 B 0.062 U 1 1 NA 0.079 0.12 0.064 0.31 1.1 1.7 0.57 0.39 0.93 0.062 U 1.9 0.062 U 0.062 U 0.062 U 0.062 U 0.062 U 0.062 U 0.069 1.4 4.3	NA N
PCBs (mg/kg)	Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268 Total PCBs	2 2 2 2 2 2	2 2 2 2 2 2	3 3 3 3 3	3 3 3 3 3	2 2 2 2 2 2	I I I I	4,19 1,27 U 0,644 1,27 U 4,834	19.8 0.121 U 0.121 U 0.121 U 0.121 U	NA NA NA NA	0.067 U 0.519 0.067 U 1.719	12.13 0.123 U 0.123 U 0.123 U 12.13	0.143 0.057 U 0.057 U 0.057 U 0.143	3.7 0.121 U 0.121 U 0.121 U 3.7	NA NA NA NA	NA NA NA NA	1,23 U 1,23 U 1,23 U 1,23 U 2,45 U	0.601 0.061 U 0.145 0.061 U 0.746	NA NA NA NA	1.9 0.06 U 0.21 0.06 U	NA NA NA NA	3.06 0.063 U 0.47 0.063 U 3.53	2.35 0.06 U 0.23 0.06 U 2.58	2.92 0.076 U 0.3 0.076 U 3.22	0.061 U 0.234 0.061 U 1.884	NA NA NA NA	0.136 U 0.136 U 0.136 U 0.136 U
Metais (mg/kg)	Arsenic Barium Beryllium Cadmium Chromium Lead Mercury Nickel Selenium Silver Vanadium Zine	20 1,000 100 2 30 300 20 20 400 100 600 2,500	20 1,000 100 2 30 300 20 20 400 100 600 2,500	20 3,000 200 30 200 300 30 700 800 200 1.000 3,000	20 3,000 200 30 200 300 30 700 800 200 1,000 3,000	20 1,000 100 2 30 300 20 20 400 100 600 2,500	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	5.21 975 NA 4.61 320 413 0.749 NA 0.74 U 0.37 U NA NA	NA N	8.56 873 NA 7.94 59 765 0.405 NA 0.12 U 0.4 NA	NA N	NA N	NA NA NA NA NA NA NA NA NA	NA N	5.98 734 NA 10 94 1,140 0.92 NA 0.81 U 0.65 NA NA	3.36 316 NA 2.09 22 354 0.344 NA 0.12 U 0.16 NA	NA N	NA N	3.17 179 NA 4.26 13 419 0.386 NA 0.77 U 0.39 U NA NA	NA N	10 1,710 NA 6,34 150 1,070 17 NA 2,22 1,35 NA NA	NA N	NA N	NA N	NA N	9.02 752 NA 7.46 80 1.430 1.57 NA 0.82 U 6.4 NA	NA NA NA NA NA NA NA NA NA
Metals, T (ug/L)	CLP Barjum Chromium Lead Mercury	NS NS NS NS	NS NS NS	NS NS NS	NS NS NS NS	NS NS NS	100,000 ⁽¹⁾ 5,000 ⁽¹⁾ 5,000 ⁽¹⁾ 200 ⁽¹⁾	NA 140 490 NA	NA NA NA NA	NA NA 1,100 NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA 3,830 NA	NA NA 200 NA	NA NA NA NA	NA NA NA NA	NA NA 250 NA	NA NA NA NA	NA 20 U 250 2	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA L,540 NA	NA NA NA NA

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

mg/kg - milligrams per kilogram (dry weight) or parts per million (spm).

ug/L - micrograms per liter.

B - Detected in associated laboratory method blank.

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte.

N/A - Not spplicable.

NS - No standard available for this compound.

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected.

Values in Bold indicate the compound was detected.

Values shown in Rold and studied by a exceed TSCA but are less than the listed Method I standards.

SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration.

TCLP - Toxicity Characteristic Leaching Procedure.

TCLP - Toxicity Characteristic Leaching Procedure

TSCA - Toxic Substances Control Act riteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic

- TRC developed standards.

TABLE 3-8 Summary of Analytical Results for Soil Samples New Bedford High School - Junior High Gym Class Area (Exposure Point Area HS-8) New Bedford, Massachusetts

Analysis	Analyte	Ī					ople Location: de Depth (ft.):	0+1.5	15-3	HH4 1-3	HH4+HI4	0.75-3	11115+1115 0.75-3	11117	HH8 0.5-3	HH8+HG8 0.5-3	HH9 1-3	HH94H19 0.75-3	HH)6	HH10411110	HI2.5	HI2.5+II)2.5 0-2	HI3	HI3+HH3 1-3	1114	113	H16 1.3	HI6+HH6
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3		Sample Date: TSCA	2/22/2005	2/22/2005	2/22/2005	2/22/2005	12/28/2004	12/28/2004	12/28/2004	12/28/2004	12/28/2004	12/28/2004	12/28/2004	12/29/2004	12/29/2004	2/22/2005	2/22/2005	2/22/2005	2/22/2005	2/22/2005	12/28/2004	12/28/2004	12/28/2004
EPH (mg/kg)	C19 - C36 Aliphatics C11 - C22 Aromatics Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(g)h;fluoranthene Benzo(g)h;iperylenc Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	3,000 1,000 1,000 600 1,000 7 2 7 1,000 70 0,7 1,000 7 40 500	3,000 1,000 1,000 10 1,000 7 2 7 1,000 70 70 70 0,7 1,000 7 500 1,000	5,000 3,000 3,000 600 3,000 40 4 40 3,000 400 4 403,000 400 400 401,000 3,000	5.000 3.000 3.000 10 3.000 40 4 4 4 40 400 400 4 3.000 400 40 1,000 1,000	3,000 1,000 4 1 1,000 7 2 7 1,000 70 1 1,000 7 4 10	N/A	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N
SVOCs/I (mg/kg)	AHs Benzoic Acid Dimethyl phthalate Din-butylphthalate Butyl benzyl phthalate Butyl benzyl phthalate Butyl benzyl phthalate Butyl benzyl phthalate Carbazole Dibenzofuran Acenaphthene Acenaphthene Acenaphthene Anthacene Benzo(a)mthracene Benzo(a)mthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Cluysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene	1,000* 50 NS NS NS 200 NS 10* 1,000 600 1,000 7 2 7 1,000 70 70 0,7 1,000 1,000 7 80 40 500 1,000	1,000* 600 NS NS 10* 1,000 10 1,000 7 2 7 1,000 7 0,7 1,000 1,000 7 300 500 1,000	NS 50 NS NS NS NS NS NS NS 3,000 600 3,000 40 4 40 3,000 400 4 40 3,000 3,000 40 1,000 3,000 40 1,000 3,000	NS 6000 NS N	NS 30 50 100 200 NS 100 4 1 1,000 7 7 0 7 0 7 4 10 1,000 1,000	N/A	NA 0.07 U 0.21 B 0.07 U 0.1 J 0.11 0.07 U 0.07 U 0.07 U 0.14 U 0.62 0.55 0.73 0.15 0.31 0.55 0.07 U 1.3 0.07 U 0.19 0.07 U 0.19 0.07 U 0.19 0.07 U 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	NA	NA N	NA 0,63 U 1,9 U 0,63 U 1.5 0.63 U 0.88 0,63 U 2 6.5 6 9 3.4 4.8 0.63 U 15 0.74 1.9 0.63 U 0.99	NA N	NA N	NA	NA	NA N	NA	NA N	NA N	4.2 U 0.28 U 0.3 JB 0.28 U 9.8 NA 0.28 U 0.28 U 0.28 U 0.28 U 0.94 0.93 0.82 0.28 U 0.51 0.66 0.28 U 2.1 0.28 U 0.28 U 0.28 U 0.10 0.28 U	NA	NA 0.67 U 0.73 JB 0.67 U 2.6 13 7.2 14 0.67 U 22 40 33 45 7.7 13 33 33 73 11 9.88 4.5 12 84 58	NA	NA 0.72 U 2.2 U 0.72 U 0.72 J 4 2.1 2.5 10 26 21 32 4.7 6.8 20 0.72 U 69 2.2 6.1 0.72 U 1 45	NA N	NA N	NA N	0.9 U 0.06 U 0.19 B 0.06 U 0.18 U NA 0.56 1.1 0.074 1.9 3.6 2.8 4.2 1.4 2.7 0.06 U 6.8 0.8 1.4 0.25 0.76 6.1 6.5
PCBs (mg/kg)	Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268 Total PCBs	2 2 2 2 2	2 2 2 2 2	3 3 3 3 3	3 3 3 3	2 2 2 2 2 2	1 1 1 1	0.653 0,12 U 0.12 U 0.12 U 0.653	5.37 0.138 U 0.138 U 0.138 U 5.37	4.95 0,113 U 0.113 U 0.113 U 4.95	NA NA NA NA	2.39 0.06 U 0.298 0.06 U 2.688	NA NA NA NA	3.4 0.06 U 0.284 0.06 U 3.684	3.654 1.19 U 1.19 U 1.19 U 3.654	NA NA NA NA	2.37 0.059 U 0.334 0.059 U 2.704	NA NA NA NA	0.638 0.058 U 0.132 0.058 U 0.770	NA NA NA NA	0.94 0.137 U 0.137 U 0.137 U 0.94	NA NA NA NA	5.35 0.154 U 0.154 U 0.154 U 5.35	NA NA NA NA	4.44 0.122 U 0.122 U 0.122 U 4.44	3.88 0.06 U 3.58 0.06 U 7.46	3.29 0.059 U 1.07 0.059 U 4.36	NA NA NA NA
Metals (mg/kg)	Arsenic Barium Beryllium Cadmium Cluomium Lead Mercury Nickel Selenium Silver Vanadium Zine	20 1,000 100 2 30 300 20 20 400 100 600 2,500	20 1,000 100 2 30 300 20 20 400 100 600 2,500	20 3,000 200 30 200 300 30 700 800 200 1,000 3,000	20 3,000 200 30 200 300 30 700 800 200 1,000 3,000	20 1,000 100 2 30 300 20 20 400 100 600 2,500	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	1.44 523 NA 1.14 8.01 693 0.073 NA 0,1 U 0,05 U NA NA	NA NA NA NA NA NA NA NA NA	NA N	9.07 1,210 NA 11 177 2,280 1.02 NA 0.11 U 1.02 NA NA	NA N	3.01 358 NA 3.51 27 568 0.691 NA 0.72 U 0.36 U NA NA	NA N	NA N	22 5,110 NA 12 356 2,200 0.708 NA 0,94 U 2.17 NA NA	NA N	5.65 1,370 NA 5.65 137 829 0,953 NA 0.8 U 0.4 NA	NA N	3.87 567 NA 2.79 65 278 0.453 NA 0,72 U 0,36 U NA NA	NA	4.3 572 NA 4.53 62 866 0.845 NA 0.13 U 0.71 NA	NA N	7.93 595 NA 7.17 81 4.380 0.608 NA 0.14 U 0.53 NA NA	NA N	NA	NA N	4.74 833 NA 2.98 66 398 0.324 NA 0,68 U 0,41 NA
Metals, 1 (ug/L)	CLP Barium Chromium Lead Mercury	NS NS NS NS	NS NS NS NS	NS NS NS NS	NS NS NS NS	NS NS NS NS	100,000 ⁽¹⁾ 5,000 ⁽¹⁾ 5,000 ⁽¹⁾ 200 ⁽¹⁾	NA NA 100 NA	NA NA NA	NA NA NA	NA 20 U 3,100 NA	NA NA NA NA	NA NA 340 NA	NA NA NA NA	NA NA NA NA	2,530 20 U 510 NA	NA NA NA NA	NA 20 U 310 NA	NA NA NA NA	NA NA 160 NA	NA NA NA	NA NA 1,600 NA	NA NA NA NA	NA NA 1,100 NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA 450 NA

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm) ug/L - micrograms per liter...
B - Detected in associated laboratory method blank...

B - Detected in associated laboratory method blank.

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

NS - No tandard available for this compound.

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected.

Values shown in Bold and should type exceed one or more of the listed Method 1 standards or TCLP standard, as applicable.

(Values shown in Bold and standed type exceed one or more of the listed Method 1 standards or TCLP standard, as applicable.

SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration.

RC - Reportable Concentration.

TCLP - Toxicity Characteristic Leaching Procedure

TCLP - Toxicity Characteristic Leaching Procedure:
TSCA - Toxic Substances Control Act criteria.
Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.
(1) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminums for Toxicity Characteristic.

*- TRC developed standards.

*- For reference purposes only.

TABLE 3-8 Summary of Analytical Results for Soil Samples New Bedford High School - Junior High Gym Class Area (Exposure Point Area HS-8) New Bedford, Massachusetts

ſ.,	F. F.S.	T		-				B17+807	102	HIS	1115	HIIO		10A		10B	70.00	100	11106	10 H)	25	H03	104	HJ4+HK4 05-3	HD5	IDS+HK5	HJ6 1-2-5	11-3
Analysis	Analyte	S-1/GW-2 I	S-1/GW-3	S-2/GW-2	S-2/GW-3		le Depth (ft.); Sample Date: TSCA	12/28/2004	1-2	0.75-3 12/28/2004	0.75-3 12/28/2004	1-3 12/29/2004	3/11/2009	3/11/2009	0-1 3/11/2009	3/11/2009	3/11/2009	3/11/2009	3/11/2009	2/22/2005	2/22/2005	2/22/2005	2/22/2005	2/22/2005	12/28/2004	12/28/2004	12/28/2004	12/28/2004
EPH (mg/kg)	C19 - C36 Aliphatics C11 - C22 Aromatics Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(g,h,i)perylene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Naphthalene Phenanthracene Phenanthracene Phenanthracene	3,000 1,000 1,000 600 1,000 7 2 7 1,000 70 0,7 1,000 7 40 500 1,000	3,000 1,000 1,000 10 1,000 7 2 7 1,000 70 0,7 1,000 7 500 1,000	5,000 3,000 3,000 600 3,000 40 4 4 40 3,000 400 400 40 40 1,000 3,000	5,000 3,000 3,000 10 3,000 40 4 4 3,000 400 400 4 4 3,000 40 1,000 1,000 3,000	3,000 1,000 4 1 1,000 7 2 7 1,000 70 70 1 1,000 7 4 10	N/A	NA N	NA N	NA N	NA N	NA N	NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA NA NA NA NA NA NA NA NA NA NA NA	NA N
SVOCs(P. (mg/kg)	AHs Benzoic Acid Dimethyl phthalate Di-n-butyiphthalate Butyl benzyl phthalate Butyl benzyl phthalate bis(2-Ethylhexyl)phthalate Carbazole Dibenzofuran Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)nuthracene Benzo(a)nuthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluorene Fluorene Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene Naphthalene Phenanthrene Phenanthrene Phenanthrene Phenanthrene Phenanthrene Phenanthrene	1,000* 50 NS NS NS 200 NS 10* 1.000 600 1,000 7 7 1,000 70 0,7 1,000 1,000 7 80 40 500	1,000* 600 NS NS NS 10* 1,000 10 1,000 7 7 1,000 7,000 1,000 7 300 500 1,000	NS 50 NS	NS 600 NS	NS 30 50 100 200 NS 100 4 1 1,000 7 7 1,000 1,000 7 7 0,7 4 10 1,000 1,0	NIA	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA	NA N	NA 0.056 U 0.095 JB 0.056 U 0.078 J 0.056 U	NA N	NA N	NA	NA 0.59 U 1.8 U 0.59 U 0.59 U 0.59 U 0.59 U 0.59 U 0.59 U 1.5 1.3 0.59 U 1.3 0.59 U 0.59 U 1.3 0.59 U 1.3 0.59 U 1.3 0.59 U 1.3 0.59 U 1.5 1.3 0.59 U 1.7 2.9	NA	4,6 U 0,97 0,41 JB 0,31 U 0,92 U NA 0,31 U 3,9 2,2 8,1 16 9,7 9,8 2,8 6,5 14 0,31 U 30 2,9 3,1 3,9 1,8 3,9 1,8 3,3 3,7	NA N	NA
PCBs (mg/kg)	Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268 Total PCBs	2 2 2 2 2 2	2 2 2 2 2	3 3 3 3 3	3 3 3 3 3	2 2 2 2 2	1 1 1 1	NA NA NA NA	2.06 0.073 U 0.43 0.073 U 2.49	2,09 0,055 U 0,372 0,055 U 2,462	4.15 0.058 U 0.565 0.058 U 4.715	10.4 1.12 U 1.12 U 1.12 U 10.4	2,95 J 0,190 U NA NA NA 2,95 J	1.80 J 0.126 U NA NA NA	6.02 J 0.366 U NA NA NA 6.02 J	0.743 J 0.297 J NA NA	1.14 J 0.328 J NA NA 1.468 J	0.0560 U NA NA	0.800 J 0.161 J NA NA 0.961 J	0.73 0.13 U 0.13 U 0.13 U 0.73	2.74 0.13 U 0.13 U 0.13 U 2.74	0.209 0.117 U 0.117 U 0.117 U 0.209	0.77 0.123 U 0.123 U 0.123 U 0.77	NA NA NA NA	0.612 0.066 U 0.257 0.066 U 0.869	NA NA NA NA	0.682 0.056 U 0.056 U 1.12	2.04 0.067 U 0.428 0.067 U 2.468
Metals (mg/kg)	Arsenic Barium Beryllium Cadmium Chromium Lead Mercury Nickel Selenium Silver Vanadium Zinc	20 1,000 100 2 30 300 20 20 400 100 600 2,500	20 1,000 100 2 30 300 20 20 400 100 600 2,500	20 3,000 200 30 200 300 30 700 800 200 1,000 3,000	20 3,000 200 30 200 300 30 700 800 200 1,000 3,000	20 1,000 100 2 30 300 20 20 400 100 600 2,500	N/A	8.3 903 NA 4.31 84 796 1.3 NA 3.42 0.57 NA	NA	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA NA NA NA NA NA NA NA NA	0.56 27 NA 0.8 10 35 0.044 NA 0.11 U 0.06 U NA	NA N	NA NA NA NA NA NA NA NA NA	NA N	4.62 593 NA 3.14 66 359 0.32 NA 0.11 U 0.22 NA NA	NA N	4 788 NA 3.56 58 400 0.422 NA 0,63 U 0.31 U NA NA	NA N	NA N
Metals, To	CLP Barium Chromium Lead Mercury	NS NS NS NS	NS NS NS NS	NS NS NS NS	NS NS NS	NS NS NS	100,000 ^(l) 5,000 ^(l) 5,000 ^(l) 200 ^(l)	NA NA 970 NA	NA NA NA NA	NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA 500 NA	NA NA NA NA	NA NA 240 NA	NA NA NA	NA NA NA

Notes:

mg/Kg - milligrams per kilogram (dry weight) or parts per million (ppm).

ug/L - micrograms per liter.

B - Detected in associated laboratory method blank.
J - Estimated value, below quantitation limit.

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

NS - No standard available for this compound.

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected.

Values shown in Bold and standed type exceed one or more of the listed Method 1 standards or TCLP standard, as applicable.

Values shown in Bold and sulfined exceed TSCA but are less than the listed Method 1 standards.

SVOCs - Semivodatle Organic Compounds.

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration.

TCLP - Toxicity Characteristic Leaching Procedure.

TSCA - Toxic Substances Control Act criteria.

Daia are based on the "Summary of Analytical Daia, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic

* TRC developed standards.

* For reference purposes only.

** TRC developed standards.

TABLE 3-8

Summary of Analytical Results for Soil Samples New Bedford High School - Junior High Gym Class Area (Exposure Point Area HS-8) New Bedford, Massachusetts

	97.00						nple Location	108	His		1119	ПЭ+ПК8	нио	HI-10A	HJ-10B	manufacture (11 continue 2)	10C	1 122111 ALIZABETH CONTROL 20000	10D		101-	HK2.5	HK2:54HM2:5	IIK4	HK3		K6	ПК6-1106
Analysis	Analyte	S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3		ole Depth (ft.) Sample Date TSCA	0.5-2.5 12/28/2004	0,5-3 12/28/2004	0.5-3 12/28/2004 Field Dup	1-3 12/28/2004	0.5-2.5 12/28/2004	1-3 12/29/2004	1-3 3/11/2009	3/11/2009	0-1 3/11/2009	3/11/2009	0-1 3/11/2009	3/11/2009	0-1 3/11/2009	3/11/2009	0,5-3 2/22/2005	0,5-3 2/22/2005	0.5-3 2/22/2005	1-3	0,25-3 12/28/2004	0.25-3 12/28/2004 Field Dup	0,25-3 12/28/2004
EPH (mg/kg)	C19 - C36 Aliphatics C11 - C22 Aromatics Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranilene Benzo(g,h,i)perylene Benzo(g,h,i)perylene Benzo(k)fluoranilene Chrysene Dibenz(a,h)authracene Fluoranilene Indeno(1,2,3-cd)pyrene Naphthalene Naphthalene Pyrene	3.000 1,000 1,000 600 1,000 7 7 1,000 70 70 0.7 1,000 7 40 500 1,000	3,000 1,000 1,000 10 1,000 7 2 7 1,000 70 0.7 1,000 7 500	5,000 3,000 3,000 600 3,000 40 4 4 3,000 400 400 40 40 40 1,000 3,000	5,000 3,000 3,000 10 3,000 40 4 4 3,000 400 400 4 4 3,000 40 1,000 1,000 3,000	3.000 1,000 4 1 1,000 7 2 7 1,000 70 70 1 1,000 7 4 10	NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA	NA N	NA N	NA NA NA NA NA NA NA NA NA NA NA NA	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N
SVOCs/P/ (mg/kg)	AHS Benzoic Acid Dimethyl phthalate Di-n-butylphthalate Di-n-butylphthalate Butyl benzyl phthalate bis(2-Ethylhexyl)phthalate bis(2-Ethylhexyl)phthalate bis(2-Ethylhexyl)phthalate Dibenzofuran Acenaphthylene Acenaphthylene Acenaphthylene Benzo(a)amthracene Benzo(a)apyrene Benzo(a)pyrene Benzo(a)hjlperylene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Phenanthracene Naphthalene Naphthalene Phenanthrene Phyrene	1,000* 50 NS NS NS 200 NS 10* 1,000 600 1,000 7 2 7 1,000 70 0,7 1,000 7,000 7,000 7 80 40 500	1,000* 600 NS 200 NS 200 NS 10* 1,000 1 1,000 7 2 7 1,000 70 0,7 1,000 7 300 500 500	NS 50 NS NS 700 NS NS 700 NS NS 3,000 600 3,000 40 4 40 3,000 400 4 40 3,000 400 400 400 40 80 80 40 1,000 3,000	NS 600 NS NS 700 NS NS 3,000 10 3,000 40 4 40 3,000 400 400 400 400 1,000 1,000 1,000 1,000 1,000 1,000	NS 30 50 100 200 NS 100 4 1 1,000 7 2 7 1,000 1,000 7 0,7 4 1 10 1,000	NIA	NA N	0.89 U 0.059 U 0.21 B 0.29 7.0 NA 0.27 0.42 0.097 0.86 2.8 2.3 3.3 1.2 0.85 2.2 0.059 U 5.2 0.41 1.3 0.13 0.26 4.2 5.2	0.89 U 0.059 B 0.33 5.6 NA 0.14 0.26 0.087 0.77 2.6 4.7 6.5 2.5 2.3 1.9 0.059 U 4.7 0.24 2.6 0.059 U 0.092 3 4.3	NA	NA N	4.2 U 0.28 U 5.6 B 0.28 U 5.3 NA 0.28 U 0.28 U 0.28 U 1.5 1.5 0.28 U 1.1 1.3 0.28 U 1.3 0.28 U	NA N	NA N	NA N	NA	NA N	NA N	NA N	NA	NA	NA 0.59 U 1.8 U 0.59 U	NA N	NA	NA	NA N	NA N
PCBs (mg/kg)	Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268 Total PCBs	2 2 2 2 2 2	2 2 2 2 2 2	3 3 3 3 3	3 3 3 3 3	2 2 2 2 2 2	1 1 1 1	0,52 0,058 U 0,22 0,058 U 0,74	NA NA NA NA	NA NA NA NA	2.62 0.067 U 0.603 0.067 U 3.223	NA NA NA NA	0.444 0.059 U 0.285 0.059 U 0.729	0.364 J 0.193 J NA NA 0.557 J	0.963 J 0.254 J NA NA	1.89 J 0.176 U NA NA 1.89 J	10.2 J 0.684 U NA NA NA	0.103 J 0.0787 J NA NA 0.1817 J	0.696 J 0.313 J NA NA	1.93 J 0.857 J NA NA 2.787 J	0.0658 U 0,0658 U NA NA NA 0,0658 U	9,32 0.144 U 0.144 U 0.144 U 9,32	NA NA NA NA	0.926 0.109 U 0.109 U 0.109 U 0.926	0.242 0.053 U 0.053 U 0.053 U 0.242	1.26 U 1.26 U 1.26 U 1.26 U 2.5 U	1.62 1.27 U 1.27 U 1.27 U 1.27 U	NA NA NA NA
Metals (mg/kg)	Arsenic Barium Beryllium Cadmium Chromium Lead Mercury Nickel Selenium Silver Vanadium Zinc	20 1,000 100 2 30 300 20 20 400 100 600 2,500	20 1,000 100 2 30 300 20 20 400 100 600 2,500	20 3,000 200 30 200 300 300 30 700 800 200 1,000 3,000	20 3,000 200 30 200 300 300 30 700 800 200 1,000 3,000	20 1,000 100 2 30 300 20 20 400 100 600 2,500	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	NA N	11 3.640 NA 18 741 1,780 1.36 NA 0.78 U 2.33 NA NA	5.01 787 NA 5.29 116 1,250 0.755 NA 0.72 U 1 NA	NA N	5.94 1.510 NA 3.73 206 526 0.532 NA 0,76 U 0.38 NA NA	2.53 169 NA 4.65 192 436 1.02 NA 0.68 U 0.34 U NA NA	NA N	NA N	NA NA 0.52 17.6 98.5 NA NA NA NA NA	NA NA NA 14.9 332 2,690 NA NA NA NA	NA NA NA 0.55 19.3 106 NA NA NA NA	NA NA NA 19.2 368 3,120 NA NA NA NA	NA NA 3.06 133 922 NA NA NA NA	NA NA NA 0.34 U 11.8 8.69 NA NA NA NA	NA	0.97 167 NA 4.22 36 379 0.501 NA 0.1 U 0.25 NA NA	NA N	NA N	NA N	NA N	35 638 NA 12 476 3,900 4.29 NA 0.91 U 2.82 NA NA
Metals, To (ug/L)	CLP Barium Chromium Lead Mercury	NS NS NS NS	NS NS NS	NS NS NS	NS NS NS	NS NS NS NS	100,000 ⁽¹⁾ 5,000 ⁽¹⁾ 5,000 ⁽¹⁾ 200 ⁽¹⁾	NA NA NA NA	3,540 20 U 560 NA	NA 20 U 720 NA	NA NA NA	NA 20 U 180 NA	NA 40 650 NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA 1,200 NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA 20 U 1,940 1 U

Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

B - Detected in associated laboratory method blank.

J - Estimated value; below quantitation limit,

NA - Sample not analyzed for the listed analyte.

NA: No standard available for this compound,

U - Compound was not detected at specified quantitation limit.

Values in Bald indicate the compound was detected.

Values shown in bald and standed (i) preceeded on or more of the listed Method I standards or TCLP standard, as applicable.

Values shown in bald and outlined exceed JSCA but are less than the listed Method I standards.

SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls,

RC - Reportable Concentration.

TCLP - Toxicity Characteristic Leaching Procedure.

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic

* - TRC developed standards.

* - For reference purposes only.

* - sample locations to be either excavated, or covered by pavement.

TABLE 3-8 Summary of Analytical Results for Soil Samples New Bedford High School - Junior High Gym Class Area (Exposure Point Area HS-8) New Bedford, Massachusetts

Analysis	Analyte	\$1700.3	1 6 1/6:00 3	T \$ 3/GW 3	1 \$ 2/GW 3	Samp	nple Location: ble Depth (ft.): Sample Date:	HK7 2-3 12/28/2004	HK7+HL7 1-3 12/28/2004	HK8 1-2 12/28/2004	HL3 0.25-3 2/22/2005	Ht 3+HJ3 0.25-3 2/22/2005	2-3 2/22/2008	2-3 2/22/2005 Field Dup	HL7 1-1.5 12/28/2004	HM2.5 1-2 2/22/2005	0.75-1.5 2/22/2005	0.75-1.5 2/22/2005 Pield Dup	HN3 1-2 2/22/2005	HN3+HM3 0,75-2 2/22/2005	HO2.5 0.5-1.5 2/22/2005	HO2.5+HO3 0.5-1.5 2/22/2005	HO3 0.5-1.25 2/22/2005	HS-2 0-0.5 9/9/2004	0.5 8/21/2008	SB-350 5 8/21/2008	8/21/2008
EPH (mg/kg)	C19 - C36 Aliphatics C11 - C22 Aromatics Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(g,h,i)perylene Benzo(g,h)anthracene Chrysene Dibenz(a,h)anthracene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyreue	3,000 1,000 1,000 600 1,000 7 2 7 1,000 70 0.7 1,000 7 40 500 1,000	3,000 1,000 1,000 1,000 10 1,000 7 2 7 1,000 70 0,7 1,000 7 500 500	5,000 3,000 3,000 3,000 40 4 40 3,000 400 400 4 40 40 40 1,000 3,000	5.000 3,000 3,000 10 3,000 40 4 4 40 3,000 400 4 40 3,000 400 40 1,000 1,000 3,000	3,000 1,000 4 1 1,000 7 2 7 1,000 70 1 1,000 7 4 10	NIA	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA NA 0.238 U	NA NA 0.182 U
SVOCs/II (mg/kg)	AHs Benzoic Acid Dimethyl phthalate Di-n-butylphthalate Butyl benzyl phthalate bis(2-Ehlylhexyl)phthalate bis(2-Ehlylhexyl)phthalate Carbazole Dibenzofuran Accnaphthene Acenaphthylene Anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene Naphthalene Phenanthrene Phenanthrene Phenanthrene Pyrene	1,000* 50 NS NS NS 200 NS 10* 1,000 600 1,000 7 7 2 7 1,000 70 0,7 1,000 1,000 1,000 1,000 1,000 1,000	1,000* 600 NS NS S 200 NS 10* 1,000 7 1,000 7 1,000 7 1,000 1,000 7 300 500 1,000	NS 50 NS NS NS 700 NS NS NS 3,000 600 3,000 40 400 400 400 400 800 40 1,000 3,000 1,000 3,000	NS 600 NS NS NS 700 NS 3,000 10 3,000 40 40 40 40 40 40 40 40 400 400 400	NS 30 50 100 200 NS 100 4 1 1,000 70 7 1,000 1,0	NIA	NA N	NA	NA N	NA N	NA 0.57 U 0.92 JB 0.57 U	NA 0.68 U 2 U 0.68 U	NA N	NA N	NA N	NA	NA N	NA N	NA 0.62 U 1.8 U 0.62 U	NA N	NA 0.58 U 1.7 U 0.58 U	NA N	NA N	NA N	NA N	NA N
PCBs (mg/kg)	Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268 Total PCBs	2 2 2 2 2 2	2 2 2 2 2 2	3 3 3 3 3	3 3 3 3 3	2 2 2 2 2	1 1 1 1	0.296 0.07 U 0.07 U 0.07 U 0.296	NA NA NA NA	0.367 0.064 U 0.185 0.064 U 0.552	0.116 U 0.116 U 0.116 U 0.116 U	NA NA NA NA	5.63 0.149 U 0.149 U 0.149 U 5.63	NA NA NA NA	1.15 U 1.15 U 1.15 U 1.15 U 2.3 U	0.28 0.128 U 0.128 U 0.128 U 0.28	0.634 0.141 U 0.141 U 0.141 U 0.634	0.78 0.153 U 0.153 U 0.153 U 0.78	0.48 0.111 U 0.111 U 0.111 U 0.48	NA NA NA NA	0.22 0.111 U 0.111 U 0.111 U 0.22	NA NA NA NA	0.113 U 0.113 U 0.113 U 0.113 U 0.227 U	6.51 1.09 U 1.09 U 1.09 U 6.51	0.0545 U 0.0545 U NA NA NA 0.0545 U	0.604 J 0.258 J NA NA 0.862 J	0.0531 U 0.0531 U NA NA 0.0531 U
Metals (mg/kg)	Arsenic Barium Beryllium Cadmium Chromium Lead Mercury	20 1,000 100 2 30 300	20 1,000 100 2 30 300	20 3,000 200 30 200 300 300	20 3,000 200 30 200 300 300	20 1,000 100 2 30 300	N/A N/A N/A N/A N/A N/A	NA NA NA NA NA	1.77 106 NA 1.68 19 230 0.226	NA NA NA NA NA NA	NA NA NA NA NA	1.22 43 NA 0.92 14 75 0.078	5.81 1.870 NA 7.85 200 1.640 0.96	5.93 1,980 NA 6.03 146 1,020	NA NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA NA	0.88 29 NA 0.98 13 53	NA NA NA NA NA	0.87 52 NA 1.26 16 40 0.099	NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	59.8 7,430 0,61 4,74 1,370 638 0,356	2.73 U 19.3 0.28 U 0.28 U 8.20 3.83 0.011 U

NA NA NA NA NA NA

NA NA

NA NA

0.343

NA

0.38

20 U 500

NA NA NA

NA NA

NA

NA NA NA NA NA NA

NA NA NA

NA

0.12 U

0.06 L

NA NA

NA NA

NA

NA NA NA NA NA

NA NA NA NA

NA NA NA NA

NA NA NA NA NA NA NA NA

NA NA

NA NA NA NA NA

NA NA NA NA

NA

NA NA NA

NA NA NA NA NA

NA NA

NA

NA

NA

NA NA

NA NA

NA

NA NA

0.356

7.12 U 31.5

602 1,300

NA

NA NA

NA

0.11

NA

NA

NA NA NA

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm),

ug/L - micrograms per liter B - Detected in associated laboratory method blank,

Metals, TCLP

J - Estimated value: below quantitation limit.

NA - Sample not analyzed for the listed analyte.

Mercury

Nickel Selenium

Silver Vanadium

Chromium Lead

N/A - Not applicable.

NS - No standard available for this compound.

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected.

Values in Bold in Bold and should type exceed one or more of the listed Method I standards or TCLP standard, as applicable,

[Values shown in Bold and outlined exceed TSCA but are less than the listed Method I standards.]

NS NS NS

300 20

400 100 600

NS NS NS

800 200 1,000

NS NS NS

800 200 1,000 3,000

NS NS

400 100

600

NS NS NS

N/A N/A N/A N/A

N/A N/A N/A

100,000⁽¹⁾ 5,000⁽¹⁾ 5,000⁽¹⁾

NA

NA NA

NA

NA

NA

0.226 NA

0.8 0.4 NA NA

NA NA 2,770

NA NA NA NA NA NA NA NA NA

NA NA

NA NA NA NA NA NA

NA NA

NA NA

NA NA NA NA

0.078

NA

0.05 T

NA NA

NA NA

NA

0.74

NA NA NA

PCBs - Polychlorinated Biphenyls

TCLP - Toxicity Characteristic Leaching Procedure

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc (1) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic

* - TRC developed standards

0.011 4.73

5.46 1.50

9.23 19.6

NA

NA NA NA

TABLE 3-8

Summary of Analytical Results for Soil Samples New Bedford High School - Junior High Gym Class Area (Exposure Point Area HS-8) New Bedford, Massachusetts

Marging									vew Dedicita,									
Principal Circle Alghenics	Analysis	Analyte					Samp	le Depth (ft.): Sample Date:	0-0.5	0.5-1	0-0.5	0.0.5	0-0.5	0-0.5	0-0.5 12/2/2008	0.0.5	0.0.5	SS-62 0-0,5 12/2/2008
The Content of the			S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1**	TSCA							Field Dup			
Advisoration 100		C11 - C22 Aromatics	1,000	1,000	3,000	3,000	1,000	N/A	NA	12	NA	NA	NA	NA	NA	NA	NA	NA NA 0,206 U
Reconformatiscense		Acenaphthylene	600	10	600	10	1	N/A	NA	0.50 U	NA	NA	0.213 U	0.211 U	0.211 U	0.221 U	0.199 U	0,206 U 0,206 U
Bestext Officementhres		Benzo(a)anthracene	7	7	40	40	7	N/A	NA	1.0	NA	NA	0,213 U	0.211 U	0,211 U	0.268	0.798	0.206 U 0.206 U
Bester		Benzo(b)fluoranthene	7	7	40	40	7	N/A	NA	0.80	NA	NA	0.213 U	0.211 U	0.211 U	0.300	0.704	0.206 U
Disease Corporation Corp		Benzo(k)fluoranthene	70	70	400	400	70	N/A	NA	0.70	NA	NA	0,213 U	0.211 U	0.211 U	0.221 U	0.294	0,206 U
		Dibenz(a,h)anthracene	0,7	0.7	4	4	1	N/A	NA	1.2	NA	NA	0,213 U	0.211 U	0.211 U	0.221 U	0.199 U	0,206 U 0.298
Post-multique		Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	NA	0.50 U	NA	NA	0,213 U	0.211 U	0.211 U	0.244	0.465	0,206 U
NO.00- No. No		Phenanthrene	500	500	1,000	1,000	10	N/A	NA	2.4	NA	NA	0,213 U	0.211 U	0.305	0.299	0.962	0,206 U 0,344
	SVOC«/P		1,000	1,000	3,000	3,000	1,000	INA	INA	2.2	1471	- ///	0.215 0	01200	0,007	0.001		
Dis-burghphtholane		Benzoic Acid																NA NA
Mail-PlayMer-Applications		Di-n-butylphthalate	NS	NS	NS	NS	50	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Dibentonfurna 10* 10* NS NS 100 NIA NA NA NA NA NA NA N		bis(2-Ethylhexyl)phthalate	200	200	700	700	200	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Accomplatifylence		Dibenzofuran	10*	10*	NS	NS	100	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Researcis) purplementer		Acenaphthylene	600	10	600	10	1	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Benzeck)		Benzo(a)anthracene	7	7	40	40	7	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Recreto-photocombines		Benzo(b)fluoranthene	7	7	40	40	7	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Different/Alphanthracene		Benzo(k)fluoranthene	70	70	400	400	70	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Fluorene		Dibenz(a,h)anthracene	0.7	0.7	4	4	1	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
2-Methylmaphthalene		Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA NA
Pressantinene		2-Methylnaphthalene	80	300	80	500	0.7	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
PCBs Arcolor 1254 2 2 3 3 2 1 0,100 U 0,100 U 0,100 U 0,100 U 0,0578 U 0,372 J 0,365 J 0,397 J 0,0543 U 0,070 U 0,000 U 0,		Phenanthrene	500	500	1,000	1,000	10	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Arcelor 1260			1															0.676 J
Accolor 1268 Total PCBs 2 2 3 3 3 2 1 NA	,,,e,,,e,,	Aroclor 1260	2	2	3	3	2	171	0.100 U					0.139 J				0.181 J NA
Metals (mg/kg) Arsenic 20 20 20 20 20 20 N/A 2.26 2.31 2.53 1.63 3.19 U 3.17 U 3.31 U 3.34 3.34 Barium 1,000 1,000 3,000 3,000 1,000 N/A 28 55 29 89 21.4 127 92.2 159 50.8 Beryllium 100 100 200 200 100 N/A NA NA NA 0.32 U 0.32 U 0.32 U 0.34 U 0.30 U 0.30 U 0.38 U 0.32 U 0.32 U 0.34 U 0.34 U 0.32 U 0.32 U 0.34 U 0.32 U 0.32 U 0.32 U 0.32 U 0.34 U 0.32 U 0.34 U 0.34 U 0.32 U 0.04 0.04 </td <td></td> <td>Aroclor 1268</td> <td>2</td> <td>2</td> <td>3</td> <td>3</td> <td>2</td> <td>225</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td></td> <td>NA 0.857 J</td>		Aroclor 1268	2	2	3	3	2	225	NA	NA	NA	NA	NA	NA	NA	NA		NA 0.857 J
Barium					20			N/A							7.0		3,34	3,09 U
Cadmium 2 2 2 30 30 20 20 30 N/A 0.33 U 0.45 0.38 U 0.34 U 0.32 U 0.49 0.46 1.55 0.30 U 0.49 0.46 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	mg/kg)	Barium	1,000	1,000	3,000	3,000	1,000	N/A	28	55	29	89	21.4	127	92.2	159	50.8	153 0,31 U
Lead 300 300 300 300 300 300 300 300 N/A 81 92 47 51 7.87 144 113 186 68.0 9		Cadmium	2	2	30	30	2	N/A	0.33 U	0.45	0.38 U	0.34 U	0.32 U	0.49	0.46	1.55	0.30 U	0.44 17.6
Nickel 20 20 700 700 20 N/A NA		Lead	300	300	300	300	300	N/A	81	92	47	51	7.87	144	113	186	68.0	95.3 0.128
Silver 100 100 200 200 100 N/A 0.33 U 0.35 U 0.38 U 0.34 U 0.64 U 0.64 U 0.64 U 0.67 U 0.60 U 0.64 U 0.64 U 0.64 U 0.64 U 0.64 U 0.64 U 0.66 U 0.67 U 0.66 U 0.65 U		Nickel	20	20	700	700	20	N/A	NA	NA	NA	NA	6.01	5.03	4.25	7.74	8.81	6.05 6.18 U
Zinc 2,500 2.500 3,000 3,000 2,500 N/A NA NA NA NA NA 20.5 82.6 65.2 143 60.1		Silver	100	100	200	200	100	N/A	0.33 U	0.35 U	0.38 U	0.34 U	0.64 U	0.64 U	0.64 U	0.67 U	0.60 U	0.62 U 19.0
(ugL) Barium NS NS NS NS NS 100,000 ^(b) NA NA <td>Metals To</td> <td>Zinc</td> <td></td> <td>72.1</td>	Metals To	Zinc																72.1
		Barium																NA NA
Mercury NS NS NS NS NS NS NS NA NA NA NA NA NA NA NA NA		Lead	NS	NS	NS	NS	NS	5,000(1)	NA	NA	NA	NA.	NA	NA	NA	NA	NA.	NA NA

Notes: mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm). ug/L - micrograms per liter. B - Detected in associated laboratory method blank. J - Estimated value; below quantitation limit. NA - Sample not analyzed for the listed analyte. N/A - Not applicable. NS - No standard available for this compound, D - Compound was not detected at specified quantitation limit. Values in Bold indicate the compound was detected. Values shown in Bold and shaded type exceed one or more of the listed Method I standards or TCLP standard, as applicable. Values shown in Bold and adultined exceed TSCA but are less than the listed Method I standards or TCLP standard, as applicable. Values Polychlorinated Biplenyls. PCBs - Polychlorinated Biplenyls. RC - Reportable Concentration.

PCBs - Polychlorinated Biphenyls

RC - Reportable Concentration.

TCLP - Toxicity Characteristic Leaching Procedure.

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.
(1) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic.

* TRC developed standards.

** - For reference purposes only.

- sample locations to be either excavated, or covered by pavement.

TABLE 3-9 **Summary of Detected Analytical Results for Soil Samples** New Bedford High School - Beneath Pavement/Building Areas (Exposure Point Area HS-9) New Bedford, Massachusetts

						Sam	ple Location:	SB-	-273		SB-274		SB-	275	SB	-276	SB-	-277	SB-	-278
Analysis	Analyte					Sampl	e Depth (ft.):	5.5	8	4	4	8	4	9.5	4	9.5	4	9	4	6
	, , ,						Sample Date:	7/16/2008	7/16/2008	7/16/2008	7/16/2008	7/16/2008	7/16/2008	7/16/2008	7/16/2008	7/16/2008	7/16/2008	7/16/2008	7/17/2008	7/17/2008
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1*	TSCA				Field Dup									
PAHs																				
(mg/kg)	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	0.261 U	0.182 U	2.08 U	2.15 U	0.207 U	0.213 U	0.193 U	NA	NA	0.202 U	0.191 U	NA	NA
	Acenaphthylene	600	10	600	10	1	N/A	0.261 U	0.182 U	2.08 U	2.15 U	0.207 U	0.213 U	0.193 U	NA	NA	0.202 U	0.191 U	NA	NA
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	0.261 U	0.182 U	4.21	7.85	0,207 U	0.293	0.193 U	NA	NA	0.202 U	0.191 U	NA	NA
	Benzo(a)anthracene	7	7	40	40	7	N/A	0.261 U	0.182 U	26.6	35.9	0.207 U	1.45	0.193 U	NA	NA	0.202 U	0.191 U	NA	NA
1	Benzo(a)pyrene	2	2	4	4	2	N/A	0.261 U	0.182 U	22.2	29.5	0.207 U	1.13	0.193 U	NA	NA	0.202 U	0.191 U	NA	NA
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	0.261 U	0.182 U	26.0	31.3	0.207 U	1.12	0.193 U	NA	NA	0.202 U	0.191 U	NA	NA
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	0.261 U	0.182 U	15.2	21.3	0.207 U	0.809	0.193 U	NA	NA	0.202 U	0.191 U	NA	NA
1	Benzo(k)fluoranthene	70	70	400	400	70	N/A	0.261 U	0.182 U	9.49	15.1	0.207 U	0.334	0.193 U	NA	NA	0.202 U	0.191 U	NA	NA
	Chrysene	70	70	400	400	70	N/A	0.261 U	0.182 U	16.3	32.3	0.207 U	1.75	0.193 U	NA	NA	0.202 U	0.191 U	NA	NA
	Dibenz(a,h)anthracene	0.7	0.7	4	4	1	N/A	0.261 U	0.182 U	4.49	6.41	0.207 U	0.213 U	0.193 U	NA	NA	0.202 U	0.191 U	NA	NA
1	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	0.372	0.182 U	99.7	71.3	0.207 U	2.00	0.193 U	NA	NA	0.235	0.191 U	NA	NA
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	0.261 U	0.182 U	2.08 U	3.43	0.207 U	0.213 U	0.193 U	NA	NA	0.202 U	0.191 U	NA	NA
1	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	0.261 U	0.182 U	17.3	24.3	0.207 U	0.753	0.193 U	NA	NA	0.202 U	0.191 U	NA	NA
	2-Methylnaphthalene	80	300	80	500	0.7	N/A	0.261 U	0.182 U	2.08 U	2.15 U	0.207 U	0.213 U	0.193 U	NA	NA	0.202 U	0.191 U	NA	NA
1	Naphthalene	40	500	40	1,000	4	N/A	0.261 U	0.182 U	2,08 U	2,15 U	0.207 U	0.213 U	0.193 U	NA	NA	0.202 U	0.191 U	NA	NA
	Phenanthrene	500	500	1,000	1,000	10	N/A	0.261 U	0.182 U	8.89	17.9	0.207 U	1.48	0.193 U	NA	NA	0.202 U	0.191 U	NA	NA
	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	0.340	0.182 U	41.5	63.0	0.207 U	2.41	0.193 U	NA	NA	0.316	0.191 U	NA	NA
PCBs									ĺ											
(mg/kg)	Aroclor 1254	2	2	3	3	2	-1	0.248 J	0.0536 U	0.741 J	0.692 J	0.0544 U	0.125 J	0.0580 U	0.0999 J	0.0587 U	15.2 J	0.0576 U	1.37 J	0.189 UJ
1	Aroclor 1260	2	2	3	3	2	1	0.0690 U	0.0536 U	0.358 J	0.200 J	0.0544 U	0.0608 U	0.0580 U	0.0737 U	0.0587 U	0.357 U	0.0576 U	0.0642 U	0.189 UJ
	Total PCBs	2	2	3	3	2	1	0.248 J	0.0536 U	1.099 J	0.892 J	0.0544 U	0.125 J	0.0580 U	0.0999 J	0.0587 U	15.2 J	0.0576 ·U	1.37 J	0.189 UJ
PCB Hom	ologs																			
(mg/kg)	Pentachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA												
	Total PCBs	2	2	3	3	2	1	NA												
Metals																				
(mg/kg)	Antimony	20	20	30	30	20	N/A	R	R	R	R	R	R	R	NA	NA	4.84 U	4.58 U	NA	NA
	Arsenic	20	20	20	20	20	N/A	10.6	3.14	38.9	41.6	3.10 U	16.1	2.90 U	NA	NA	16.7	2.87 U	NA	NA
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	251	16.8	1,240	464	13.7	422	7.90	NA	NA	265	11.4	NA	NA
	Beryllium	100	100	200	200	100	N/A	0.40 U	0.28 U	0.32 U	0.33 U	0.31 U	0.38	0.29 U	NA	NA	0.31 U	0.29 U	NA	NA
	Cadmium	2	2	30	30	2	N/A	6.12	0.28 U	3.40	3.97	0.31 U	0.59	0.29 U	NA	NA	2.08	0.29 U	NA	NA
	Chromium	30	30	200	200	30	N/A	11.3	7.29	44.3	48.1	4.94	11.0	3.44	NA	NA	16.9	4.30	NA	NA
	Lead	300	300	300	300	300	N/A	456	2.92	1,750	1,450	4.97	330	3.48	NA	NA	977	3.99	NA	NA
	Mercury	20	20	30	30	20	N/A	0.243	0.021 U	1.27	3.26	0.015 U	0.256	0.014 U	NA	NA	0.207	0.017 U	NA	NA
	Nickel	20	20	700	700	20	N/A	15.8	5.14	113	43.6	2.22	14.9	2.25	NA	NA	15.0	4.44	NA	NA
	Silver	100	100	200	200	100	N/A	6.62	1.90	45.5	38.6	0.66	3.31	0.95	NA	NA	6.65	1.04	NA	NA
	Vanadium	600	600	1,000	1,000	600	N/A	22.9	8.06	20.6	23.5	6.20 U	31.2	5.79 U	NA	NA	29.6	6.79	NA	NA
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	397	23.4	835	815	9.54	200	7.88	NA	NA	250	9.97	NA	NA

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte.

N/A - Not available.

R - Rejected data point during validation.

U - Compound was not detected at specified quantitation limit.

UJ - Estimated non-detect.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method 1 standards. Values shown in bold and outlined exceed TSCA but are less than the listed Method 1 standards.

PAHs - Polynuclear Aromatic Hydrocarbons,

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria.

* - For reference purposes only.

TABLE 3-9 **Summary of Detected Analytical Results for Soil Samples** New Bedford High School - Beneath Pavement/Building Areas (Exposure Point Area HS-9) New Bedford, Massachusetts

	T					Sam	ple Location:	SB-	-279	SB-	-280		SB-281		SB-	-282		SB-283		SB-	284
Analysis	Analyte					Sampl	e Depth (ft.):	4	11	4	9.5	4	4	8	3.5	8	3.5	3.5	6	3	5
	50 LI						Sample Date:	7/23/2008	7/23/2008	7/23/2008	7/23/2008	7/21/2008	7/21/2008	7/21/2008	7/21/2008	7/21/2008	7/17/2008	7/17/2008	7/17/2008	7/17/2008	7/17/2008
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1*	TSCA						Field Dup					Field Dup			
PAHs	Interview Constitution Cons	4.000	4 000	2 000	2.000		27/1	0.005 ***	0.105.11	27.1		0.102 77	0.406.17	0.505 11	27.1		1.42	200 11	0.565 11	27.4	27.4
(mg/kg)	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	0.207 U	0.195 U	NA	NA	0.193 U	0.486 U	0.725 U	NA	NA NA	1.43	2.08 U	0.567 U	NA NA	NA
	Acenaphthylene	600	10	600	10	1 000	N/A	0.615	0.195 U	NA	NA	0.193 U	0.486 U	0.725 U	NA	NA	1.03 U	2.08 U	0.567 U	NA NA	NA
1	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	0.592	0.195 U	NA	NA	0.193 U	0.486 U	0.725 U	NA	NA NA	3.28	4.77	0.567 U	NA NA	NA
	Benzo(a)anthracene	7	7	40	40	l '	N/A	3.04	0.195 U	NA	NA	0.376	0.613	0.725 U	NA	NA NA	7.90	10.4	0.567 U	NA	NA NA
	Benzo(a)pyrene	2	7	4	4	2 7	N/A	2.70	0.195 U	NA	NA	0.374	0.593	0.725 U	NA	NA NA	7.20	9.50	0.567 U	NA NA	NA NA
	Benzo(b)fluoranthene	1 000	l '	40	40	,	N/A	4.64	0.195 U	NA	NA	0.193 U 0.392	1.02	0.725 U	NA	NA NA	7.36	9.39 8.99	0.567 U 0.567 U	NA NA	NA NA
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	2.39	0.195 U	NA	NA NA		0.486 U 0.486 U	0.725 U 0.725 U	NA NA	NA NA	5.07 2.93	4.22	0.567 U	NA NA	NA NA
1	Benzo(k)fluoranthene	70 70	70	400	400	70	N/A	1.70	0.195 U	NA NA	NA NA	0.193 U					8.08	10.4	0.567 U	NA NA	I
	Chrysene Dibong(o b)onthrocono	0.7	70 0.7	400	400	70 1	N/A N/A	4.41 0.770	0.195 U 0.195 U	NA NA	NA NA	0.535 0.193 U	0.785 0.486 U	0.725 U 0.725 U	NA NA	NA NA	1.39	2.27	0.567 U	NA NA	NA NA
	Dibenz(a,h)anthracene	1.000	1,000	3,000	3,000	1,000	N/A N/A	5.99	0.195 U		NA NA	0.193 0	1.40	0.725 U	NA NA	NA NA	14.3	20.5	0.567 U	NA NA	NA NA
1	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A N/A	0.207 U	0.193 U 0.195 U	NA NA	NA NA	0.193 U	0.486 U	0.725 U	NA NA	NA NA	1.79	2.42	0.567 U	NA NA	NA NA
1	Fluorene Indeno(1,2,3-cd)pyrene	1,000	1,000	40	40	1,000	N/A N/A	2.89	0.193 U	NA NA	NA NA	0.193 0	0.486 U	0.725 U	NA NA	NA NA	5.81	9.27	0.567 U	NA NA	NA NA
	2-Methylnaphthalene	80	300	80	500	0.7	N/A N/A	0.743	0.195 U	NA NA	NA NA	0.301	0.480 0	0.725 U	NA NA	NA NA	1.03 U	2.08 U	0.567 U	NA NA	NA NA
II .	Naphthalene	40	500	40	1,000	0.7	N/A N/A	0.743	0.195 U	NA NA	NA NA	0.402	2.15	0.725 U	NA NA	NA NA	1.03 U	2.08 U	0.567 U	NA NA	NA NA
1	Phenanthrene	500	500	1.000	1,000	10	N/A N/A	1.72	0.193 U	NA NA	NA NA	0.402	1.34	0.725 U	NA NA	NA NA	14.0	20.0	0.567 U	NA NA	NA NA
	Pyrene	1.000	1.000	3.000	3,000	1,000	N/A	5.08	0.195 U	NA NA	NA NA	0.515	1.04	0.725 U	NA NA	NA NA	14.6	20.0	0.567 U	NA NA	NA NA
PCBs	Tytono	1,000	1,000	5,000	3,000	1,000	1472	2.00	0.155	Tur	Tur	0,0,0	1101	0.1125	10.1	1111	7.10	2011	0.501 0	- 1111	- 101
(mg/kg)	Aroclor 1254	2	2	3	3	2	1	0.375 J	0.0564 U	0.378 J	0.126 U	0.0543 U	0.0572 U	0.234 UJ	0.0725 J	0,229 UJ	0.566 J	0,670 J	0.147 U	0.499 J	0.207 UJ
	Aroclor 1260	2	2	3	3	2	1	0.0951 J	0.0564 U	0.0595 U	0.126 U	1.30 J	0.474 J	0.234 UJ	0.0644 U	0.229 UJ	0.247 J	0.421 J	0.147 U	0.269 J	0.207 UJ
	Total PCBs	2	2	3	3	2	1	0.4701 J	0.0564_U	0.378 J	0.126 U	1.30 J	0.474 J	0.234 UJ	0.0725 J	0.229 UJ	0.813 J	1.091 J	0.147 U	0.768 J	0.207 UJ
PCB Hom	ologs																				
(mg/kg)	Pentachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA.	0.029 U	NA	NA	NA	NA	NA	NA	0.045	NA	NA	NA	NA
	Total PCBs	2	2	3	3	2	1	NA	NA	0.074 U	NA	NA	NA	NA	NA	NA	0.045	NA	NA	NA	NA
Metals																					
(mg/kg)	Antimony	20	20	30	30	20	N/A	4.96 U	4.68 U	4.84 U	8.74 U	R	R	R	NA	NA	R	R	R	NA	NA
	Arsenic	20	20	20	20	20	N/A	41.5	2.93 U	21.3	9.02	44.5	27.1	10.9 U	NA.	NA	19.8	18.8	13.5	NA	NA
1	Barium	1,000	1,000	3,000	3,000	1,000	N/A	644	8.05	470	24.8	671	675	147	NA	NA	558	544	198	NA	NA
	Beryllium	100	100	200	200	100	N/A	0.71	0.30 U	1.03	0.73	0.70	0.52	1.09 U	NA	NA	0.31 U	0.32 U	0.86 U	NA	NA
	Cadmium	2	2	30	30	2	N/A	4.39	0.30 U	9.10	0.55 U	4.25	2.90	1.09 U	NA	NA	3.93	4.65	0.86 U	NA	NA
	Chromium	30	30	200	200	30	N/A	75.6	3.77	23.2	15.2	149	124	7.78	NA	NA	30.4	26.6	9.55	NA	NA
	Lead	300	300	300	300	300	N/A	2,060	36.2	1,980	5.61	4,940	4,970	8.87	NA	NA	1,450	1,680	13.5	NA	NA
	Mercury	20	20	30	30	20	N/A	0.917	0.013 U	0.527	0.045 U	0.352	0.449	0.095 U	NA	NA	1.17	1.30	0.191	NA	NA
	Nickel	20	20	700	700	20	N/A	35.9	2.27	15.0	19.6	25.6	28.2	2.18 U	NA	NA	21.5	20.2	4.75	NA	NA
1	Silver	100	100	200	200	100	N/A	12.3	0.59 U	8.25	1.10 U	9.83	25.2	2.18 U	NA	NA	17.7	14.4	2.14	NA	NA
	Vanadium	600	600	1,000	1,000	600	N/A	25.5	5.85 U	20.0	21.2	19.4	18.7	21.8 U	NA	NA NA	22.9	23.3	17.1 U	NA	NA
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	1,340	10.6	1,770	40.1	1,660	1,520	58.6	NA	NA	1,450	1,370	32.7	NA	NA

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte.

N/A - Not available.

R - Rejected data point during validation.

U - Compound was not detected at specified quantitation limit.

UJ - Estimated non-detect.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method 1 standards.

Values shown in bold and outlined exceed TSCA but are less than the listed Method 1 standards.

PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria.

* - For reference purposes only

TABLE 3-9 **Summary of Detected Analytical Results for Soil Samples** New Bedford High School - Beneath Pavement/Building Areas (Exposure Point Area HS-9) New Bedford, Massachusetts

						Sam	ple Location:	SB	-285	SB-	-286	SB-	-287	I SB-	-288	I SB	-289	SB-	-290	SB	-291
Analysis	Analyte					Sampl	le Depth (ft.):	3.5	7.5	4	9	4	9	4	9	3.5	6	2.5	6	2	6
1.2							Sample Date:	7/17/2008	7/17/2008	7/17/2008	7/17/2008	7/17/2008	7/17/2008	7/17/2008	7/17/2008	7/17/2008	7/17/2008	7/21/2008	7/21/2008	7/21/2008	7/21/2008
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-I*	TSCA														
PAHs																Dillo c. T.	0.505 11	27.1	27.4	27.4	27.4
(mg/kg)	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	1.02 U	0.178 U	NA	NA	2.64	0.212 U	NA	NA	1.96 U	0.507 U	NA	NA	NA	NA
	Асепарhthylene	600	10	600	10	1	N/A	1.02 U	0.178 U	NA	NA	0.981 U	0.212 U	NA	NA	1.96 U	0.507 U	NA	NA	NA	NA
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	1.02 U	0.178 U	NA	NA	5.78	0.212 U	NA	NA	1.96 U	0.507 U	NA	NA	NA	NA
	Benzo(a)anthracene	7	7	40	40	7	N/A	1.31	0.178 U	NA	NA	10.2	0.212 U	NA	NA	1.96 U	0.507 U	NA	NA	NA	NA
	Benzo(a)pyrene	2	2	4	4	2	N/A	1.07	0.178 U	NA	NA	8.80	0.212 U	NA	NA	1.96 U	0.507 U	NA	NA	NA	NA
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	1.02 U	0.178 U	NA	NA	9.21	0.212 U	NA	NA	1.96 U	0.507 U	NA	NA	NA	NA
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	1.02 U	0.178 U	NA	NA	5.58	0.212 U	NA	NA	1.96 U	0.507 U	NA	NA	NA	NA
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	1.02 U	0.178 U	NA	NA	3.54	0.212 U	NA	NA	1.96 U	0.507 U	NA	NA	NA	NA
1	Chrysene	70	70	400	400	70	N/A	1.27	0.178 U	NA	NA	9.65	0.212 U	NA	NA	1.96 U	0.507 U	NA	NA	NA	NA
1	Dibenz(a,h)anthracene	0.7	0.7	4	4	1	N/A	1.02 U	0.178 U	NA	NA	0.981 U	0.212 U	NA	NA	1.96 U	0.507 U	NA	NA	NA	NA
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	2.06	0.178 U	NA	NA	18.8	0.212 U	NA	NA	1.96 U	0.507 U	NA	NA	NA	NA
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	1.02 U	0.178 U	NA	NA	3.16	0.212 U	NA	NA	1.96 U	0.507 U	NA	NA	NA	NA
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	1.02 U	0.178 U	NA	NA	6.63	0.212 U	NA	NA	1.96 U	0.507 U	NA	NA	NA	NA
	2-Methylnaphthalene	80	300	80	500	0.7	N/A	1.02 U	0.178 U	NA	NA	0.981 U	0.212 U	NA	NA	1.96 U	0.507 U	NA	NA	NA	NA
	Naphthalene	40	500	40	1.000	4	N/A	1.02 U	0.178 U	NA	NA	1.57	0.212 U	NA	NA	1.96 U	0.507 U	NA	NA	NA	NA
1	Phenanthrene	500	500	1,000	1,000	10	N/A	3.60	0.178 U	NA	NA	21.2	0.212 U	NA	NA	1.96 U	0.507 U	NA	NA	NA	NA
	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	3.82	0.178 U	NA	NA	18.0	0.212 U	NA	NA	1.96 U	0.507 U	NA	NA	NA	NA
PCBs																	Į.,				
(mg/kg)	Aroclor 1254	2	2	3	3	2	. 1	5.74 J	0.0553 U	6.17 J	0.232 J	1,27 J	0.0611 U	0.294 J	0.0575 U	1.69 J] 0.184 J	0.127 J	0.0532 U	0.127 J	0.0533 U
	Aroclor 1260	2	2	3	3	2	1	1.76 J	0.0553 U	1.02 J	0.0550 U	0.509 J	0.0611 U	0.161 J	0.0575 U	1.24 J	0.163 U	0.0526 U	0.0532 U	0.0552 U	0.0533 U
	Total PCBs	2	2	3 -	3	2	1	7.50 J	0.0553 U	7.19 J	0.232 J	1.779 J	0.0611 U	0.455 J	0.0575 U	2.93 J	0.184 J	0.127 J	0.0532 U	0.127 J	0.0533 U
PCB Home	ologs																				
(mg/kg)	Pentachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA								
	Total PCBs	2	2	3	3	2	1	NA	NA	NA	NA	NA	NA								
Metals																					
(mg/kg)	Antimony	20	20	30	30	20	N/A	226	4.26 U	NA	NA	4.71 U	5.08 U	NA	NA	4.69 U	12.2 U	NA	NA	NA	NA
	Arsenic	20	20	20	20	20	N/A	26.6	2.66 U	NA	NA	31.9	3.18 U	NA	NA	14.6	39.8	NA	NA	NA	NA
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	986	20.2	NA	NA	1,810	7.35	NA	NA	717	326	NA	NA	NA	NA
	Beryllium	100	100	200	200	100	N/A	0.31 U	0.27 U	NA	NA	0.30 U	0.32 U	NA	NA	0.30 U	0.76 U	NA	NA	NA	NA
	Cadmium	2	2	30	30	2	N/A	14.8	0.27 U	NA	NA	84.3	0.32 U	NA	NA	2.91	1.59	NA	NA	NA	NA
	Chromium	30	30	200	200	30	N/A	280	3.44	NA	NA	302	3.30	NA	NA	44.4	42.6	NA	NA	NA	NA
	Lead	300	300	300	300	300	N/A	1,140	3.20	NA	NA	3,110	3.07	NA	NA	1,730	60.6	NA	NA	NA	NA
	Mercury	20	20	30	30	20	N/A	2.26	0.017 U	NA	NA	0.773	0.016 U	NA	NA	0.818	0.247	NA	NA	NA	NA.
	Nickel	20	20	700	700	20	N/A	55.7	2.43	NA	NA	83.2	4.14	NA	NA	18.5	48.0	NA	NA	NA	NA
	Silver	100	100	200	200	100	N/A	23.3	0.85	NA	NA	28.4	1.16	NA	NA	6.44	18.0	NA	NA	NA	NA
	Vanadium	600	600	1,000	1,000	600	N/A	311	5.32 U	NA	NA	45.0	6.35 U	NA	NA	66.8	15.2 U	NA	NA	NA	NA
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	2,210	14.7	NA	NA	3,540	12.3	NA	NA	671	372	NA	NA	NA	NA

J - Estimated value; below quantitation limit,

NA - Sample not analyzed for the listed analyte.

N/A - Not available,

R - Rejected data point during validation.

U - Compound was not detected at specified quantitation limit.

UJ - Estimated non-detect.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method 1 standards.

Values shown in bold and outlined exceed TSCA but are less than the listed Method 1 standards.

PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria.

* - For reference purposes only,
-sample location to be excavated,

TABLE 3-9 **Summary of Detected Analytical Results for Soil Samples** New Bedford High School - Beneath Pavement/Building Areas (Exposure Point Area HS-9) New Bedford, Massachusetts

						Sam	ple Location:	SB	-292		SB-293			SB-294		SB-	-295		SB-296	
Analysis	Analyte	l					e Depth (ft.):	2	5	6.5	9	12	4	8.5	12	5.5	9	5	5	10
	,						Sample Date:	7/21/2008	7/21/2008	7/21/2008	7/21/2008	7/21/2008	7/21/2008	7/21/2008	7/21/2008	7/22/2008	7/22/2008	7/22/2008	7/22/2008	7/22/2008
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1*	TSCA												Field Dup	
PAHs																12				
(mg/kg)	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	NA	NA	0.222 U	0.719 U	NA	NA	NA	NA	NA	NA	0.233 U	0.226 U	0.198 U
1	Acenaphthylene	600	10	600	10	1	N/A	NA	NA	0.222 U	0.719 U	NA	NA	NA	NA	NA	NA	0.233 U	0.226 U	0.198 U
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	0.222 U	0.719 U	NA	NA	NA	NA	NA	NA	0.233 U	0.226 U	0.198 U
	Benzo(a)anthracene	7	7	40	40	7	N/A	NA	NA	0.222 U	0.719 U	NA	NA	NA	NA	NA	NA	0.233 U	0.226 U	0.198 U
	Benzo(a)pyrene	2	2	4	4	2	N/A	NA	NA	0.222 U	0.719 U	NA	NA	NA	NA	NA	NA	0.233 U	0.226 U	0.198 U
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	NA	NA	0.222 U	0.719 U	NA	NA	NA	NA	NA	NA	0.233 U	0.226 U	0.198 U
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	0.222 U	0.719 U	NA	NA	NA	NA	NA	NA	0.233 U	0.226 U	0.198 U
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	NA	NA	0.222 U	0.719 U	NA	NA	NA	NA	NA	NA	0.233 U	0.226 U	0.198 U
1	Chrysene	70	70	400	400	70	N/A	NA	NA	0.222 U	0.719 U	NA	NA	NA	NA	NA	NA	0.233 U	0.226 U	0.198 U
	Dibenz(a,h)anthracene	0.7	0.7	4	4	1	N/A	NA	NA	0.222 U	0.719 U	NA	NA	NA	NA	NA	NA	0.233 U	0.226 U	0.198 U
l .	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	0.222 U	0.719 U	NA	NA	NA	NA	NA	NA	0.233 U	0.226 U	0.198 U
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	0.222 U	0.719 U	NA	NA	NA	NA	NA	NA	0.233 U	0.226 U	0.198 U
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	NA	NA	0.222 U	0.719 U	NA	NA	NA	NA	NA	NA	0.233 U	0.226 U	0.198 U
	2-Methylnaphthalene	80	300	80	500	0.7	N/A	NA	NA	0.222 U	0.719 U	NA	NA	NA	NA	NA	NA	0.233 U	0.226 U	0.198 U
	Naphthalene	40	500	40	1,000	4	N/A	NA	NA	0.222 U	0.719 U	NA NA	NA	NA	NA	NA	NA	0.233 U	0.226 U	0.198 U
	Phenanthrene	500 1,000	500	1,000	1,000	10 1,000	N/A	NA NA	NA NA	0.222 U 0.222 U	0.719 U	NA NA	NA NA	NA NA	NA	NA NA	NA	0.233 U	0.226 U 0.226 U	0.198 U 0.198 U
PCBs	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	0.222 0	0.719 U	NA	NA	NA	NA	ÑΑ	NA	0.233 U	0.220 U	0.198 0
(mg/kg)	Aroclor 1254	2	2	3	2	2	#	0.0519 U	0.0527 U	0.0684 U	0.202 UJ	NA	0.0649 U	0.162 UJ	NA	0.0798 U	0.0531 U	0.0676 U	0.0711 U	0.0597 U
(IIIg/kg)	Aroclor 1260	2	2	3	3	2	1	0.0519 U	0.0527 U	0.0684 U	0.202 UJ	NA NA	0.0649 U	0.162 UJ	NA NA	0.0798 U	0.0531 U	0.0676 U	0.0711 U	0.0597 U
1	Total PCBs	2	2	3	3	2	1	0.0519 U	0.0527 U	0.0684 U	0.202 UJ	NA NA	0.0649 U	0.162 UJ	NA NA	0.0798 U	0.0531 U	0.0676 U	0.0711 U	0.0597 U
PCB Hom	d.				, , , , , , , , , , , , , , , , , , ,			0.0317	0.0327	0.0004 0	0,202 03	11/1	0.0042 0	0.102 03	1421	0.0750	0.0331	0.0070	0.0711	0.0377 0
II II	Pentachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	0.057	NA	NA NA	NA	l _{NA}
(Hig/Kg)	Total PCBs		2	3	3	2	1	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA	0.057	NA NA	NA NA	NA NA	NA NA
Metals																				
(mg/kg)	Antimony	20	20	30	30	20	N/A	NA	NA	R	R	4.62 U	R	R	4.73 U	NA	NA	R	R	R
3 '8	Arsenic	20	20	20	20	20	N/A	NA	NA	16.1	31.6	2.89 U	40.6	14.0	4,27	NA	NA	10.3	10.5	2.96 U
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	438	266	15.8	1,920	170	63.9	NA	NA	314	242	5.92 U
	Beryllium	100	100	200	200	100	N/A	NA	NA	0.86	1.42	0.29 U	0.70	0.93 U	0.30 U	NA	NA	0.66	0.64	0.30 U
	Cadmium	2	2	30	30	2	N/A	NA	NA	0.61	16.2	0.29 U	2.10	3.14	2.75	NA	NA	5.55	2.29	0.30 U
	Chromium	30	30	200	200	30	N/A	NA	NA	14.3	23.8	4.74	36.5	14.5	9.77	NA	NA	16.2	22.4	2.80
	Lead	300	300	300	300	300	N/A	NA	NA	396	848	3.20	3,260	790	257	NA	NA	353	436	2.01
	Mercury	20	20	30	30	20	N/A	NA	NA	0.212	0.389	0.022 U	1.34	0.118	0.041	NA	NA	0.143	0.372	0.020 U
	Nickel	20	20	700	700	20	N/A	NA	NA	14.0	25.9	2.76	31.8	13.7	8.03	NA	NA	14.1	11.7	2.46
	Silver	100	100	200	200	100	N/A	NA	NA	2.97	21.5	0.58 U	16.0	6.15	0.60 U	NA	NA	4.28	7.99	0.60 U
	Vanadium	600	600	1,000	1,000	600	N/A	NA	NA	33.8	25.5	7.68	33.5	18.5 U	8.72	NA	NA	24.9	23.2	5.92 U
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	NA	NA	185	4,500	11.1	894	2,050	1,000	NA	NA	288	169	13.4

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte.

N/A - Not available.

R - Rejected data point during validation.

U - Compound was not detected at specified quantitation limit.

UJ - Estimated non-detect.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method 1 standards.

[Values shown in bold and outlined exceed TSCA but are less than the listed Method 1 standards.

PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria,

* - For reference purposes only,

TABLE 3-9 Summary of Detected Analytical Results for Soil Samples New Bedford High School - Beneath Pavement/Building Areas (Exposure Point Area HS-9) New Bedford, Massachusetts

ſ						Sam	ple Location:		SB-297		SB	-298	SB-	299	SB	-300	SB-	-301	SB-	-302
Analysis	Analyte					Sampl	e Depth (ft.):	6	8	11	4	8	4	8	4	8	7	10.5	2,5	8
							Sample Date:	7/22/2008	7/22/2008	7/22/2008	8/4/2008	8/4/2008	8/4/2008	8/4/2008	7/22/2008	7/22/2008	7/22/2008	7/22/2008	7/22/2008	7/22/2008
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1*	TSCA													
PAHs	4 1.1	1.000	1.000	2.000	2.000	,	N/A	0.000 11	0.600 U	NTA	NA	NA	NA	NA	0.216 U	0.755 U	NA NA	NA	NA	NA
(mg/kg)	Acenaphthene	1,000	1,000	3,000 600	3,000	4	N/A N/A	0.228 U 0.228 U	0.600 U	NA NA	NA NA	NA NA	NA NA	NA NA	0.216 U	0.755 U	NA NA	NA NA	NA NA	NA NA
	Acenaphthylene	600	10	3.000	3.000	1,000	N/A N/A	0.228 U	0.600 U	NA NA	NA NA	NA NA	NA NA	NA NA	0.216 U	0.755 U	NA NA	NA NA	NA NA	NA NA
1	Anthracene Benzo(a)anthracene	1,000 7	1,000	40	40	7	N/A N/A	0.228	0.600 U	NA NA	NA NA	NA NA	NA NA	NA NA	0.216 U	0.755 U	NA NA	NA NA	NA NA	NA NA
1		2	/ /	40	40	2	N/A N/A	0.238	0.600 U	NA NA	NA NA	NA NA	NA NA	NA NA	0.216 U	0.755 U	NA NA	NA NA	NA NA	NA NA
	Benzo(a)pyrene Benzo(b)fluoranthene	7	2 7	40	40	7	N/A N/A	0.228	0.600 U	NA NA	NA NA	NA NA	NA NA	NA NA	0.216 U	0.755 U	NA NA	NA NA	NA NA	NA NA
	Benzo(g,h,i)perylene	1,000	1.000	3,000	3,000	1.000	N/A	0.228 U	0.600 U	NA NA	NA NA	NA NA	NA NA	NA NA	0.216 U	0.755 U	NA NA	NA NA	NA NA	NA NA
1	Benzo(k)fluoranthene	70	70	400	400	70	N/A	0.228 U	0.600 U	NA NA	NA NA	NA NA	NA NA	NA NA	0.216 U	0.755 U	NA NA	NA NA	NA NA	NA NA
ll .	Chrysene	70	70	400	400	70	N/A	0.228	0.600 U	NA NA	NA NA	NA NA	NA NA	NA NA	0.216 U	0.755 U	NA NA	NA NA	NA.	NA NA
	Dibenz(a,h)anthracene	0.7	0.7	400	400	1 1	N/A	0.228 U	0.600 U	NA NA	NA NA	NA NA	NA NA	NA NA	0.216 U	0.755 U	NA NA	NA NA	NA NA	NA NA
	Fluoranthene	1.000	1.000	3,000	3,000	1.000	N/A	0.674	0.600 U	NA NA	NA NA	NA NA	NA NA	NA NA	0.216 U	0.755 U	NA NA	NA NA	NA NA	NA NA
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	0.228 U	0.600 U	NA NA	NA NA	NA NA	NA NA	NA	0.216 U	0.755 U	NA NA	NA NA	NA NA	NA.
1	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	0.228 U	0.600 U	NA NA	NA	NA NA	NA NA	NA	0.216 U	0.755 U	NA NA	NA NA	NA	NA
ı	2-Methylnaphthalene	80	300	80	500	0.7	N/A	0.228 U	0.600 U	NA	NA NA	NA NA	NA NA	NA	0.216 U	0.755 U	NA NA	NA NA	NA	NA
1	Naphthalene	40	500	40	1.000	4	N/A	0.228 U	0.600 U	NA	NA NA	NA NA	NA NA	NA	0.216 U	0.755 U	NA NA	NA I	NA	NA
	Phenanthrene	500	500	1.000	1,000	10	N/A	0.608	0.600 U	NA.	NA	NA NA	NA NA	NA	0.216 U	0.755 U	NA NA	NA NA	NA	NA.
	Pyrene	1,000	1.000	3,000	3,000	1.000	N/A	0.414	0.600 U	NA	NA	NA	NA	NA	0.216 U	0.755 U	NA	NA	NA	NA
PCBs													·			†				
(mg/kg)	Aroclor 1254	2	2	3	3	2	1	0.0732 U	0.187 UJ	NA	0.0630 U	0.255 UJ	0.0666 U	0.206 UJ	0.0636 U	0.235 UJ	0.0648 U	0.0795 U	0.0640 U	0.205 U.
	Aroclor 1260	2	2	3	3	2	1	0.0732 U	0.187 U.I	NA	0.0630 U	0.255 UJ	0.0666 U	0.206 UJ	0.0636 U	0.235 U.I	0.0648 U	0.0795 U	0.0640 U	0.205 U.
	Total PCBs	2	2	3	3	2	11	0.0732 U	0.187 UJ	NA	0.0630 U	0.255 UJ	0.0666 U	0.206 UJ	0.0636 U	0,235 UJ	0.0648 U	0.0795 U	0.0640 U	0.205 UJ
PCB Hom	iologs						i i													
(mg/kg)	Pentachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	0.032 U	NA	NA	NA	NA	NA
	Total PCBs	2	2	3	3	2	1	NA	NA	NA	NA	NA	NA	NA	0.081 U	NA	NA	NA	NA	NA
Metals	1							_	_							_		1		
(mg/kg)	Antimony	20	20	30	30	20	N/A	R	R	4.71 U	5.51 U	19.1 U	NA	NA	R	R	NA	NA	R	R
1	Arsenic	20	20	20	20	20	N/A	14.9	9.00 U	2.94 U	17.1	12.0 U	NA	NA	9.93	11.4 U	NA	NA	8.84	10.7 U
l .	Barium	1,000	1,000	3,000	3,000	1,000	N/A	432	94.9	8.16	407	61.7	NA	NA	275	63.2	NA	NA	280	31.1
l .	Beryllium	100	100	200	200	100	N/A	1.01	0.90 U	0.30 U	0.83	1.20 U	NA	NA	0.75	1.14 U	NA	NA NA	0.84	1.07 U
	Cadmium	2	2	30	30	2	N/A	1.53	8.36	0.30 U	0.58	1.20 U	NA NA	NA	0.50	1.14 U	NA	NA NA	0.51	1.07 U
	Chromium	30	30	200	200	30	N/A	16.2	3.36	3.70	15.4	4.90	NA NA	NA	12.1	3.31	NA	NA NA	9.81 2.440	2.17
	Lead	300	300	300	300	300	N/A	1,500	50.6	2.76	869	12,2	NA NA	NA	142	9.62	NA	NA NA	1 COLORS (12)	4.73
	Mercury	20	20	30	30	20	N/A	0.214	0.128	0.018 U	0.222	0.174	NA NA	NA	0.507	0.215	NA NA	NA NA	0.094	0.084 U
	Nickel	20	20	700	700	20	N/A	17.3	11,9	3.07	14.8	3.03	NA NA	NA	13.3	2.27 U	NA NA	NA NA	11.6	2.13 U
	Silver	100	100	200	200	100	N/A	1.89	1.80 U	0.59 U	6.58	2.39 U	NA NA	NA NA	1.14	2.27 U	NA NA	NA NA	1.37 35.9	2.13 U
	Vanadium	600 2,500	600 2.500	1,000 3,000	1,000 3,000	600 2,500	N/A N/A	22.6 267	18.0 U 1,310	5.88 U 10.7	41.4 213	23.9 U 40.2	NA NA	NA NA	28.5 237	22.7 U 93.9	NA NA	NA NA	35.9 181	21.3 U 27.8
	Zinc	2,500	2,500	3,000	3,000	2,300	IN/A	407	1,310	10./	413	40.2	IVA	INA	23/	93.9	<u>I</u> NA	INA	191	41.0

J - Estimated value; below quantitation limit,

NA - Sample not analyzed for the listed analyte.

N/A - Not available,

R - Rejected data point during validation.

U - Compound was not detected at specified quantitation limit.

UJ - Estimated non-detect.

Values in Bold indicate the compound was detected.

Values shown in Bold and sharled type exceed one or more of the listed Method I standards.

Values shown in bold and outlined exceed TSCA but are less than the listed Method I standards.

PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria.

* - For reference purposes only.

TABLE 3-9 **Summary of Detected Analytical Results for Soil Samples** New Bedford High School - Beneath Pavement/Building Areas (Exposure Point Area HS-9) New Bedford, Massachusetts

						Sam	ple Location:	SB	-303	I SB-	304	SB-	-305	r	SB-307		SB-	308	SB-308A	SB-	308B
Analysis	Analyte					•	e Depth (ft.):	5	10	5	8	4	9	3	6	9	3.5	6	3-4	3	4
							Sample Date:	7/22/2008	7/22/2008	7/22/2008	7/22/2008	7/22/2008	7/22/2008	7/23/2008	7/23/2008	7/23/2008	7/23/2008	7/23/2008	5/21/2009	5/21/2009	5/21/2009
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1*	TSCA														
PAHs																					
(mg/kg)	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	0.279 U	0.932 U	NA	240	0.698 U	2.3	0.20 U	0.20 U						
	Acenaphthylene	600	10	600	10	1	N/A	0.279 U	0.932 U	NA	9.32 U	0.698 U	0.19 U	0.20 U	0.20 U						
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	0.279 U	0.932 U	NA	443	0.698 U	3.9	0.20 U	0.50						
l	Benzo(a)anthracene	7	7	40	40	7	N/A	0.279 U	0.932 U	NA	644	0.698 U	5.1	0.38	1.9						
1	Benzo(a)pyrene	2	2	4	4	2	N/A	0.279 U	0.932 U	NA	564	0.698 U	4.2	0.34	1.5						
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	0.279 U	0.932 U	NA	635	0.698 U	4.5	0.40	1.2						
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	0.279 U	0.932 U	NA	337	0.698 U	2.6	0.22	0.78						
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	0.279 U	0.932 U	NA	257	0.698 U	2.0	0.20 U	0.49						
	Chrysene	70	70	400	400	70	N/A	0.279 U	0.932 U	NA	587	0.698 U	5.1	0.37	2.2						
	Dibenz(a,h)anthracene	0.7	0.7	4	4	1	N/A	0.279 U	0.932 U	NA	143	0.698 U	0.61	0.20 U	0.20 U						
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	0.279 U	0.932 U	NA	1,300	1.05	11	0.64	2.2						
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	0.279 U	0.932 U	NA	311	0.698 U	2.9	0.20 U	0.20 U						
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	0.279 U	0.932 U	NA	400	0.698 U	3.2	0.22	0.81						
1	2-Methylnaphthalene	80	300	80	500	0.7	N/A	0.279 U	0.932 U	NA	NA	NA	NA	NA	NA NA	NA	146	0.698 U	1.0	0.20 U 0.20 U	0.20 U
	Naphthalene	40	500	40	1,000	4	N/A	0.279 U	0.932 U	NA NA	NA	NA	NA	NA	NA NA	NA	354 1,310	0.698 U 0.785	1.4 17		0.20 U
1	Phenanthrene	500 1,000	500 1,000	1,000 3,000	1,000 3,000	10 1,000	N/A N/A	0.279 U 0.279 U	0.932 U 0.932 U	NA NA	1,050	0.785	11	0.76 0.62	2.2 4.2						
PCBs	Pyrene	1,000	1,000	3,000	3,000	1,000	IV/A	0.279 0	0.932 0	NA NA	INA	INA	. NA	IVA	IVA	INA	1,050	0.722	- 11	0.02	7.2
(mg/kg)	Aroclor 1254	2	2	3	3	2	1	0.0689 U	0.273 UJ	0.0670 U	0.211 UJ	0.0611 U	0.0593 U	0.0649 U	0.245 UJ	NA	0.105 U	0,192 UJ	NA	NA	NA
(III G/ IX G)	Aroclor 1260	2	2	3	3	2	1 1	0.0689 U	0.273 UJ	0.0670 U	0.211 UJ	0.0611 U	0.0593 U	0.0649 U	0.245 UJ	NA	0.105 U	0,192 UJ	NA	NA	NA
1	Total PCBs	2	2	3	3	2	1	0.0689 U	0.273 UJ	0.0670 U	0.211 UJ	0.0611 U	0.0593 U	0.0649 U	0.245 UJ	NA	0.105 U	0.192 UJ	NA	NA	NA
PCB Hom		1																			
(mg/kg)	Pentachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
L 0 0,	Total PCBs	2	2	3	3	2	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals		1							ĺ												
(mg/kg)	Antimony	20	20	30	30	20	N/A	R	22.4 U	NA	NA	5.12 U	4.85 U	5.05 U	20.9 U	4.73 U	7.03	16.8 U	NA	NA	NA
	Arsenic	20	20	20	20	20	N/A	31.9	14.0 U	NA	NA	8.68	3.04 U	5.99	13.1 U	2.96 U	15.0	10.5 U	NA	NA	NA
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	1,960	44.4	NA	NA	702	6.83	373	85.1	5.92 U	261	50.5	NA	NA	NA
	Beryllium	100	100	200	200	100	N/A	1.45	1.40 U	NA	NA	1.23	0.31 U	0.85	1.31 U	0.30 U	2.94	1.05 U	NA	NA	NA
	Cadmium	2	2	30	30	2	N/A	1.34	1.40 U	NA	NA	1.55	0.31 U	0.76	4.43	0.30 U	0.49	1.05 U	NA	NA	NA
	Chromium	30	30	200	200	30	N/A	24.4	8.56	NA	NA	18.3	2.88	11.6	7.18	1.61	5.15	2.10 U	NA	NA	NA
	Lead	300	300	300	300	300	N/A	1,820	4.19 U	NA	NA	3,970	7.80	589	281	2.36	503	5.22	NA	NA	NA
1	Mercury	20	20	30	30	20	N/A	0.488	0.140 U	NA	NA	0.028 U	0.014 U	0.074	0.115 U	0.016 U	0.086	0.104	NA	NA	NA
1	Nickel	20	20	700	700	20	N/A	27.3	5.69	NA	NA	14.7	2.40	35.2	5.74	1.20	3.75	2.10 U	NA	NA	NA
	Silver	100	100	200	200	100	N/A	2.82	2.80 U	NA	NA	0.64 U	0.61 U	0.64 U	4.67	0.60 U	0.56 U	2.10 U	NA	NA	NA
	Vanadium	600	600	1,000	1,000	600	N/A	50.6	28.0 U	NA	NA	32.8	6.07 U	160	26.1 U	5.92 U	19.4	21.0 U	NA	NA	NA
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	564	13.4	NA	NA	435	8.99	343	1,300	8.26	80.7	17.3	NA	NA	NA

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte.

N/A - Not available.

R - Rejected data point during validation.

U - Compound was not detected at specified quantitation limit.

UJ - Estimated non-detect.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method 1 standards.

Values shown in bold and outlined exceed TSCA but are less than the listed Method 1 standards.

PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration

TSCA - Toxic Substances Control Act criteria,

* - For reference purposes only.

TABLE 3-9 **Summary of Detected Analytical Results for Soil Samples** New Bedford High School - Beneath Pavement/Building Areas (Exposure Point Area HS-9) New Bedford, Massachusetts

						Sam	ple Location:	SB-3	808C	I SB-3	08D	SB-308F	SB-308H	SB-308I	SB-	-309	SB-	-310		SB-311	
Analysis	Analyte						le Depth (ft.):	3	5	3	5	3-4	3-4	3-4	4	8	3	7	6	6	9
	·						Sample Date:	5/21/2009	5/21/2009	5/21/2009	5/21/2009	5/20/2009	5/20/2009	5/21/2009	7/23/2008	7/23/2008	7/23/2008	7/23/2008	7/23/2008	7/23/2008	7/23/2008
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1*	TSCA													Field Dup	
PAHs										10											
(mg/kg)	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	0.18 U	0.65 U	0.37 U	0.67 U	0.19 U	0.37 U	0.19 U	NA	NA	NA	NA	1.16 U	0.232 U	0.652 U
	Acenaphthylene	600	10	600	10	1	N/A	0.18 U	0.65 U	0.37 U	0.67 U	0.64	0.37 U	0.19 U	NA	NA	NA	NA	1.16 U	0.232 U	0.652 U
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	0.24	0.65 U	0.48	0.67 U	0.84	0.37 U	0.34	NA	NA	NA	NA	1,16 U	0.232 U	0.652 U
	Benzo(a)anthracene	7	7	40	40	7	N/A	0.36	0.86	1.7	0.67 U	3.9	0.37 U	0.63	NA	NA	NA	NA	1.16 U	0.232 U	0.652 U
	Benzo(a)pyrene	2	2	4	4	2	N/A	0.32	0.82	1.6	0.67 U	4.5	0.37 U	0.49	NA	NA	NA	NA	1.16 U	0.232 U	0.652 U
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	0,43	1.2	1.9	0.67 U	4.8	0.37 U	0.62	NA	NA	NA	NA	1.16 U	0.232 U	0.652 U
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	0.18 U	0.65 U	0.77	0.67 U	1.7	0.37 U	0.53	NA	NA	NA	NA	1.16 U	0.232 U	0.652 U
1	Benzo(k)fluoranthene	70	70	400	400	70	N/A	0.18 U	0.65 U	0.79	0.67 U	1.9	0.37 U	0.26	NA	NA	NA	NA	1.16 U	0.232 U	0.652 U
	Chrysene	70	70	400	400	70	N/A	0.34	0.81	1.6	0.67 U	4.1	0.37 U	0.66	NA	NA	NA	NA	1.16 U	0.232 U	0.652 U
1	Dibenz(a,h)anthracene	0.7	0.7	4	4	1	N/A	0.18 U	0.65 U	0.37 U	0.67 U	0.46	0.37 U	0.21	NA	NA	NA	NA	1.16 U	0.232 U	0.652 U
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	0.57	1.4	2.8	0.67 U	7.5	0.37 U	1.6	NA	NA	NA	NA	1.16 U	0.232 U	0.652 U
1	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	0.18 U	0.65 U	0.37 U	0.67 U	0.20	0.37 U	0.19 U	NA	NA	NA	NA	1.16 U	0.232 U	0.652 U
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	0.18 U	0.65 U	0.98	0.67 U	2.0	0.50	0.59	NA	NA	NA	NA	1,16 U	0.232 U	0.652 U
	2-Methylnaphthalene	80	300	80	500	0.7	N/A	0.18 U	0.65 U	0.37 U	0.67 U	0.19 U	0.37 U	0.19 U	NA	NA	NA	NA	1.16 U	0.232 U	0.652 U
1	Naphthalene	40	500	40	1,000	4	N/A	0.20	0.65 U	0.37 U	0.67 U	0.29	0.37 U	0.32	NA	NA	NA	NA	1.16 U	0.232 U	0.652 U
	Phenanthrene	500	500	1,000	1,000	10	N/A	0.79	1.7	1.8	0.67 U	4.2	0.37 U	1.3	NA	NA	NA	NA	1.16 U	0.232 U	0.652 U
1000	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	0.51	0.91	2.6	0.67 U	8.6	0.37 U	1,4	NA	NA	NA	NA	1.16 U	0.232 U	0.652 U
PCBs	Aroclor 1254	2	2	2	2	_	,	NIA	NIA	NA	NTA	NIA	NA	NA	0.0822 U	0.698 J	0.0632 U	0.253 UJ	0.0667 U	0.0706 U	0,183 UJ
(mg/kg)	Aroclor 1260	2	2 2	3	3	2	1	NA NA	NA NA		NA	NA NA	I .	NA NA	0.0822 U	0.143 U	0.0632 U 0.175 J	0.253 UJ	0.0667 U	0.0706 U	0.183 UJ
	Total PCBs	2	2	3 2	3	2	1	NA NA	0.0822 U	0.143 U 0.698 J	0.175 J 0.175 J	0.253 UJ 0.253 UJ	0.0667 U	0.0706 U	0.183 UJ						
PCB Hom				3	3	2	1	. NA	INA	INA	INA	NA	NA	NA	0.0822 0	0.098 J	0.1/5 J	0.233 UJ	0.0007 0	0.0706 0	0.183 UJ
(mg/kg)	Pentachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA NA	NA	NA	NA	NA	NA							
(mg/kg)	Total PCBs	2.	2	1N/A	3	2	1 1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA								
Metals	10ta 1 CBs				,			1471	14/1	14/1	1373	1471	14/1	1477	1471	14/1	1471	101	1471	1477	142
(mg/kg)	Antimony	20	20	30	30	20	N/A	NA	5.11 U	19.3 U	5.54 U	5.56 U	15.7 U								
(IIIg/Kg)	Arsenic	20	20	20	20	20	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA I	NA NA	9,39	12.1 U	14.9	18.0	9.77 U
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	287	24.1 U	384	356	23.7
	Beryllium	100	100	200	200	100	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.86	1.21 U	0.55	0.59	0.98 U
	Cadmium	2	2	30	30	2	N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.46	1.21 U	1.71	1.71	0.98 U
	Chromium	30	30	200	200	30	N/A	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	11.0	10.8	24.6	40.8	11.5
	Lead	300	300	300	300	300	N/A	NA NA	443	3.91	1,970	912	4.51								
	Mercury	20	20	30	30	20	N/A	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	2.08	0.105 U	0.218	0,215	0.078 U
	Nickel	20	20	700	700	20	N/A	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	13.0	8.83	17.2	31.3	9.47
	Silver	100	100	200	200	100	N/A	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	1.18	2.41 U	10.7	12.5	1.96 U
	Vanadium	600	600	1.000	1,000	600	N/A	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	20.7	24.1 U	22.1	23.5	19.6 U
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	76.4	14.3	851	592	21.3

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte.

N/A - Not available.

R - Rejected data point during validation.

U - Compound was not detected at specified quantitation limit.

UJ - Estimated non-detect,

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method 1 standards.

[Values shown in bold and outlined exceed TSCA but are less than the listed Method 1 standards.

PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration,

TSCA - Toxic Substances Control Act criteria.

* - For reference purposes only.

TABLE 3-9 **Summary of Detected Analytical Results for Soil Samples** New Bedford High School - Beneath Pavement/Building Areas (Exposure Point Area HS-9) New Bedford, Massachusetts

	T	ĺ				Sam	ple Location:	SB-	312	SB-	313		NBHS-2		NBI	HS-3		NBI	1S-4	
Analysis	Analyte						e Depth (ft.):	5	9	5	8	1.5	3,5	5	4	6	2	6	6	8
							Sample Date:	8/5/2008	8/5/2008	8/4/2008	8/4/2008	8/4/2008	8/4/2008	8/4/2008	7/30/2008	7/30/2008	7/31/2008	7/31/2008	7/31/2008	7/31/2008
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1*	TSCA												Field Dup	
PAHs			1 000	2 000	2.000		27/4	0.105.11	0 104 11	3.7.4	27.4	27.4	N7.4	NTA	27.4	NA NA	NA	0.101 11	0.349	0.174 U
(mg/kg)	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	0.187 U	0.174 U	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.181 U 0.181 U	0.349 0.186 U	0.174 U 0.174 U
1	Acenaphthylene	600	10	600	10 3,000	1 1.000	N/A	0.187 U	0.174 U	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.181 U	0.186 U 0.797	0.174 U
	Anthracene	1,000	1,000	3,000	40	1,000	N/A N/A	0.187 U 0.187 U	0.174 U 0.174 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.181 U	1.87	0.174 U
	Benzo(a)anthracene	. '	2	40	40	2	N/A N/A	0.187 U	0.174 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.181 U	1.64	0.174 U
	Benzo(a)pyrene	2	2 7	40	40	7	N/A N/A	0.187 U	0.174 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.181 U	1.04	0.174 U
	Benzo(b)fluoranthene	1,000	1,000	3,000	3.000	1.000	N/A N/A	0.187 U	0.174 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.181 U	1.08	0.174 U
	Benzo(g,h,i)perylene Benzo(k)fluoranthene	70	70	400	400	70	N/A	0.187 U	0.174 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.181 U	0.634	0.174 U
	Chrysene	70	70	400	400	70	N/A N/A	0.187 U	0.174 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.181 U	1.76	0.174 U
	Dibenz(a,h)anthracene	0.7	0.7	400	400	1 1	N/A	0.187 U	0.174 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.181 U	0.324	0.174 U
	Fluoranthene	1,000	1.000	3,000	3.000	1.000	N/A	0.187 U	0.174 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.181 U	3.55	0.174 U
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	0.187 U	0.174 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.181 U	0.438	0.174 U
	Indeno(1,2,3-cd)pyrene	7	7,000	40	40	7	N/A	0.187 U	0.174 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.181 U	1.29	0.174 U
	2-Methylnaphthalene	80	300	80	500	0.7	N/A	0.187 U	0.174 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.181 U	0.186 U	0.174 U
	Naphthalene	40	500	40	1,000	4	N/A	0.187 U	0.174 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.181 U	0.186 U	0.174 U
1	Phenanthrene	500	500	1.000	1,000	10	N/A	0.187 U	0.174 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.181 U	3.80	0.174 U
1	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	0.187 U	0.174 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	0.181 U	3.48	0.174 U
PCBs	1,1010	1,000	1,000	2,000	0,000	1,000		0.107												
(mg/kg)	Aroclor 1254	2	2	3	3	2	1.	19.7 J	0.0500 U	6.32 J	0.0529 U	0.0500 U	0.0501 U	0.0535 U	0.147 J	0.0520 U	0.0559 U	0.0513 U	0.0508 U	0.0518 U
(88/	Aroclor 1260	2	2	3	3	2	1 1	0.527 U	0.0500 U	0.206 U	0.0529 U	0.0500 U	0.0501 U	0.0535 U	0.0502 U	0.0520 U	0.0559 U	0.0513 U	0.0508 U	0.0518 U
	Total PCBs	2	2	3	3	. 2	1 1	19.7 J	0.0500 U	6.32 J	0.0529 U	0.0500 U	0.0501 U	0.0535 U	0.147 J	0.0520 U	0.0559 U	0.0513 U	0.0508 U	0.0518 U
PCB Hom	ologs									15/10/2018/11 (2011)										
(mg/kg)	Pentachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Total PCBs	2	2	3	3	2	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals																				
(mg/kg)	Antimony	20	20	30	30	20	N/A	4.47 U	4.16 U	NA	NA	NA	NA	NA	NA	NA	NA	4.33 U	4.46 U	4.18 U
	Arsenic	20	20	20	20	20	N/A	2.80 U	2.60 U	NA	NA	NA	NA	NA	NA	NA.	NA	2.71 U	2.86	3.31
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	5.90	8.82	NA	NA	NA	NA	NA	NA	NA	NA	15.0	19.7	13.4
	Beryllium	100	100	200	200	100	N/A	0.28 U	0.26 U	NA	NA	NA	NA	NA	NA	NA	NA	0.28 U	0.28 U	0.27 U
	Cadmium	2	2	30	30	2	N/A	0.28 U	0.26 U	NA	NA	NA	NA	NA	NA	ŇA	NA	0.28 U	0.28 U	0.27 U
	Chromium	30	30	200	200	30	N/A	2.06	4.05	NA	NA	NA	NA	NA	NA	NA	NA	5.33	8.46	5.29
	Lead	300	300	300	300	300	N/A	2.97	4.88	NA	NA	NA	NA	NA	NA	NA	NA	9.74	15.7	2.86
	Mercury	20	20	30	30	20	N/A	0.020 U	0.017 U	NA	NA	NA	NA	NA	NA	NA	NA	0.022	0.027	0.645
	Nickel	20	20	700	700	20	N/A	2.37	3.40	NA	NA	NA	NA	NA	NA	NA	NA	3.75	5.91	3.02
	Silver	100	100	200	200	100	N/A	0.57	0.71	NA	NA	NA	NA	NA	NA	NA	NA	0.55 U	0.62	0.65
	Vanadium	600	600	1,000	1,000	600	N/A	5.59 U	5.53	NA	NA	NA	NA	NA	NA	NA	NA	7.46	10.5	9.32
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	9.50	10.2	NA	NA	NA	NA	NA	NA	NA	NA	19.0	25.3	16.3

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte,

N/A - Not available.

R - Rejected data point during validation.

U - Compound was not detected at specified quantitation limit.

UJ - Estimated non-detect,

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method 1 standards.

Values shown in bold and outlined exceed TSCA but are less than the listed Method 1 standards.

PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria.

* - For reference purposes only.

TABLE 3-9 **Summary of Detected Analytical Results for Soil Samples** New Bedford High School - Beneath Pavement/Building Areas (Exposure Point Area HS-9) New Bedford, Massachusetts

						Sam	ple Location:	NBI	HS-5	l NBI	HS-6	NBI	HS-7	NBI	HS-8
Analysis	Analyte						le Depth (ft.):	4	8	3	6	3	7	2.5	6
	·						Sample Date:	7/30/2008	7/30/2008	7/28/2008	7/28/2008	7/29/2008	7/29/2008	7/28/2008	7/28/2008
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1*	TSCA								
PAHs		3								i i					
(mg/kg)	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	NA	NA	NA	NA	0.177 U	0.188 U	NA	NA
	Acenaphthylene	600	10	600	10	1	N/A	NA	NA	NA	NA	0.177 U	0.188 U	NA	NA
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	0.177 U	0.188 U	NA	NA
	Benzo(a)anthracene	7	7	40	40	7	N/A	NA	NA	NA	NA	0.177 U	0.188 U	NA	NA
	Benzo(a)pyrene	2	2	4	4	2	N/A	NA	NA	NA	NA	0.177 U	0.188 U	NA	NA
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	NA	NA	NA	NA	0.177 U	0.188 U	NA	NA
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	0.177 U	0.188 U	NA	NA
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	NA	NA	NA	NA	0.177 U	0.188 U	NA	NA
	Chrysene	70	70	400	400	70	N/A	NA	NA	NA	NA	0.177 U	0.188 U	NA	NA
1	Dibenz(a,h)anthracene	0.7	0.7	4	4	1	N/A	NA	NA	NA	NA	0.177 U	0.188 U	NA	NA
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	0.177 U	0.188 U	NA	NA
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	0.177 U	0.188 U	NA	NA
1	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	NA	NA	NA	NA	0.177 U	0.188 U	NA	NA
	2-Methylnaphthalene	80	300	80	500	0.7	N/A	NA	NA	NA	NA	0.177 U	0.188 U	NA	NA
	Naphthalene	40	500	40	1,000	4	N/A	NA	NA	NA	NA	0.177 U	0.188 U	NA	NA
	Phenanthrene	500	500	1,000	1,000	10	N/A	NA	NA	NA	NA	0.177 U	0.188 U	NA	NA
	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	0.177 U	0.188 U	NA	NA
PCBs															
(mg/kg)	Aroclor 1254	2	2	3	3	2	1	0.192 J	0.0599 U	1.13 J	0.0553 U	0.183 J	0.0532 U	0.0510 U	0.0687 J
	Aroclor 1260	2	2	3	3	2	1	0.0500 U	0.0599 U	0.0537 U	0.0553 U	0.0504 U	0.0532 U	0.0510 U	0.0568 U
	Total PCBs	2	2	3	3	2	1	0,192 J	0.0599 U	1.13 J	0.0553 U	0.183 J	0.0532 U	0.0510 U	0.0687 J
PCB Hom															
(mg/kg)	Pentachlorobiphenyl	N/A	N/A	N/A	N/A	N/A	N/A	NA							
	Total PCBs	2	2	3	3	2	1	NA							
Metals		20		2.0	20	20				4.00 ***			4.50.77		
(mg/kg)	Antimony	20	20	30	30	20	N/A	4.22 U	4.80 U	4.28 U	4.55 U	4.24 U	4.50 U	NA	NA
	Arsenic	20	20	20	20	20	N/A	2.64 U	3.00 U	4.17	2.85 U	2.65 U	2.82 U	NA	NA
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	27.9	14.2	308	9.10	31.7	5.63 U	NA	NA
	Beryllium	100	100	200	200	100	N/A	0.27 U	0.30 U	0.27 U	0.29 U	0.27 U	0.29 U	NA	NA
	Cadmium	2	2	30	30	2	N/A	0.27 U	0.30 U	0.90	0.29 U	0.27 U	0.29 U	NA	NA
	Chromium	30	30	200	200	30	N/A	6.40	5.38	31.0	4.53	7.39	2.26	NA	NA
	Lead	300	300	300	300	300	N/A	4.05	3.46	322	2.99	13.7	2.03	NA	NA
	Mercury	20	20	30	30	20	N/A	0.015 U	0.016 U	0.183	0.022 U	0.018	0.017 U	NA	NA
	Nickel	20	20	700	700	20	N/A	5.45	3.85	9.14	2.33	5.35	1.49	NA	NA
	Silver	100	100	200	200	100	N/A	1.05	0.60 U	1.59	0.57 U	0.70	0.57 U	NA	NA
	Vanadium	600	600	1,000	1,000	600	N/A	8.08	8.25	17.6	5.69 U	9.48	5.63 U	NA	NA
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	13.0	11.4	315	11.2	24.0	10.4	NA	NA

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte.

N/A - Not available.

R - Rejected data point during validation.

U - Compound was not detected at specified quantitation limit.

UJ - Estimated non-detect.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method 1 standards.

Values shown in bold and outlined exceed TSCA but are less than the listed Method 1 standards.

PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls...

RC - Reportable Concentration.

TSCA - Toxic Substances Control Act criteria.

* - For reference purposes only.

Analysis	Analyte						mple Location: ple Depth (ft.): Sample Date:	HA3 0,5-1 12/29/2004	HA4 1-2 12/29/2004	HA4+HA3 0.5-2 12/29/2004	HA5 2.5-2.7 12/29/2004	HA8 2,5-3 12/29/2004	HA8+HA5 2.5-3 12/29/2004	HA9 2.5-3 12/29/2004	0-1 5/19/2609	\.9 1-3 5/19/2009	HA10 2.5-3 12/29/2004	0-1 5/19/2009	-10 1-3 5/19/2009	HA10+HA9 2,5-3 12/29/2004	HA-19 1-3 477/2009	0-1 5/19/2009	-19A 1-3 5/19/2009	0-1 5/19/2009	-19B 1-3 5/19/2009	0-1 5719/2009	HA-19C 1-3 5/19/2009	1-3 5/19/2009	0-1 5/19/2009	19D 1-3 5/19/2009
VOCs (mg/kg)	Acetone Naphthalene	S-1/GW-2 50 40	\$-1/GW-3 400 500	S-2/GW-2 50 40	\$-2/GW-3 400 1,000	6.0 4		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Pield Dup NA NA	NA NA	NA NA
EPH (mg/kg)	Dibenzo(a,h)anthracene Benzo(ghi)perylene C19 - C36 Aliphatics	0.7 1,000 3,000	0.7 1,000 3,000	4 3,000 5,000	4 3,000 5,000	0.7 1,000 3,000	N/A N/A N/A	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA
SVOCs // (mg/kg)	PAHs Dimethyl phthalate Di-n-butylphthalate Dis-n-butylphthalate Dis-n-butylphthalate Dis-n-butylphthalate Dis-n-butylphthalate Dibenzofuran Acenaphthene Acenaphthene Acenaphthene Anduracene Benzo(a)mthracene Benzo(a)mthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene Naphthalene Phenanthrene Phenanthrene Phenanthrene Pyrene	50 NIS 200 10* 1,000 600 1,000 7 2 7 1,000 70 0.7 1,000 1,000 1,000 1,000	600 NS 200 10* 1,000 10 1,000 7 2 7 1,000 70 70 70 0.7 1,000 1,000 1,000 500 500	50 NS 700 NS 3,000 600 3,000 40 4 4 40 400 4 3,000 3,000 400 400 4 400 4 400 4 400 4 400 4 3,000 5,000 600 80 400 400 400 400 400 400 400 400 40	600 NS 700 NS 3,000 10 3,000 40 4 4 0 3,000 400 400 400 400 500 1,000 1,000 1,000	30 50 200 100 4 1 1,000 7 2 7 1,000 70 70 1 1,000 7,00	N/A	NA N	NA N	0.29 U 0.87 U 0.87 U 0.29 U	NA N	NA N	0.27 U 0.82 U 0.82 U 0.27 U 0.27 U 0.27 U 0.69 3.3 2.5 2.4 0.27 U 1.2 2.7 0.27 U 6.6 0.27 U 4.8 8.1	NA	NA NA NA NA 0.19 U	NA NA NA NA 0.18 U	NA N	NA NA NA NA 0.19 U	NA N	0.55 U 1.6 U 1.4 4.2 1.5 12 28 18 19 11 7.1 23 0.55 U 61 15 7.4 6 0.92 61 60	NA NA NA NA 0.204 U 0.204 U 0.450 0.450 0.439 0.560 0.289 0.218 0.528 0.204 U 0.736 0.204 U 0.345 0.204 U 0.345 0.204 U 0.345 0.204 U 0.340	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N
(mg/kg)	Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Total PCBs	2 2 2 2 2	2 2 2 2 2	3 3 3 3 3	3 3 3 3 3	2 2 2 2 2	1 1 1 1	0.064 U 0.637 0.064 U 0.064 U 0.637	1.26 U 11.3 1.26 U 1.26 U	NA NA NA NA NA	0.058 U 1.08 0.058 U 0.058 U 1.08	0.055 U 1.06 0.055 U 0.055 U 1.06	NA NA NA NA	0.054 U 1.92 0.054 U 0.054 U 1.92	0.567 U 18.8 J 0.567 U NA 18.8 J	0.472 U 10.2 J 0.472 U NA 10.2 J	0.055 U 0.62 0.055 U 0.055 U 0.62	0.165 U 3.21 J 0.165 U NA 3.21 J	0.174 U 2.70 J 0.174 U NA 2.70 J	NA NA NA NA NA	0.0566 U 0.483 J 0.179 J NA 0.662 J	0.0589 U 0.0589 U 0.0589 U NA 0.0589 U	0,246 U 5.30 J 0.246 U NA 5.30 J	0.0571 U 0.130 J 0.0571 U NA 0.130 J	0,0526 U 0.248 J 0,0526 U NA 0,248 J	0.0547 U 0.113 J 0.0547 U NA 0.113 J	0.117 U 0.916 J 0.117 U NA 0.916 J	0.0571 U 0.518 J 0.163 J NA 0.681 J	0.0568 U 0.0799 J 0.0568 U NA 0.0799	0.0555 U 1.32 J 0.0555 U .NA 1.32 J
Metals (mg/kg)	Mercury Arsenic Barium Beryllium Cadmium Chromium Lead Nickel Selenium Silver Vanadium Zinc	20 20 1,000 100 2 30 300 20 400 100 600 2,500	20 20 1,000 100 2 30 300 20 400 100 600 2,500	30 20 3,000 200 30 200 300 700 800 200 1,000 3,000	30 20 3,000 200 30 200 300 700 800 200 1,000 3,000	20 20 1.000 100 2 30 300 20 400 100 600 2,500	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	NA N	NA N	0.113 3.03 93 NA 1.45 10 170 NA 0.69 U 0.34 U NA	NA N	NA N	0.075 U 2.22 50 NA 0.69 8.54 45 NA 0.69 U 0.35 U NA	NA N	NA 2.9 14 NA 0.28 U 5.8 10 NA NA NA NA NA	NA 2.7 U 8.9 NA 0.27 U 2.3 3.3 NA NA NA NA	NA	NA 2.8 U 14 NA 0.28 U 6.2 6.4 NA NA NA	NA 2.9 U 13 NA 0.29 U 5.9 7.0 NA NA NA NA	0.075 U 1.25 30 NA 0.9 8.44 17 NA 0.69 U 0.35 U NA	NA 17.4 7,290 NA 9,07 358 1,770 NA NA NA	NA 2.9 U 77 NA 0.29 U 9.1 39 NA NA NA NA	NA 10 250 NA 2.5 48 820 NA NA NA NA	NA 2.8 U 30 NA 0.28 U 5.1 27 NA NA NA	NA 12 1,400 NA 3.3 47 1,200 NA NA NA NA	NA 2.9 U 32 NA 0.29 U 6.9 26 NA NA NA NA	NA 21 3,900 NA 5.4 84 740 NA NA NA NA NA	NA 22 9,300 NA 2.5 4,800 NA NA NA NA NA	NA 7.9 360 NA 24 16 150 NA NA NA NA NA NA	NA 2.7 U 35 NA 0.28 4.3 25 NA NA NA
GRO (mg/kg)	Gasoline Range Organics	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals, T (ug/L)	CLP Barium Cadmium Chromium Lead	NS NS NS	NS NS NS NS	NS NS NS	NS NS NS NS	NS NS NS NS	100.000 ⁽⁵⁾ 1,000 ⁽⁵⁾ 5,000 ⁽⁵⁾ 5,000 ⁽⁵⁾	NA NA NA NA	NA NA NA NA	NA NA NA 260	NA NA NA	NA NA NA	NA NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA

Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm)

ug/L - micrograms per kilor

B - Detected in associated laboratory method blank.

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

U - Compound was not detected at specified quantitation limit.

UJ - Estimated non-detect.

Values in Bold indicate the compound was detected.

Values shown in Bold and shutled type exceed one or more of the listed Method 1 standards or ECLIV standards, as applicable.

Values shown in Bold and cultifact exceed TSCA but are less than the listed Method 1 standards.

VOCs - Volatile Organic Compounds.

SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration.

PCBs - Polychlorinnted Biphenyls.

RC - Reportable Concentration.

TCLP - Toxicity Characteristic Leaching Procedure.

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summany of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group. Inc.
(1) - MassDEP Method 1 stendards and RC for C9-C10 aromatics used.
(2) - MassDEP RC for Dichloropropane used.
(3) - MassDEP RC for Dichloropropene used.
(4) - MassDEP RC for J.3-Dichloropropene used.
(5) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic.

* - TRC developed standards.

- sample locations to be either excavated, or covered by pavement.

				-		Sar	nple Location:	HA-19E	HA-19F	HA-19G	н	· 19I	HA-19K	HA-19M	HA-190	HA-19Q	HA-19S	HA33	НА33+НА35	HA35	HA-36	н	3-7	10	3-9
Analysis	Analyte	S-1/GW-2	1 S-1/GW-3	S-2/GW-2	S-2/GW-3		ole Depth (ft.): Sample Date: TSCA	1-3 5/19/2009	1-3 5/19/2009	1-3 5/19/2009	1-3 7/7/2009	1-3 7/7/2009 Field Dup	1-3 7/7/2009	1-3 7/7/2009	1-3 7/7/2009	1-3 7/7/2009	1-3 7/7/2009	1-3 1/11/2005	1-3 1/11/2005	1-1.5 1/11/2005	1-3 4/7/2009	0-1 5/19/2009	1-3 5/19/2009	0-1 5/19/2009	1-3 5/19/2009
VOCs (mg/kg)	Acetone Naphthalene	50 40	400 500	50 40	400 1,000	6.0 4	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
EPH (mg/kg)	Dibenzo(a,h)anthracene Benzo(gli)perylene C19 - C36 Aliphatics	0.7 1,000 3,000	0.7 1,000 3,000	4 3,000 5,000	4 3,000 5,000	0.7 1,000 3,000	N/A N/A N/A	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA
SVOCs // ((ng/kg)		50 NS 200 10* 1,000 600 1,000 7 2 7 1,000 70 0,7 1,000 1,000 1,000 40 500	600 NS 200 10* 1,000 10 1,000 7 2 7 1,000 70 0,7 1,000 1,000 7 300 500 500	50 NS 700 NS 3,000 600 3,000 40 4 4 3,000 400 400 400 400 400 400 3,000 3,000 40 40 3,000 3,000 3,000	600 NS 700 NS 3,000 10 3,000 40 4 4 3,000 400 400 400 400 400 500 1,000 1,000 3,000	30 50 200 100 4 1 1,000 7 2 7 1,000 70 1 1,000 1,000 7 0.7 4 10	NIA	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA	NA N	NA N	NA	0.28 U 0.83 U 0.28 U 0.28 U 0.28 U 0.36 1.1 3.3 2.5 3.4 1.2 0.97 2.9 0.28 U 0.28 U 1.3 0.28 U 0.28 U 5.7	NA N	NA NA NA 0.178 U 0.178 U	NA NA NA 0.20 U 0.20 U	NA N	NA NA NA NA O,20 U 0,20	NA NA NA NA 0.52 0.18 U 1.4 1.9 1.5 1.7 0.63 0.68 1.7 0.18 U 3.4 0.71 0.80 0.18 U 0.29 5.0
PCBs (mg/kg)	Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Total PCBs	2 2 2 2 2 2	2 2 2 2 2 2	3 3 3 3	3 3 3 3 3	2 2 2 2 2 2	1 1 1 1	0,175 U 2,69 J 0,175 U NA 2,69 J	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	0.055 U 0.142 0.055 U 0.055 U 0.142	NA NA NA NA	0,058 U 2,24 0,058 U 0,361 2,601	0.0516 U 0.181 J 0.0516 U NA 0.181 J	0.111 U 1.91 J 0.111 U NA 1.91 J	0.0504 U 0.0504 U 0.0504 U NA 0.0504 U	0,403 U 9,00 J 0,403 U NA 9,00 J	0.225 U 3.93 J 0.225 U NA 3.93 J
Metals (mg/kg)	Mercury Arsenic Barium Beryillium Cadmium Chromium Lead Nickel Selenium Silver Vanadium Zinc	20 20 1,000 100 2 30 300 20 400 100 600 2,500	20 20 1,000 100 2 30 300 20 400 100 600 2,500	30 20 3,000 200 30 200 300 700 800 200 1,000 3,000	30 20 3,000 200 30 200 300 700 800 200 1,000 3,000	20 20 1,000 100 2 30 300 20 400 100 600 2,500	N/A	NA NA 660 NA 2.6 30 1,600 NA NA NA NA	NA NA 15,000 NA 6.6 1,900 3,600 NA NA NA NA	NA NA 1,100 NA 9,7 100 1,000 NA NA NA NA	NA NA NA NA 4.1 NA 1,400 NA NA NA NA	NA NA NA 4.5 NA 1,700 NA NA NA NA NA	NA NA NA 2.9 NA 1,200 NA NA NA NA	NA NA NA NA NA 1,700 NA NA NA	NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA 620 NA NA NA	NA NA NA NA NA S70 NA NA NA	NA N	0.106 2.6 107 NA 0.95 7.55 209 NA 0.11 U 0.77 NA	NA N	NA 2.67 U 12.4 NA 0.27 U 2.79 6.49 NA NA NA NA	NA 2.9 U 16 NA 0.29 U 6.3 16 NA NA NA	NA 3.2 12 NA 0.26 U 5.3 7.1 NA NA NA	NA 3.0 U 15 NA 0.30 U 5.4 NA NA NA NA	NA 4.4 200 NA 0.79 19 280 NA NA NA NA
(mg/kg)	Gasoline Range Organics	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
Metals, T	CLP Barium Cadmium Chromium Lead	NS NS NS	NS NS NS NS	NS NS NS	NS NS NS	NS NS NS	100,000 ⁽⁵⁾ 1,000 ⁽⁵⁾ 5,000 ⁽⁵⁾ 5,000 ⁽⁵⁾	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA 300	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA	NA NA NA NA

Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

ug/L - micrograms per liter.

B - Detected in associated laboratory method blank.

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

U - Compound was not detected at specified quantitation limit.

UJ - Estimated non-detect.

Values in Bold indicate the compound was detected.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded (spic exceed one or more of the listed Method I standards or TCTL* standards, as applicable.

Values shown in Bold and cottlined exceed TSCA but are less than the listed Method I standards.

VOCs - Volatile Organic Compounds.

SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

RC - Reportable Connection.

RC - Reportable Concentration.
TCLP - Toxicity Characteristic Leaching Procedure.

TCLP - Toxicity Characteristic Leaching Procedure.

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - MassDEP Method 1 standards and RC for C9-C10 aromatics used.

(2) - MassDEP RC for Dichloropropene used.

(3) - MassDEP RC for Dichloropropene used.

(4) - MassDEP RC for 1,3-Dichloropropene used.

(5) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic.

* - TRC developed standards.

**

- sumple locations to be either excavated, or covered by pavement.

Analysis	Analyte					Samp	nple Location: ble Depth (ft.); Sample Date:	0.1	1-3 5/19/2009	0-1 4/9/2009	HB-22 1-3 4/9/2009	1-3 4/9/2009	HA38 1-3 1/11/2005	HA38+HA40 0,5-3 1/11/2005	0.5-3 1/11/2005	0.5-3 1/11/2005	HA41+HA42 0.75-3 1/11/2005	HA42 0.5-3 1/11/2005	HA43 0.75-3 1/11/2005	HA43+HA44 0.75-3 1/11/2005	HA44 0.75-3 1/11/2005	HB3 2-3 12/29/2004	11B7 2.75-3 12/28/2004	1/B7+1/B9 2.5-3 12/28/2004	HB9 2.5-3 12/28/2004	HB10 2.5-3 12/28/2004	HB10+HD10 1-3 12/28/2004	HB12 2.5-3 12/29/2004	11B12+HB16 2.5-3 12/29/2004	HB16 2.5-3 12/29/2004
VOCs (mg/kg)	Acetone Naphthalene	50 40	\$-1/GW-3 400 500	50 40	S-2/GW-3 400 1,000	6.0 4	N/A N/A	NA NA	NA NA	NA NA	NA NA	Field Dup NA NA	NA NA	NA NA	NA NA	Field Dup NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
EPH (mg/kg)	Dibenzo(a,h)anthracene Benzo(ghi)perylene C19 - C36 Aliphatics	0.7 1,000 3,000	0.7 1,000 3,000	4 3,000 5,000	4 3,000 5,000	0.7 1,000 3,000	N/A N/A N/A	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA
SVOCs / (mg/kg)	PAHs Dimethyl phthalate Di-n-butylphthalate bis(2-Ethylhexyl)phthalate Dibenzofuran Acenaphthene Acenaphthene Acenaphthylene Andwacene Benzo(a)anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Phoenanthene Naphthalene Naphthalene Naphthalene Phenanthrene Pyrene	50 NS 200 10* 1,000 600 1,000 7 2 7 1,000 70 70 0.7 1,000 1,000 1,000 1,000	600 NS 200 10* 1,000 10 1,000 7 2 7 1,000 70 70 70 70 70 70 1,000 1,000 7 7 7 7 1,000 1,000 1,000 1,000	50 NS 700 NS 3.000 600 3.000 40 4 4 4 0 3.000 400 4 4 3.000 3.000 400 40 40 40 40 40 40 40 40 40 40 40	600 NS 700 NS 3,000 10 3,000 40 4 400 400 400 4 3,000 3,000 40 40 500 1,000 1,000 3,000	30 50 200 100 4 1 1,000 7 2 7 1,000 70 7 1 1,000 1,000 1,000	N/A	NA N	NA NA NA NA O.40 U 0.40 U 1.3 1.3 1.4 0.69 0.54 1.3 0.40 U 1.9 0.40 U 0.85 0.40 U 0.85	NA NA NA NA NA 0.193 U 0.193 U 0.193 U 0.285 0.265 0.366 0.193 U 0.193 U 0.327 0.193 U 0.442 0.193 U 0.424	NA N	NA N	NA N	0,27 U 0,3 JB 0,82 U 0,7 1,5 0,3 3,7 8,2 5,3 7,1 2,1 6,5 0,85 2,3 1,1 2,4 0,53 0,68 19 17	NA N	NA	0.29 U 0.87 U 0.87 U 0.29 U 0.29 U 0.29 U 0.56 1.4 1 1.4 0.43 0.29 1.3 0.29 U 3 0.29 U 0.29 U 0.20 U 0.21 0.22 0.22 0.23	NA N	NA N	0,28 U 0,84 U 0.84 U 0.28 U 0.4 0.63 1.8 3.9 2.5 3.2 0.97 0.8 3.4 0.28 U 8 0.57 0.28 U	NA N	NA N	NA N	0.063 U 0.27 B 0.33 0.2 0.28 0.063 U 0.93 2.5 2.2 3.4 1.2 1.1 2.5 0.063 U 4.6 0.32 1.2 0.083 0.16 3.5 4.2	NA N	NA N	NA N	NA N	0.32 U 0.97 U 0.97 U 0.32 U 2.9 0.56 4.2 5.4 1.8 2.4 2.8 0.32 U 7 0.32 U 0.32 U 0.32 U 0.32 U	NA N
PCBs (mg/kg)	Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Total PCBs	2 2 2 2 2 2	2 2 2 2 2 2	3 3 3 3 3	3 3 3 3 3	2 2 2 2 2	1 1 1 1 1	0.226 U 5.14 J 0.226 U NA 5.14 J	0.125 U 1.49 J 0.125 U NA 1.49 J	0.0565 U 1.18 J 0.0565 U NA 1.18 J	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN	0.123 U 1.92 J 0.123 U NA 1.92 J	0.058 U 1.34 0.058 U 0.058 U 1.34	NA NA NA NA NA	0.057 U 0.804 0.057 U 0.057 U 0.804	0.056 U 0.452 0.056 U 0.127 0.579	NA NA NA NA	0.057 U 1.88 0.057 U 0.057 U 1.88	0.055 U 0.167 0.055 U 0.055 U 0.167	NA NA NA NA	0.055 U 0.308 0.055 U 0.138 0.446	0.057 U 0.057 U 0.057 U 0.057 U 0.057 U	0.06 U 0.955 0.06 U 0.241	NA NA NA NA	0.058 U 1.273 0.058 U 0.43 1.703	0,061 U 0,549 0,061 U 0,061 U 0,549	NA NA NA NA	0.069 U 1.64 0.069 U 0.069 U	NA NA NA NA NA	0,065 U 3,92 0,065 U 0,678 4,598
Metals (mg/kg)	Mercury Arsenic Barium Beryllium Cadmium Chromium Lead Nickel Selenium Silver Vanadium Zinc	20 20 1,000 100 2 30 300 20 400 100 600 2,500	20 20 1,000 100 2 30 300 20 400 100 600 2,500	30 20 3,000 200 30 200 300 700 800 200 1,000 3,000	30 20 3,000 200 30 200 300 700 800 200 1,000 3,000	20 20 1,000 100 2 30 300 20 400 100 600 2,500	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	NA 3.1 36 NA 0.30 U 8.4 20 NA NA NA NA	NA 100 600 NA 4.9 47 1,000 NA NA NA	NA 5.45 59 NA 0.56 12.8 93.4 NA NA NA	NA 7.83 307 NA 1.84 20.9 759 NA NA NA NA	NA N	NA N	0.01 U 3.48 167 NA 1.08 7.23 216 NA 0.11 U 0.16 NA	NA N	NA N	0.369 4.4 210 NA 2.21 15 360 NA 0.11 U 0.17 NA NA	NA N	NA N	0.286 2.15 71 NA 1.19 5.22 533 NA 0.11 U 0.15 NA	NA N	NA N	NA N	0.398 9.71 1,590 NA 5.96 345 1,120 NA 0.82 U 0.65 NA	NA	NA	0.814 4.32 337 NA 4.7 53 421 NA 0.64 U 0.32 NA NA	NA N	0.913 30 4,000 NA 9.68 272 5,230 NA 0.84 U 1.68 NA NA	NA N
(mg/kg) Metals, T	Gasoline Range Organics	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
(ug/L)	Barium Cadmium Chromium Lead	NS NS NS NS	NS NS NS NS	NS NS NS NS	NS NS NS NS	NS NS NS NS	1,000 ⁽⁵⁾ 1,000 ⁽⁵⁾ 5,000 ⁽⁵⁾ 5,000 ⁽⁵⁾	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA 300	NA NA NA NA	NA NA NA NA	NA NA NA 800	NA NA NA NA	NA NA NA NA	NA NA NA 400	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA 20 U 2,460	NA NA NA NA	NA NA NA NA	NA NA NA 400	NA NA NA NA	2,760 NA 20 U 13,200	NA NA NA NA

Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm),

ug/L - micrograms per liter,

B - Detected in associated laboratory method blank.

J - Estimated value; below quantitation limit,

NA - Sample not analyzed for the listed analyte,

N/A - Not arelicable.

NA - Sample not analyzed for the listed analyte.

NA - Not applicable.

U - Compound was not detected at specified quantitation limit.

UJ - Estimated non-detect.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method: I standards or TCLP standard, as applicable.

Values shown in bold and outlined exceed TSCA but are less than the listed Method i standards.

VOCs - Volatile Organic Compounds,

SVOCs - Semivolatile Organic Compounds,

SVOCs - Semivolatile Organic Compounds,

RC. - Reportable Concentration.

TCLP - Toxicity Characterisite Leaching Procedure.

TSCA - Toxic Substances Control Act criteria.

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

Data are obsect on the Summary of Annytical Data, New neurotidings across conditional surface.

(1) - MassDEP RC for Dichloropropene used.

(3) - MassDEP RC for Dichloropropene used.

(4) - MassDEP RC for Dichloropropene used.

(5) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic.

* - TRC developed standards.
- sample locations to be either excavated, or covered by pavement.

	Ť					San	nple Location:		23B	III.	23C	11B-23F	HB-2	23.6	HB.	23H	, nn	231	HB-23K	HB-23L	HB-23M	HB	-23N	HB23+HB27 MSB	HB23+HD23	HB31+HB32	HB32	HB33	НВ33+НВ36	HB36
Analysis	Analyte					Samp	le Depth (ft.); Sample Date:	0-1 3/10/2009	1-3 3/10/2009	0-1 3/10/2009	1-3 3/10/2009	1-3 3/10/2009	0-1 3/10/2009	1-3 3/10/2009	0-1 3/10/2009	1-3 3/10/2009	0-1 3/10/2009	1-3 3/10/2009	1-3 4/9/2009	1-3	J-3 4/9/2009	1-3 4/9/2009	1-3 4/9/2009	0.75-3 12/30/2004	0.75-3 12/29/2004	0,5-3 12/30/2004	0,5-3 12/30/2004	0.2-3 12/30/2004	0.2-3 12/30/2004	0,5-3 12/30/2004
VOCs		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3																		Field Dup							
(mg/kg)	Acetone Naphthalene	50 40	400 500	50 40	400 1,000	6,0 4	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
EPH (mg/kg)	Dibenzo(a,h)anthracene Benzo(ghi)perylene C19 - C36 Aliphatics	0,7 1,000 3,000	0,7 1,000 3,000	4 3,000 5,000	4 3,000 5,000	0.7 1,000 3,000	N/A N/A N/A	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA
SVOCS (mg/kg)	PAHs Dimethyl phthalate Di-n-butylphthalate Dis-butylphthalate Dis-butylphthalate Dibenzofuran Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene Naphthalene Naphthalene Phenanthrene Pyrene	50 NS 200 10* 1,000 600 1,000 7 2 7 1,000 70 0,7 1,000 1,000 7 80 40 500 1,000	600 NS 200 10* 1,000 7 2 7 1,000 70 0,7 1,000 7,000 1,000	50 NS 700 NS 3,000 600 3,000 40 4 4 4 0 3,000 40 40 40 40 40 40 40 40 1,000 3,000 3,000	600 NS 700 NS 3,000 10 3,000 40 4 4 3,000 400 4 4 3,000 3,000 40 500 1,000 1,000 3,000	30 50 200 100 4 1 1,000 7 2 7 1,000 1000 7 0,7 4 1000 7	N/A	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA N	0.27 U 0.81 U 0.81 U 0.27 U 0.35	0,06 U 0,24 B 0,12 J 0,06 U 0,076 0,06 U 0,26 0,95 0,9 1,7 0,06 U 0,47 0,77 0,06 U 1,8 0,06 U 0,06 U 0,06 U 0,06 U 0,06 U 1,2 2,3	NA N	NA N	0,058 U 0.39 B 0.14 J 0.058 U 0.17 0.058 U 0.18 0.058 U 0.19 0.18 0.058 U 0.19 0.11 0.058 U	NA
PCBs (mg/kg)	Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Total PCBs	2 2 2 2 2	2 2 2 2 2	3 3 3 3 3	3 3 3 3	2 2 2 2 2	1 1 1 1	0.0596 U 0.786 J 0.0596 U NA 0.786 J	0,0585 U 0.915 J 0,0585 U NA 0,915	0.0597 U 1.41 J 0.0597 U NA 1.41 J	0.306 U 4.74 J 0.306 U NA 4.74 J	NA NA NA NA	0.0570 U 0.943 J 0.0570 UJ NA 0.943 J	0.282 U 4.94 J 0.282 UJ NA 4.94 J	0.118 U 2.53 J 0.118 U NA 2.53 J	0,0631 U 0,0843 J 0,0631 U NA 0,0843 J	0.230 U 4.70 J 0.230 U NA 4.70 J	0.0645 U 0.517 J 0.0645 U NA 0.517 J	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	0,059 U 0,532 0,059 U 0,219 0,751	0.056 U 1.23 0.056 U 0.178 1.408	NA NA NA NA	0,058 U 0,352 0,058 U 0,058 U 0,352
Metals (mg/kg)	Mercury Arsenic Barium Berylium Cadmium Chronium Lead Nickel Selenium Silver Vanadium Zinc	20 20 1,000 100 2 30 300 20 400 100 600 2,500	20 20 1,000 100 2 30 300 20 400 100 600 2,500	30 20 3,000 200 30 200 300 700 800 200 1,000 3,000	30 20 3,000 200 30 200 300 700 800 200 1,000 3,000	20 20 1,000 100 2 30 300 20 400 100 600 2,500	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	NA 3.11 58.1 NA 0.37 8.95 48.5 NA NA NA	NA 7.30 236 NA 1.14 14.7 169 NA NA NA	NA 3.10 U 53.2 NA 0.31 U 8.13 42.9 NA NA NA	NA 18.1 1,020 NA 3.36 60.2 1,460 NA NA NA NA	NA NA 612 NA 2.20 47.0 893 NA NA NA NA	NA 2.90 U 55.1 NA 0.29 U 15.4 NA NA NA NA	NA 6.77 297 NA 1.28 29.7 423 NA NA NA NA	NA 3.42 343 NA 0.61 26.9 220 NA NA NA NA	NA 17.7 269 NA 3.31 36.8 548 NA NA NA NA	NA 7.29 311 NA 1.03 36.7 293 NA NA NA NA NA	NA 10.6 1,210 NA 4.06 35.2 3,630 NA NA NA NA	NA NA NA NA NA NA NA NA NA	NA N	NA	NA NA NA NA NA NA NA 110 NA NA NA NA NA	NA	2.33 91 875 NA 82 143 985 NA 75 75 NA NA	0.166 2.59 209 NA 1.95 21 183 NA 0.57 U 0.29 U NA NA	0.228 6.99 282 NA 2.03 17 376 NA 0.75 U 0.53 NA	NA N	NA N	0.205 3.35 132 NA 1.83 9.07 219 NA 0.76 U 0.38 U NA	NA N
GRO (mg/kg)	Gasoline Range Organics	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
Metals, (ug/L)	FCLP Barium Cadmium Chromium Lead	NS NS NS	NS NS NS	NS NS NS	NS NS NS NS	NS NS NS NS	100,000 ⁽⁵⁾ 1,000 ⁽⁵⁾ 5,000 ⁽⁵⁾ 5,000 ⁽⁵⁾	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA	NA NA NA NA	NA NA NA	NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA	NA NA NA 440	NA NA NA 180	NA NA NA NA	NA NA NA NA	NA NA NA 370	NA NA NA NA

Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

ug/L - micrograms per liter.

B - Detected in associated laboratory method blank.

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

U - Compound was not detected at specified quantitation limit.

UJ - Estimated non detect.

Values in Bold indicate the compound was detected.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded by ne exceed one or more of the tisted Method 1 standards or TCLP Standard, as applicable.

[Values shown in bold and outlined exceed TSCA but are less than the listed Method 1 standards.

VOCs - Volatile Organic Compounds,

SVOCs - Semivolatile Organic Compounds,

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration.

TCLP - Toxicis Ubstances Control Act criteria.

TCLP - Toxicity Characteristic Leaching Procedure.

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - MassDEP Method 1 standards and RC for C9-C10 aromatics used.

(2) - MassDEP RC for Dichloropropene used.

(3) - MassDEP RC for Dichloropropene used.

(4) - MassDEP RC for Ja-Dichloropropene used.

(5) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic.

* TRC developed standards.

Analysis	Analyte	S-1/GW-2	\$-1/GW-3	S-2/GW-2	S-2/GW-3	Samp	nple Location: ble Depth (ft.); Sample Date: TSCA	HB37 0,5-3 12/30/2004	HB37+HB38 0,2-3 12/30/2004	HB38 0,2-3 12/30/2004	HB39 0,5:3 12/30/2004	0-1 5/20/2009	1-39 1-3 5/20/2009	HB- 0-1 6/16/2009	-39A 1-3 6/16/2009	0-1 6/16/2009	39C 1-3 6/16/2009	0-1 6/16/2009	1-3 6/16/2009	HB39+HB40 0,5-3 12/30/2004	HB40 0.5-3 12/30/2004	0-1 5/20/2009	3-40 1-3 5/20/2009
VOCs (mg/kg)	Acetone Naphthalene	50 40	400 500	50 40	400 1,000	6.0 4	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
EPH (mg/kg)	Dibenzo(a,h)anthracene Benzo(ghi)perylene C19 - C36 Aliphatics	0.7 1,000 3,000	0,7 1,000 3,000	4 3,000 5,000	4 3,000 5,000	0,7 1,000 3,000	N/A N/A N/A	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA
SVOCs// (mg/kg)	AHs Dimethyl phthalate Di-n-butylphthalate Di-n-butylphthalate Di-n-butylphthalate Dibenzofuran Acenaphthen Acenaphthen Acenaphthen Acenaphthen Acenaphthen Acenaphthen Benzo(a)anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluoranthene Pluoranthene Pheranthracene Naphthalene Naphthalene Naphthalene Pheranthrene Pyrene	50 NS 200 10* 1,000 600 1,000 7 2 7 1,000 70 0,7 1,000 1,000 7 80 40 500 1,000	600 NS 200 10* 1,000 10 1,000 7 2 7 1,000 70 0.7 1,000 1,000 7 300 500 1,000	50 NS 700 NS 3,000 600 3,000 40 4 4 3,000 400 400 4 4 3,000 3,000 40 40 40 40 40 40 40 40 3,000 40 40 40 40 40 40 40 40 40 40 40 40	600 NS 700 NS 3,000 10 3,000 40 4 4 3,000 400 4 4 3,000 3,000 40 500 1,000 1,000	30 50 200 100 4 1 1,000 7 2 7 1,000 1,000 1,000 7 0.7 4 10	N/A	NA N	0.055 U 0.13 JB 0.16 U 0.055 U 0.074 0.074 1.5 1.4 2 0.57 0.64 1.3 0.055 U 2.6 0.16 0.59 0.055 U 0.055 U 1.66 6.3	NA N	NA N	NA NA NA NA 0.39 U 0.39 U 0.60 0.57 0.68 0.41 0.39 U 0.68 0.39 U 1.0 0.39 U 0.46 0.39 U 0.46 0.39 U 0.48	NA NA NA 0.42 U 0.42 U 0.69 0.68 0.83 0.42 U 0.76 0.42 U 1.1 0.42 U 0.42 U 0.42 U 0.42 U 0.42 U 0.42 U	NA N	NA N	NA	NA N	NA N	NA N	0.06 U 0.13 JB 0.18 U 0.1 0.17 0.86 0.82 3.5 5.3 1.4 1.4 3.2 0.06 U 5.2 0.12 1.5 0.14 0.13 2.9	NA N	NA N	NA NA NA NA NA 0.38 U 0.38 U 0.70 2.7 2.8 3.2 1.9 1.2 3.1 0.42 3.9 0.38 U 0.38 U 0.38 U
PCBs (mg/kg)	Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Total PCBs	2 2 2 2 2	2 2 2 2 2	3 3 3 3	3 3 3 3 3	2 2 2 2 2	1 1 1 1	1.11 U 1.11 U 1.11 U 1.11 U 2.22 U	NA NA NA NA	0,053 U 0.152 0,053 U 0,053 U 0,053 U 0.152	0.065 U 0.365 0.065 U 0.08 0.445	0.0577 U 0.119 J 0.0577 U NA 0.119 J	0,120 U 2.89 J 0.120 U NA 2.89 J	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA NA	NA NA NA NA	NA NA NA NA	0.056 U 0.521 0.056 U 0.172 0.693	0,0583 U 0.151 J 0.0583 U NA 0.151 J	0,0559 U 0.790 J 0.281 J NA
Metals (mg/kg)	Mercury Arsenic Barium Beryllium Cadmium Chromium Lead Nickel Selenium Silver Vanadium	20 20 1,000 100 2 30 300 20 400 100 600 2,500	20 20 1,000 100 2 30 300 20 400 100 600 2,500	30 20 3,000 200 30 200 300 700 800 200 1,000 3,000	30 20 3,000 200 30 200 300 700 800 200 1,000 3,000	20 20 1,000 100 2 30 300 20 400 100 600 2,500	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	NA N	0.065 U 3.8 52 NA 1.04 11 68 NA 0.69 U 0.35 U NA	NA N	NA N	NA 3.0 61 NA 0.41 9.3 150 NA NA NA	NA 7.4 370 NA 1.0 18 520 NA NA NA NA	NA 4.1 82 NA 0.66 11 200 NA NA NA	NA 10 230 NA 1.1 20 350 NA NA NA NA	NA 9.6 120 NA 1.7 21 380 NA NA NA NA	NA 13 270 NA 1.0 15 300 NA NA NA NA	NA 7.3 300 NA 1.8 17 540 NA NA NA NA	NA 19 390 NA 0.85 9.4 260 NA NA NA	1.25 5.32 229 NA 6.13 13 1.430 NA 0.67 U 0.34 NA	NA N	NA 3.0 U 31 NA 0.35 7.9 67 NA NA NA NA NA	NA 8.5 280 NA 1.9 29 890 NA NA NA
(mg/kg)	Gasoline Range Organics	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA.	NA .	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA
(ug/L)	ELF Barium Cadmium Chromium Lead	NS NS NS NS	NS NS NS NS	NS NS NS NS	NS NS NS NS	NS NS NS NS	100,000 ⁽⁵⁾ 1,000 ⁽⁵⁾ 5,000 ⁽⁵⁾ 5,000 ⁽⁵⁾	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA	NA NA NA 4,950	NA NA NA NA	NA NA NA NA	NA NA NA NA

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm) $_{\scriptscriptstyle \parallel}$

Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

ug/L - milligrams per kilogram (dry weight) or parts per million (ppm).

ug/L - micrograms per kilogram (dry weight) or parts per million (ppm).

ug/L - micrograms per kilogram (dry weight) or parts per million (ppm).

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte.

NA- Not applicable.

U - Compound was not detected at specified quantitation limit.

U - Estimated non-detect.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method I standards or CLP standard, as applicable.

Values shown in Bold and outlined exceed TSCA but are less than the listed Method I standards.

VOCs - Volatile Organic Compounds.

SVOCs - Semivolatile Organic Compounds.

SVOCs - Semivolatile Organic Compounds.

RC - Reportable Concentration.

TCLP - Toxicity Characteristic Leaching Procedure.

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc. (1) - MassDEP Method I standards and RC for Cy-C10 aromatics used.

(2) - MassDEP RC for Dichloropropene used.

(3) - MassDEP RC for Dichloropropene used.

(4) - MassDEP RC for Localines to be either exercated, or covered by payment.

* - TRC developed standards.
- sample locations to be either excavated, or covered by pavement.

Analysis	Analyte	S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	Samp	nple Location: ble Depth (ft.): Sample Date:	0-1 6/16/2009	HB-40A 1-3 6/16/2009	1-3 6/16/2009 Field Dup	0-1 6/16/2009	40C 1-3 6/16/2009	0-1 6/16/2009	40D 1+3 6/16/2009	HB-40E 1-3 6/16/2009	HB-40G 1-3 6/16/2009	HB-40H 1-3 6/16/2009	HB 401 1-3 7/7/2009	HB-40K 1-3 7/7/2009	HB-40M 1-3 7/7/2009	HB-400 1-3 7/7/2009	HB-40Q 1.3 7/7/2009	11B-40S 1-3 7/7/2009	HB41+HB42 0.2-3 12/30/2004	HB42 0.2-3 12/30/2004	HB43 1.5-3 12/30/2004	HB43+HB44 0.5-3 12/30/2004	HB44 0.5-3 12/30/2004	HC12 2-3 12/29/2004	HC13 1,5-3 12/29/2004
VOCs (mg/kg)	Acetone Naphthalene	50 40	400 500	50 40	400 1,000	6.0 4	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
EPH (mg/kg)	Dibenzo(a,h)anthracene Benzo(ghi)perylene C19 - C36 Aliphatics	0.7 1,000 3,000	0.7 1,000 3,000	4 3,000 5,000	4 3,000 5,000	0.7 1,000 3,000	N/A N/A N/A	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA
SVOCs / (mg/kg)	FAHs Dimethyl phthalate Din-butylphthalate bis(2-Ethylhexyl)phthalate bis(2-Ethylhexyl)phthalate Dibenzofuran Acenaphthene Acenaphthene Acenaphthene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Pluoranthene Nephthalene Naphthalene Naphthalene Phenanthrene Pyrene	50 NS 200 10* 1,000 600 1,000 7 2 7 1,000 70 70 0,7 1,000 1,000 7 80 40 500 1,000	600 NS 200 10* 1,000 10 1,000 7 2 7 1,000 70 70 70 70 70 70 70 70 70 70 70 70	50 NS 700 NS 3,000 600 3,000 40 4 4 3,000 400 4 4 3,000 3,000 40 40 40 40 40 40 40 40 3,000 40 40 40 40 40 40 40 40 40 40 40 40	600 NS 700 NS 3,000 10 3,000 40 4 4 3,000 400 4 4 3,000 3,000 40 500 1,000 1,000 3,000	30 50 200 100 4 1 1,000 7 2 7 1,000 70 70 1 1,000 1,000 7 0.7 4 10	N/A	NA 0.20 U 0.20 U 0.27 0.29 0.37 0.20 U 0.33 0.20 U 0.56 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.25 0.48	NA NA NA NA O.20 U O.20 U O.20 U O.83 0.84 1.2 0.46 0.41 0.97 0.20 U 2.1 0.50 0.20 U 0.50 0.20 U	NA NA NA NA 0.20 U 0.22 0.45 1.8 2.5 0.95 0.93 2.0 0.25 4.2 0.20 U 1.2 0.20 U 0.20 U 1.9 2.5	NA NA NA NA 0.20 U 0.20 U 0.20 U 0.43 0.47 0.66 0.24 0.24 0.23 0.20 U 0.90 0.20 U 0.27 0.20 U	NA NA NA NA 0.21 0.21 U 0.44 1.3 1.8 0.60 0.64 1.5 0.21 U 3.0 0.25 0.71 0.21 U 0.37 2.3 2.2	NA NA NA NA 0.20 U 0.27 U 0.29 0.99 1.3 0.43 0.47 1.2 0.20 U 1.9 0.20 U 0.50 0.20 U 0.20 U 1.4	NA NA NA NA 0,224 0,625 1.8 1.6 2.3 0,711 0.82 1.9 0,222 U 3.7 0,24 0,84 0,22 U 0,22 U 0,22 U 0,22 U	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	0,058 U 0.32 B 0.1 J 0.058 U 0.058 U 0.13 0.18 0.71 0.81 1.2 0.27 0.34 0.67 0.058 U 1.4 0.058 U 0.058 U 0.058 U 0.058 U 0.058 U 0.058 U	NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	0,057 U 0,17 U 0,14 J 0,057 U 0,065 0.13 0,27 1.1 1 1.6 0,45 0.53 1 0,057 U 0,057 U 0,057 U 0,057 U 0,057 U 0,057 U 1,16 3.9	NA N	NA N	NA N
(mg/kg)	Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Total PCBs	2 2 2 2 2	2 2 2 2 2	3 3 3 3	3 3 3 3	2 2 2 2 2	1 1 1 1	0.0596 U 0.409 J 0.0596 U NA 0.409 J	0,0565 U 0.816 J 0.0565 U NA 0.816 J	0.0581 U 1.18 J 0.0581 U NA 1.18 J	0,0604 U 0.139 J 0.0604 U NA 0.139 J	0,0558 U 0,789 J 0,0558 U NA 0,789 J	0,0578 U 0.225 J 0.0578 U NA 0.225 J	0.0619 U 0.443 J 0.0619 U NA 0.443 J	NA NA NA NA NA	NA NA NA NA	NA NA NA NA NA	NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	0,054 U 0.411 0,054 U 0.065 0.476	0,055 U 0,326 0,055 U 0,055 U 0,326	NA NA NA NA	0.059 U 0.443 0.059 U 0.074 0.517	0.063 U 4.0 0.063 U 0.953 4.953	0.057 U 0.538 0.057 U 0.225 0.763
Metals (mg/kg)	Mercury Arsenic Barium Beryllium Cadmium Chromium Lead Nickel Selenium Silver Vanaditim Zinc	20 20 1,000 100 2 30 300 20 400 100 600 2,500	20 20 1,000 100 2 30 300 20 400 100 600 2,500	30 20 3,000 200 30 200 300 700 800 200 1,000	30 20 3,000 200 30 200 300 700 800 200 1,000 3,000	20 20 1,000 100 2 30 300 20 400 100 600 2,500	N/A	NA 3.8 34 NA 0.30 U 9.5 57 NA NA NA	NA 477 290 NA 8.8 64 780 NA NA NA NA NA	NA 38 240 NA 3.3 55 430 NA NA NA NA	NA 4.4 49 NA 0.51 11 240 NA NA NA	NA 13 320 NA 43 31 4,900 NA NA NA NA	NA 5.1 130 NA 0.74 14 370 NA NA NA	NA 11 340 NA 1.8 29 820 NA NA NA NA	NA 21 320 NA 91 41 880 NA NA NA NA NA	NA 7.4 270 NA 1.6 15 530 NA NA NA NA	NA 10 300 NA 1.1 43 380 NA NA NA NA	NA NA NA 0.93 NA 470 NA NA NA NA	NA N	NA NA NA NA NA NA NA MA NA MA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA I.200 NA NA NA NA NA	NA	NA	0.799 12 123 NA 2.53 8.51 301 NA 0.68 U 0.34 U NA NA	NA N	NA	0.547 2.72 46 NA 1.12 6.57 176 NA 0.59 U 0.3 U NA NA	NA N	NA N	NA N
(mg/kg) Metals, T	Gasoline Range Organics CLP	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
(ug/L)	Barium Cadmium Chromium Lead	NS NS NS NS	NS NS NS	NS NS NS NS	NS NS NS NS	NS NS NS NS	100,000 ⁽⁵⁾ 1,000 ⁽⁵⁾ 5,000 ⁽⁵⁾ 5,000 ⁽⁵⁾	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA 450	NA NA NA NA	NA NA NA NA	NA NA NA 190	NA NA NA NA	NA NA NA NA	NA NA NA NA

Notes: mg/kg- milligrams per kilogram (dry weight) or parts per million (ppm). ug/L - micrograms per liter. B - Detected in associated laboratory method blank.

a B - Detected in associated laboratory meibod blank.

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte.

NA - Not applicable.

U - Compound was not detected at specified quantitation limit.

UJ - Estimated non-detect.

Values in Bold indicate the compound was detected.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method 1 standards or TCLP standards as applicable.

Values shown in bold and outlined exceed TSCA but are less than the listed Method 1 standards.

VOCs - Volatile Organic Compounds.

SVOCs - Volatile Organic Compounds.

SVOCs - Semivolatile Organic Compounds.

RC - Reportable Concentration.

TCLP - Toxicity Chambertistic Leaching Procedure.

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Surmanay of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc. (1) - MassDEP RC for Dichloropropune used.

(2) - MassDEP RC for Dichloropropune used.

(1) - MassDeP Method 1 standards and RC for C9-C10 aromnics used.

(2) - MassDeP RC for Dichloropropene used.

(3) - MassDeP RC for Dichloropropene used.

(4) - MassDeP RC for T) - Dichloropropene used.

(5) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Taxicity Characteristic.

*- TRC developed standards.

= sample locations to be either excavated, or covered by pavement.

						Sai	mple Location:	HC13+HC12+ HD12	HC14	HC15	HC16	HC16+HC15+ HC14	не	22	HC	22		HC-22A		не	228	HC	22C	нс	-220	HC-22E	HC-22F	HC-22H	HC23	HD10
Analysis	Analyte	S-1/GW-2	I S-1/GW-3	1 S-2/GW-2	1 S-2/GW-3	Samp	ple Depth (ft.): Sample Date:	1-3 12/29/2004	2.5-3 12/29/2004	2-3 12/29/2004	1.5-3 12/29/2004	1.5-3 12/29/2004	1-3 12/29/2004	1-3 12/29/2004	0-1 4/9/2009	1-3 4/9/2009	0-1 5/21/2009	1-3 5/21/2009	1-3 5/21/2009 Field Dup	0-1 5/21/2009	1-3 5/21/2009	0-1 5/21/2009	1-3 5/21/2009	0-1 5/21/2009	1-3 5/21/2009	1-3 5/21/2009	1-3 5/21/2009	1-3 5/21/2009	1-3 12/29/2004	1-3 12/28/2004
VOCs (mg/kg)	Acetone Naphthalene	50 40	400 500	50 40	400	6.0	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
EPH (mg/kg)	Dibenzo(a,h)anthracene Benzo(ghi)perylene C19 - C36 Aliohatics	0.7 1,000 3,000	0,7 1,000 3,000	4 3,000 5,000	4 3,000 5,000	0,7 1,000 3,000	N/A N/A N/A	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA
SVOCs/ (mg/kg)		50 NS 200 10* 1,000 600 1,000 7 2 7 1,000 70 70 0,7 1,000 1,000 7 80 40 500 1,000	600 NS 200 10* 1,000 7 2 7 1,000 70 70 70 70 70 70 70 70 70 70 70 70	50 NS 700 NS 3,000 600 3,000 40 40 40 40 40 40 40 40 40 40 40 40	600 NS 700 NS 3,000 40 4 4 40 3,000 400 4 400 4 3,000 3,000 40 40 500 1,000 1,000 3,000	30 50 200 100 4 1 1,000 7 2 7 1,000 70 70 1 1,000 1,000 1,000 1,000 1,000	NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA	0.33 U 1 U 0.33 U 0.33 U 2.6 0.33 U 2.7 8.1 7.8 1.5 3.3 1.9 0.33 U 3.1 0.33 U 0.34 U 0	NA N	NA N	NA N	1,5 1,9 B 3,2 1,2 1,8 2,3 6,8 31 30 42 13 14 26 0,6 U 1 1 30 64	NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA 0,204 U	NA NA NA NA NA NA NA 0.272 0.205 U 0.615 1.62 1.53 2.06 0.730 0.819 1.74 0.205 U 2.68 0.267 0.876 0.205 U 0.218 2.76 2.34	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA N	NA	NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA N	NA N	NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA	NA N	NA N
(mg/kg)	Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Total PCBs	2 2 2 2 2 2	2 2 2 2 2 2	3 3 3 3 3	3 3 3 3 3	2 2 2 2 2 2	1 1 1 1	NA NA NA NA NA	0,056 U 0.36 0.056 U 0.056 U 0.36	0,075 U 6,94 0,075 U 4,1 11,04	0,06 U 0,387 0.06 U 0,06 U 0,387	NA NA NA NA	0,066 U 0.44 0.066 U 0,066 U 0.44	0.07 U 0.07 U 0.07 U 0.07 U 0.07 U 0.14 U	0.0582 U 0.145 J 0.0582 U NA 0.145 J	0.0573 U 0.166 J 0.0573 U NA 0.166 J	0,0573 U 0.128 J 0,0573 U NA 0.128 J	0,0602 U 0.876 J 0,0602 U NA 0.876 J	0,258 U 4,40 J 0,258 U NA 4,40 J	0.0553 U 0.081 J 0.0553 U NA 0.081 J	0.0639 U 0.154 J 0.0639 U NA 0.154 J	0,0540 U 0,991 J 0,0540 U NA 0,991 J	0.0612 U 1.09 J 0.0612 U NA 1.09 J	0.0539 U 0.854 J 0.0539 U NA 0.854 J	0,0596 UJ 0.0841 J 0.0596 UJ NA 0.0841 J	0,0540 U 0,0540 U 0,0540 U NA 0,0540 U	NA NA NA NA	NA NA NA NA	0,055 U 6,14 0,055 U 0,402 6,542	1.11 U 1.11 U 1.11 U 1.11 U 2.22 U
Metals (mg/kg)	Mercury Arsenic Barium Beryllium Cadmium Chromium Lead Nickel Selenium Silver Vanadium	20 20 1,000 100 2 30 300 20 400 100 600 2,500	20 20 1,000 100 2 30 300 20 400 100 600 2,500	30 20 3,000 200 30 200 300 700 800 200 1,000 3,000	30 20 3,000 200 30 200 300 700 800 200 1,000 3,000	20 20 1,000 100 2 30 300 20 400 100 600 2,500	NI/A NI/A NI/A NI/A NI/A NI/A NI/A NI/A	1.09 8.87 854 NA 6.27 231 1,110 NA 0.9 U 1.7 NA NA	NA N	NA N	NA N	1.51 46 15,400 NA 22 1,430 2,650 NA 0.8 U 1.2 NA NA	NA N	NA N	NA 3.26 41.4 NA 0.31 U 7.99 38.9 NA NA NA NA	NA 26.1 626 NA 2.55 2.83 1,090 NA NA NA NA NA NA	NA 2.9 U 31 NA 0.29 U 6.4 29 NA NA NA NA	NA 7.5 620 NA 1.5 40 520 NA NA NA NA	NA 7.5 560 NA 1.8 31 640 NA NA NA NA	NA 2.9 U 39 NA 0.44 6.8 36 NA NA NA NA NA	NA 8.5 490 NA 1.6 1.900 NA NA NA NA	NA 2.8 U 38 NA 0.28 U 7.5 44 NA NA NA NA NA	NA 16 440 NA 0.83 11 210 NA NA NA	NA 3.1 U 60 NA 0.31 U 20 65 NA NA NA NA	NA 128 840 NA 1.70 27 580 NA NA NA NA NA	NA NA NA NA NA 41 NA NA NA	NA NA NA NA NA 2,100 NA NA NA NA	NA NA NA NA NA NA NA NA NA NA	NA N	NA N
(mg/kg) Metals, T	Gasoline Range Organics	1,000	1,000	3,000	3,000	1,000	N/A	NA .	NA	NA	NA	NA	NA.	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
(ug/L)	Barium Cadmium Chromium Lead	NS NS NS NS	NS NS NS NS	NS NS NS	NS NS NS NS	NS NS NS NS	1,0000 ⁽⁵⁾ 1,000 ⁽⁵⁾ 5,000 ⁽⁵⁾ 5,000 ⁽⁵⁾	NA NA 20 U 510	NA NA NA NA	NA NA NA NA	NA NA NA NA	275,000 100 20 U 550	NA NA NA NA	NA NA NA NA	NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA

Notes:

mg/kg - midlignums per kilogram (dry weight) or parts per million (ppm),

ug/L - micrograms per liter.

B - Detected in associated laboratory method blank.

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte.

N/L - Not applicable.

U - Compound was not detected at specified quantitation limit.

UJ - Estimated non-detect.

Values in Bold indicate the compounds was detected.

Values in Bold indicate the compound was detected.

Values shown in Bold and starfold by us exceed one or more of the listed Method I standards or TCLP Vandarda, as applicable.

Values shown in bold and outlined exceed TSCA but are less than the listed Method I standards.

VOCs - Volstile Organic Compounds.

SVOCs - Vernivolatile Organic Compounds.

PCBs - Polychlorineted Biphenyls.

RC - Reportable Concentration.

TCLP - Toxic Substances Control Act criteria. TCLP - Toxicity Characteristic Leaching Procedure.

TSCA - Toxic Substances Control Act criteria.

TSCA - Toxic Substances Control Act criteria.

Toxic are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - MassDEP Mc for Dichloropropene used.

(2) - MassDEP Mc for Dichloropropene used.

(3) - MassDEP Mc for 1,3-Dichloropropene used.

(4) - MassDEP Mc for 1,3-Dichloropropene used.

(5) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic.

* - TRC developed standards.

- sample locations to be either excavated, or covered by pavement.

						Sar	nple Location:	н	012	HD13	HD13+HD14+ HD15	HD14	HD	14A		HD-14B		НО	14C	НО	140	111015	HD22+HC22+ HB22	HE10		HE-10B		HE-	-10C
Analysis	Analyte	S-1/GW-2	S-1/GW-3	I S-2/GW-2	S-2/GW-3		ole Depth (ft.): Sample Date: TSCA	1-3 12/29/2004	1-3 12/29/2004 Field Dup	1-3 12/29/2004	1.5-3 12/29/2004	2-3 12/29/2004	0-1 3/10/2009	1-3 3/10/2009	0-1 3/10/2009	1-3 3/10/2009	1-3 3/10/2009 Field Dup	0-1 3/10/2009	1-3 3/10/2009	0-1 3/10/2009	1-3 3/10/2009	1.5-3 12/29/2004	1-3 12/29/2004	1.5-3 12/28/2004	0-1 4/3/2009	1-3 4/3/2009	1-3 4/3/2009 Field Dup	0-1 4/3/2009	1-3 4/3/2009
VOCs (mg/kg)	Acetone Naphthalene	50 40	400 500	50 40	400 1,000	6.0	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
EPH (mg/kg)	Dibenzo(a,h)anthracene Benzo(ghi)perylene C19 - C36 Aliphatics	0,7 1,000 3,000	0.7 1,000 3,000	4 3,000 5,000	4 3,000 5,000	0.7 1,000 3,000	N/A N/A N/A	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA
SVOCs / I (mg/kg)	PAHs Dimethyl phthalate Din-butylphthalate Dis-n-butylphthalate Dis-n-butylphthalate Dis-n-butylphthalate Dis-n-butylphthalate Dis-n-butylphthalate Dis-n-butylphthalate Acenaphthylene Anthracene Benzo(a) anthracene Benzo(a) anthracene Benzo(a) piyrene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(b) fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Pluoranthene Pyrene	50 NS 200 10* 1,000 600 1,000 7 2 7 1,000 70 0.7 1,000 1,000 7 80 40 500 1,000	600 NS 200 10* 1,000 10 1,000 7 2 7 1,000 7,000 1,000 7 300 500 1,000	50 NS 700 NS 3,000 600 3,000 40 4 4 3,000 400 4 4 3,000 40 4 4 3,000 40 40 40 40 40 40 3,000 40 40 40 40 40 40 40 40 40 40 40 40	600 NS 700 NS 3,000 10 3,000 40 4 4 3,000 400 440 4 3,000 3,000 40 500 1,000 1,000 3,000	30 50 200 100 4 1 1,000 7 2 7 1,000 70 70 70 70 70 70 70 70 70 70 70 70	N/A	NA N	NA N	NA N	0.57 0.74 JB 21 0.32 U 0.32 U 0.69 2.3 2.5 3.1 0.32 U 0.9 2.1 0.32 U 0.9 2.1 0.32 U 0.9 2.1 0.32 U 0.9 2.1 0.32 U	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	0.29 U 0.87 U 0.87 U 0.29 U 0.42 0.29 U 1.4 4.5 6.1 4.2 2.1 3.8 0.29 U 9.4 0.42 2.7 0.29 U 0.29 U 5.3 8	NA N	NA N	NA NA NA NA NA 0.389 0.213 U 0.732 2.51 2.35 3.54 0.964 1.24 2.56 0.340 3.61 0.387 1.35 0.213 U 0.213 U	NA NA NA NA NA 0.464 0.240 U 1.01 3.49 3.19 5.01 1.33 1.83 3.49 0.240 U 7.09 0.520 1.80 0.240 U 0.240 U 4.97	NA NA NA NA NA NA 0.197 U	NA NA NA NA NA 0.206 U 0.255 0.786 0.741 0.953 0.344 0.382 0.798 0.206 U 1.30 0.206 U 0.206 U 0.206 U 0.206 U
(mg/kg)	Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Total PCBs	2 2 2 2 2	2 2 2 2 2	3 3 3 3 3	3 3 3 3 3	2 2 2 2 2 2	1 1 1 1	0.061 U 7.31 0.061 U 0.865 8.175	0.063 U 0.853 0.063 U 0.721 1.574	0.064 U 1.16 0.064 U 0.064 U 1.16	NA NA NA NA NA	0.062 U 17.3 0.062 U 0.523	0.0575 U 0.0791 J 0.0575 U NA 0.0791 J	0.0642 U 0.985 J 0.0642 U NA — 0.985 J	0.0545 U 0.0545 U 0.0545 U NA 0.0545 U	0.118 U 2.04 J 0.118 U NA 2.04 J	0.0645 U 1.92 J 0.0645 U NA 1.92 J	0.0576 U 0.785 J 0.0576 U NA 0.785 J	0.108 U 1.32 J 0.108 U NA 1.32 J	0.0540 U 0.163 J 0.0793 J NA 0.2423 J	0.593 U 18.9 J 0.593 U NA 18.9 J	0.056 U 2.35 0.056 U 0.739 3.089	NA NA NA NA	0.066 U 0.427 0.066 U 0.14 0.567	0.0576 U 0.222 J 0.0576 U NA 0.222 J	0.134 U 1.45 J 0.583 J NA 2.033 J	NA NA NA NA	0.0561 U 0.0991 J 0.0561 U NA 0.0991 J	0.193 U 2.41 J 0.193 U NA 2.41 J
Metals (mg/kg)	Mercury Arsenic Barium Beryllium Cadmium Chromium Lead Nickel Selenium Silver Vanadium Zinc	20 20 1,000 100 2 30 20 400 100 600 2,500	20 20 1,000 100 2 30 300 20 400 100 600 2,500	30 20 3,000 200 30 200 300 700 800 200 1,000 3,000	30 20 3,000 200 30 200 300 700 800 200 1,000 3,000	20 20 1,000 100 2 30 300 20 400 100 600 2,500	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	NA N	NA N	NA N	2.89 94 5.850 NA 21 2,050 1,460 NA 0.81 U 1.61 NA	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	0.401 33 899 NA 4.71 52 1,020 NA 0.61 U 0.43 NA	NA N	NA 2.95 U 28.3 NA 0.30 U 7.99 29.3 NA NA NA NA NA	NA 9.96 446 NA 3.07 33.2 549 NA NA NA	NA 12.0 1,040 NA 4.56 66.4 2,500 NA NA NA NA	NA 2.96 U 48.0 NA 0.30 8.53 37.3 NA NA NA NA NA	NA 9,34 666 NA 2,30 72,9 853 NA NA NA NA
GRO (mg/kg)	Gasoline Range Organics	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA.	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals, To	CLP Barium Cadmium Chromium Lead	NS NS NS NS	NS NS NS NS	NS NS NS NS	NS NS NS NS	NS NS NS NS	100,000 ⁽⁵⁾ 1,000 ⁽⁵⁾ 5,000 ⁽⁵⁾ 5.000 ⁽⁵⁾	NA NA NA NA	NA NA NA NA	NA NA NA NA	4,010 NA 50 420	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA	NA NA NA 2,920	NA NA NA	NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA	NA NA NA NA

Notes:

mg/kg. - milligrams per kilogram (dry weight) or parts per million (ppm),

ug/L - micrograms per liter.

B - Detected in associated laboratory method blank.

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

U - Compound was not detected at specified quantitation limit.

UJ - Estimated non-detect.

Values in Bold indicate the compound was detected.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded (type exceed one or more of the listed Method 1 standards or TCLP standard, as applicable.

Values shown in bold and southerd exceed TSCA but are less than the listed Method 1 standards.

VOCs - Volatile Organic Compounds.

SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration.

TCLP - Toxicis Volate Corganic Compounds.

PCBs - Polychlorinated Biphenyls.

RC - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc. (1) - MassDEP RC for Jastandards and RC for C9-C10 aromatics used.

(2) - MassDEP RC for Dichloropropane used.

(3) - MassDEP RC for Dichloropropene used.

(4) - MassDEP RC for Toxic beliances than the literian of Contaminants for Toxicity Characteristic

* - TRC developed standards.

* - TRC developed standards.

- sample locations to be either excavated, or covered by pavement.

Analysis	Analyte					Sam	nple Location: ble Depth (ft.); Sample Date:	0-1 4/3/2009	HE-10D 1-3 4/3/2009	1-3 4/3/2009	HE10 + HI-10 1.5-3 12/28/2004	HF10 2-3 12/28/2004	0-1 4/3/2009	-10B 1-3 4/3/2009	0-1 4/3/2009	10C 1-3 4/3/2009	HF 0-1 4/3/2009	10D 1-3 4/3/2009	1-3 2/22/2006	A33 1-3 2/22/2006	HRC-33 0.67-2 2/22/2006	0-1 2/27/2009	2-33A 1-3 2/27/2009	0-1 2/27/2009	1-3 1-3 2/27/2009	HRC 0-1 2/27/2009	-33C 1-3 2/27/2009
VOCs (mg/kg)	Acetone Naphthalene	50 40	\$-1/GW-3 400 500	50 40	400 1,000	6.0 4	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.92 U 0.33	Field Dup NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
EPH (mg/kg)	Dibenzo(a,lı)anthracene Benzo(ghi)perylene C19 - C36 Aliphatics	0.7 1,000 3,000	0,7 1,000 3,000	4 3,000 5,000	4 3,000 5,000	0,7 1,000 3,000	N/A N/A N/A	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA
SVOCs / (mg/kg)	PAHs Dimethyl phthalate Din-butylphthalate bis(2-Ethylhexyl)phthalate bis(2-Ethylhexyl)phthalate Dibenzofuran Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)phthoranthene Benzo(a)phthoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene Naphthalene Naphthalene Phenanthrene Phenanthrene Phenanthrene Phenanthrene	50 NS 200 10* 1,000 600 1,000 7 2 7 1,000 70 0,7 1,000 1,000 1,000 40 500 1,000	600 NIS 200 10* 1,000 10 1,000 7 2 7 1,000 70 70 70 70 70 70 70 70 70 70 70 70	50 NS 700 NS 3,000 600 3,000 40 4 4 3,000 400 400 400 400 400 400 400 400 400	600 NS 700 NS 3,000 10 3,000 40 40 400 400 400 400 400 500 1,000 1,000 3,000	30 50 200 100 4 1 1,000 7 2 7 1,000 70 70 1 1,000 1,000 7 7 7 7 1,000 7 7 7 7 1,000 7 7 7 7 1,000 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	N/A	NA NA NA NA 0.194 U	NA NA NA 0.407 0.223 U 1.08 2.48 2.33 3.17 0.929 1.14 2.53 0.223 U 4.97 0.455 1.19 0.223 U 0.223 U 4.80	NA N	0.32 U 0.57 JB 0.96 U 0.32 U 0.41 0.32 U 1.9 4.4 3.7 3.3 1.2 3.4 3.9 0.32 U 1.1 0.32 U 1.3 0.32 U 1.3	NA N	NA NA NA NA 0.199 U 0.287	NA NA NA NA 113 1.68 U 190 167 1.33 183 58.3 75.7 171 17.2 443 121 56.9 47.8 76.0 76.0 76.0 76.0 76.0 280	NA NA NA NA NA NA NA 0,198 U	NA NA NA NA 0.953 U 0.953 U 1.83 3.78 3.21 3.68 2.39 1.42 3.94 0.953 U 7.20 1.22 2.93 0.953 U 0.953 U 0.953 U 0.953 U	NA NA NA NA 0.191 U 0.191 U 0.191 U 0.393 0.367 0.486 0.190 0.191 U 0.390 0.191 U 0.626 0.191 U 0.240 0.191 U 0.548	NA NA NA NA O.187 U 0.228 0.746 0.732 0.967 0.359 0.340 0.800 0.187 U 1.25 0.187 U 0.425 0.187 U 0.425 0.187 U 0.187 U	NA N	NA N	NA	NA	NA N	NA N	NA N	NA N	NA N
PCBs (mg/kg)	Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Total PCBs	2 2 2 2 2	2 2 2 2 2 2	3 3 3 3	3 3 3 3	2 2 2 2 2	1 1 1 1	0,0577 U 0.136 J 0.0577 U NA 0.136 J	0,0661 U 0.473 J 0.285 J NA 0.758 J	0.140 U 1.42 J 0.470 J NA 1.89 J	NA NA NA NA NA	0,062 U 0.565 0.357 0,062 U 0.922	0.0587 U 0.460 J 0.147 J NA 0.607 J	8.28 .1 7.10 .J 2.58 .J NA 17.96 .J	0.0579 U 0.582 J 0.213 J NA 0.795 J	0.167 U 2.29 J 0.167 U NA 2.29 J	0,0574 U 0.167 J 0.0574 U NA 0.167 J	0.168 U 2.42 J 1.44 J NA 3.86 J	0,12 U 0,28 0,12 U 0,12 U 0,12 U	0.12 U 0.15 0.12 U 0.12 U 0.15	0.029 U 28 12 0.029 U 40	0.120 U 1.44 J 0.495 J NA 1.935 J	0.566 U 14.8 J 4.54 J NA 19.34 J	0.0616 U 1.01 J 0.468 J NA 1.478 J	0.0583 U 1.25 J 0.0583 U NA 1.25 J	0.126 U 1.77 J 0.755 J NA 2.525 J	0.0607 U 0.446 J 0.0607 U NA 0.446 J
Metals (mg/kg)	Mercury Arsenic Barium Beryllium Cadmium Cluomium Lead Nickel Selenium Silver Vanadium Zinc	20 20 1,000 100 2 30 300 20 400 100 600 2,500	20 20 1,000 100 2 30 300 20 400 100 600 2,500	30 20 3,000 200 30 200 300 700 800 200 1,000 3,000	30 20 3,000 200 30 200 300 700 800 200 1,000 3,000	20 20 1,000 100 2 30 300 20 400 100 600 2,500	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	NA 2.90 U 26.3 NA 0.29 7.11 20.9 NA NA NA	NA 16.1 1,720 NA 10.6 82.5 1,270 NA NA NA NA	NA N	0.757 21 8,190 NA 12 827 8,300 NA 0.79 U 33 NA NA	NA	NA 3.66 371 NA 0.71 25:7 118 NA NA NA NA	NA 19-3 1,310 NA 29-3 119 16,100 NA NA NA NA	NA 2.97 U 35.4 NA 0.33 8.36 38.0 NA NA NA NA NA	NA 5.69 741 NA 3.49 652 NA NA NA NA	NA 4.13 462 NA 0.73 29.8 132 NA NA NA	NA 7.18 432 NA 1.08 30.2 1.020 NA NA NA NA	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA	NA N
GRO (mg/kg)	Gasoline Range Organics	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	12.3	NA	NA	NA	NA	NA	NA	NA	. NA
Metals, T (ug/L)	Barium Cadmium Chromium Lead	NS NS NS NS	NS NS NS NS	NS NS NS	NS NS NS NS	NS NS NS NS	100,000 ⁽⁵⁾ 1,000 ⁽⁵⁾ 5,000 ⁽⁵⁾ 5,000 ⁽⁵⁾	NA NA NA NA	NA NA NA	NA NA NA NA	4,500 NA 20 U 9,420	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA

Notes:

mg/kg- milligrams per kilogram (dry weight) or parts per million (ppm),

ug/L - micrograms per liter.

B - Detected in associated laboratory method blank

J - Estimated value, below quantitation limit,

NA - Sumple not analyzed for the listed analyte.

NA - Sumple not analyzed for the listed analyte.

NJ - Osn pound was not detected at specified quantitation limit,

UJ - Estimated non-detect.

Values in Bold indicate the compound was detected.

Values shown in Bold and staded type exceed one or more of the

listed Method 1 standards or TCLP standard, as applicable.

Values shown in bold and outlined exceed TSCA but are less than the listed Method 1 standards.

VOCs - Volatile Organic Compounds,

SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Bipbenyls.

RC - Reportable Concentration.

TCLP - Toxicity Characteristic Leaching Procedure.

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - MassDEP Method 1 standards and RC for C9-C10 aromatics used.

(2) - MassDEP RC for Dichloropropene used.

(3) - MassDEP RC for Dichloropropene used.

(5) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic.

* - TRC developed standards.

- sample locations to be either excavaled, or covered by pavement.

		_																					Description State					
Analysis	Analyte						nple Location: ole Depth (ft.):	0.1	HRC-33D	1-3	0-1	7-33E 1-3	0-1	1-33P	HRC-331	HRC-331	0-1	-33L	0-1	1-3	0-1	1-3	HRE33 0.5-3	HRG-33 1-3	HRK-33A 1-3	HRM-23 2-3	HRM-23 1-3	HRM-25 1.5-3
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3		Sample Date:	2/27/2009	2/27/2009	2/27/2009 Field Dup	2/27/2009	2/27/2009	2/27/2009	2/27/2009	3/24/2009	3/24/2009	4/3/2009	4/3/2009	4/3/2009	4/3/2009	4/3/2009	4/3/2009	2/22/2006	2/22/2006	4/2/2009	2/21/2006	4/7/2009	2/21/2006
VOCs (mg/kg)	Acetone Naphthalene	50 40	400 500	50 40	400 1,000	6.0 4	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.36 U 0.45
EPH (mg/kg)	Dibenzo(a,h)anthracene Benzo(ghi)perylene C19 - C36 Aliphatics	0,7 1,000 3,000	0.7 1,000 3,000	4 3,000 5,000	4 3,000 5,000	0.7 1,000 3,000	N/A N/A N/A	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA
SVOCs // (mg/kg)	PAHs Dimethyl phthalate Di-n-butylphthalate bis(2-Ethylhexyl)phthalate bis(2-Ethylhexyl)phthalate bis(2-Ethylhexyl)phthalate Dibenzofuran Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)phthacene Benzo(a)phthacene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Phoranthene Naphthalene Naphthalene Phenanthrene Pyene	50 NS 200 10* 1,000 600 1,000 7 2 7 1,000 70 0.7 1,000 1,000 1,000 40 500 1,000	600 NS 200 10* 1,000 10 1,000 7 2 7 1,000 70 0,7 1,000 1,000 7 300 500 500	50 NS 700 NS 3,000 600 3,000 40 4 4 4 4 0 4,00 4 400 4 400 4 400 4 400 4 400 4 1,000 80 40 1,000 3,000	600 NS 700 NS 3,000 10 3,000 40 40 400 400 400 400 400 400 400 4	30 50 200 100 4 1 1,000 7 2 7 1,000 70 70 70 1,000 7 0.7 4 10	N/A	NA N	NA N	NA N	NA N	NA	NA	NA N	NA N	NA N	NA NA NA NA 0.213 U 0.213 U 0.213 U 0.315 0.323 0.370 0.213 U 0.213 U 0.213 U 0.213 U 0.213 U 0.213 U 0.463 0.213 U 0.225 0.213 U 0.225 0.213 U 0.213 U 0.215 0.213 U 0.215 0.214 U 0.215 0.215 0.215 U 0.315	NA NA NA 0,207 U 0.243 0.828 2.21 2.04 2.66 0.797 0.975 2.24 0.228 3.83 0.317 1.05 0.207 U 0.207 U 4.16 4.19	NA NA NA 0.207 U 0.266 1.48 1.48 1.48 1.80 0.735 0.655 1.66 0.211 2.03 0.207 U 0.877 0.207 U 0.207 U 2.02 2.63	NA NA NA NA 0.633 0,208 0.939 2.52 2.39 3.04 1.11 1.09 2.90 0.301 6.21 0.736 1.43 0.477 0.932 6.51 3.97	NA NA NA NA 0,207 U 0,207 U 0,207 U 0,326 0,346 0,346 0,286 0,207 U 0,322 0,207 U 0,522 0,207 U 0,522 0,207 U	NA 2.03 U 2.03 U 2.03 U 2.03 U 2.03 U 4.22 2.03 U 6.33 2.03 U 2.13 2.03 U 2.03 U 2.03 U 2.03 U 2.03 U 3.01 N.01 7.44	NA N	NA	NA NA NA 0.212 U 0.212 U 0.227 1.00 1.21 1.55 0.634 0.608 1.20 0.212 U 2.57 0.212 U 0.739 0.212 U 0.739 0.212 U 1.42 1.42	NA N	NA NA NA NA 0.219 U 0.219 U 0.771 0.830 0.887 0.501 0.363 0.797 0.219 U 1.01 0.219 U 0.656 0.219 U 0.219 U 0.626	NA N
PCBs (mg/kg)	Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Total PCBs	2 2 2 2 2 2	2 2 2 2 2	3 3 3 3 3	3 3 3 3	2 2 2 2 2	1 1 1 1	0.0641 U 0.730 J 0.265 J NA 0.995 J	0.184 U 2.87 J 0.928 J NA 3.798 J	0.0586 U 0.245 J 0.0586 U NA 0.245 J	0.0642 U 0.141 J 0.0872 J NA 0.2282 J	0,562 U 12.3 J 2.92 J NA 15.22 J	0,0706 U 0.691 J 0.344 J NA 1.035 J	0,580 U 11.9 J 2.49 J NA 14.39 J	0.153 U 3.20 J 0.913 J NA 4.113 J	0.112 U 1.60 J 0.208 J NA 1.808 J	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	0,11 U 0,11 U 0,11 U 0,11 U 0,22 U	0.03 U 0.29 0.24 0.03 U 0.53	0,0607 U 0.148 J 0,0607 U NA 0.148 J	0,035 U 0,035 U 0,035 U 0,035 U 0,035 U	0.0557 U 0.0557 U 0.0557 U NA 0.0557 U	0,034 U 0.062 0.057 0.034 U
Metals (mg/kg)	Mercury Arsenic Barium Beryllium Cadmium Chromium Lead Nickel Selenium Silver Vanadium	20 20 1,000 100 2 30 300 20 400 100 600 2,500	20 20 1,000 100 2 30 300 20 400 100 600 2,500	30 20 3,000 200 30 200 300 700 800 200 1,000 3,000	30 20 3,000 200 30 200 300 700 800 200 1,000 3,000	20 20 1,000 100 2 30 300 20 400 100 600 2,500	N/A	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA 4.74 111 NA 0.74 9.88 322 NA NA NA	NA 11.0 229 NA 1.97 15.8 979 NA NA NA	NA 5.19 209 NA 4.08 14.6 834 NA NA NA	NA 5.40 122 NA 1.61 14.2 780 NA NA NA	NA 4.24 120 NA 0.80 11.1 517 NA NA NA NA	NA 10.1 349 NA 11.3 28.3 10,000 NA NA NA	NA N	NA N	NA 65,2 984 NA 1.85 17,90 1,150 NA NA NA NA	NA N	NA 7.13 255 NA 0.46 8.80 214 NA NA NA NA	NA N
GRO (mg/kg)	Gasoline Range Organics	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA	NA	3.6 U
Metals, T	CLP Barium Cadmium Chromium Lead	NS NS NS	NS NS NS	NS NS NS	NS NS NS	NS NS NS NS	100,000 ⁽⁵⁾ 1,000 ⁽⁵⁾ 5,000 ⁽⁵⁾ 5,000 ⁽⁵⁾	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

Notes:

mg/kg - milligrums per Kilogrum (dry weight) or parts per million (ppm),

ug/L - micrograms per liter.

B - Detected in associated laboratory method blank,

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable,

U - Compound was not detected at specified quantitation limit.

U - Estimated non-detect.

Values in Bold indicate the compound was detected.

Values shown in Bold and studed (pre-exceed one or more of the listed Method 1 standards or TCLP standard, as applicable.

Values shown in Bold and outlined exceed TSCA but are less than the listed Method 1 standards.

VOCs - Volatile Organic Compounds.

VOCs - Volatile Organic Compounds.

SVOCs - Semivolatile Organic Compounds,

PCBs - Polychlorinated Bijbenyls,

RC - Reportable Concentration.

TCLP - Toxicity Characteristic Lesching Procedure.

TSCA - Toxic Substances Control Act criteria

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - MassDEP Method 1 standards and RC for C9-C10 aromatics used.

(2) - MassDEP RC for Dichloropropene used.

(3) - MassDEP RC for Dichloropropene used.

(4) - MassDEP RC for Jobel Dichloropropene used.

(5) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic.

* - TRC developed standards.

TRC developed standards
 - sample locations to be either excavated, or covered by pavement.

	·	·								1	T							T			r	
Analysis	Analyte		View	A00100-151		Samp	nple Location: le Depth (ft.): Sample Date:	0,5-3 2/22/2006	N26 0.5-3 2/22/2006	HRN-26 1-3 4/7/2009	HRN28 1,5-3 2/22/2006	1.5-3 2/22/2006	2-3 2/22/2006	HRO-30 1-3 4/1/2009	HRP.5-33 1.5-3 2/22/2006	HRP31 1.5-3 2/22/2006	HS-1 0-0.5 9/9/2004	HS-3 0-0,5 9/9/2004	HS-4 0-0,5 9/9/2004	HS-8 0-0,5 9/9/2004	SE 1 3/31/2008	3-01 3/31/2008
200		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1	TSCA		Field Dup													
VOCs (mg/kg)	Acetone Naphthalene	50 40	400 500	50 40	400 1,000	6.0 4	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.37 U 0.075 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
EPH (mg/kg)	Dibenzo(a,h)anthracene Benzo(ghi)perylene C19 - C36 Aliphatics	0.7 1.000 3,000	0.7 1,000 3,000	4 3,000 5,000	4 3,000 5,000	0.7 1,000 3,000	N/A N/A N/A	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA
SVOCs / / (mg/kg)	PAHs Dimethyl phthalate Di-n-butylphthalate Di-n-butylphthalate Dibenizofuran Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Dibenz(a,b)anthracene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Pluoranthene Pluoranthene 2-Methylnaphthalene Naphthalene Naphthalene Phenanthrene Pyrene	50 NS 200 10* 1,000 600 1,000 7 2 7 1,000 70 0.7 1,000 1,000 1,000 40 500 1,000	600 NS 200 10* 1,000 10 1,000 7 2 7 1,000 70 70 70 70 70 70 70 70 300 500 500 1,000	50 NS 700 NS 3,000 600 3,000 40 4 4 40 400 4 3,000 3,000 40 40 40 40 40 40 40 40 40 40 40 40	600 NS 700 NS 3,000 10 3,000 40 4 4 3,000 400 4 4 3,000 3,000 40 500 1,000 1,000 1,000	30 50 200 100 4 1 1,000 7 2 7 1,000 70 70 70 1,000 1,000 7 0.7 4 10	N/A	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA N	NA NA NA NA 0.212 U 0.215 U 0.405 0.958 0.816 0.916 0.623 0.345 1.09 0.212 U 1.60 0.212 U 0.755 0.212 U 0.212 U 0.212 U 1.96 1.96 2.11	NA N	NA	NA N	NA NA NA NA L.27 0.378 U 4.12 10.3 8.37 8.97 2.68 3.53 10.4 0.378 U 17.0 1.98 3.41 1.27 0.621 2.22 2.67	NA N	NA N	NA	NA N	NA N	NA N	NA N	NA NA NA NA 0.18 U
PCBs (mg/kg)	Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Total PCBs	2 2 2 2 2	2 2 2 2 2	3 3 3 3 3	3 3 3 3	2 2 2 2 2	1 1 1 1	0.12 U 0.12 U 0.23 0.12 U 0.23	0.13 U 0.13 U 0.22 0.13 U 0.22	0.0617 U 0.0617 U 0.128 J NA 0.128 J	0.13 U 0.13 U 0.13 U 0.13 U 0.27 U	0.027 U 0.098 0.11 0.027 U 0.208	0.12 U 0.12 U 0.12 U 0.12 U 0.12 U 0.23 U	0.0605 U 0.0605 U 0.0605 U NA 0.0605 U	0,12 U 0,12 U 0,12 U 0,12 U 0,12 U 0,24 U	0,13 U 0,13 U 0,13 U 0,13 U 0,13 U 0,26 U	0.111 U 0.141 0.111 U 0.111 U 0.141	0.11 U 0.11 U 0.11 U 0.11 U 0.22 U	0.11 U 0.162 0.11 U 0.11 U 0.162	0.12 U 0.12 U 0.12 U 0.12 U 0.12 U 0.24 U	0.0520 U 0.0520 U 0.0520 U NA 0.0520 U	0.0523 U 0.0523 U 0.0523 U NA 0.0523 U
Metals (mg/kg)	Mercury Arsenic Barium Beryllium Cadmium Chromium Lead Nickel Selenium Silver Vanadium Zinc	20 20 1,000 100 2 30 300 20 400 100 600 2.500	20 20 1,000 100 2 30 300 20 400 100 600 2,500	30 20 3,000 200 30 200 300 700 800 200 1,000 3,000	30 20 3,000 200 30 200 300 700 800 200 1,000 3,000	20 20 1,000 100 2 30 300 20 400 100 600 2,500	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	NA N	NA N	NA 10.8 581 NA 0.46 15.1 587 NA NA NA	NA	NA N	NA N	NA 8.37 122 NA 0.89 9.50 189 NA NA NA	NA N	NA N	NA N	NA N	NA N	NA N	0.014 2.63 U 11.0 0.27 0.27 U 3.85 35.1 3.84 5.25 U 0.53 U 5.32 23.1	0.013 U 2,60 U 9.31 0.26 U 0.26 U 3.09 11.1 3.23 5.20 U 0.52 U 5.20 U
(mg/kg)	Gasoline Range Organics	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA	3.7 U	NA	NA	NA	NA	NA	NA	NA
Metals, T (ug/L)	CLP Barium Cadmium Chromium Lead	NS NS NS	NS NS NS	NS NS NS NS	NS NS NS NS	NS NS NS	100,000 ⁽⁵⁾ 1,000 ⁽⁵⁾ 5,000 ⁽⁵⁾ 5,000 ⁽⁵⁾	NA NA NA	NA NA NA	NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA	NA NA NA NA	NA NA NA	NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA

Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm),

ug/L - micrograms per liter.

B - Detected in associated hoboratory method blank.

J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the Jisted analyte.

N/A - Not applicable.

U - Compound was not detected at specified quantitation limit.

UJ - Estimated non-detect.

Values in Bold indicate the compound was detected.

Values in Bold indicate the compound was detected.

Values in Bold indicate the compound was detected.

Values shown in bold and standed type exceed one or more of the listed Method 1 standards or TCLP standard, as applicable.

Values shown in bold and outlined exceed TSCA but are less than the listed Method 1 standards.

VOCs - Volatile Organic Compounds.

SVOCs - Semivolatile Organic Compounds,

PCBs - Polychlorinated Riphenyls.

RC - Reportable Concentration.

TCLP - Toxicity Characteristic Leaching Procedure.

TSCA - Toxicity Characteristic Leaching Procedure.

TSCA - Toxic Substances Control Act criteria.

Joha are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc. (1) - MassDEP Method 1 standards and RC for C9-C10 aromatics used.

(2) - MassDEP RC for Dichloropropene used.

(3) - MassDEP RC for Toxichloropropene used.

(4) - MassDEP RC for 1,3-Dichloropropene used.

(5) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic .

** - TRC developed standards.

** - TRC developed standards.

** - Sumple locations to be either excavated, or covered by pavement.

	<u> </u>	Τ					mple Location:	SI	3-02	SE	1-03		SB-04 3.5	3.5	SB	-05		SB-270	l 9.5	SB-	270A I 1-3	SB	270B	SB-	270D	SB-	27013	SB-2	270F
Analysis	Analyte	S-1/GW-2	S-1/GW-3	1 S-2/GW-2	S-2/GW-3		ple Depth (ft.); Sample Date:	3/31/2008	3/31/2008	3/31/2008	3/31/2008	3/31/2008	3/31/2008	3/31/2008 Field Dup	3/31/2008	3/31/2008	7/16/2008	7/16/2008	7/16/2008	5/20/2009	5/20/2009	5/20/2009	5/20/2009	5/20/2009	5/20/2009	5/20/2009	5/20/2009	5/20/2009	5/20/2009
VOCs (mg/kg)	Acetone Naphthalene	50 40	400 500	50 40	400 1,000	6.0 4	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
EPH (mg/kg)	Dibenzo(a,h)anthracene Benzo(ghi)perylenc C19 - C36 Aliphatics	0,7 1,000 3,000	0,7 1,000 3,000	4 3,000 5,000	4 3,000 5,000	0.7 1,000 3,000	N/A N/A N/A	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA
SVOCs / (mg/kg)	PAHs Dimethyl phthalate Din-n-butylphthalate bis(2-Ethylhexyl)phthalate bis(2-Ethylhexyl)phthalate Dibenzofuran Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Pluoranthene Naphthalene Naphthalene Naphthalene Phenanthrene Pyrene	50 NS 200 10* 1,000 600 1,000 7 2 7 1,000 70 0.7 1,000 1,000 1,000 40 500 1,000	600 NS 200 10* 1,000 7 2 7 1,000 70 70 70 70 70 70 70 70 70 70 70 70	50 NS 700 NS 3,000 600 3,000 40 4 4 40 3,000 400 400 4 4 3,000 3,000 40 40 40 40 3,000 3,000	600 NS 700 NS 3,000 10 3,000 40 4 4 3,000 400 400 4 4 3,000 3,000 40 500 1,000 1,000 3,000	30 50 200 100 4 1 1,000 7 2 7 1,000 70 70 1 1,000 1,000 7 7 0.7 4 10 1,000	N/A	NA NA NA NA O.18 U	NA N	NA O.18 U	NA NA NA NA 0,18 U	NA NA NA NA 0,18 U	NA NA NA NA O,18 U	NA NA NA NA O.18 U	NA NA NA NA O.18 U	NA NA NA NA O,18 U	NA N	NA NA NA 0,209 U 0,209 U 0,209 U 0,282 0,320 0,360 0,433 0,209 U 0,362 0,418 U 0,474 0,209 U 0,418 U 0,209 U 0,209 U	NA NA NA 0.213 U 0.213 U	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N
PCBs (mg/kg)	Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Total PCBs	2 2 2 2 2	2 2 2 2 2	3 3 3 3 3	3 3 3 3 3	2 2 2 2 2	I. I. I. I.	0,0520 U 0,0520 U 0,0520 U NA 0.0520 U	0,0500 U 0.0500 U 0,0500 U NA 0,0500 U	0,0502 U 0,0502 U 0,0502 U NA 0,0502 U	0.0500 U 0.0500 U 0.0500 U NA 0.0500 U	0.0523 U 0.0523 U 0.0523 U NA 0.0523 U	0,0512 U 0,0512 U 0,0512 U NA 0,0512 U	0,0508 U 0,0508 U 0,0508 U NA 0,0508 U	0.0534 U 0.0534 U 0.0534 U NA 0.0534 U	0,0517 U 0,0517 U 0,0517 U NA 0,0517 U	0,0500 U 0.396 J 0.102 J NA 0.498 J	0.0567 U 0.0567 U 0.0567 U NA 0.0567 U	0,0596 U 0,0596 U 0,0596 U NA 0,0596 U	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA
Metals (mg/kg)	Mercury Arsenic Barium Beryllium Cadmium Chromium Lead Nickel Selenium Silver Vanadium Zinc	20 20 1,000 100 2 30 300 20 400 100 600 2,500	20 20 1,000 100 2 30 300 20 400 100 600 2,500	30 20 3,000 200 30 200 300 700 800 200 1,000 3,000	30 20 3,000 200 30 200 300 700 800 200 1,000 3,000	20 20 1,000 100 2 30 300 20 400 100 600 2,500	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.014 2.62 U 7.41 0,27 U 0,27 U 4.11 42.8 3.48 5.24 U 0.53 U 5.24 U 20.4	0.014 U 2,60 U 5.50 0,26 U 0.26 U 3.55 4.76 3.76 5.20 U 0.52 U 5.20 U	0.013 U 2.62 U 8.49 0.27 U 0.27 U 3.38 18.1 3.38 5.23 U 0.53 U 5.23 U 23.0	0.010 U 2.60 U 6.24 0.26 U 0.26 U 2.96 6.42 3.18 5.20 U 0.52 U 5.20 U 14.5	0.017 2.65 U 14.6 0,27 U 0,27 U 6.30 12.1 4.93 5.30 U 0.53 U 8.81 23.2	0.014 U 2.58 U 7.58 0,26 U 0.26 U 2.93 14.9 3.02 5.16 U 0.52 U 5.16 U	0,019 U 2,60 U 7,14 0,26 U 0,26 U 3,42 14,8 3,39 5,20 U 0,52 U 5,20 U 18,4	0.025 2,69 U 12.2 0.27 U 0.27 U 7.70 27.9 5.92 5.38 U 0.54 U 8.65 23.4	0.010 U 2.62 U 5.24 U 0.27 U 0.27 U 2.75 3.45 2.16 5.24 U 0.53 U 5.24 U	NA N	0.236 12.7 256 0.32 U 0.48 9.24 602 11.3 6.26 U 2.39 29.1	0,012 U 4,20 17.6 0,32 U 7.56 4.54 6.83 6,37 U 1.64 12.4 22.4	NA NA NA NA NA NA NA NA NA	NA NA NA NA NA S50 NA NA NA NA	NA NA NA NA NA S20 NA NA NA NA	NA N	NA NA NA NA NA SS0 NA	NA N	NA NA NA NA NA NA NA AA NA NA NA NA NA N	NA	NA N	NA N
GRO (mg/kg)	Gasoline Range Organics	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals, T	CLP Barium Cadmium Chromium Lead	NS NS NS	NS NS NS NS	NS NS NS NS	NS NS NS	NS NS NS NS	1,000 ⁽⁵⁾ 5,000 ⁽⁵⁾ 5,000 ⁽⁵⁾	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA	NA NA NA NA	NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA

Notes:
mg/kg - milligrams per kilogram (dry weight) or purts per million (ppm),
ug/L - micrograms per liter.

B - Detected in associated laboratory method blank.
J - Eatinated value; below quantitation limit,
NA - Sample not analyzed for the listed analyte.

NA - Sample not analyzed for the listed analyte.

NA - Sample not analyzed for the listed analyte.

NA - Not applicable.

U - Compound was not delected at specified quantitation limit.

UJ - Estimated non-detect.

Values in Bold indicate the compound was detected.

Values shown in bold and outlined exceed TSCA but are less than the listed Method 1 standards.

VOCs - Senivolatile Organic Compounds.

SVOCs - Senivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration.

TCIP - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - MassDEP RC for Dichloropropene used.

(2) - MassDEP RC for Dichloropropene used.

(3) - MassDEP RC for Dichloropropene used.

(5) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic.

* TRC developed standards.

- TRC developed standards.
 - sample locations to be either excavated, or covered by pavement.

						San	nple Location;	SB-C	27011	SB-2701	SB-270J	SB-270K	SB-270M	SB-270Q	SB-270U		SB-271			SB-272			SB-306	
Analysis	Analyte	S-1/GW-2	S-1/GW-3	S-2/GW-2	I S-2/GW-3		le Depth (ft.); Sample Date: TSCA	0-1 5/20/2009	1-3 5/20/2009	6/16/2009	1-3 6/16/2009	1-3 6/16/2009	1-3 7/6/2009	1-3 7/6/2009	1-3 7/6/2009	7/16/2008	3.5 7/16/2008	10 7/16/2008	T 7/16/2008	3 7/16/2008	10 7/16/2008	7/23/2008	7/23/2008	7 7/23/2008
VOCs (mg/kg)	Acetone Naphthalene	50 40	400 500	50 40	400 1,000	6.0 4	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
EPH (mg/kg)	Dibenzo(a,h)anthracene Benzo(ghi)perylene C19 - C36 Aliphatics	0,7 1,000 3,000	0.7 1,000 3,000	4 3,000 5,000	4 3,000 5,000	0.7 1,000 3,000	N/A N/A N/A	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA
SVOCs/1 (mg/kg)	PAHs Dimethyl phthalate Di-n-butylphthalate Di-n-butylphthalate bis(2-Ethylhexyl)phthalate bis(2-Ethylhexyl)phthalate Dibenzofuran Acenaphthylene Anthracene Benzo(a)nnthracene Benzo(a)nnthracene Benzo(a)npyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(c)hiperylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Pluoranthene Naphthalene Naphthalene Naphthalene Phenanthrene Pyrene	50 NS 200 10* 1,000 600 1,000 7 2 7 1,000 70 0.7 1,000 1,000 1,000 40 500	600 NS 200 10* 1,000 10 1,000 7 2 7 1,000 0.7 1,000 1,000 7 300 500 500 1,000	50 NS 700 NS 3,000 600 3,000 40 4 4 3,000 400 400 4 4 3,000 3,000 40 40 40 40 40 40 3,000 3,000	600 NS 700 NS 3,000 10 3,000 40 40 400 400 400 4 3,000 3,000 40 500 1,000 1,000 3,000	30 50 200 100 4 1 1,000 7 2 7 1,000 70 70 70 1 1,000 1,000 7 7 7 1,000 7 7 1,000 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	N/A	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA NA NA NA 0,221 U	NA NA NA O,220 U	NA N	NA NA NA O,216 U	NA NA NA O.202 U	NA N	NA N	NA N
PCBs (mg/kg)	Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Total PCBs	2 2 2 2 2	2 2 2 2 2 2	3 3 3 3	3 3 3 3 3	2 2 2 2 2	1 1 1 1	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	0,0500 U 0,0500 U 0,0500 U NA 0,0500 U	0,0654 U 0.0654 U 0,0654 U NA 0,0654 U	0,0670 U 0.0670 U 0.0670 U NA 0,0670 U	0.0500 U 0.264 J 0.314 J NA 0.578 J	0.0685 U 0.0685 U 0.0685 U NA 0.0685 U	0,0580 U 0,0580 U 0,0580 U NA 0,0580 U	0,0500 U 0.107 J 0.0500 U NA 0.107 J	0,0656 U 0,0656 U 0,0656 U NA 0,0656 U	0.182 UJ 0.182 UJ 0.182 UJ NA 0.182 UJ
Metals (mg/kg)	Mercury Arsenic Barium Beryllium Cadmium Chromium Lead Nickel Selenium Silver Vanadium Zinc	20 1,000 100 2 30 300 20 400 100 600 2,500	20 20 1,000 100 2 30 300 20 400 100 600 2,500	30 20 3,000 200 30 200 300 700 800 200 1,000 3,000	30 20 3,000 200 30 200 300 700 800 200 1,000 3,000	20 20 1,000 100 2 30 300 20 400 100 600 2,500	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	NA N	NA NA NA NA NA NA NA NA NA	NA N	NA N	NA NA NA NA NA NA NA NA NA	NA N	NA N	NA NA NA NA NA NA NA NA NA	NA N	0.101 10.5 194 0.34 U 7.03 126 12.8 6.62 U 2.44 27.7 54.2	0.018 U 4.05 9.16 0.33 U 0.33 U 4.03 2.50 4.55 6.58 U 1.20 7.26 16.6	NA N	0.176 19.0 497 0.52 0.39 14.6 247 22.0 6.47 U 7.99 44.2 74.9	0.012 U 3.47 6.04 U 0.31 U 0.31 U 3.27 2.37 4.25 6.04 U 2.14 6.04 U 14.8	NA N	NA N	NA N
GRO (mg/kg)	Gasoline Range Organics	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA	NA	NA
Metals, To	CLP Barium Cadmium Chromium Lead	NS NS NS	NS NS NS	NS NS NS NS	NS NS NS	NS NS NS NS	100,000 ⁽⁵⁾ 1,000 ⁽⁵⁾ 5,000 ⁽⁵⁾ 5,000 ⁽⁵⁾	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA

		1				San	nple Location:			SB-359	-			SH	364		vs	S-3	VSS	5-14		SB-LSD-1	-		SB-L	.SD-2			SB-LSD-3	
Analysis	Analyte	\$ 1/3W 2	I S.I/GW.3	I \$.26.W.2	T 8.2//3W.3	Samp	ole Depth (fl.); Sample Date:	0-1 3/4/2009	1-3 3/4/2009	3/4/2009	8 3/4/2009	12 3/4/2009	0-1 3/4/2009	1-3 3/4/2009	6 3/4/2009	9,5 3/4/2009	0-0.5 7/23/2001	1-2 7/23/2001	0-0.5 7/23/2001	1-2 7/23/2001	0-1 5/12/2010	1-3 5/12/2010	3-4 5/12/2010	0-1 5/12/2010	1-3 5/12/2010	1-3 5/12/2010 Field Dup	3-4 5/12/2010	0-1 5/12/2010	1-3 5/12/2010	4-5 5/12/2010
VOCs (mg/kg)	Acetone Nanhthalene	50 40	400 500	50 40	400	6.0	N/A N/A	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
EPH (mg/kg)	Dibenzo(a,h)anthracene Benzo(ghi)perylene C19 - C36 Aliphatics	0.7 1,000 3,000	0.7 1,000 3,000	4 3,000 5,000	4 3,000 5,000	0.7 1,000 3,000	N/A N/A N/A	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	1.2 1.3 76	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA
SVOCS/) (mg/kg)		50 NS 200 10* 1,000 600 1,000 7 7 1,000 70 0,7 1,000 1,000 7 80 40 500 1,000	600 NS 200 10* 1,000 10 1,000 7 7 1,000 70 0.7 1,000 1,000 7 300 500 500	50 NS 700 NS 3,000 600 3,000 40 4 4 0 3,000 4 3,000 4 4 3,000 4 0 3,000 4 0 1,000 4 0 1,00	600 NIS 700 NIS 3,000 10 3,000 40 40 400 400 400 400 400 400 500 1,000 1,000 3,000	30 50 200 100 4 1 1,000 7 2 7 1,000 70 1 1,000 7 0,7 4 10 1,000	N/A	NA NA NA NA NA 0,204 U 0,204 U 0,204 U 0,205 0,2345 0,204 U 0,204 U 0,204 U 0,204 U 0,572 0,204 U 0,530	NA N	NA NA NA NA NA 0.241 U 0.241 U 0.255 0.290 0.514 0.241 U 0.241 U 0.298 0.241 U 0.382 0.241 U 0.382 0.241 U 0.242 U 0.242 U 0.243 U 0.244 U 0.244 U 0.244 U 0.244 U 0.244 U	NA NA NA NA NA NA NA NA NA 1.41 U 1.41 U	NA N	NA NA NA NA O,202 U	NA NA NA NA NA 0.174 U	NA NA NA NA 4.16 0.785 16.8 27.1 21.3 23.4 8.46 10.0 24.4 1.61 46.9 5.09 11.1 2.32 3.37 59.6 57.3	NA NA NA NA NA 0.497 U 0.497 U 0.746 0.532 0.866 0.497 U 0.497 U 0.790 0.790 0.790 1.57 0.497 U	NA N	0,051 U 0,35 0,11 J 0,051 U 0,051 U 0,051 U 0,051 U 0,071 U	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N	NA N
PCBs (mg/kg)	Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Total PCBs	2 2 2 2 2	2 2 2 2 2 2	3 3 3 3	3 3 3 3 3	2 2 2 2 2	1 1 1 1	0,0591 U 0.0591 U 0.0635 J NA 0.0635 J	0.0558 U 0.0558 U 0.0558 U NA 0.0558 U	0,0599 U 0.0599 U 0,0599 U NA 0,0599 U	0.395 UJ 0.395 UJ 0.395 UJ NA 0.395 UJ	NA NA NA NA	0,0553 U 0,0553 U 0,0553 U NA 0,0553 U	0.0516 U 0.0516 U 0.0516 U NA 0.0516 U	0.0644 U 1.70 J 0.0644 U NA 1.70 J	0,208 UJ 0,208 UJ 0,208 UJ NA 0,208 UJ	0,100 U 0.100 U 0,100 U NA 0.100 U	0,100 U 0,100 U 0,100 U NA 0,100 U	0.100 U 1.42 1.34 NA 2.76	0.100 U 6.89 0.100 U NA 6.89	0,0544 U 0.0685 * 0,0544 U NA 0.0685	0,0521 U 0,0521 U 0,0521 U NA 0,0521 U	0,0567 U 0.611 * 0.227 * NA 0.838	0,0569 U 0.131 * 0.0569 U NA 0.131	0.0570 U 0.510 * 0.221 * NA 0.731	0.0560 U 0.478 * 0.210 * NA 0.688	0.0567 U 0.611 * 0.227 * NA 0.738	0,0551 U 0.0615 * 0,0551 U NA 0.0615	0,0555 U 0,0555 U 0.0607 * NA 0.0607	0.0599 U 0.0599 U 0.0599 U NA 0.0599 U
Metals (mg/kg)	Mercury Arsenic Barium Beryllium Cadmium Chromium Lead Nickel Selenium Silver Vanadium Zinc	20 20 1,000 100 2 30 300 20 400 100 600 2,500	20 20 1,000 100 2 30 300 20 400 100 600 2,500	30 20 3,000 200 30 200 300 700 800 200 1,000 3,000	30 20 3,000 200 30 200 300 700 800 200 1,000 3,000	20 20 1,000 100 2 30 300 20 400 100 600 2,500	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.039 4.15 31.6 0.31 U 0.31 U 8.34 129 4.25 6.10 U 0.61 U 9.97 58.9	0.056 6.07 76.1 0.35 U 13.7 49.6 7.89 6.89 U 0.69 U 22.3 89.6	0.959 65.5 391 0.86 2.33 15.2 802 18.4 28.1 0.73 U 32.5 772	0.150 U 195 1.490 5.13 8.81 92.5 2,710 94.1 99.4 4.21 U 174 2,980	0,012 U 3,15 U 8.27 0.32 U 0.32 U 4.21 2.18 3.14 6.29 U 0.63 U 6.29 U 13.8	0.040 3.02 U 16.5 0.31 U 0.31 U 5.14 12.9 3.04 6.04 U 0.61 U 9.98 18.9	0,017 U 2,61 U 8,58 0,27 U 0,27 U 2,34 4,61 2,24 5,22 U 0,53 U 5,22 U 10,0	0.322 10.8 533 0.32 U 2.32 35.4 2.350 19.1 6.22 U 1.03 34.4 738	0.144 7.45 U 178 0.75 U 2.03 9.17 85.8 7.67 14.9 U 14.9 U 483	0.07 U 1.77 16 NA 0.35 U 5.11 17 NA 0.71 U 0.35 U NA	0.07 U 1.52 11 NA 0.32 U 3.74 8.89 NA 0.64 U 0.32 U NA NA	0.13 3.48 372 NA 0.78 32 223 NA 0.68 U 0.34 U NA NA	0.65 5.49 532 NA 0.63 109 371 NA 1.38 0.34 U NA	NA N	NA N	NA N	NA N	NA NA NA NA NA NA NA NA NA	NA N	NA	NA N	NA N	NA N
GRO (mg/kg)	Gasoline Range Organics	1,000	1,000	3,000	3,000	1,000	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metals, T (ug/L)	CLP Barium Cadmium Chromium Lead	NS NS NS NS	NS NS NS NS	NS NS NS NS	NS NS NS NS	NS NS NS	100,000 ⁽⁵⁾ 1,000 ⁽⁵⁾ 5,000 ⁽⁵⁾ 5,000 ⁽⁵⁾	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA

Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm),

ug/L - micrograms per liter.

B - Detected in associated laboratory method blank.
J - Estimated value; below quantitation limit.

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable,
U - Compound was not detected at specified quantitation limit.

UJ - Estimated non-detect.

Values in Bold indicate the compound was detected.

Values in Bold indicate the compound was detected.

Values in Bold indicate the compound was detected.

Values whom in Bold and solded I type exceed one or more of the listed Method I standards or TCLP standard, as applicable.

Values shown in Bold and cautilined exceed TSCA but are less than the listed Method I standards.

VOCs - Volanie Organic Compounds.

SVOCs - Senivolatile Organic Compounds.

PCBs - Polychlorinated Bipbenyls.

RC - Reportable Concentration.

TCLP - Toxicity Characteristic Lesching Procedure.

TSCA - Toxic Substances Control Act criteria.

Data are based on the "Summary of Analytical Data, New Bedford High School" dated June 9, 2006, BETA Group, Inc.

(1) - MassDEP Method I standards and RC for C9-C10 aromatics used.

(2) - MassDEP RC for Dichloropropane used.

(3) - MassDEP RC for Dichloropropane used.

(4) - MassDEP RC for Dichloropropane used.

(5) - SW-846 Chapter 7, Table 7-1, Maximum Concentration of Contaminants for Toxicity Characteristic.

* - TRC developed standards.

*- TRC developed standards
- sample locations to be either excavated, or covered by pavement

						Sam	ple Location:	Comp-1	Comp 3	Comp.5	Comp 7	Cov	mp 9	Conm 11	Conp 13	HS Comp 2	HS Comp 4	HS Co	omn 6	HS Comp 8	HS Comp 10	HS Comp 12	HS Comp 14	HS Comp 10
Analysis	Analyte	1					le Depth (it.):	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	,	Sample Date:	2/21/2006	2/21/2006	2/21/2006	2/21/2006	2/22/2006	2/22/2006 Field Dup	2/22/2006	2/22/2006	2/21/2006	2/21/2006	2/21/2006	2/21/2006 Field Dup	2/21/2006	2/21/2006	2/22/2006	2/22/2006	2/22/2006
SVOCsA	PAHs	3-11011-2	3-370-11-5	3-2/011-2	3-2011-5	KC 3-1	100.71						Troid Diep			_			T TOTAL D'SP	_	-	 		
	Dibenzofuran	10*	10%	NS	NS	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	0.057 U	0.150	0.240	NA	NA
	Acenaphthene	1,000	1,000	3,000	3,000	4	NA	0.34 U	NA	0.34 U	NA	NA	NA	NA	0.39	NA	NA	NA	NA	0.057 U	0.440	0.750	NA	NA
	Acenaphthylene	600	10	600	10	1 1	NA	1.4	NA	0.34 U	NA	NA	NA	NA	2.6	NA	NA	NA	NA	0.210	0.560	0.550	NA	NA
	Anthracene	1,000	1,000	3,000	3,000	1,000	NA	2.0	NA	0.34 U	NA	NA	NA	NA	4.8	NA	NA	NA	NA	0.280	1.7	1.8	NA	NA
	Benzota)anthracene	7	7	40	40	7	NA	4.4	NA	0.34 U	NA	NA	NA	NA	9.0	NA	NA	NA	NA	0.850	2,9	5.0	NA	NA
	Benzo(a)pyrene	2	2	4	4	2	NA	3.8	NA	0.34 U	NA	NA	NA	NA	4.3	NA	NA	NA	NA	0.820	2.2	4.2	NA	NA
	Benzo(b)fluoranthene	7	7	40	40	7	NA	4.4	NA	0.34 U	NA	NA	NA	NA	5,1	NA	NA	NA	NA	0.610	1.5	2,8	NA	NA
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	NA	2.4	NA	0.34 U	NA	NA	NA	NA	2.0	NA	NA	NA	NA	0.430	1.1	1,8	NA	NA
	Benzo(k)fluoranthene	70	70	400	400	70	NA	1.9	NA	0.34 U	NA	NA	NA	NA	1.6	NA	NA	NA	NA	0.920	2.3	4.2	NA	NA
	Chrysene	70	70	400	400	70	NA	4.0	NA	0.34 U	NA	NA	NA	NA	9,9	NA	NA	NA	NA	0.780	2.9	4,3	NA	NA
	Dibenz(a,h)anthracene	0.7	0.7	4	4	1 1	NA	0.57	NA	0.34 U	NA	NA	NA	NA	0.83	NA NA	NA.	NA	NA	0.190	0.530	0.880	NA	NA
	Fluoranthene	1.000	1.000	3.000	3.000	1,000	NA	10	NA	0.38	NA	NA	NA	NA.	13	NA	NA	NA	NA	1.7	5.2	9.0	NA	NA
	Fluorene	1,000	1,000	3,000	3,000	1,000	NA NA	0.98	NA	0.34 U	NA	NA	NA NA	NA	1.2	NA	NA	NA NA	NA	0.066	0.750	0.630	NA	NA
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	NA	2.3	NA	0.34 U	NA	NA	NA	NA	2.0	NA.	NA	NA	NA	0,420	0.920	1.9	NA	NA.
	2-Methylnaphthalene	80	300	80	500	0,7	NA	0.47	NA	0.34 U	NA	NA	NA	NA	0.29	NA NA	NA.	NA	NA	0.057 U	0.170	0.130	NA	NA
	Nauhthalene	40	500	40	1.000	4	NA	0.89	NA	0.34 U	NA	NA	NA	NA	0.27 U	NA	NA	NA	NA	0.057 U	0.091	0.200	NA	NA
	Phenanthrene	500	500	1,000	1,000	10	NA	8.6	NA	0.34 U	NA	NA	NA	NA.	18	NA.	NA	NA NA	NA	0.950	6.5	6.2	NA	NA
	Pyrene	1,000	1,000	3.000	3,000	1,000	NA	8.5	NA	0.38	NA	NA	NA	NA	20	NA	NA	NA	NA	1.6	5.6	9.1	NA	NA
Pesticide	s																							
	4,4'-DDD	4	4	30	30	4	NA	0.029	NA	0,0022 U	NA.	NA	NA	NA	0.0017 U	NA	NA	NA NA	NA	0.010 U	0.113	0,0126	NA	NA
	4,4'-DDE	3	3	20	20	3	NA	0.18	NA	0,0022 U	NA	NA	NA	NA.	0.18	NA.	NA	NA.	NA	0,010 U	0,010 U	0.0483	NA	NA.
	4,4'-DDT	3	3	20	20	3	NA	0.16	NA	0.0022 U	NA.	NA	NA	NA	0.046	NA	NA	NA	NA	0,010 U	0.123	0.157	NA	NA
	Endosulfan sulfate	200*	20*	NS	NS	0.5	NA.	0.1	NA	0,0022 U	NA.	NA	NA	NA	0.0017 U	NA	NA	NA	NA_	0.010 U	0,010 U	0,010 U	NA	NA
Herbicid	es																							
	Dinoseb	30*	7*	NS	NS	500	NA.	NA	NA	NA.	NA.	NA	NA .	NA .	. NA	0,025 U	NA	0.025 U	NA	0.025 U	0.043	0.025 U	0,025 U	NA
Metals																								
	Arsenic	20	20	20	20	20	N/A	24.4	17.4	24.7	24.9	11.0	14.6	17.9	10.0	8.79	7.03	9.56	8.07	7.23	18	8.71	4.13	10
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	465	305	484	433	209	259	256	57.7	307	283	312	314	156	214	166	90	327
	Cadnium	2	2	30	30	2	N/A	1.68	1.13	0.845 U	0.892 U	1.10	2.5	2.70	0,645 U	42	0.87	0.79	1.03	1.26	2.10	2.60	0.46	1.03
	Chromium	30	30	200	200	30	N/A	47.8	21.3	34.7	37.1	19.5	20	33.5	10.4	19	7.59	8.55	10	9.82	15	12	7,73	311
	Lead	300	300	300	300	300	N/A	1,190	518	896	506	328	839	1,480	174	827	633	427	510	354	579	2,670	107	537
	Mercury	20	20	30	30	20	N/A	0.271	0.165	0.823	0.0669 U	0.367	0.52	0.454	0.0754	0.368	0.480	0.237	0.195	0.421	0.409	0.455	0.206	0.249
	Selenium	400	400	800	800	400	N/A	20 U	22,3 U	20,2 U	21.4 U	18,2 U	18.9 U	19,1 U	15.5 U	2.61	0.95	0.86	2-20	0.66	1.50	0.84	0.77 U	0.73
	Silver	100	100	200	200	100	N/A	2.83	2,6 U	2.86	2,5 U	2,13 U	2.21 U	2.62	1,81 U	0,37 U	0,40 U	0,36 U	1-25	0,33 U	0,37 U	0,35 U	0,38 U	0.37 €
DRO	Di-ul D-use (November	1.000	1,000	3.000	3.000	1.000	NA	3,800	NA	65 U	NA	NIA	NIA	NA	750	NA	NA	NA	NA	102			NA	NA
mg/kg) Metals, "	Diesel Range Organics	1,000	1,000	3,000	3,000	1,000	INA	3,800	INA	03 U	INA	NA	NA	NA.	750	IVA	NA.	INA	INA	102	28	553	INA	INA
onserve) •	Cadmium, TCLP	NS	NS	NS	NS	NS	1,000(5)	NA	NA	NA	NA	NA	NA	NA	NA	60	NA	NA	NA	NA	NA.	NA	NA	NA
	Lead, TCLP	NS	NS	NS	NS	NS	5 000	360	1,300	5,300	250 U	2,400	410	1,500	250 U	1,800	1,000	400	600	400	30,000	1,900	100	500
Ignitabili	ity																				1			
Deg. F)	Ignitability	NS	NS	NS	NS	NS	NA	0	NA	0	NA.	NA	NA	NA	0	NA	NA	NA	NA	0	0	0	NA	NA

Notes:
All units in mg/kg unless otherwise specified,
mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm),
NA - Sample not analyzed for the listed analyte,
U - Compound was not detected at specified quantitation timit,
B - Detected in associated laboratory method blank.
Values in Bold indicate the compound was detected,
Values in Bold indicate the compound was detected.
Values in Bold indicate the compound in Bold indicated in Bold indicated

TABLE 3-12 Summary of Analytical Results for Dioxin Investigative Soll Samples New Bedford High School New Bedford, Massachusetts

-	Wife.										New Bedford, N	riassacitusetts											
							Area Code;			er (6			4			4			8	
Analysis	Analyte					01	Sample ID;			-26			HF-14			HF-31D			HF-40			HG-2	A CONTRACT
1							e Depth (ft.);	0-1 4/15/2010	1-3 4/15/2010	1-3 4/15/2010	3-5 4/15/2010	0-1 4/15/2010	1-3 4/15/2010	3-4	0-1 4/15/2010	1-3	4-6	0-1	1-3 4/15/2010	3-5	6-1	1-3	5-7
		S.1/0W-2	S.1/GW.3	I sarcwa	S-2/GW-3		Sample Date: TSCA	4015/2010	A/15/2010	Field Dup	4/15/2010	Arisvauto	4/15/2010	4/15/2010	4/15/2010	4/15/2010	4/15/2010	4/15/2010	4/15/2010	4/15/2010	4/15/2010	4/15/2010	4/15/2010
SVOCs/	DATE	3-1/GW-2	2-11CM-2	3-2/GW-2	3-2/GW-3	WC 2-1	ISCA			FROM LAD						Sanita Silver		MATERIA PROPERTY				AL BUILDING	
III		80	300	80	500	0.7	N/A	0.39 U	0.20 U	0.44 U	1.2 U	0.20 U	0.10 11	0.46 17	0.19 U	0.27 11	0.45 11	0.10 11	0.01 77	21.11	0.20 11	1.7 11	0.40 1
(mg/kg)	2-Methylnaphthalene Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	0.39 U	0.20	0.44 U	1.2 U	0.20 U	0.18 U 0.18 U	0.46 U 0.59	0.19 U	0.37 U 0.37 U	0.45 U 0.45 U	0.19 U 0.19 U	0.91 U 0.91 U	2.1 U 2.1 U	0.20 U 0.20 U	1.7 U 2.5	0.42 U
	Acenaphthylene	600	10	600	10	7	N/A	0.39 U	0.20 U	0.44 U	1.2 U	0.20 U	0.18 U	0.46 U	0.19 U	0.37 U	0.45 U	0.19 U	10	8.9	0.20 U	1.7 U	0,42 U
1	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	0.39 U	1.2	0.78	1.2 U	0.20 U	0.18 U	0.93	0.19 U	1.1	0.45 U	0.19 U	3.6	3.9	0.20 U	4.0	0.42 U 0.42 U
1	Benzo(a)anthracene	7	7	40	40	7	N/A	0.73	3.9	2.4	1.2 U	0.20 U	0.18	2.4	0.19 U		0.43	0.19 U	5.8	7.0	0.20 U	10	0.42 U 0.48
		2	2	40	40	2	N/A	0.73	3.2	2.2	1.2 U	0.20 U	0.21	2,2	0.19 U	1.5 1.4	0.64	0.19 0		13	0.20 U		0.48 0.42 U
	Benzo(a)pyrene Benzo(b)fluoranthene	7	7	40	40	7	N/A	0.73	4.3	2.9	1.2 U	0.20 U	0.21 0.18 U		0.19 U		0.98	0.26	12 9.5	12	0.20 U	9.0 11	0.42 0
1	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	0.73	1.1	0.75	1.2 U	0.20 U	0.18 U	3.1 0.74	0.19 U	1.6 0.49	0.45 U	0.19 U			0.20 U		0.33 0.42 U
1	Benzo(k)fluoranthene	70	70	400	400	70	N/A	0.39 U	1.7	1.2	1.2 U	0.20 U	0.18 U	1.2	0.19 U	0.49	0.45 U	ı	9.2 3.3	8.6 4.1	0.20 U	4.6 1.7 U	0,42 U
1	Chrysene	70	70	400	400	70	N/A	0.75	4.2	2.6	1,2 U	0.20 U	0.18	2.7	0.19 U	1.6	0.43	0.19 U 0.23	8.3	9.6	0.20 U		
1	Dibenz(a,h)anthracene	0.7	0.7	4	400	0.7	N/A	0.39 U	0.34	0.44 U	1.2 U	0.20 U	0.23 0.18 U	0.46 U	0.19 U	0.37 U		ı	0.91 U	2.1 U	0.20 U	11 1.7 U	0.49 0.42 U
1	Fluoranthene	1,000	1.000	3,000	3,000	1,000	N/A	1.2	6.5	4.3	1.2 U	0.20 U	0.33	5.6	0.19 U	3.0	0.45 U 0.90	0.19 U 0.24	28	30	0,20 U	21	0.42 0
1	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	0.39 U	0.33	0,44 U	1.2 U	0.20 U	0.33 0.18 U	0,52	0.19 U	0.59		0.24 0.19 U	1.9	2.3	0,20 U	1.9	
		7	7	40	40	7	N/A	0.54	1,4	0.44 0	1.2 U	0.20 U	0.18 U	0.52	0.19 U	0.59	0.45 U	150				5,7	0.42 U
II.	Indeno(1,2,3-cd)pyrene Naphthalene	40	500	40	1,000	'4	N/A	0.39 U	0.20 U	0.44 U	1.2 U	0.20 U	9.0	0.50	0.19 U	0.87 0.37 U	0.45 U	0,19 U	8.4	7.9	0,20 U	1.7 U	0.42 U 0.42 U
H	Phenanthrene	500	500	1,000	1,000	10	N/A	0.99	4.6	3.3	1.2 U	0.20 U	0.18 U 0.33	4.4	0.19 U	4.0	0.45 U 1.0	0,19 U	20 30	17 37	0,20 U 0,20 U	1.7 0	
	Pyrene	1.000	1,000	3,000	3,000	1,000	N/A	1.2	5.1	2.6	1.2 U	0.20	0.33	2.1	0.19 U	2.0	0.64	0.21 0.28	21	27	0.20	17	0.76 0.55
PCB Are		1,000	1,000	3,000	3,000	1,000	10//	1.2	3,1	2.0	1,2 0	0.22	0,23	2,1	0.19 0	2.0	0.04	0,20	21	21	0.50	14	0,55
III (S)	T.	2	1 ,					0.11 11	0.10 11	0.10 17	0.14 71	0.10 11	0.11 77	0.10.71	0.11 77	0.11 77	0.10.77	0.11 77		10.77	0.10.71	0.40. **	0.40
(mg/kg)	Aroclor-1016	2	1 2	3	3	2		0.11 U	0.12 U	0.13 U	0.14 U	0.12 U	0.11 U	0.13 U	0.11 U	0.11 U	0.13 U	0.11 U	1.1 U	1.2 U	0.12 U	0.49 U	0.49 U
1	Aroclor-1221 Aroclor-1232	2	2 2	3	3	2 2		0.11 U	0.12 U	0.13 U	0.14 U	0.12 U	0.11 U	0.13 U	0.11 U	0.11 U	0.13 U	0.11 U	1.1 U	1.2 U	0.12 U	0.49 U	0.49 U
	I .	2	2 2	3	3	1 - 1		0.11 U	0.12 U	0.13 U	0.14 U	0,12 U	0.11 U	0.13 U	0.11 U	0.11 U	0.13 U	0.11 U	1.1 U	1.2 U	0.12 U	0.49 U	0.49 U
	Aroclor-1242	2	-	3	3	2 2		0.11 U	0.12 U	0.13 U	0.14 U	0.12 U	0.11 U	0.13 U	0.11 U	0.11 U	0.13 U	0.11 U	1.1 U	1.2 U	0.12 U	0.49 U	0.49 U
	Aroclor-1248 Aroclor-1254	2	2	3	3		1	0.11 U	0.12 U	0.13 U	0.14 U	0.12 U	0.11 U	0.13 U	0.11 U	0.11 U	0.13 U	0.11 U	1.1 U	1.2 U	0.12 U	0,49 U	0.49 U
1	Aroclor-1260	2	2	3	3	2 2		0.47	0.63	0.87	0.70	0.26	0.54	0.13 U	0.23	0.73	0.13 U	0.33	8.0	12	0.12 U	4.2	4.0
1	Aroclor-1262	2	2	3	3	2 2		0.11 U 0.11 U	0.12 U	0.13 U	0.14 U	0.12 U 0.12 U	0.11 U	1.0	0.11 U	0.11 U	0.13 U	0.11 U	1,1 U	1.2 U	0.12 U	0.49 U	0.49 U
1	Aroclor-1268	2 2	2	3	3	2 2		0.11 U	0.12 U	0.13 U 0.13 U	0.14 U		0.11 U	0.13 U	U 11.0	Viii O	0.13 U	0.11 U	1.1 U	1.2 U	0.12 U	0.49 U	0.49 U
	Total PCBs	2	2	3	3	2 2		0.47	0,12 U 0.63	0.13 0	0.14 U 0.70	0.12 U 0.26	0.11 U 0.54	0.13 U 1.0	0.11 U 0.23	0.11 U 0.73	0.13 U 0.13 U	0.11 U 0.33	1,1 U 8.0	1.2 U	0.12 U	0.49 U	0.49 U 4.0
PCB Cor	die een een een een een een een een een e		-	-	-	- 2		0.47	0.03	0,07	0,70	0.20	0.34	1.0	0.23	0.75	0.15 0	0.33	999	12	0.12 U	4.2	4.0
	€														,								
(mg/kg)	Total PCBs (a)	2	2	3	3	2	1	0.465 J	1.82 J	6.47 J	16.62 J	0.181 J	0.744 J	1.15 J	0.193 J	0.735 J	0.082 J	0.267 J	0.066 J	0.098 J	0.255 J	4.90 J	3.73 J
1	Total PCBs (b)	2	2	3	3	2	1	0.465 J	1.82 J	6.47 J	16.63 J	0,181 J	0.744 J	1.15 J	0.193 J	0.735 J	0.082 J	0,266 J	0.066 J	0.098 J	0.255 J	4.90 J	3.73 J
	Dioxin-like PCB TEQs (ND=0 EMPC=EMPC)	2.0E-05	2.0E-05	5.0E-05	5.0E-05	2.0E-05	N/A	6.7E-06 J	3.9E-05 J	1.21:-04 1	3.2E-05 J	5.1E-06 J	7.5E-06 J	1.8E-06 J	3.1E-06 J	1.3E-05 J	2.0E-06 J	6.5E-06 J	8.3E-07 J	1.6E-06 J	4.8E-06 J	1.1E-04 J	7.3E-05 J
	Dioxin-like PCB TEOs (ND=DL/2; EMPC=EMPC)	2.0E-05	2.0E-05	5.0E-05	5.0E-05	2.0E-05	N/A	6,7E-06 J	3.9E-05 J	1.21:-04 1	3.6E-05 J	5.2E-06 J	7.6E-06 I	4.4E-06 J	3.1E-06 J	1.3E-05 J	2.0E-06 J	6.6E-06 J	8.4E-07 J	1.7E-06 J	4.8E-06 J	1.1E-04 J	7.3E-05 J
Dioxins	District Co 1 Des (ND-Dist, Bill C-Ein C)	2.02 03	2.02.05	5.00-05	D.0E-03	2,0E-03	TUA	0.7E-00 J	Mezarate) 4	TREESON TA	100000000000000000000000000000000000000	3.2E-00 J	7.0E-00 J	4.415-00 J	J.12-00 J	1.312=03 J	2.015*00 J	0.0E-00 J	0.415-07 3	1.7E-00 J	4.0E-00 J	15115-09	rantana J
	TEO- (ND-6- EMBC-EMBC)	2.05.05	2.05.06	£ 00 05	5 OF OF	0.05.05	A7/4		A STATE OF THE STA			100.05	* < 0.00		7 45 05								
(mg/kg)	TEQs (ND=0; EMPC=EMPC)	2.0E-05	2.0E-05	5.0E-05	5.0E-05	2.0E-05	N/A	4.3E-05	1.8E-04	1.5E-04	1.41:-04	1.0E-05	1.6E-05	1.5E-04	1.4E-05	2.7E-05	2.0E-05	1.2E-05	5.1E-05	1.81:-04	1.9E-05	1.9E-04	1.5E-04
	TEQs (ND=DL/2; EMPC=EMPC)	2.0E-05	2.0E-05	5,0E-05	5,0E-05	2.0E-05	N/A	4.3E-05	1.8E-04	1.5E-04	1.415-04	1.1E-05	1.6E-05	1.5E-04	1.4E-05	2.7E-05	2.0E-05	1.2E-05	5.1E-05	1.8E-04	1.9E-05	1.9E-04	1.5E-04
110	mmation**																	T T		- //			
(mg/kg)	TEQs (ND=0; EMPC=EMPC)	2.0E-05	2.0E-05	5.0E-05	5.0E-05	2.0E-05	N/A	5.0E-05	2.2E-04	2.7E-04	1.7E-04	1.6E-05	2.3E-05	1.5E-04	1.7E-05	4.0E-05	2.2E-05	1.8E-05	5.1E-05	1.8E-04	2.4E-05	3.0E-04	2.2E-04
	TEQs (ND=DL/2; EMPC=EMPC)	2.0E-05	2.0E-05	5.0E-05	5.0E-05	2.0E-05	N/A	5.0E-05	2.2E-04	2.7E-04	1.8E-04	1.6E-05	2.3E-05	1.5E-04	1.7E-05	4.0E-05	2.2E-05	1.9E-05	5.1E-05	1.8E-04	2.4E-05	3.0E-04	2.2E-04
Metals											1												
(mg/kg)	Antimony	20	20	30	30	20	N/A	4.6 U	24 U	5.2 U	5.5 U	4.8 U	4.3 U	5.4 U	4.4 U	4.3 U	5.2 U	4.4 U	4.3 U	7.1	4.7 U	4.9 U	4.9 U
	Arsenic	20	20	20	20	20	N/A	3.6	23	22	9.1	3.0 U	2.7 U	14	2.7 U	3.0	8.8	2.8 U	3.0	12	3.0 U	8.0	3,3
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	180	900	1,000	540	61	160	4,400	70	96	380	22	130	560	56	810	190
	Beryllium	100	100	200	200	100	N/A	0.29 U	0.44	0.49	0.67	0,30 U	0.27 U	0.48	0.27 U	0.27 U	0.81	0.28 U	0.27 U	0.48	0.30 U	0.31 U	0.31 U
	Cadmium	2	2	30	30	2	N/A	0.77	3.5	3.7	11	0.31	0.35	1.5	0.35	0.82	0.69	0.29	1.1	3.7	1.1	2.7	2.7
	Chromium	30	30	200	200	30	N/A	16	75	69	46	79	16	480	24	9.8	20	4.9	10	33	11	97	47
	Lead	300	300	300	300	300	N/A	230	1,100	1,300	4.300	41	58	800	100	170	480	87	280	770	220	1,900	320
	Nickel	20	20	700	700	20	N/A	11	54	39	31	6.0	4.0	49	6.0	8.2	-43	3.4	5.8	21	7.3	29	25
1	Selenium	400	400	800	800	400	N/A	5.8 U	6.0 U	6.4 U	6.9 U	6.0	5.3 U	6.7 U	5.5 U	5.4 U	6.5 U	5.5 U	5,4 U	6.2 U	5.9 U	6.1 U	6.2 U
	Silver	100	100	200	200	100	N/A	0.58 U	0.90	0.64 U	75	0.60 U	0.53 U	0.67 U	0.55 U	0.54 U	1.2	0.55 U	0.54 U	0.62 U	0.59 U	0.61 U	0.62 U
	Thallium	8	8	60	60	8	N/A	3.5 U	3.6 U	3.9 U	4.1 U	3.6 U	3.2 U	4.0 U	3.3 U	3.2 U	3.9 U	3.3 U	3.2 U	3.7 U	3.6 U	3.7 U	3.7 U
	Vanadium	600	600	1,000	1,000	600	N/A	21	36	41	28	37	14	210	13	8.5	32	8.0	6.4	19	12	60	28
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	210	980	1,200	410	44	32	360	76	130	220	41	150	580	77	580	340
	Mercury	20	20	30	30	20	N/A	0.62	0.84	0.52	0.11	0.045	0.080	0.34	0.16	0.27	0.40	0.058	0.098	0.24	0.085	1.6	0.15
					•															4			****

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

EMPC - Estimated Maximum Possible Concentration, An EMPC represents an upper bound on a congener concentration when all criteria for detection of the congener were not met. This value represents the theoretical maximum possible content of dioxins and furans in the sample.

NA - Sample not analyzed for the listed analyte

N/A - Not applicable.

NS - No MassDEP standards exist for this analyte.

U - Compound was not detected at specified quantitation limit. When this happens, the result is referred to as a "non-detect," or "ND." Values in Bold indicate the compound was detected.

Values shown in Rold and shaded type exceed one or more of the listed MassDEP Method 1 standards.

Values shown in Bold and shaded type exceed TSCA but are less than the listed Method 1 standards.

PAHs - Polynuclear Aromatic Hydroca

PCBs - Polychlorinated Biphenyls. RC - Reportable Concentration

TSCA - Toxic Substances Control Act criteria.

TSCA - Toxic Substances Control Act criteria.

TEQ – the Toxic Equivalent concentration (TEQ) for each sample. It is calculated by summing concentration data for all dioxin, furan, and PCB congeners that are believed to harm human health in the same way as the congener commonly referred to as dioxin (2,3.7,8-tetrachlorodibenza-p-dioxin). These congeners are sometimes referred to as "dioxin-like." See the TRC memorandum for additional details.

TEQ is calculated for each sample using Toxic Equivalency Factors (TEFs) for each dioxin-like congener defined by MassDEP and the World Health Organization. TEFs are used to mathematically change concentrations of the individual congeners into a single equivalent concentration of dioxin. EMPCs were included in TEQ estimates to avoid underestimating exposure to dioxin-like congeners. Results below detection limits, or "non-detects" (NDs), were included as either 's the detection limit (referred to as "ND= DL2") or by setting the concentration to 0 (referred to as "ND=0"). TEQs change only very slightly when these two different assumptions were used for results below detection limits. The higher TEQ (calculated using the ND=DL/2 assumption) was used to estimate the risk from dioxin-like congeners.

(a) - Calculated by summation of PCB homolog groups

(b) - Calculated by summation of individual congeners. * - For reference purposes only.

** - Sum of Dioxin-like PCB Congeners TEQ and Dioxins TEQ.

- sample locations to be either excavated, or covered by pavement-

TABLE 3-13 Summary of Analytical Results for Dioxin Investigation Soil Sample HB-2 (5-7) New Bedford High School New Bedford, Massachinetts

Analysis	Analyte						Area Code: Sample ID:	HG-2
	1	l				Samp	le Depth (fl.):	5-7
							Sample Date:	4/15/20
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1	TSCA	
VOCs	1110 774 - 11		7		100		200	0.001
ng/kg)	1,1,1,2-Tetrachloroethane	0.1 500	500	0.1 600	100	0.1	N/A	0.084
	1,1,2,2-Tetrachloroethane	0.02	0.8	0.02	1,000	30 0.005	N/A N/A	0.084
	1.1.2-Trichloroethane	2	4	0.02	60	0.003	N/A	0.042
	1,1-Dichloroethane	5	500	5	1,000	0.4	N/A	0.084
	1,1-Dichloroethylene	40	500	40	1,000	3	N/A	0.084
	1,1-Dichloropropene	NS	NS	NS	NS	0,01(0)	N/A	0.17
	1,2,3-Trichlorobenzene	NS	NS	NS	NS	NS	N/A	0.42
	1,2,3-Trichloropropane	NS	NS	NS	NS	100	N/A	0.17
	1,2,4-Trichlorobenzene	70	500	70	900	2	N/A	0.33
	1,2,4-Trimethylbenzene	100 ⁽¹⁾	100(1)	500%	500 ^m	1,000	N/A	0.084
	1,2-Dibromo-3-chloropropane (DBCP)	NS	NS	NS	NS	10	N/A	0.42
	1,2-Dibromoethane (EDB)	0.1	0.7	0.1	4	0.1	N/A	0.042
	1,2-Dichlorobenzene	30	300	30	300	9	N/A	0.084
	1,2-Dichleroethane	0.1	10	0.1	90	0,1	N/A	0.084
	1,2-Dichloropropane	0.1	10	0.1	100	0.1	N/A	0.084
	1,3,5-Trimethylbenzene	1000	100 ^{rt}	500'1	500 ⁽¹⁾	10	N/A	0.084
	1,3-Dichlorobenzene	40	100	40	500	1	N/A	0.084
	1,3-Dichloropropane	NS	NS	NS	NS	500	N/A	0.042
	1,4-Dichlorobenzene	4	50	4	300	0.7	N/A	0.084
	1,4-Dioxane	6	70	6	500	0,2	N/A	17
	2,2-Dichloropropane	NS	NS	NS	NS	0.120	N/A	0.084
	2-Butanone (MEK)	50	400	50	400	4	N/A	1.7
	2-Chlorotoluene 2-Hexanone (MBK)	NS NS	NS NS	NS NS	NS NS	100	N/A	0.084
	4-Chlorotoluene	NS NS	NS NS	NS NS	NS NS	100 100	N/A N/A	0.84
	4-Methyl-2-pentanone (MIBK)	50	400	NS 50	NS 400	0.4	N/A N/A	0.084
	Acetone	50	400	50	400	6	N/A N/A	4.2
	Benzene	30	30	200	200	2	N/A	0.084
	Bromobenzene	NS	NS NS	NS	NS	100	N/A	0.084
	Bromochloromethane	NS NS	NS NS	NS NS	NS NS	NS	N/A	0.084
	Bromodichloromethane	0.1	20	0.1	100	0.1	N/A	0.084
	Bromoform	1	200	1	800	0.1	N/A	0.17
	Bromomelhane	0.5	30	0.5	30	0.5	N/A	0.17
	Carbon Disulfide	NS	NS	NS	NS	100	N/A	0.84
	Carbon Tetrachloride	5	10	5	60	5	N/A	0.084
	Chlorobenzene	3	100	3	100	1	N/A	0.084
	Chlorodibromomethane	0.03	20	0.03	100	0,005	N/A	0.042
	Chloroethane	NS	NS	NS	NS	100	N/A	0.17
	Chloroform	0.3	400	0.3	800	0.3	N/A	0.17
	Chloromethane	NS	NS	NS	NS	100	N/A	0.17
	cis-1,2-Dichloroethylene	0.4	100	0.4	500	0.3	N/A	0.084
	cis-1,3-Dichloropropene	0.4(4)	960	0.480	70 ^{H1}	0.01%	N/A	0.042
	Dibromomelhane	NS	NS	NS	NS	500	N/A	0.084
	Dichlorodifluoromethane (Freon 12)	NS	NS	NS	NS	1,000	N/A	0.17
	Diethyl Ether	NS	NS	NS	NS	100	N/A	0.17
	Diisopropyl Ether (DIPE)	NS	NS	NS	NS	100	N/A	0.042
	Ethylbenzene	500	500	1,000	1,000	40	N/A *	0.084
	Hexachlorobutadiene	6 100 ^m	6	90 (00t)	90 500th	6	N/A	0.084
	Isopropylbenzene (Cumene)	300	100 ⁰¹	500 ⁽¹⁾	500 th	1,000	N/A	0.084
	m+p Xylene Mathyl (ort Butyl Fiber (MTRF)	300 100	100	300 100	1,000 500	300 0.1	N/A	0.17
	Methyl tert-Butyl Ether (MTBE) Methylene Chloride	20	200	20	900	0.1	N/A N/A	0.084
	Melnylene Chloride Naphthalene	40	500 500	40 40		4	N/A N/A	0.42
	n-Butylbenzene	100(1)	100 ⁰¹	500 ⁽¹⁾	1,000 500 th	100(1)	N/A N/A	0.33
	n-Propylbenzene	100°	1000	500 ⁽¹⁾	500**	100	N/A N/A	0.17
	o-Xylene	300	500	300	1,000	300	N/A	0.084
	p-Isopropyltoluene (p-Cymene)	10011	100 ^{dii}	500 ⁽¹⁾	5000	1000	N/A	1.2
	sec-Butylbenzene	100 ⁽¹⁾	100	500 ⁽¹⁾	500 ⁽¹⁾	1000	N/A	0.084
	Styrene	4	30	4	200	3	N/A	0.084
	tert-Amyl Methyl Ether (TAME)	NS	NS	NS	NS	NS	N/A	0.042
	tert-Butyl Ethyl Ether (TBEE)	NS	NS	NS	NS	NS	N/A	0.042
	tert-Bulylbenzene	100 ^m	1000	500 ⁽¹⁾	500 ⁽¹⁾	100 th	N/A	0.084
	Tetrachloroethylene	10	30	10	200	1	N/A	0.084
	Tetrabydrofuran	NS	NS	NS	NS	500	N/A	0.84
	Toluene	500	500	1,000	1,000	30	N/A	0.084
	trans-1,2-Dichloroethylene	1	500	1	1,000	1	N/A	0.084
	trans-1,3-Dichloropropene	0.4(4)	9(4)	0.4(4)	70 ⁽⁴⁾	0,0110	N/A	0.042
	Trichloroethylene	2	90	2	700	0.3	N/A	0.084
	Trichlorofluoromethane (Freon 11)	NS	NS	NS	NS	1,000	N/A	0.17
	Vinyl Chloride	0.6	0.6	0.7	4	0.6	N/A	0.17

TABLE 3-13 Summary of Analytical Results for Dloxin Investigation Soil Sample HB-2 (5-7) New Bedford High School New Bedford, Massachusetts

Analysis	Analyte						Area Code, Sample ID)	HG-2
15	1	l					le Depth (ft.);	5-7
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1	Sample Date:	4/15/201
VPH								
mg/kg)	Benzene	30	30	200	200	2	N/A	0.088
	C5-C8 Aliphatics	100	100	500	500	100	N/A	18
	C9-C10 Aromatics	100	100	500	500	100	N/A	51
	C9-C12 Aliphatics	1,000	1,000	3,000	3,000	1,000	N/A	25
	Ethylbenzene	500	500	1,000	1,000	40	N/A	0.088
	m+p Xylene	300	500	300	1,000	300	N/A	0.18
	Methyl tert-Butyl Ether (MTBE)	100	100	100	500	0.1	N/A	0.088
	Naphthalene	40	500	40	1,000	4	N/A	0.88
	o-Xylene	300	500	300	1,000	300	N/A	0.088
DDIE	Toluene	500	500	1,000	1,000	30	N/A	0.088
EPH	C11-C22 Aromatics	1,000	1.000	3,000	3,000	1,000	N/A	120
mg/kg)	C19-C36 Aliphatics	3,000	3,000	5,000	5,000	3,000	N/A	160
	C9-C18 Aliphatics	1,000	1,000	3,000	3,000	1,000	N/A	62
	2-Methylnaphthalene	80	300	80	500	0.7	N/A	0.62
	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A	0.62
	Acenaphthylene	690	10	600	10	1	N/A	0.62
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	1.2
	Benzo(a)anthracene	7	7	40	40	7	N/A	2.5
	Benzo(a)pyrene	2	2	4	4	2	N/A	2,3
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	3.2
	Benzo(g,b,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	1.6
	Benzo(k)fluoranibene	70	70	400	400	70	N/A	1.2
	Chrysene	70	70	400	400	70	N/A.	2.9
	Dibenz(a,h)anthracene	0.7	0.7	4	4	0.7	N/A	0.62
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	5.7
	Пижепе	1,000	1,000	3,000	3,000	1,000	N/A.	0.74
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A	1.7
	Naphihalene	40	500	40	1,000	4	N/A	0.62
	Phenanthrene	500	500	1,000	1,000	10	N/A	4.7
	Pyrene	1.000	1,000	3,000	3,000	1,000	N/A	5.4
SVOCs/I								
mg/kg)	2-Methylnaphthalene	80	300	80	500	0.7	N/A	0.42
0 07	Acenaphthene	1,000	1,000	3,000	3,000	4	N/A:	0.42
	Acenaphihylene	600	10	600	10	1	N/A	0.42
	Anthracene	1,000	1,000	3,000	3,000	1,000	N/A	0.42
	Benzo(a)anthracene	7	7	40	40	7	N/A	0.48
	Benzo(a)pyrene	2	2	4	4	2	N/A	0.42
	Benzo(b)fluoranthene	7	7	40	40	7	N/A	0.55
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	N/A	0.42
	Benzo(k)fluoranthene	70	70	400	400	70	N/A	0.42
	Chrysene	70	70	400	400	70	N/A	0.49
	Dibenz(a,h)anthracene	0.7	0.7	4	4	0.7	N/A	0.42
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	N/A	0.86
	Fluorene	1,000	1,000	3,000	3,000	1,000	N/A	0.42
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	N/A.	0.42
	Naphthalene	40	500	40	1,000	4	N/A	0.42
	Phenanthrene	500	500	1,000	1,000	10	N/A	0.76
	Pyrene	1,000	1,000	3,000	3,000	1,000	N/A	0.55
PCBs								
mg/kg)	Aroclor-1016	2	2	3	3	2	1	0.49
	Aroclor-1221	2	2	3	3	2	1	0.49
	Aroclor-1232	2	2	3	3	2	1	0.49
	Aroclor-1242	2	2	3	3	2	1	0.49
	Aroclor-1248	2	2	3	3	2	1	0.49
	Aroclor-1254	2	2	3.	3	2	1	4.0
	Aroclor-1260	2	2	3	3	2	1	0.49
	Aroclor-1262	2	2	3.	3	2	1	0.49
	Aroclor-1268	2	2	3	3	2	1	0.49
	Total PCBs	2	2	3	. 3	2	1	4.0
Metals								
mg/kg)	Antimony	20	20	30	30	20	N/A	4.9
	Arsenic	20	20	20	20	20	N/A	3.3
	Barium	1,000	1,000	3,000	3,000	1,000	N/A	190
	Beryllium	100	100	200	200	100	N/A	0.31
	Cadmium	2	2	30	30	2	N/A	2.7
	Chromium	30	30	200	200	30	N/A	47
	Lead	300	300	300	300	300	N/A	320
	Nickel	20	20	700	700	20	N/A	25
	Selenium	400	400	800	800	400	N/A	6.2
	Silver	100	100	200	200	100	N/A	0.62
	Thallium	8	В	60	60	8	N/A	3.7
	Vanadium	600	600	1,000	1,000	600	N/A	28
	Zinc	2,500	2,500	3,000	3,000	2,500	N/A	340
	Mercury	20	20	30	30	20	N/A	0.15

Notes:

mg/kg - milligrame per kilogram (dry weight) or parts per million (ppm).

NA - Sample and analyzed for the listed marbyte.

NA - Sample mod analyzed for the listed marbyte.

SS - No MyanDEP anadotta exist for this analyze.

SS - No MyanDEP anadotta exist for this analyze.

U - Compround was not detected at specified quantitation timit.

Values in Bild and Saladot Systematical in the sample.

VOCs - Volatile Petroleum Industrial Systematical or timites (the Bildrof Mireal/SPArtified I standards.

VPH - Volatile Petroleum Engineerations.

EPH - Entractable Petroleum Engineerations.

EPH - Entractable Petroleum Engineerations.

PCBs - Polythorimated Bipheryls.

RC - Reportable Concentration.

TSCA - Tous Substances Control Act enteria.

(1) - MCP RC for Dichteropropane used.

(3) - MCP RC for Dichteropropane used.

(4) - MCP Actived I standards and RC for L3-Dichteropropere used.

* - For reference purposes only.

115058_NBHS_New Bedford, MA

FIGURES

BASE MAP IS A PORTION OF THE FOLLOWING 7.5' X 15' USGS TOPOGRAPHIC QUADRANGLES: NEW BEDFORD NORTH, MA, 1979; NEW BEDFORD SOUTH, MA 1977

QUADRANGLE LOCATION NEW BEDFORD HIGH SCHOOL NEW BEDFORD, MASSACHUSETTS

SITE LOCATION MAP

Wannalancit Milis 650 Suffolk Street Lowell, MA 01854 978-970-5600

Drawn: HWB SCALE: AS SHOWN
Checked: DS Date: OCT 2008

FIGURE 1

T:\E_CAD\115058\TOPO NBHS.ppt

APPENDIX A REMEDIATION DRAWINGS AND DETAILS

RAM PLAN DESIGN - DRAFT NEW BEDFORD HIGH SCHOOL **EXTERIOR REMEDY**

JANUARY 2011

City of New Bedford New Bedford, Massachusetts

Index of Drawings

Drawing No.	Drawing Title
T-100	Title Sheet
C-100	Existing Conditions
C-101	Excavation Overview
C-101A	Extent of Excavations

Locus Plan

Index of Drawings

Drawing No. Drawing Title C-101B **Extent of Excavations Extent of Excavations** C-101C C-102 Cover Design

Typical Details C-103

Base map is a portion of the following 7.5' USGS Topographic Quadrangle:

Prepared by:

Prepared for: The City of New Bedford Massachusetts

ı					DIOGRAM TITLE	
	J-29-4L	AH		D.T.	1	
(1)	1-48-0	Paris.	RAM PLAN DESIGN DRAFT SUBMITTAL	A.C.H.		
Λ	p-q-41	AH.	Antiporte in Territoria di spinitoria	M.P.	PULNICH	
V	2.54	1	CONCEPTUAL DESIGN SUBMITTAL	A.C.H.	D.F.	
				DESIGN SUPERVISOR		- 1
REV	DATE	BY	DESCRIPTION	PROJECT	1	

TITLE SHEET RAM PLAN DESIGN - DRAFT NBHS EXTERIOR REMEDY City of New Bedford

T-100

APPENDIX B SOIL MANAGEMENT PLAN

SOIL MANAGEMENT PLAN

SOIL EXCAVATION AND REMOVAL

NEW BEDFORD HIGH SCHOOL NEW BEDFORD, MASSACHUSETTS

Release Tracking Number 4-15685

Prepared for:

City of New Bedford 133 William Street New Bedford, Massachusetts 02740

Prepared by:

TRC

Wannalancit Mills 650 Suffolk Street Lowell, Massachusetts 01854

February 2011

TABLE OF CONTENTS

Section		Page
1.0 IN	NTRODUCTION	1-1
1.1	Contact Information	1-2
	Roles and Responsibilities	
	Existing Site Conditions	
1.3.1		
1.3.2		1-4
1.3.3		94-400) 1-5
1.3.4	Reuse and Disposal of Impacted Soil at Massachusetts Landfills (COMM	1-97-001) 1-
5		
1.3.5 16.00	0) 1-5	
1.3.6		
1.3.7	7 Hazardous Waste Manifest	1-5
2.0 EX	XCAVATION OVERSIGHT	2-1
2.1	Soil Classification	2-2
3.0 SC	OIL MANAGEMENT	3-1
3.1	Off-Site Stockpile Disposition	3-1
	Off-Site Reuse, Recycling and/or Disposal	
	Decontamination of Vehicles Transporting Soils	
	Supplementary Stockpile Characterization	
TABLES	,	
Table 2-1	Summary of Data for Soils to be Excavated – Fenced Playing Field Ar	rea (HS-2)
Table 2-2	Summary of Data for Soils to be Excavated – Unfenced Field Area (H	(S-3)
Table 2-3	Summary of Data for Soils to be Excavated – Gym Area (HS-4)	
Table 2-4	Summary of Data for Soils to be Excavated – Flag Pole Area (HS-5)	
Table 2-5		
Table 2-6		
Table 2-7	Summary of Dioxin Data for Soils to be Excavated Compared to Univ Treatment Standards	ersal

1.0 INTRODUCTION

The City of New Bedford Massachusetts (City) intends to have remediation activities (soil excavation, as needed treatment, and off-site disposal) identified in the Release Abatement Measure Plan (RAM) performed by a contractor, or other entity to perform the work (hereinafter the "Contractor") at the New Bedford High School campus (NBHS). For the purposes of this soil management plan, the Site is defined as the NBHS campus. The proposed remediation activities will be conducted pursuant to the Massachusetts Contingency Plan (MCP; 310 CMR 40.0000) as part of a Release Abatement Measure (RAM) and will include, but may not be limited to the following:

- Excavation Excavation of impacted soil that contributes to Exposure Point Concentrations (EPCs) in excess of MCP Method 1/Method 2 S-1 soil standards in the top 3 feet in landscaped areas as well as excavation of impacted soil with a benzo(a)pyrene Upper Concentration Limit (UCL) exceedance at sample location SB-308 (5 feet at SB-308).
- Paving Expansion of paved surfaces in select areas to prevent direct contact exposure to impacted soil, and excavation and grading of soil in support thereof.
- Recycling On-site crushing of asphalt and concrete materials generated from the removal of existing surfaces and reuse of material as construction material consistent with the Massachusetts Department of Environmental Protection (MassDEP) asphalt, brick and concrete (ABC) policy and associated Massachusetts solid waste regulations.
- Soil Management Temporary soil stockpiling and stockpile management at an off-site City-owned location prior to disposal.
- **Disposal** Off-site disposal of excavated soil at appropriately licensed facilities.
- **Restoration** Backfilling of soil excavations with documented clean fill material screened in advance for the presence of regulated chemicals.

Areas were identified for targeted soil removal or installation/expansion of paving exposure barriers. TRC used a Method 1/Method 2 risk characterization approach to demonstrate that a Condition of No Significant Risk will exist for soil at the Site for the top 3 feet of soil in unpaved areas following soil removal in areas targeted for remediation or prevention of direct contact exposure, which was then verified using a Method 3 risk characterization approach. Ultimately, when the RAM actions have been completed and a Condition of No Significant Risk has been achieved for the top 3 feet of soils in unpaved areas, an Activity and Use Limitation (AUL) will need to be placed on the property to control certain site uses and activities and to mitigate/control potential exposure to impacted soils greater than three feet below ground surface in unpaved areas and below paved surfaces where impacted soils will be present at shallower depths.

The proposed work to be performed under this RAM will serve to expedite the achievement of a Condition of No Significant Risk.

The RAM Plan in which this Soil Management Plan (SMP) document is contained provides a summary of soil analytical data collected during investigative work and figures summarizing the sample locations and illustrating the areas of excavation.

This SMP is intended to provide the Contractor with information regarding project soil management to help ensure that soil is managed in a manner that is protective of human health, safety, public welfare and the environment, as required by the MCP. Due to the depth of most of the excavations and low potential to encounter site groundwater it is anticipated that groundwater management needs for this work are not required. A Commonwealth of Massachusetts Licensed Site Professional (LSP) has been retained by the City to oversee the soil management activities during Site remediation to ensure compliance with the applicable provisions of the MCP and related Massachusetts Department of Environmental Protection (MassDEP) policies and guidance.

1.1 Contact Information

The owner (the "Owner") of the project is:

City of New Bedford 133 William Street New Bedford, Massachusetts 02740 Contact: Mr. Scott Alfonse (508) 979-1487

The Owner's LSP for this project is:

David M. Sullivan, LSP, CHMM LSP License Number: 1488 TRC Environmental Corporation Wannalancit Mills 650 Suffolk Street Lowell, Massachusetts 01854 (978) 656-3565

1.2 Roles and Responsibilities

The Owner will procure the services of a Contractor to complete the remediation activities outlined in the RAM Plan. Specifically, the Contractor will furnish all labor, equipment and materials required to complete the work in accordance with the contract documents including soil excavation, stockpiling, dust control, and off-Site transportation of soil from the Site. The Contractor will also be responsible for obtaining all necessary Federal, state and local permits required for this work (e.g., Dig-Safe and other necessary permits that may be required by the City), with the exception of a Request for Determination of Applicability that will be prepared and submitted to the New Bedford Conservation Commission. If required, a full Notice of Intent (NOI) will be prepared and submitted to the New Bedford Conservation Commission.

The Contractor will not be responsible for obtaining approval from MassDEP Bureau of Waste Site Cleanup (BWSC) to implement this work. Such approval will be obtained by the LSP by submitting a RAM Plan to MassDEP describing the planned remediation activities.

The LSP and/or the LSP's designee (hereafter referred to collectively as "the LSP") will be responsible for obtaining regulatory approval on behalf of the City under the MCP to implement the proposed remediation activities. The LSP, or designee, will periodically inspect the construction activities to ensure consistency with the RAM, this SMP document and applicable MCP and MassDEP policies. Specifically, the LSP's role will include, but may not be limited to, inspection and oversight of the following activities:

- Soil excavation and grading
- Recycling and reuse of asphalt and concrete
- Soil sampling
- Stockpiling
- Loading
- Off-Site transportation
- MCP and PCB Remediation Waste related management, documentation, and decontamination activities

The LSP will also collect any samples required to characterize soil for off-Site disposal, and will procure the required laboratory analyses of these samples.

The LSP will prepare and sign MCP Bills of Lading (BOLs) and/or Material Shipping Records (MSR) required for the off-Site shipment of excavated soil from the Site. The Contractor will be responsible for preparing any Hazardous Waste Manifests, if needed, for the off-Site transportation and disposal of any soil that meets the regulatory criteria for classification as a Hazardous Waste.

In addition, in accordance with the Occupational Safety and Health Administration (OSHA) Hazardous Waste Operations and Emergency Response (HAZWOPER) standard (29 CFR 1910.120 and 1926.65), the LSP will prepare a Site-specific Health and Safety Plan (HASP) for this project for use by TRC personnel. The HASP will specify project-related health and safety procedures to be implemented, and the personal protective equipment (PPE) to be used to protect workers from exposure to impacted soil during soil excavation, treatment (where needed), and management. The Contractor will submit a separate HASP prior to initiating work and must adhere to the requirements of their HASP during performance of the work. The Contractor's employees assigned to the Site should have, at a minimum, 40-hour OSHA HAZWOPER training, and current 8-hour OSHA HAZWOPER refresher training as appropriate. The Contractor's on-Site foreman or other Contractor designated employee responsible for hazardous materials management should also have OSHA Site Supervisor Training. The Owner and/or LSP may request copies of training certificates for each of the Contractor's employees assigned to the Site.

1.3 Existing Site Conditions

The NBHS Campus is composed of the following land parcels in the City of New Bedford: map 75 block 12, map 69 block 345, and map 70 block 1. The Site is located on the north side of Parker Street between Hathaway Boulevard on the west and Liberty Street on the east, and south of the Hetland Rink Property. A site location map is provided in Figure 1.

NBHS consists of a single 529,192 square foot building (with a footprint of approximately 233,903 square feet) surrounded by paved parking areas, lawn and landscaped areas for recreational use, and paved tennis courts. Approximately 48-percent of the Site is covered by impervious surfaces (e.g., pavement or building). An ice skating rink and isolated wetland area, located along Durfee Street, exist beyond the northern boundary of the NBHS property. The NBHS building has three main sections: (1) the gym; (2) the auditorium; and (3) the "Houses". The gym is located at the southern end of the campus. The grassy area in front (west) of the gym is used for outdoor gym classes. Fenced playing fields (a volley ball court, baseball field, and basketball and tennis courts) are located to the rear (east) of the gym. To the north of the gym is the main entrance to the high school, marked by a flag pole and traffic circle. The auditorium is housed in this central portion of the NBHS building. An unfenced field, used as a practice area, is located to the rear (east) of the auditorium. Further to the north are the classrooms, arranged as a series of four "Houses" (A-Block) around a central core (B-Block). The grassy outdoor areas to the east of the "Houses" is a congregating area for students. The grassy field to the north of the "Houses", between two large parking lots, is used for gym classes by the Keith Middle School, which is located to the west of the NBHS Campus across Hathaway Boulevard.

In Massachusetts, the excavation and management of impacted soil at disposal sites is regulated by the MCP. The purpose of the MCP is "to provide for the protection of health, safety, public welfare and the environment" by instituting a uniform mechanism for identifying impacted soils and implementing appropriate response actions.

1.3.1 Release Abatement Measure (310 CMR 40.0440)

Certain remediation related excavation activities at the Site will be performed as a RAM in accordance with the provisions of the MCP at 310 CMR 40.0440. A RAM Plan will be prepared by the LSP and will be submitted to MassDEP prior to performing remediation activities. The RAM Plan will specify the planned remediation activities, identify the threat of release conditions and describe response actions. The soil management procedures outlined in Section 2.0 of this document will be implemented during the RAM. Throughout the course of the remediation activities, the LSP may also prepare RAM Status Reports for submission to MassDEP as required by the MCP.

1.3.2 Management Procedures for Remediation Waste (310 CMR 40.0030)

The MCP establishes requirements and procedures for the management of remediation waste including impacted media and debris and non-containerized waste. This section of the MCP also outlines procedures for documenting and tracking any off-Site transportation and disposal of regulated soil from a disposal site using a MCP Bill of Lading (BOL). The BOL requirements and procedures will apply to any impacted soils transported from the Site, provided the soils are

not otherwise characterized as hazardous waste pursuant to 310 CMR 30.000, the *Massachusetts Hazardous Waste Regulations*.

1.3.3 Interim Waste Management Policy for Petroleum-Impacted Soils (WSC-94-400)

This policy outlines management practices for reuse, recycling, disposal, storage and transport of petroleum-impacted soils, and presents related guidance. The policy's goals include encouraging management practices that provide for the destruction of volatile organic compounds (VOCs) or minimize the potential for migration/release of contaminants, and encouraging recycling of impacted soils (e.g., asphalt batch recycling). The policies include guidelines for testing, storage, reuse/recycling, and establish acceptance criteria at recycling facilities.

1.3.4 Reuse and Disposal of Impacted Soil at Massachusetts Landfills (COMM-97-001)

This policy outlines procedures for reuse or disposal of impacted soils at Massachusetts-permitted landfills. The policy includes guidelines for testing, transport, record keeping, reporting, and establishes acceptance criteria for lined and unlined landfills.

1.3.5 On-Site Crushing Procedures for Asphalt, Brick and Concrete Waste (310 CMR 16.00)

The Solid Waste Regulations and supporting policies establish requirements and procedures for on-site recycling of asphalt pavement, brick and concrete (i.e., the "ABC" policy"). The RAM Plan describes the planned asphalt and concrete crushing and recycling activities.

1.3.6 Bill of Lading (BWSC Forms 012A, 012B and 012C)

The BOL tracks the transportation and final disposition of Remediation Wastes generated during the performance of response actions under the MCP. BOLs may be used to record the shipment of impacted soil from the Site to a reuse, recycling and/or disposal facility approved by the Owner and LSP. BOLs will be stamped and signed by the LSP.

1.3.7 Hazardous Waste Manifest

A Hazardous Waste Manifest is a MassDEP-approved form used to track the origin, quantity, composition, transportation and final destination of hazardous waste. Hazardous Waste Manifests should be utilized for shipping of any wastes subject to the Massachusetts Hazardous Waste Regulations (310 CMR 30.000). The Contractor will prepare any Hazardous Waste Manifest required for transport of the materials from this Site. The hazardous waste disposal facility to be used for disposal of any such material will be subject to approval by the Owner and/or LSP. Other requirements apply as described in 310 CMR 30.310. It is not anticipated that the generation of hazardous waste will be a part of this project.

Note that the reference to MassDEP policies COMM-97-001 and WSC-94-400 does not preclude the use of out-of-state facilities that offer similar reuse (e.g., landfill daily cover) or recycling (e.g., asphalt batch) opportunities. Such opportunities may be evaluated and/or utilized on a

case-by-case basis assuming facility acceptance criteria can be met and the facility is currently within its regulatory jurisdiction for the reuse and/or recycling services provided.

2.0 EXCAVATION OVERSIGHT

TRC personnel will provide oversight during remediation activities. The soil oversight personnel will be providing clarification regarding the soil category to the Contractor using precharacterization analytical data to ensure soil is segregated to the appropriate stockpile pending final reuse, recycling and/or disposal determinations.

Typical soil management options for a remediation project at a listed Disposal Site may include on-site reuse; offsite reuse/recycling; disposal at an approved and appropriately licensed non-hazardous waste, lined or unlined landfills; and disposal at an approved and appropriately licensed hazardous waste landfill. The determination of the reuse, recycling, or disposal option for soils from different portions of the excavation will consider physical and chemical characteristics of the soil and the reuse capacity within the construction project, as shown in the following flow diagram:

Management Plan for Regulated Soils Excavated Soil Is Soil Geotechnically Is Soil Below Method 1 Soil PCB Concentrations Yes Suitable For Reuse? 5-1 Standards? > 50 mg/kg? Yes Nò Suitable for On-site TSCA Chemical Waste Is Soil Below Landfill Disposal (Type F) Reuse (Type A) Lined/Unlined Landfill Reuse Criteria? Yes Lined/Unlined Landfill Is Soil Below Asphalt Reuse as Daily Cover* (Type B) **Batch Recycling Criteria?** Asphalt Batch Reuse' Did Soil Exceed TCLP1 Criteria? (Type C) No Yes Candidate for Landfill Treatment & Hazardous Contractor Responsibility Disposal* (Type D) Waste Landfill Disposal (Type E) TRC Responsibility

1-TCLP = Toxicity Characteristic Leaching Procedure

Typical soil management options for a remediation project at a listed Disposal Site may allow soil to be returned to the approximate location from which it came providing that it is chemically and geotechnically suitable for reuse as backfill, with the geotechnical suitability determined by the construction Contractor and/or project Architect/Engineer. Chemical suitability is determined by the LSP. Soil that is suitable for on-site reuse may be returned directly to the

^{*} Indicates that alternate disposal methods may become available based on changes in Site conditions and/or additional waste characterization data

excavation or stockpiled for later reuse at an off-site location. Soil that has been deemed unsuitable for reuse on-site will be segregated and stockpiled off-site for off-site management (off-site reuse and/or disposal).

2.1 Soil Classification

A summary of soil data compared to Massachusetts Reuse, Recycling and Disposal Criteria, for soils to be excavated only, is included in Tables 2-1 to 2-6 by exposure point area. A summary of dioxin data for soils to be excavated compared to the Universal Treatment Standards (40 CFR §268.48) is included in Table 2-6.

Soil excavated during remediation activities will be classified by the following criteria. If the criteria are not in agreement, then the classification will be made based on the highest ranked factor.

- 1) Pre-characterization data;
- 2) Physical observations of ash-bearing "fill" material; and
- 3) Physical observations of other anthropogenic "fill" material.

Soil at a listed Disposal Site displaced by remediation and/or construction activities may be segregated into one or more of the following classifications:

- Type A Pre-characterized soils for reuse on-site; excess Type-A soil also suitable for off-site reuse as cover material at a lined or unlined landfill facility. On-site reuse is restricted to the location from which the soils were excavated;
- Type B Suitable for unlined or lined landfill re-use (chemically unsuited for reuse on-site);
- Type C Suitable for asphalt batch recycling (geotechnically unsuited for reuse on-site and/or chemically unsuited for reuse on-site or off-site);
- Type D Non-hazardous waste landfill disposal (chemically unsuited for on or off-site reuse, and off-site recycling);
- Type E Soil requiring segregation and off-site treatment prior to disposal as a hazardous waste; and
- Type F Soil requiring disposal at TSCA chemical waste landfill.

The above outlined classification process is expected to produce the following five soil types:

Type A soils are eligible for on-site reuse restricted to the location from which the soils were excavated. Any on-site re-use requires prior approval of the LSP. Other excavated soils will not be reused on-site unless otherwise notified.

Type B soils have been pre-characterized as unsuitable for on-site reuse or the soil may be geotechnically unsuitable for on-site reuse as deemed by the Contractor. These soils can be transported offsite for reuse as cover material at a lined or unlined landfill facility (depending upon acceptance criteria comparisons). If these soils indicate concentrations below their

applicable off-site facility acceptance criteria, they will be segregated and transported offsite for re-use at a lined or unlined landfill facility.

Type C soils are suitable for recycling at an off-site asphalt batch facility.

Type D soils do not indicate a failure of Toxicity Characteristic Leachate Procedure (TCLP) analysis. Therefore, these soils may be segregated and transported offsite for disposal at a non-hazardous waste landfill.

Type E soils have failed TCLP analysis and will need to be segregated for off-site disposal as hazardous waste.

Type F soils contain concentrations of PCBs greater than 50 mg/kg and will need to be segregated for off-site disposal at a TSCA chemical waste landfill.

Soil type determinations will be made by the LSP following the collection of suitable characterization data.

3.0 SOIL MANAGEMENT

3.1 Off-Site Stockpile Disposition

The stockpiles off-site will be staged on polyethylene sheeting (minimum 6-mil thickness) and covered with sheeting at all times with the exception of periods when adding or removing soil to or from the piles. The stockpiles should be designed such that storm water runoff does not impact the soil and any water draining from the soil does not migrate from the polyethylene sheeting to the ground surface. The stockpiles shall be inspected and estimates of total volumes made on a daily basis. If roll-offs will be used, they will be lined with polyethylene and covered to prevent leakage and storm water accumulation. Roll-offs will be of appropriate specification to allow over the road transport of the soils stockpiled therein as a contingency. Soil will be stockpiled at a City owned location at the discretion of the City and as consistent with the MCP.

3.2 Off-Site Reuse, Recycling and/or Disposal

Excavated soil that will be transported from the off-site stockpile location will be characterized as appropriate for disposal at a suitable facility. The laboratory results of pre-characterization sampling will be used for off-site disposal characterization to the extent possible. The existing Site data will be supplemented as necessary to satisfy facility-specific acceptance criteria. The soil sample laboratory data will initially be compared against Massachusetts reuse, recycling, and disposal criteria in accordance to MassDEP Policy# COMM-97-001 and Interim Policy #WSC-94-400.

Transportation of all materials from the site will be performed using a MassDEP Bill of Lading (BOL), Material Shipping Record (MSR) or Hazardous Waste Manifest, as appropriate, and will be performed within 120 days of stockpiling in accordance with 310 CMR 40.0030 of the MCP.

3.3 Decontamination of Vehicles Transporting Soils

Soils will be removed from vehicles prior to their departure from the Site. A decontamination pad may be constructed by the Contractor prior to soil removal activities. The method of soil removal will likely be a combination of brushing the wheels to remove loose soils and/or passing vehicles through a decontamination station. Any liquids generated by vehicle decontamination will be drummed and transported off-site for disposal.

In addition, the Contractor shall be responsible for ensuring that tracking of potentially impacted soil onto public roadways is prevented.

3.4 Supplementary Stockpile Characterization

Prior to transport and disposal of stockpiled soils, soils stockpiled for disposal will be evaluated to determine whether sufficient analytical data is available to satisfy the requirements of the selected disposal or recycling facility. As deemed necessary, soil samples will be collected and analyzed according to the analytes and the sampling frequency specified by the selected disposal facility.

TABLES

L2010-258 Soil Management Plan

Summary of Data for Soils to be Excavated Only - Fenced Playing Field Area (HS-2) New Bedford High School New Bedford, Massachusetts

				1.	6	Sample ID:		SS-32	1.2
Analysis	Analyte				Samp	le Depth (ft.): Sample Date:	0.5 8/7/2008	1.5 8/7/2008	1-3 3/31/2009
		Reuse l	Levels*		cycling Level			3111232	10.5 -1 -5.55
				Hot Mix	Cold Mix	Thermal			
		Lined	Unlined	Asphalt	Emulsion	Processing			
		Landfills	Landfills	Plant	Plant	Plant			
SVOCs	MOTAL SIZE	100	100	27/4	27/4	27/4		10.54	1.05
(mg/kg)	TOTAL SVOCs	100	100	N/A	N/A	N/A	0	18.76	1.85
PCBs (mg/kg)	Total PCBs	< 2	< 2	< 2	< 2	< 2	0.103 J	18.5 J	NA
Metals									
(mg/kg)	Arsenic	40	40	30	30	30	3.66	6.46	2.77 U
	Cadmium	80	30	30	30	11	0.31 U	2.32	0.44
	Chromium	1,000	1,000	500	500	500	12.5	23.0	3.97
	Lead	2,000	1,000	1,000	1,000	1,000	28.2	805	96.6
	Mercury	10	10	10	10	3	0.064	0.743	NA

Notes:

NA - Sample not analyzed for the listed analyte.

- U Compound was not detected at specified quantitation limit.
- J Estimated value; below quantitation limit.
- B Detected in associated laboratory method blank.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the

listed disposal criteria.

SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

- $\hbox{* MassDEP Contaminant Levels for Soil Reuse at Landfills, Policy $\#$ COMM-97-001, August 1997.}$
- ** MassDEP Recycling Facility Summary Levels, InterimPolicy # WSC-94-400.

Summary of Data for Soils to be Excavated Only - Unfenced Field Area (HS-3)

New Bedford High School New Bedford, Massachusetts

						Sample ID:			SB-360			SB-360A	SB-360B	SB-3	360C	SB-360E	SB-360F
Analysis	Analyte					le Depth (ft.):	0-1	1-3	1-3	5	8	1-3	1-3	1-3	1-3	1-3	1-3
						Sample Date:	3/4/2009	3/4/2009	3/4/2009	3/4/2009	3/4/2009	3/24/2009	3/24/2009	3/24/2009	3/24/2009	3/24/2009	3/24/2009
		Reuse 1	Levels*		cycling Level				Field Dup	1					Field Dup		
				Hot Mix	Cold Mix	Thermal											
			Lined Unlined Asphalt Emulsion Processing and fills Plant Plant Plant														
		Landfills	Landfills	Plant	Plant	Plant											
SVOCs																	
	TOTAL SVOCs	100	100	N/A	N/A	N/A	2.81	0	0.96	0	0	NA	NA	NA	NA	NA	NA
PCBs																	
	Total PCBs	< 2	< 2	< 2	< 2	< 2	0.797	0.0706 U	0.0632 U	0.0822 U	0.0578 U	NA	NA	NA	NA	NA	NA
Metals																	
	Arsenic	40	40	30	30	30	3.09 U	12.4	11.3	14.5	3.45 U	NA	NA	NA	NA	NA	NA
	Cadmium	80	30	30	30	11	0.31 U	0.59	0.48	1.21	0.35 U	NA	NA	NA	NA	NA	NA
	Chromium	1,000	1,000	500	500	500	0.62 U	15.9	39.2	16.6	4.3	54	17.2	12.8	13.2	21	74.7
	Lead	2,000	1,000	1,000	1,000	1,000	0.93 U	8110	39600	6870	5.53	20200	26700	350	422	8550	1070
	Mercury	10	10	10	10	3	0.261	0.074	0.044	0.275	0.016	NA	NA	NA	NA	NA	NA

Notes:

NA - Sample not analyzed for the listed analyte.

U - Compound was not detected at specified quantitation limit.

J - Estimated value; below quantitation limit.

B - Detected in associated laboratory method blank.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed disposal criteria.

SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

* - MassDEP Contaminant Levels for Soil Reuse at Landfills, Policy # COMM-97-001, August 1997.

Summary of Data for Soils to be Excavated Only - Unfenced Field Area (HS-3)

New Bedford High School

New Bedford, Massachusetts

						Sample ID:	SB-360G	SB-360I	SB-360J	SB-360K	SB-360L	SB-360M	SB-360O	SB-360Q	SB-360R	SB-360S	SB-360U
Analysis	Analyte					le Depth (ft.):		1-3	1-3	1-3	1-3	1-3	1-3	1-3	1-3	1-3	1-3
						Sample Date:	3/24/2009	5/21/2009	5/21/2009	5/21/2009	5/21/2009	7/6/2009	7/6/2009	7/6/2009	7/6/2009	7/6/2009	7/6/2009
		Reuse	Levels*		cycling Level												
		Lined	Lined Unlined Asphalt Emulsion Processing Landfills Plant Plant Plant														
CVOC-		Landins	Landinis	Piant	Piani	Piant											
SVOCs	TOTAL SVOCs	100	100	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs	Total PCBs	< 2	< 2	< 2	< 2	< 2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA
Metals																	
	Arsenic	40	40	30	30	30	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Cadmium	80	30	30	30	11	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Chromium	1,000	1,000	500	500	500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Lead	2,000	1,000	1,000	1,000	1,000	590	4600	530	890	470	860	500	1200	650	380	9800
	Mercury	10	10	10	10	3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

- NA Sample not analyzed for the listed analyte.
- U Compound was not detected at specified quantitation limit.
- J Estimated value; below quantitation limit.
- B Detected in associated laboratory method blank.

Values in Bold indicate the compound was detected. Values shown in Bold and shaded type exceed one or more of the listed disposal criteria.

SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

- * MassDEP Contaminant Levels for Soil Reuse at Landfills, Policy # COMM-97-001, August 1997.
- ** MassDEP Recycling Facility Summary Levels, InterimPolicy # WSC-94-400.

Summary of Data for Soils to be Excavated Only - Unfenced Field Area (HS-3)

New Bedford High School

New Bedford, Massachusetts

						Sample ID:	SS-36	SS	-36	SS-	36A	SS-	36B	SS-	36C
Analysis	Analyte					le Depth (ft.): Sample Date:		0.5 8/7/2008	2 8/7/2008	0-1 3/9/2009	1-3 3/9/2009	0-1 3/9/2009	1-3 3/9/2009	0-1 3/9/2009	1-3 3/9/2009
		Reuse	Levels*	Re	cycling Level		3/31/2009	8///2008	8///2008	3/9/2009	3/9/2009	3/9/2009	3/9/2009	3/9/2009	3/9/2009
			l i	Hot Mix	Cold Mix	Thermal									
		Lined	Unlined	Asphalt	Emulsion	Processing									
		Landfills Plant Plant Plant													
SVOCs								_							
	TOTAL SVOCs	100	100	N/A	N/A	N/A	5.73	0	40.4	NA	NA	NA	NA	NA	NA
PCBs	Total PCBs	< 2	< 2	< 2	< 2	< 2	0.0733 U	0.0583 U	0.0564 U	NA	NA	NA	NA	NA	NA
Metals												Ì			
	Arsenic	40	40	30	30	30	21.8	6.97	23.1	NA	NA	NA	NA	NA	NA
	Cadmium	80	30	30	30	11	0.98	0.30 U	0.58	NA	NA	NA	NA	NA	NA
	Chromium	1,000	1,000	500	500	500	11.8	5.76	14.2	NA	NA	NA	NA	NA	NA
	Lead	2,000	1,000	1,000	1,000	1,000	NA	17.3	1270	22.7	480	23.1	938	16.8	1550
	Mercury	10				NA	0.050	0.258	NA NA	NA	NA	NA	NA	NA	

Notes:

NA - Sample not analyzed for the listed analyte.

U - Compound was not detected at specified quantitation limit.

J - Estimated value; below quantitation limit.

B - Detected in associated laboratory method blank.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the

listed disposal criteria.

SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

* - MassDEP Contaminant Levels for Soil Reuse at Landfills, Policy # COMM-97-001, August 1997.

Summary of Data for Soils to be Excavated Only - Unfenced Field Area (HS-3)

New Bedford High School

New Bedford, Massachusetts

						Sample ID:		SS-36D		SS-	36F	SS-	36G	SS-	36H	SS-36J	SS-36L
Analysis	Analyte					le Depth (ft.): Sample Date:		1-3 3/9/2009	1-3 3/9/2009	0-1 3/9/2009	1-3 3/9/2009	0-1 3/9/2009	1-3 3/9/2009	0-1 3/9/2009	1-3 3/9/2009	1-3 5/21/2009	1-3 5/21/2009
		Reuse	Levels*		cycling Level	s**	5/9/2009	5/5/2005	Field Dup	3/3/2003	31312003	31712007	31312003	31312003	31712007	372172007	3/21/2009
		Lined Landfills	Lined Unlined Asphalt Emulsion Processing Landfills Plant Plant Plant														
SVOCs	TOTAL SVOCs	100	100	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs	Total PCBs	< 2	< 2	< 2	< 2	< 2	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA
Metals																	
	Arsenic	40	40	30	30	30	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Cadmium	80	30	30	30	11	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Chromium	1,000	1,000	500	500	500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Lead	2,000	1,000	1,000	1,000	1,000	20.4	2070	286	37.5	507	34.4	1110	856	20.8	2700	870
	Mercury	10	10	10	10	3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

NA - Sample not analyzed for the listed analyte.

U - Compound was not detected at specified quantitation limit.

J - Estimated value; below quantitation limit.

B - Detected in associated laboratory method blank.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the

listed disposal criteria.

SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

* - MassDEP Contaminant Levels for Soil Reuse at Landfills, Policy # COMM-97-001, August 1997.

Summary of Data for Soils to be Excavated Only - Unfenced Field Area (HS-3)

New Bedford High School

New Bedford, Massachusetts

						Sample ID:	SS-	36N	SS-36O	SS-36R	SS-36S
Analysis	Analyte					le Depth (ft.):		1-3	1-3	1-3	1-3
II.						Sample Date:	7/6/2009	7/6/2009	7/6/2009	7/6/2009	7/6/2009
		Reuse	Levels*	Re	cycling Level	S**		Field Dup			
				Hot Mix	Cold Mix	Thermal		1			
		Lined	Unlined	Asphalt	Emulsion	Processing					
		Landfills	Landfills	Plant	Plant	Plant					
SVOCs											
	TOTAL SVOCs	100	100	N/A	N/A	N/A	NA	NA	NA	NA	NA
PCBs					ĺ						
	Total PCBs	< 2	< 2	< 2	< 2	< 2	NA	NA	NA	NA	NA
Metals											
	Arsenic	40	40	30	30	30	NA	NA	NA	NA	NA
	Cadmium	80	30	30	30	11	NA	NA	NA	NA	NA
	Chromium	1,000	1,000	500	500	500	NA	NA	NA	NA	NA
	Lead	2,000	1,000	1,000	1,000	1,000	480	920	680	1000	690
	Mercury	10	10	10	10	3	NA	NA	NA	NA	NA

Notes:

NA - Sample not analyzed for the listed analyte.

U - Compound was not detected at specified quantitation limit.

J - Estimated value; below quantitation limit.

B - Detected in associated laboratory method blank.

Values in Bold indicate the compound was detected. Values shown in Bold and shaded type exceed one or more of the listed disposal criteria.

SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

* - MassDEP Contaminant Levels for Soil Reuse at Landfills, Policy # COMM-97-001, August 1997.

Summary of Data for Soils to be Excavated Only - Gym Area (HS-4) New Bedford High School

New Dealord	i iligii sellooi
New Bedford,	Massachusetts

			Sample ID:					HE-	44B	HF43	HF43+HE44	HF-	-43D	НЈ42	HJ42+HF31	HF31-0.5- 1+2.5-3
Analysis	Analyte					le Depth (ft.):	1.5-3	0-1	1-3	2.5-3	1.5-3	0-1	1-3	2.5-3	0.5-3	0.5-3
		Reuse	Levels*	Re	cycling Level	Sample Date: s**	12/30/2004	3/31/2009	3/31/2009	12/30/2004	12/30/2004	4/1/2009	4/1/2009	12/30/2004	12/30/2004	12/30/2004
				Hot Mix	Cold Mix	Thermal										
		Lined	Unlined	Asphalt	Emulsion	Processing			ľ							
		Landfills	Landfills	Plant	Plant	Plant										
SVOCs (mg/kg)	TOTAL SVOCs	100	100	N/A	N/A	N/A	NA	NA	NA	NA	3.12	NA	NA	NA	25.0	NA
PCBs (mg/kg)	Total PCBs	< 2	< 2	< 2	< 2	< 2	0.113 U	0.349	1.63	0.649	NA.	0.0606 U	26.7	1.217	NA.	2.553
Metals													5-510/47/			
(mg/kg)	Arsenic	40	40	30	30	30	NA	NA	NA	NA	6.02	NA	NA	NA	17	NA
1	Cadmium	80	30	30	30	. 11	NA	0.8	0.99	NA	8.59	0.31 U	1.21	NA	4.92	NA
l .	Chromium	1,000	1,000	500	500	500	NA	NA	NA	NA	8.67	NA	NA	NA	36	NA
	Lead	2,000	1,000	1,000	1,000	1,000	NA	990	292	NA	1,910	26.3	1460	NA	993	NA
	Mercury	10	10	10	10	3	NA	NA	NA	NA	0.243	NA	NA	NA	1.25	NA

Notes:

NA - Sample not analyzed for the listed analyte.

U - Compound was not detected at specified quantitation limit.

J - Estimated value; below quantitation limit.

B - Detected in associated laboratory method blank.

Values in Bold indicate the compound was detected. Values shown in Bold and shaded type exceed one or more of the

listed disposal criteria.

SVOCs - Semivolatile Organic Compounds. PCBs - Polychlorinated Biphenyls.

TSCA - Toxic Substances Control Act criteria.

* - MassDEP Contaminant Levels for Soil Reuse at Landfills, Policy # COMM-97-001, August 1997.

Summary of Data for Soils to be Excavated Only - Gym Area (HS-4) New Bedford High School

New Bedford, Massachusetts

			Sample ID:					HF-31C		HF-	31D	HF35+HF40 HF40			HF-40A		
Analysis	Analyte						le Depth (ft.):	0-1	1-3	1-3	0-1	1-3	2.5-3.5	2.5-3	0-1	1-3	1-3
							Sample Date:	4/2/2009	4/2/2009	4/2/2009	4/2/2009	4/2/2009	12/30/2004	12/30/2004	3/10/2009	3/10/2009	3/10/2009
			Reuse I	_evels*	Re	cycling Level:	S**			Field Dup							Field Dup
					Hot Mix	Cold Mix	Thermal										
			Lined	Unlined	Asphalt	Emulsion	Processing										
		I	Landfills	Landfills	Plant	Plant	Plant										
SVOCs																	
(mg/kg)	TOTAL	SVOCs	100	100	N/A	N/A	N/A	NA	NA	NA	NA	NA	21.88	NA	NA	NA	NA
PCBs																	
(mg/kg)	Tota	l PCBs	< 2	< 2	< 2	< 2	< 2	2.88	5.32	7.31	0.597	71.6	NA	25.466	0.0614 U	3.1	1.44
Metals						4											
(mg/kg)	Arsenic		40	40	30	30	30	NA	NA	NA	NA	NA	8.58	NA	NA	NA	NA
	Cadmium		80	30	30	30	11	0.29	0.34	NA	0.62	1.24	3.67	NA	0.32 U	1.22	NA
11	Chromium		1,000	1,000	500	500	500	NA	NA	NA	NA	NA	14	NA	NA	NA	NA
	Lead		2,000	1,000	1,000	1,000	1,000	31.5	82.9	NA	192	441	683	NA	23.2	449	NA
	Mercury		10	10	10	10	3	NA	NA	NA	NA	NA	0.403	NA	NA	NA	NA

Notes:

NA - Sample not analyzed for the listed analyte.

U - Compound was not detected at specified quantitation limit.

J - Estimated value; below quantitation limit.

B - Detected in associated laboratory method blank.

Values in **Bold** indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the

listed disposal criteria.

SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

TSCA - Toxic Substances Control Act criteria.

* - MassDEP Contaminant Levels for Soil Reuse at Landfills, Policy # COMM-97-001, August 1997.

Summary of Data for Soils to be Excavated Only - Gym Area (HS-4) New Bedford High School

New Bedford, Massachusetts

						Sample ID:	HF-	40B	HF-40F		
Analysis	Analyte					le Depth (ft.): Sample Date:	0-1 3/9/2009	1-3 3/9/2009	0-1 3/10/2009	1-3 3/10/2009	
		Reuse	Levels*		cycling Level						
		Lined Landfills	Unlined Landfills	Hot Mix Asphalt Plant	Cold Mix Emulsion Plant	Thermal Processing Plant					
SVOCs (mg/kg)	TOTAL SVOCs	100	100	N/A	N/A	N/A	NA	NA	NA	NA	
PCBs (mg/kg)	Total PCBs	< 2	< 2	< 2	< 2	< 2	9.32	15.2	1.66	3.93	
Metals											
(mg/kg)	Arsenic Cadmium Chromium	40 80 1,000	40 30 1,000	30 30 500	30 30 500	30 11 500	NA 0.42 NA	NA 1.57 NA	NA 0.28 U NA	NA 0.57 NA	
	Lead Mercury	2,000 10	1,000 10	1,000 10	1,000 10	1,000 3	90.5 NA	201 NA	15.2 NA	770 NA	

Notes:

NA - Sample not analyzed for the listed analyte.

U - Compound was not detected at specified quantitation limit.

J - Estimated value; below quantitation limit.

B - Detected in associated laboratory method blank.

Values in Bold indicate the compound was detected. Values shown in Bold and shaded type exceed one or more of the

listed disposal criteria. SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

TSCA - Toxic Substances Control Act criteria.

* - MassDEP Contaminant Levels for Soil Reuse at Landfills, Policy # COMM-97-001, August 1997.

Summary of Data for Soils to be Excavated Only - Flag Pole Area (HS-5)

New Bedford High School -

New Bedford, Massachusetts

						pple Location:	HS-5	HS-6	SB-349		S-13	SS-47	SS-48	SS-49
Analysis	Analyte					le Depth (ft.): Sample Date:	0-0.5 9/9/2004	0-0.5 9/9/2004	8/21/2008	0-0.5 7/23/2001	0.5-1 7/23/2001	0-0.5 12/2/2008	0-0.5 12/2/2008	0-0.5 12/2/2008
		Reuse	Levels*	Re	cycling Level									
				Hot Mix	Cold Mix	Thermal								
		Lined	Unlined	Asphalt	Emulsion	Processing								
		Landfills	Landfills	Plant	Plant	Plant								
SVOC (mg/kg)	TOTAL SVOCs	100	100	N/A	N/A	N/A	NA	NA	NA	0.59	0.00	0.59	0.00	0.00
PCBs (mg/kg)	Total PCBs	<2	<2	<2	<2	<2	0.629	3.11	4.22 J	0.221	1.34	1.64	0.0581 U	0.185
Metals														
(mg/kg)	Arsenic	40	40	30	30	30	NA	NA	NA	2.92	6.47	3.48	3.50	3.98
	Cadmium	80	30	30	30	11	NA	NA	NA	0.59	1.60	0.60	0.34	0.72
	Chromium	1,000	1,000	500	500	500	NA	NA	NA	8.70	16	9.34	7.73	13.0
	Lead	2,000	1,000	1,000	1,000	1,000	NA	NA	NA	154	1,010	105	47.4	253
	Mercury	10	10	10	10	3	NA	NA	NA	0.15	0.57	0.107	0.096	0.094

Notes:

NA - Sample not analyzed for the listed analyte.

U - Compound was not detected at specified quantitation limit.

J - Estimated value; below quantitation limit.

B - Detected in associated laboratory method blank.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the

listed disposal criteria.

SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

* - MassDEP Contaminant Levels for Soil Reuse at Landfills, Policy # COMM-97-001, August 1997.

Summary of Data for Soils to be Excavated Only - House Area (HS-6) New Bedford High School New Bedford, Massachusetts

		Ι							HD19+HD20+			HD22+HC22+	I										
				Sample ID:		Sample ID:		Sample ID:		Sample ID:		HD19	HD21	HD20	HD21	HB22	HD-	19C		HD-20		HD-	20A
Analysis	Analyte				Sam	ple Depth (ft.):	0.75-3	2-3	1-3	1.5-3	1-3	1-3	0-1	1-3	0-1	1-3	1-3	0-1	1-3				
						Sample Date:	12/29/2004	12/29/2004	12/29/2004	12/29/2004	12/29/2004	12/29/2004	3/9/2009	3/9/2009	4/2/2009	4/2/2009	4/2/2009	5/19/2009	5/19/2009				
		Reuse	Levels*	R	ecycling Level												Field Dup						
				Hot Mix	Cold Mix	Thermal																	
		Lined	Unlined	Asphalt	Emulsion	Processing																	
		Landfills	Landfills	Plant	Plant	Plant																	
SVOCs																							
(mg/kg)	TOTAL SVOCs	100	100	N/A	N/A	N/A	2.75		295			52.84	0.43	1.62	0	12.18	183	9.87	20.16				
PCBs																							
(mg/kg)	Total PCBs	< 2	< 2	< 2	< 2	< 2	NA	18.66	NA	1.008	1.525	NA	0.0577 U	0.668	NA NA	NA	NA	0.105	10.83				
Metals																							

8.19

6.51

77

1,220

0.62

NA

33

4.71

1,020

0.401

52

2.87 U

0.29 U

4.78

20.3

NA

14.4

1.55

24.1

525

NA

2.87 U

0.29 U

5.81

13.2

NA

34.6

2.36

37.9

2760

NA

33.6

1.71

53.9

4000

Notes:

(mg/kg)

NA - Sample not analyzed for the listed analyte.

- U Compound was not detected at specified quantitation limit.
- J Estimated value; below quantitation limit.
- B Detected in associated laboratory method blank.

Values in **Bold** indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed disposal criteria. SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

Arsenic

Lead

Mercury

Cadmium

Chromium

* - MassDEP Contaminant Levels for Soil Reuse at Landfills, Policy # COMM-97-001, August 1997.

40

80

1,000

2,000

10

40

30

1,000

1,000

10

30

30

500

1,000

10

30

30

500

1,000

10

30

11

500

1,000

2.59

1.95

21

183

0.166

** - MassDEP Recycling Facility Summary Levels, InterimPolicy # WSC-94-400.

NA

2.9 U

0.29 U

6.4

29

NA

Summary of Data for Soils to be Excavated Only - House Area (HS-6) New Bedford High School New Bedford, Massachusetts

		Sample ID:								HD-20C		HD-20D		HD-20E		HD-20G HD-20H		HD-21		HD-	-21A
Analysis	Analyte				Sam	ple Depth (ft.): Sample Date:		1-3 5/19/2009	1-3 5/19/2009	0-1 5/19/2009	1-3 5/19/2009	0-1 5/19/2009	1-3 5/19/2009	1-3 5/19/2009	1-3 5/19/2009	1-3 5/19/2009	1-3 5/19/2009	0-1 4/2/2009	1-3 4/2/2009	0-1 5/20/2009	1-3 5/20/2009
		Reuse	Levels*	R	ecycling Leve		2712712007	3,13,12003	Field Dup	D/13/2003	5/15/2005	5.15/2005	5/15/12/05	5,13,1200	(a)	3/13/2002	5/15/2005	11212005	1,2,200	5/20/2005	3/20/2007
				Hot Mix	Cold Mix	Thermal	1														
1		Lined	Unlined	Asphalt	Emulsion	Processing															
OTTO C		Landfills	Landfills	Plant	Plant	Plant															
SVOCs (mg/kg)	TOTAL SVOCs	100	100	N/A	N/A	N/A	0	0	0	0	11.73	0	20.5					2,61	55.4	0	0
PCBs (mg/kg)	Total PCBs	< 2	< 2	< 2	< 2	< 2	0.0595 U	2.065	0.742	0.924	0.616 U	0.069	1.66	15.9	10.2	NA	NA	NA	NA NA	0.561	1.2 *
Metals		40	40	2.0	0.0		2.4			2.5			2.0			4.0					
(mg/kg)	Arsenic	40	40	30	30	30	3.1	22	86	3.6	12	2.9 U	14	2.8 U	NA	10	8.5	3.29 U	24.2	2.8 U	25
1	Cadmium	80	30	30	30	11	0.30 U	3.5	2.8	0.33	2.7	0.29	2.9	1.4	NA	3.4	4.1	0.38	5.67	0.28 U	5.6
	Chromium	1,000	1,000	500	500	500	6.7	66	42	8.4	1000	6.9	58	NA 220	NA	NA	NA 1100	10.4	595	4.8	1300
	Lead Mercury	2,000	1,000	1,000	1,000	1,000	20 NA	670	610 NA	25	1000	41 NA	1200	220 NA	NA NA	2400 NA	1100 NA	88.5 NA	1740 NA	36 NA	2200 NA

Notes:

NA - Sample not analyzed for the listed analyte.
U - Compound was not detected at specified quantitation limit.

U - Compound was not detected at specified quantitation limit.

J - Estimated value; below quantitation limit.

B - Detected in associated laboratory method blank.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed disposal criteria.

SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

* - MassDEP Contaminant Levels for Soil Reuse at Landfills, Policy # COMM-97-001, August 1997.

** - MassDEP Recycling Facility Summary Levels, InterimPolicy # WSC-94-400.

Summary of Data for Soils to be Excavated Only - House Area (HS-6) New Bedford High School

New Bearord	i Tiigii School
New Bedford,	Massachusetts

		Sample ID:					HD	-21B		HD-21C		HD-	-21D	HD-21E	HD-21G	HD-21H HD-21K		-21K	HD-210	HD-21S	HF14	HF-14A
Analysis	Analyte				Sam	ple Depth (ft.): Sample Date:	0-1 5/20/2009	1-3 5/20/2009	0-1 5/20/2009	1-3 5/20/2009	1-3 5/20/2009	0-1 5/20/2009	1-3 5/20/2009	1-3 5/20/2009	1-3 5/20/2009	1-3 5/20/2009	1-3 7/6/2009	1-3 7/6/2009	1-3 7/6/2009	1-3 7/6/2009	2-3 12/29/2004	1-3 3/11/2009
		Reuse	Levels*	R	ecycling Leve						Field Dup							Field Dup				
				Hot Mix	Cold Mix	Thermal																
		Lined	Unlined	Asphalt	Emulsion	Processing																
arioa	γ-	Landfills	Landfills	Plant	Plant	Plant											ļ					
SVOCs (mg/kg)	TOTAL SVOCs	100	100	N/A	N/A	N/A	10.67	1,490	41.06	7.39	156	0	152	0	74.4	54.3	6.17	23.2		Į.	269	
PCBs (mg/kg)	Total PCBs	< 2	< 2	< 2	< 2	< 2	2.763	1.07	0.699 *	0.992	2.77	2.44	NA.	NA.	NA NA	NA.	NA	NA	NA NA	NA NA	0.720	NA
Metals	1																					
(mg/kg)	Arsenic	40	40	30	30	30	3.0	34	4.5	5.7	24	3.1	11	10	25	22	NA	NA	NA	NA	23	NA
1	Cadmium	80	30	30	30	11	0.50	2.8	0.72	1.3	4.4	0.66	2.3	2.9	2	2.1	NA	NA	NA	NA	12	3.49
1	Chromium	1,000	1,000	500	500	500	15	3800	34	46	640	20	260	310	51	54	NA	NA	NA	NA	1,290	93
	Lead	2,000	1,000	1,000	1,000	1,000	200	2500	540	540	1800	110	470	1600	680	1300	400	970	1400	5100	650	459
	Mercury	10	10	10	10	3	NA	NA	NA NA	NA	NA	NA	NA NA	NA .	NA	NA	NA	NA	NA	NA	1.35	NA

Notes:

NA - Sample not analyzed for the listed analyte.
U - Compound was not detected at specified quantitation limit.
J - Estimated value; below quantitation limit.

B - Detected in associated laboratory method blank.

Values in Bold indicate the compound was detected. Values shown in Bold and shaded type exceed one or more of the listed disposal criteria. SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

* - MassDEP Contaminant Levels for Soil Reuse at Landfills, Policy # COMM-97-001, August 1997.

** - MassDEP Recycling Facility Summary Levels, InterimPolicy # WSC-94-400.

Summary of Data for Soils to be Excavated Only - House Area (HS-6)

New Bedford High School New Bedford, Massachusetts

		Sample ID:					HF-14D	HF-14E		HF-14G		HF-14I	HH13	HH-13		HH-13A		НН-13В		HH-13C		
Analysis	Analyte					ple Depth (ft.): Sample Date:		0-1 3/11/2009	1-3 3/11/2009	1-3 3/11/2009	0-1 3/11/2009	1-3 3/11/2009	1-3 4/8/2009	1.5-3 12/29/2004	0-1 4/3/2009	1-3 4/3/2009	0-1 3/11/2009	1-3 3/11/2009	0-1 3/11/2009	1-3 3/11/2009	0-1 3/11/2009	1-3 3/11/2009
		Reuse	Levels*	Re	ecycling Level		271112005	3/11/2009	3/11/2009	Field Dup	3/11/2009	5/11/2009	470/2009	12/2/12004	11312009	H312003	3/11/2007	3/11/2009	3/11/2007	3/11/2009	3/11/2009	3/11/2009
				Hot Mix	Cold Mix	Thermal																
		Lined Landfills	Unlined Landfills	Asphalt Plant	Emulsion Plant	Processing Plant																
SVOCs		Landinis	Landinis	1 Idil	1 Idiit	Tiant															-	
(mg/kg)	TOTAL SVOCs	100	100	N/A	N/A	N/A		1.13	55.9	12.6	0	9.15		4,890	0	6.60	0	0	7.01	16.90	0	103.8
PCBs (mg/kg)	Total PCBs	< 2	< 2	< 2	< 2	< 2	NA I	0.058 U	4.59	5.41	0.443	1.514	NA I	1,21	NA	NA I	0.104	1.02	0.833	0.21	0.142	0.113
Metals	1300,7323		1		- `-		7121	0.050 0	10 Maria 200	3.77	0.443	1.514	7071	1,21	71/1	17/1	0.104	1.02	0.033	0.21	0.142	0.113
(mg/kg)	Arsenic	40	40	30	30	30	NA	2.76 U	6.37	2.85	4.82	10.1	NA	25	NA	NA	2,94 U	10.9	40	2.97 U	2.9 U	31.9
	Cadmium	80	30	30	30	11	4.26	0.28 U	1.31	0.45	0.4	2,42	2.39	4.81	NA	NA	0.3 U	0.63	2.01	0.37	0.29 U	40.6
1	Chromium	1,000	1,000	500	500	500	857	6.08	160	31.4	11.6	1180	1250	1,100	NA	NA	4.57	492	1960	17.2	6.74	384
	Lead	2,000	1,000	1,000	1,000	1,000	1200	62.1	1020	552	54.7	579	8860	333	NA	NA	10	216	543	72.3	21.9	3250
	Mercury	10	10	10	10	3	NA	0.071	0.279	0.23	0.079	0.222	NA	0.38	NA	NA	NA	NA	NA	NA	NA	NA

- NA Sample not analyzed for the listed analyte.
 U Compound was not detected at specified quantitation limit.
- J Estimated value; below quantitation limit.

B - Detected in associated laboratory method blank.
 Values in Bold indicate the compound was detected.
 Values shown in Bold and shaded type exceed one or more of the listed disposal criteria.
 SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

- * MassDEP Contaminant Levels for Soil Reuse at Landfills, Policy # COMM-97-001, August 1997.
- ** MassDEP Recycling Facility Summary Levels, InterimPolicy # WSC-94-400.

Summary of Data for Soils to be Excavated Only - House Area (HS-6) New Bedford High School

New Bedford, Massachusetts

						Sample ID:		HH-13D		SSHH	-13B1	SSHH-13B2	SSHH-13B3	SSHH-13B4
Analysis	Analyte				Sam	ple Depth (ft.): Sample Date:		1-3 3/11/2009	1-3 3/11/2009	0-1 4/10/2009	0-1 4/10/2009	0-1 4/10/2009	0-1 4/10/2009	0-1 4/10/2009
1		Reuse	Levels*		ecycling Leve	ls**	0,11,200	5,11,2009	Field Dup	1,70,200	Field Dup	17 10/2009	1/10/2009	1/10/2009
		Lined Landfills	hed Unlined Asphalt Emulsion Processing Hills Landfills Plant Plant Plant											
SVOCs (mg/kg)	TOTAL SVOCs	100	100	N/A	N/A	N/A	0	27.3	33.1					
PCBs (mg/kg)	Total PCBs	< 2	< 2	< 2	< 2	< 2	0.67	46	28.45	NA	NA	NA NA	NA	NA NA
Metals (mg/kg)	Arsenic Cadmium Chromium	40 80 1,000	40 30 1,000	30 30 500	30 30 500	30 11 500	2.88 U 0.48 5.52	16.7 7.47 594	14.5 8.09 496	NA NA 6.58	NA NA 6.05	NA NA 5.12	NA NA 4.93	NA NA 5.81
	Lead Mercury	2,000 10	1,000 10	1,000 10	1,000 10	1,000 3	18.4 NA	987 NA	982 NA	NA NA	NA NA	NA NA	NA NA	NA NA

- NA Sample not analyzed for the listed analyte.
 U Compound was not detected at specified quantitation limit.
- J Estimated value; below quantitation limit.
- B Detected in associated laboratory method blank.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed disposal criteria.

SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

* - MassDEP Contaminant Levels for Soil Reuse at Landfills, Policy # COMM-97-001, August 1997.

Summary of Data for Soils to be Excavated Only- Tree Belts Area (HS-10)

New Bedford High School

		•
New	Bedford,	Massachusetts

						Sample ID:	HA-19	HA-	19Δ	HA-	19B		HA-19C		HA-19E	HA-19F	HA-19G
Analysis	Analyte				Samp	le Depth (ft.):	1-3	0-1	1-3	0-1	1-3	0-1	1-3	1-3	1-3	1-3	1-3
	·					Sample Date:	4/7/2009	5/19/2009	5/19/2009	5/19/2009	5/19/2009	5/19/2009	5/19/2009	5/19/2009	5/19/2009	5/19/2009	5/19/2009
		Reuse	Levels*	Re	cycling Level	S**								Field Dup			
				Hot Mix	Cold Mix	Thermal											
		Lined	Unlined	Asphalt	Emulsion	Processing											
		Landfills	Landfills	Plant	Plant	Plant											
SVOCs																	
(mg/kg)	TOTAL SVOCS	100	100	N/A	N/A	N/A	5.06	NA									
PCBs		_		_	_												7
(mg/kg)	Total PCBs	< 2	< 2	< 2	< 2	< 2	0.662	0.0589 U	5.3	0.13	0.248	0.113	0.916	0.681	2.69	NA	NA NA
Metals																	
(mg/kg)	Arsenic	40	40	30	30	30	17.4	2.9 U	10	2.8 U	12	2.9 U	21	22	NA	NA	NA
	Cadmium	80	30	30	30	11	9.07	0.29 U	2.5	0.28 U	3.3	0.29 U	5.4	2.5	2.6	6.6	9.7
	Chromium	1,000	1,000	500	500	500	358	9.1	48	5.1	47	6.9	84	4800	30	1900	100
	Lead	2,000	1,000	1,000	1,000	1,000	1770	39	820	27	1200	26	740	4300	1600	3600	1000
	Mercury	10	10	10	10	3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

NA - Sample not analyzed for the listed analyte.

U - Compound was not detected at specified quantitation limit.

J - Estimated value; below quantitation limit.

B - Detected in associated laboratory method blank.

Values in **Bold** indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed disposal criteria. SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

* - MassDEP Contaminant Levels for Soil Reuse at Landfills, Policy # COMM-97-001, August 1997.

Summary of Data for Soils to be Excavated Only- Tree Belts Area (HS-10)

New Bedford High School

New Bedford, Massachusetts

						Sample ID:	НА	-19	HA-19K	HA-19M	HA-190	HA-19Q	НВ39	HB39+HB40	HB40
Analysis	Analyte				Samp	le Depth (ft.): Sample Date:	1-3 7/7/2009	1-3 7/7/2009	1-3 7/7/2009	1-3 7/7/2009	1-3 7/7/2009	1-3 7/7/2009	0.5-3 12/30/2004	0.5-3 12/30/2004	0.5-3 12/30/2004
		Reuse	Levels*	Re	cycling Level	s**		Field Dup							
				Hot Mix	Cold Mix	Thermal									
		Lined	Unlined	Asphalt	Emulsion	Processing									1
		Landfills	Landfills	Plant	Plant	Plant									
SVOCs									22.4					2.1.19	
(mg/kg)	TOTAL SVOCS	100	100	N/A	N/A	N/A	NA	35.17	NA						
PCBs	m . I nan						27.1	274	17.4	274	174	274	0.445	274	0.400
(mg/kg)	Total PCBs	< 2	< 2	< 2	< 2	< 2	NA	NA.	NA	NA	NA	NA	0.445	NA	0.693
Metals															
(mg/kg)	Arsenic	40	40	30	30	30	NA	5.32	NA						
H ₁	Cadmium	80	30	30	30	11	4.1	4.5	2.9	NA	NA	NA	NA	6.13	NA
1	Chromium	1,000	1,000	500	500	500	NA	13	NA						
	Lead	2,000	1,000	1,000	1,000	1,000	1400	1700	1200	1700	420	620	NA	1,430	NA
	Mercury	10	10	10	10	3	NA	1.25	NA						

Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

NA - Sample not analyzed for the listed analyte.

U - Compound was not detected at specified quantitation limit.

J - Estimated value; below quantitation limit.

B - Detected in associated laboratory method blank.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed disposal criteria.

SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

* - MassDEP Contaminant Levels for Soil Reuse at Landfills, Policy # COMM-97-001, August 1997.

Summary of Data for Soils to be Excavated Only- Tree Belts Area (HS-10)

New Bedford High School

New Bedford, Massachusetts

						Sample ID:	НВ	-39	HB-	-39C	НВ	-40		HB-40A		НВ-	-40C
Analysis	Analyte					le Depth (ft.): Sample Date:		1-3 5/20/2009	0-1 6/19/2009	1-3 6/19/2009	0-1	1-3	0-1	1-3	1-3	0-1	1-3
		Reuse	Levels*	Re	ecycling Level		3/20/2009	312012009	0/19/2009	0/19/2009	5/20/2009	5/20/2009	6/16/2009	6/16/2009	6/16/2009 Field Dup	6/16/2009	6/16/2009
		Lined Landfills	Unlined Landfills	Hot Mix Asphalt Plant	Cold Mix Emulsion Plant	Thermal Processing Plant		L'									
SVOCs (mg/kg)	TOTAL SVOCs	100	100	N/A	N/A	N/A	6.58	6.76	NA	NA	1.06	31.12	2.55	9.41	NA	4.90	16.72
PCBs (mg/kg)	Total PCBs	< 2	< 2	< 2	< 2	< 2	0.119	2.89	NA	NA	0.151	1.071	0.409	0.816	1.18	0.139	0.789
Metals (mg/kg)	Arsenic	40	40	30	30	30	3.0	7.4	9.6	13	3.0 U	8.5	3.8	47	38	4.4	13
(11-8/11-8)	Cadmium	80	30	30	30	11	0.41	1.0	1.7	1	0.35	1.9	0.30 U	8.8	3.3	0.51	4.4
	Chromium	1,000	1,000	500	500	500	9.3	18	21	15	7.9	29	9.5	64	55	11	31
	Lead Mercury	2,000 10	1,000 10	1,000 10	1,000	1,000	150 NA	520 NA	380 NA	300 NA	67 NA	890 NA	57 NA	780 NA	430 NA	240 NA	4900 NA

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

NA - Sample not analyzed for the listed analyte.

U - Compound was not detected at specified quantitation limit.

J - Estimated value; below quantitation limit.

B - Detected in associated laboratory method blank.

Values in Bold indicate the compound was detected. Values shown in Bold and shaded type exceed one or more of the

listed disposal criteria.

SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

* - MassDEP Contaminant Levels for Soil Reuse at Landfills, Policy # COMM-97-001, August 1997.

Summary of Data for Soils to be Excavated Only- Tree Belts Area (HS-10)

New Bedford High School

New Bedford, Massachusetts

						Sample ID:		-40D	HB-40E	HB-40G	HB-40I	HB-40K	HB-40M	HB-40O	HB-40Q	HB-40S
Analysis	Analyte					le Depth (ft.): Sample Date:		1-3 6/16/2009	1-3 6/16/2009	1-3 6/16/2009	1-3 7/7/2009	1-3 7/7/2009	1-3 7/7/2009	1-3 7/7/2009	1-3 7/7/2009	1-3 7/7/2009
		Reuse	Levels*	Re	cycling Level		0/10/2007	0/10/2007	0/10/2007	0/10/2009	11112009	11112009	11112009	11112009	11112009	11112009
				Hot Mix	Cold Mix	Thermal										
		Lined Landfills	Unlined Landfills	Asphalt Plant	Emulsion Plant	Processing Plant										
SVOCs (mg/kg)	TOTAL SVOCs	100	100	N/A	N/A	N/A	10.85	20.30	NA	NA	NA	NA	NA	NA	NA	NA
PCBs (mg/kg)	Total PCBs	< 2	< 2	< 2	< 2	< 2	0.225	0.443	NA	NA	NA	NA	NA	NA	NA	NA
Metals		40														
(mg/kg)	Arsenic	40	40	30	30	30	5.1	11	21	7.4	NA	NA	NA	NA	NA	NA
	Cadmium Chromium	80 1,000	30 1,000	30 500	30 500	11 500	0.74	1.8	91	1.6	0.93	NA NA	NA NA	NA NA	NA	NA
	Lead	2,000	1,000	1,000	1,000	1,000	14 370	29 820	41 880	15 530	NA 470	NA 1700	NA 680	NA 1200	NA 1000	NA 1900
	Mercury	10	10	10	1,000	3	NA	NA NA	NA	NA	NA NA	NA	NA	NA	1000 NA	1800 NA

Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

NA - Sample not analyzed for the listed analyte.

U - Compound was not detected at specified quantitation limit.

J - Estimated value; below quantitation limit.

B - Detected in associated laboratory method blank.

Values in Bold indicate the compound was detected. Values shown in Bold and shaded type exceed one or more of the listed disposal criteria.

SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

* - MassDEP Contaminant Levels for Soil Reuse at Landfills, Policy # COMM-97-001, August 1997.

Summary of Data for Soils to be Excavated Only-Tree Belts Area (HS-10) New Bedford High School

New Bedford, Massachusetts

						Sample ID:	НС	222	НС	2-22		HC-22A		HC-	22B	HC-	22D
Analysis	Analyte				Samp	le Depth (ft.): Sample Date:	1-3 12/29/2004	1-3 12/29/2004	0-1 4/9/2009	1-3 4/9/2009	0-1 5/21/2009	1-3 5/21/2009	1-3 5/21/2009	0-1 5/21/2009	1-3 5/21/2009	0-1 5/21/2009	1-3 5/21/2009
		Reuse	Levels*	Re	cycling Level		12/29/2004	12/29/2004	4/9/2009	4/9/2009	312112009	3/21/2009	Field Dup	3/21/2009	3/21/2009	312112009	3/21/2009
		110000		Hot Mix	Cold Mix	Thermal											
		Lined	Unlined	Asphalt	Emulsion	Processing											
		Landfills	Landfills	Plant	Plant	Plant											
SVOCs	TOTAL SUOC.	100	100	NT/A	DT/A	DT/A	NIA	NIA	0.05	10.52	NIA						
(mg/kg)	TOTAL SVOCs	100	100	N/A	N/A	N/A	NA	NA	0.85	18.53	NA						
PCBs (mg/kg)	Total PCBs	< 2	< 2	< 2	< 2	< 2	0.44	0.14 U	0.145	0.166	0.128	0.876	4.4	0.081	0.154	0.854	0.0841
Metals											i						
(mg/kg)	Arsenic	40	40	30	30	30	NA	NA	3.26	26.1	2.9 U	7.5	7.5	2.9 U	8.5	3.1 U	28
	Cadmium	80	30	30	30	11	NA	NA	0.31 U	2.52	0.29 U	1.5	1.8	0.44	1.6	0.31 U	1.7
-	Chromium	1,000	1,000	500	500	500	NA	NA	7.99	28.3	6.4	40	31	6.8	25	20	27
	Lead	2,000	1,000	1,000	1,000	1,000	NA	NA	38.9	1090	29	520	640	36	1900	65	580
	Mercury	10	10	10	10	3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

NA - Sample not analyzed for the listed analyte.

U - Compound was not detected at specified quantitation limit.

J - Estimated value; below quantitation limit.

B - Detected in associated laboratory method blank.

Values in **Bold** indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed disposal criteria.

SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

* - MassDEP Contaminant Levels for Soil Reuse at Landfills, Policy # COMM-97-001, August 1997.

Summary of Data for Soils to be Excavated Only- Tree Belts Area (HS-10)

New Bedford High School New Bedford, Massachusetts

						Sample ID:	HC-22F	SB-	270	SB-2	270A	SB-2	270B	SB-2	270D	SR-	270E
Analysis	Analyte				Samp	le Depth (ft.):		1	3	0-1	1-3	0-1	1-3	0-1	1-3	0-1	1-3
	·					Sample Date:	5/21/2009	7/16/2008	7/16/2008	5/20/2009	5/20/2009	5/20/2009	5/20/2009	5/20/2009	5/20/2009	5/20/2009	5/20/2009
		Reuse	Levels*	Re	cycling Level	S**											
				Hot Mix	Cold Mix	Thermal											
		Lined	Unlined	Asphalt	Emulsion	Processing											
		Landfills	Landfills	Plant	Plant	Plant											
SVOCs																	
(mg/kg)	TOTAL SVOCs	100	100	N/A	N/A	N/A	NA	NA	3.23	NA							
PCBs		_		_	_	_											
(mg/kg)	Total PCBs	< 2	< 2	< 2	< 2	< 2	NA	0.498 J	0.0567 U	NA	NA NA						
Metals																	
(mg/kg)	Arsenic	40	40	30	30	30	NA	NA	12.7	NA							
1	Cadmium	80	30	30	30	11	NA	NA	0.48	NA							
	Chromium	1,000	1,000	500	500	500	NA	NA	9.24	NA							
	Lead	2,000	1,000	1,000	1,000	1,000	2100	NA	602	430	550	520	600	580	660	240	650
	Mercury	10	10	10	10	3	NA	NA	0.236	NA	NA	NA_	NA	NA	NA	NA	NA

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

NA - Sample not analyzed for the listed analyte.

U - Compound was not detected at specified quantitation limit.

J - Estimated value; below quantitation limit.

B - Detected in associated laboratory method blank.

Values in **Bold** indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed disposal criteria.

SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

* - MassDEP Contaminant Levels for Soil Reuse at Landfills, Policy # COMM-97-001, August 1997.

Summary of Data for Soils to be Excavated Only- Tree Belts Area (HS-10) New Bedford High School

New Bedford, Massachusetts

						Sample ID:	SB-	270F	SB-2	270H	SB-270I	SB-270K	SB-270M	SB-270Q	SS	-14	HD-14A
Analysis	Analyte					le Depth (ft.): Sample Date:		1-3 5/20/2009	0-1 5/20/2009	1-3 5/20/2009	1-3 6/16/2009	1-3 6/16/2009	1-3 7/6/2009	1-3 7/6/2009	0-0.5 7/23/2001	1-2 7/23/2001	0-1 3/10/2009
		Reuse	Levels*	Re	cycling Level	S**										1	
		Lined Landfills	Unlined Landfills	Hot Mix Asphalt Plant	Cold Mix Emulsion Plant	Thermal Processing Plant											
SVOCs (mg/kg)	TOTAL SVOCs	100	100	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs (mg/kg)	Total PCBs	< 2	< 2	< 2	< 2	< 2	NA	NA	NA	NA	NA	NA	NA	NA	2.76	6.89	0.0791 J
Metals																	
(mg/kg)	Arsenic	40	40	30	30	30	NA	NA	NA	NA	NA	NA	NA	NA	3.48	5.49	NA
	Cadmium	80	30	30	30	11	NA	NA	NA	NA	NA	NA	NA	NA	0.78	0.63	NA
	Chromium	1,000	1,000	500	500	500	NA	NA	NA	NA	NA	NA	NA	NA	32	109	NA
	Lead	2,000	1,000	1,000	1,000	1,000	150	400	57	710	860	750	610	930	223	371	NA
	Mercury	10	10	10	10	3	NA	NA	NA	NA	NA	NA	NA	NA	0.13	0.65	NA

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

NA - Sample not analyzed for the listed analyte.

U - Compound was not detected at specified quantitation limit.

J - Estimated value; below quantitation limit.
B - Detected in associated laboratory method blank.

Values in Bold indicate the compound was detected. Values shown in Bold and shaded type exceed one or more of the

listed disposal criteria.

SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

* - MassDEP Contaminant Levels for Soil Reuse at Landfills, Policy # COMM-97-001, August 1997.

** - MassDEP Recycling Facility Summary Levels, InterimPolicy # WSC-94-400.

Summary of Data for Soils to be Excavated Only-Tree Belts Area (HS-10)

New Bedford High School

New Bedford, Massachusetts

						Sample ID:		HD-14C	HD-14D	HRC-33	HRC-33A	HRC-33B	HRC-33C	HRC-33D	HRC-33E
Analysis	Analyte				Samp	le Depth (ft.): Sample Date:	0-1 3/10/2009	0-1 3/10/2009	0-1 3/10/2009	0.67-2 2/22/2006	0-1 2/27/2009	0-1 2/27/2009	0-1 2/27/2009	0-1 2/27/2009	0-1 2/27/2009
		Reuse	Levels*	Re	ecycling Level		3/10/2009	3/10/2009	3/10/2009	2/22/2000	212112009	212112009	212112009	2/2//2009	212112009
		110000		Hot Mix	Cold Mix	Thermal	Í								
		Lined	ed Unlined Asphalt Emulsion Processing					ľ							
		Landfills	Landfills	Plant	Plant	Plant									
SVOCs (mg/kg)	TOTAL SVOCs	100	100	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs (mg/kg)	Total PCBs	< 2	< 2	< 2	< 2	< 2	0.0545 U	0.785 J	0.2423 J	40	1.935 J	1.478 J	2.525 J	0.995 J	0.2282 J
Metals															
(mg/kg)	Arsenic	40	40	30	30	30	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Cadmium	80	30	30	30	11	NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA
	Chromium	1,000	1,000	500	500	500	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
	Lead Mercury	2,000 10	1,000 10	1,000 10	1,000 10	1,000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA

Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

NA - Sample not analyzed for the listed analyte.

- U Compound was not detected at specified quantitation limit.
- J Estimated value; below quantitation limit.
- B Detected in associated laboratory method blank.

Values in **Bold** indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the

listed disposal criteria.

SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

- * MassDEP Contaminant Levels for Soil Reuse at Landfills, Policy # COMM-97-001, August 1997. ** MassDEP Recycling Facility Summary Levels, InterimPolicy # WSC-94-400.

Summary of Data for Soils to be Excavated Only- Tree Belts Area (HS-10)

New Bedford High School

New Bedford, Massachusetts

									r				- 1
						Sample ID:	HRC-33F	HRC-33L	HRC-33M	HRC-33N	HRE33	SB-364	VSS-3
Analysis	Analyte					le Depth (ft.):		0-1	0-1	0-1	0.5-3	0-1	0-0.5
						Sample Date:	2/27/2009	4/3/2009	4/3/2009	4/3/2009	2/22/2006	3/4/2009	7/23/2001
		Reuse 1	Levels*	Re	cycling Level	S**							
1				Hot Mix	Cold Mix	Thermal							
		Lined	Unlined	Asphalt	Emulsion	Processing							
		Landfills	Landfills	Plant	Plant	Plant							
SVOCs													
(mg/kg)	TOTAL SVOCs	100	100	N/A	N/A	N/A	NA	2.97	15.94	3.50	NA	0.00	NA
PCBs													
(mg/kg)	Total PCBs	< 2	< 2	< 2	< 2	< 2	1.035 J	NA	NA	NA	0.22 U	0.0553 U	0.100 U
Metals													
(mg/kg)	Arsenic	40	40	30	30	30	NA	4.74	5.19	4.24	NA	3.02 U	1.77
	Cadmium	80	30	30	30	11	NA	0.74	4.08	0.80	NA	0.31 U	0.35 U
1	Chromium	1,000	1,000	500	500	500	NA	9.88	14.6	11.1	NA	5.14	5.11
	Lead	2,000	1,000	1,000	1,000	1,000	NA	322	834	517	NA	12.9	17
	Mercury	10	10	10	10	3	NA	NA	NA	NA	NA	0.040	0.07 U

Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

NA - Sample not analyzed for the listed analyte.

U - Compound was not detected at specified quantitation limit.

J - Estimated value; below quantitation limit.

B - Detected in associated laboratory method blank.

Values in Bold indicate the compound was detected. Values shown in Bold and shaded type exceed one or more of the

listed disposal criteria.

SVOCs - Semivolatile Organic Compounds.

PCBs - Polychlorinated Biphenyls.

* - MassDEP Contaminant Levels for Soil Reuse at Landfills, Policy # COMM-97-001, August 1997.

TABLE 2-7 Summary of Dioxins Data for Soils to be Excavated Compared to Universal Treatment Standards
New Bedford High School New Bedford, Massachusetts

		Exposure Point Area:	6		4		4		8	3
Analysis	Analyte	Sample ID:	HF-	-14	HF-3	31D	HF-	40	HC	i-2
		Sample Depth (ft.):	0-1	1-3	0-1	1-3	0-1	1-3	0-1	1-3
		Sample Date:	4/15/2010	4/15/2010	4/15/2010	4/15/2010	4/15/2010	4/15/2010	4/15/2010	4/15/2010
		Universal Treatment Standard								
Dioxins										
(pg/g)	1234678-HpCDD	2,500	34.8	49.9	31.6	48.9	21.3	30.9	57.8	891
	OCDD	5,000	556	610	586	699	344	416	688	8380
	1234678-HpCDF	2,500	16.2	17.6	23.5	51.1	21.0	93.9	25.4	233
	1234789-HpCDF	2,500	0.444 J, EMPC	1.45 J	0.793 J, EMPC	2.06 J	1.65 J, EMPC	26.5	1.35 J	19.0
	OCDF	5,000	18.8	24.8	23.4	44.0	15.7	52.7	49.8	761
1	Total TCDD	1,000	1,2 EMPC	1.75 EMPC	1.60 EMPC	6.17 EMPC	2.35 EMPC	5.45 EMPC	5.14 EMPC	34.0 EMPC
1	Total PeCDD	1,000	3.88 EMPC	8.24 EMPC	5.42 EMPC	14.2 EMPC	3.54 EMPC	15.3 EMPC	11.8 EMPC	69.8 EMPC
	Total HxCDD	1,000	16.7 EMPC	28.4 EMPC	16.6 EMPC	31.0 EMPC	12.6 EMPC	24.3 EMPC	35.9 EMPC	264 EMPC
1	Total TCDF	1,000	20.9 EMPC	50.4 EMPC	31.4 EMPC	78.7 EMPC	39.3 EMPC	142 EMPC	53.7 EMPC	417 EMPC
	Total PeCDF	1,000	26.0 EMPC	44.5 EMPC	44.3 EMPC	85.7 EMPC	44.7 EMPC	184 EMPC	47.3 EMPC	307 EMPC
	Total HxCDF	1,000	19.0 EMPC	33.3 EMPC	37.3 EMPC	78.2 EMPC	35.5 EMPC	254 EMPC	38.1 EMPC	375 EMPC

Notes:

pg/g - picograms per gram (dry weight).

EMPC - Estimate Maximum Possible Concentration.

J - Estimated value.

U - Compound was not detected at specified quantitation limit, Values in **Bold** indicate the compound was detected.

Values shown in Bold and shaded type exceed Universal Treatment Standards.

Universal Treatment Standards per 40 CFR §268.48

APPENDIX C RAM PLAN FEE DOCUMENTATION

WACHOVIA BANK, N.A. Wilmington, DE 62-22/311

CHECK DATE

March 14, 2011

PAY

Eight Hundred and 00/100 Dollars

AMOUNT

TO

Commonwealth Of Massachusetts

P.O. Box 4062

Department of Environmental Protection

Boston MA 02211

\$800.00

AUTHORIZED SIGNATURE

EMILY BUSINESS FORMS 800 392 6018 VISION

722993

21 Griffin Road North Windsor, CT 06095

Invoice Number	Date	Voucher	Amount	Discounts	Previous Pay	Net Amount
RAM PLAN SUBMIT FEE	3/14/11	007753305626	800.00	0.00	0.00	800.00
Commonwealth Of Mass 3BANK 3	achusetts 030812	Totals	800.00	0.00	0.00	800.00

APPENDIX D MUNICIPAL NOTIFICATION LETTERS

Wannalancit Mills 650 Suffolk Street Lowell, MA 01854

978.970.5600 PHONE 978.453.1995 FAX

www.TRCsolutions.com

April 6, 2011

TRC Reference Number: 115058.0000.0000

Marianne B. De Souza Health Department 1213 Purchase Street, First Floor New Bedford, Massachusetts 02740

RE: Release Abatement Measure Plan Soil Excavation and Removal New Bedford High School New Bedford, Massachusetts MassDEP RTNs 4-15685.

Dear Ms. De Souza:

On behalf of the City of New Bedford (the "City"), and pursuant to 310 CMR 40.1403 of the Massachusetts Contingency Plan (MCP), TRC Environmental Corporation (TRC) has prepared this letter to inform you of the submittal of a Release Abatement Measure Plan for the New Bedford High School Campus in New Bedford, Massachusetts.

If you have any questions concerning this document, please do not hesitate to contact David Sullivan at TRC at (978) 656-3565 or Cheryl Henlin with the Department of Environmental Stewardship, at (508) 961-4576.

Sincerely,

TRC Environmental Corporation

David M. Sullivan, LSP, CHMM

Sr. Project Manager

Cc: Cheryl Henlin, New Bedford Department of Environmental Stewardship

Wannalancit Mills 650 Suffolk Street Lowell, MA 01854

978.970.5600 PHONE 978.453.1995 FAX

www.TRCsolutions.com

April 6, 2011

TRC Reference Number: 115058.0000.0000

Mayor Scott W. Lang Office of the Mayor City Hall, Room 311 New Bedford, Massachusetts 02740

RE: Release Abatement Measure Plan Soil Excavation and Removal New Bedford High School New Bedford, Massachusetts MassDEP RTNs 4-15685.

Dear Mr. Lang:

On behalf of the City of New Bedford (the "City"), and pursuant to 310 CMR 40.1403 of the Massachusetts Contingency Plan (MCP), TRC Environmental Corporation (TRC) has prepared this letter to inform you of the submittal of a Release Abatement Measure Plan for the New Bedford High School Campus in New Bedford, Massachusetts.

If you have any questions concerning this document, please do not hesitate to contact David Sullivan at TRC at (978) 656-3565 or Cheryl Henlin with the Department of Environmental Stewardship, at (508) 961-4576.

Sincerely, TRC Environmental Corporation

Zavil M. Sallwan

David M. Sullivan, LSP, CHMM Sr. Project Manager

Cc: Cheryl Henlin, New Bedford Department of Environmental Stewardship