

Wannalancit Mills 650 Suffolk Street Lowell, MA 01854

978.970.5600 PHONE 978.453.1995 FAX

www.TRCsolutions.com

TRC Project Number: 115058

June 2, 2009

Massachusetts Department of Environmental Protection Southeast Regional Office 20 Riverside Drive Lakeville, Massachusetts 02347

RE: Immediate Response Action (IRA) Completion Report and Imminent Hazard Evaluation – HH-13 Area Arsenic and Chromium Impacted Surface Soil New Bedford High School Parker and Hunter Streets, New Bedford, Massachusetts Release Tracking Number (RTN) 4-21872

To Whom It May Concern:

Consistent with the requirements of the Massachusetts Contingency Plan (MCP; 310 CMR 40.0000), specifically 310 CMR 40.0427, attached please find an Immediate Response Action (IRA) Completion Report for the above-referenced IRA condition in New Bedford, Massachusetts.

If you have any questions concerning the IRA Completion Report or transmittal forms, please do not hesitate to contact me at 978-656-3565 or via e-mail at dsullivan@trcsolutions.com.

Sincerely,

David M. Sullivan, LSP, CHMM

Senior Project Manager

Zavil M. S. Uwan

Attachment

cc. D. Fredette, S. Alfonse; Department of Environmental Stewardship M. Cote, G. Martin; MassDEP Southeast Regional Office

IMMEDIATE RESPONSE ACTION COMPLETION REPORT AND IMMINENT HAZARD EVALUATION

HH-13 Area Arsenic and Chromium Impacted Surface Soil

New Bedford High School 230 Hathaway Boulevard New Bedford, Massachusetts Release Tracking Number (RTN) 4-21872

Prepared for:

Department of Environmental Stewardship

City of New Bedford 133 William Street New Bedford, Massachusetts 02740

Prepared by:

TRC Environmental Corporation

Wannalancit Mills 650 Suffolk Street Lowell, Massachusetts 01854 (978) 970-5600

June 2009

Immediate Response Action Completion Report and Imminent Hazard Evaluation

HH-13 Area Arsenic and Chromium Impacted Surface Soil

New Bedford High School Parker and Hunter Streets New Bedford, Massachusetts

Release Tracking Number (RTN) 4-21872

TRC Project Number: 115058 May 27, 2009

TRC Environmental Corporation (TRC) is submitting this Immediate Response Action (IRA) Completion Report to the Massachusetts Department of Environmental Protection (MassDEP) on behalf of the City of New Bedford (City). This IRA Completion Report addresses the detection of arsenic and chromium in surface soil at a spot location identified as HH-13 near the A-Block of the New Bedford High School (NBHS) grounds (the Site) in concentrations indicating a condition that could pose an Imminent Hazard (IH) as defined in 310 CMR 40.0321(2)(b) of the Massachusetts Contingency Plan (MCP). The potential IH condition is associated with the compound, concentration, depth below surface, proximity to a school or residential dwelling, and accessibility of the soil samples containing arsenic and total chromium above the potential IH evaluation threshold. The potential IH condition triggered a 2-hour regulatory reporting obligation to the MassDEP in accordance with 310 CMR 40.0321(2) (b) and 310 CMR 40.0311(7). TRC reported the condition to MassDEP via telephone on April, 2, 2009. MassDEP orally approved IRA assessment activities and assigned Release Tracking Number (RTN) 4-21872.

This IRA Completion Report is organized as follows: Section I (Background) briefly summarizes information on TRC's involvement with the Site and the circumstances associated with the detection of the release condition; Section II (IRA Completion Report) provides the information required for an IRA Completion Report under the MCP, specifically 310 CMR 40.0427; Section III (References) lists information sources relied upon in the preparation of this IRA Completion Report. In addition, Attachment A provides an Imminent Hazard Evaluation, Attachment B contains public notification letters, Attachment C contains soil boring logs, and Attachment D contains copies of relevant laboratory reports.

I. BACKGROUND

Introduction

In December 2004, soil sampling was conducted at NBHS located at 230 Hathaway Boulevard in New Bedford, Massachusetts (Figure 1) by BETA Group, Incorporated of Norwood,

Massachusetts (BETA) as part of an investigation of the Parker Street Waste Site (PSWS; RTN 4-15685), which includes the NBHS campus. The results of this soil sampling were examined by TRC as a part of ongoing environmental investigations of the PSWS. Soil sample results for soil boring HH-13 (1.5 to 3 feet below ground surface [bgs]) indicated concentrations of polyaromatic hrdrocarbons (PAHs; specifically benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, indeno(1,2,3-cd)pyrene, naphthalene, and phenanthrene) and metals (i.e., arsenic, barium, cadmium, total chromium, and lead) at concentrations in excess of applicable S-1 Method 1soil cleanup standards. TRC conducted additional soil sampling to further characterize/delineate soil contamination in this area to support remedial planning.

Summary of Work

TRC's environmental investigation consisted of direct push soil borings using a truck-mounted drill rig to sample soil and observe subsurface soil conditions. Drilling services and equipment were provided by New England Geotech, LLC of Jamestown, Rhode Island. Surface soil samples were also collected by TRC using hand tools as part of the IRA Assessment Activities.

On March 11, 2009, delineation sampling of four "inner ring" soil borings within ten feet of the original HH-13 sampling location to the northwest, southwest, southeast, and northeast (designated HH-13A through HH-13D) was conducted. Four "outer ring" borings were also drilled approximately twenty feet from the original HH-13 sampling location (designated HH-13E through HH-13H). The inner and outer "ring" borings are illustrated on Figure 2, and soil boring logs are included as Attachment C. TRC collected soil samples from each of the eight locations from 0 to 1 foot bgs to assess the extent of the potential IH condition and to support the preparation of an IH evaluation. Data collected from additional depth intervals (e.g., 1-3 feet bgs) and soil samples collected in the area of HH-13 will be included in additional comprehensive response action reports for the PSWS.

TRC initially authorized the laboratory to proceed with the analysis of the four "inner ring" soil samples for PAH, total PCBs, and selected metals (arsenic, barium, cadmium, total chromium, and lead) analyses as part of the characterization/delineation effort to support remedial planning. The laboratory was instructed to hold the "outer ring" soil samples pending "inner ring" analytical results. Based on the results of the "inner ring" samples, TRC instructed the laboratory to proceed with the analysis of the four "outer ring" samples for the same metals suite as the "inner ring" samples.

Con-Test Analytical Laboratory (Contest) of East Longmeadow, Massachusetts conducted PAH and metals analyses. Northeast Analytical Laboratories (NEA) of Schenectady, New York conducted PCB analysis.

Initial metals results indicated concentrations of arsenic (40 milligrams per kilogram[mg/kg]) and total chromium (1,960 mg/kg) in the top foot of soil at soil sampling location HH-13B. These concentrations equal (in the case of arsenic) or exceed (in the case of total chromium) the threshold concentrations for a condition that "could pose" an Imminent Hazard (310 CMR 0321[2] [b]). The potential IH threshold value for chromium (200 mg/kg within 1 foot of

surface) is based on the more toxic hexavalent form of chromium. In the absence of hexavalent chromium speciation data, the speciation threshold applies to total chromium. Therefore, on April 10, 2009, TRC collected four soil samples from 0 to 1 foot below ground surface in the area of HH-13B (see Figure 2) to assess the type of chromium in the soil (sample designations SS-HH-13-B1,-B2,-B3, and -B4. These soil samples were collected using hand tools and were analyzed for total chromium, hexavalent chromium, pH and oxidation reduction potential (ORP).

Summary of Analytical Results Indicating a Potential Imminent Hazard

The results of laboratory analysis of soil samples collected from the area immediately to the north of House #2 of the NBHS in March and April 2009 are summarized in Tables 1 and 2.

Arsenic- One soil sample collected (HH-13B [0-1]) contained a concentration equal to the MassDEP threshold for arsenic that could pose an IH of 40 mg/kg in the top twelve inches of soil (310 CMR 40.0321[2][b]).

Chromium- One soil sample collected (HH-13B[0-1]) contained a concentration of chromium (1,960 mg/kg) above the MassDEP threshold for chromium that could pose an IH of 200 mg/kg in the top twelve inches of soil (310 CMR 40.0321[2][b]).

None of the remaining soil samples in this area had concentrations at or above the MassDEP threshold that could pose an IH per 310 CMR 40.0321 (2)(b).

II. IRA COMPLETION REPORT (310 CMR 40.0424)

This IRA Completion Report is organized according to the information needs set forth under 310 CMR 40.0427(4)(a) through (f) of the MCP.

(a) Description of Release, Threat of Release, Site Conditions, and Surrounding Receptors

Description of Release/Threat of Release

The condition that could pose an IH at the Site was identified on April 2, 2009 for the detection of arsenic at 40 mg/kg and chromium above 200 mg/kg in surface soil (0 to 1 feet in depth) to the north of House #2 at the NBHS. The elevated arsenic and chromium concentrations appear to be related to the PSWS. TRC has performed an IH evaluation, which is provided in Attachment A.

Site Conditions

The area of concern is located to the north of House #2 at NBHS. This area may be accessed by students, staff and child and adult visitors at the high school. The area is vegetated and periodically maintained by mowing. For the purposes of this IH evaluation, exposures are assumed to occur to a young child for one hour a day, five days a week, for 24 weeks.

Surrounding Receptors

The condition that could pose an IH per 310 CMR 40.0321(2)(b) was detected in surface soil on a school property and within 500 feet of recreation areas.

Groundwater categories at NBHS include actual or potential GW-2, depending upon proximity to occupied structures (groundwater is less than 15 feet below ground surface based on data from nearby locations), and GW-3 (applies to all groundwater throughout the state). However, groundwater impacts from metal contaminants associated with this area at NBHS are not expected. For example, recent groundwater monitoring conducted at the MW-HH-13 on April 23, 2009 did not detect site contaminants above groundwater standards or MCP Reportable Concentrations (RCs). These results are presented on Table 2.

Based on review of on-line MassDEP Priority Resource Map data available from Massachusetts Geographic Information System (MassGIS), the Site is not located with a Current or Potential Drinking Water Source Area (MassGIS, 2008).

NBHS is not located in a wetland resource area. No other documented sensitive ecological receptor areas (e.g., Areas of Critical Environmental Concern [ACECs]) are known to be located at or near the release Site.

(b) Description of any Immediate Response Actions Undertaken to Date at the Site

At the time of oral notification, MassDEP approved the following response action as an IRA:

Additional assessment

See Section I (Background) for a description of data collection activities conducted to date by TRC. Also, an IH evaluation was initiated within 14 days of obtaining knowledge of the potential IH condition, which is provided in Attachment A. TRC's risk assessment specialist conducted the IH calculations using an Upper Confidence Limit (UCL) on the arithmetic mean as the Exposure Point Concentration (EPC) for arsenic, and the maximum detected concentration as the EPC for chromium. The IH calculations also assume that all chromium is entirely present as chromium (VI). This is a conservative approach since soil sampling conducted around HH-13B (e.g., SSHH-13B1, SSHH-13B2, SSHH-13B3, and SSHH-13B4) indicated that the chromium detected at HH-13 is present in the less toxic trivalent form.

TRC performed the IH analysis on August 14, 2009, satisfying the IH evaluation initiation timeline under the MCP. The risk assessment calculations indicate that no IH condition exists at the HH-13 area of the NBHS campus.

Please see Attachment A (Imminent Hazard Evaluation Summary) for additional details.

(c) Statement of IRA Findings and Conclusions

The estimated cancer risk and noncarcinogenic hazard for the young child recreational user do not exceed the MCP risk limits for an IH of an excess lifetime cancer risk (ELCR) of 1E-05 or a hazard index (HI) of 10.

(d) Management of Remediation Waste, Remedial Waste Water, and/or Remedial Additives

No remediation waste or remedial waste water has been generated, and no remedial additives were used.

(e) Ongoing Activities

The objective of this IRA was to assess and delineate the potential IH condition. This work has been completed.

The condition that could pose an IH and gave rise to the IRA was determined to not present an IH based on conservative calculations discussed herein. The diagnosis, remedy, and closure of the release condition will be addressed as part of the comprehensive response actions for the PSWS under Special Project status and in accordance with the MCP. The Site will also be linked under RTN 4-15685 and become folded into the Special Project.

Future activities planned to be implemented at the Site include the following:

As needed delineation of the area of impacted soil to support remedial design.

(f) Such Other Information that the Department May Deem Appropriate and Necessary

See Attachment A for the Imminent Hazard Evaluation. See Attachment D for the results of laboratory analyses from TRC's investigation of the HH-13 area.

Public Involvement

As required by 310 CMR 40.1403(3)(b) and (c), the Mayor and the Board of Health for the City of New Bedford have been notified of the IRA activities and the availability of this IRA Completion Statement. Copies of the notification letters sent to the Mayor and Board of Health are provided in Appendix B.

III. REFERENCES USED TO PREPARE THIS IRA PLAN

MassGIS 2008 Massachusetts Geographic Information System (MassGIS), On-line MassDEP Priority Resource Map. Accessed May 21, 2009. http://maps.massgis.state.ma.us/21e/viewer.htm **TABLES**

Table 1 Summary of Analytical Results for Surface Soil Samples - 2004 and 2009 New Bedford High School HH-13 Area New Bedford, Massachusetts

	Analyte	1		···	Cam	ple Location:	HH13	HH-13A	HH-13B	HH-13C	HH-13D	HH-13E	HH-13F	HH-13G	HH-13H	SSHH	-13B1	SSHH-13B2	SSHH-13B3	SSHH-13B4
Analysis	Analyte	i				e Depth (ft.):	1.5-3	0-1	0-1	0-1	0-1	0-1	0-1	0-1	0-1	0-1	0-1	0-1	0-1	0-1
						Sample Date:	12/29/2004	3/11/2009	3/11/2009	3/11/2009	3/11/2009	3/11/2009	3/11/2009	3/11/2009	3/11/2009	4/10/2009	4/10/2009	4/10/2009	4/10/2009	4/10/2009
		S-1/GW-2	S-1/GW-3	S-2/GW-2	S-2/GW-3	RC S-1**	1-7-27-00				,						Field Dup		:	1
PAHs																				
(mg/kg)	Dibenzofuran	10^	10^	NS	NS	100	28	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
(2-Methylnaphthalene	80	300	80	500	0.7	17	0.196 U	0.222 U	0.193 U	0.192 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Acenaphthene	1,000	1,000	3,000	3,000	4	46	0.196 U	0.222 U	0.193 U	0.192 U	NA.	NA .	NA	NA	NA	NA	NA	NA	NA
	Acenaphthylene	600	10	600	10	1	13 U	0.196 U	0.222 U	0.193 U	0.192 U	NA	NA	NA	NA	NA	· NA	NA	NA	NA.
1	Anthracene	1,000	1,000	3,000	3,000	1,000	150	0.196 U	0.294	0.193 U	0.192 U	NA	NA	NA	NA	NA.	NA	NA	NA	NA
	Benzo(a)anthracene	7	7	40	40	7	400	0.196 U	0.621	0.193 U	0.192 U	NA.	NA	NA	NA	NA	NA	NA	NA	NA
	Benzo(a)pyrene	2	2	4	4	2	360	0.196 U	0.528	0.193 U	0.192 U	NA	NA	NA.	NA	NA.	NA	NA	NA	NA
ŀ	Benzo(b)fluoranthene	7	7	40	40	7	460	0.196 U	0.672	0.193 U	0.192 U	NA	NA.	NA	NA	NA.	NA.	NA.	NA	NA
	Benzo(g,h,i)perylene	1,000	1,000	3,000	3,000	1,000	140	0.196 U	0.281	0.193 U	0.192 U	NA NA	NA	NA	ÑΑ	NA	NA	NA	NA	NA
	Benzo(k)fluoranthene	70	70	400	400	70	200	0.196 U	0.250	0.193 U	0.192 U	NA	NA	NA.	NA	NA	NA	NA	NA	NA
	Chrysene	70	70	400	400	70	280	0.196 U	0.621	0.193 U	0.192 U	NA	NA NA	NA.	NA	NA	NA	NA	NA	NA
	Dibenz(a,h)anthracene	0.7	0.7	4	4	0.7	13 U	0.196 U	0.222 U	0.193 U	0.192 U	NA .	NA	NA	NA	NA	NA	NA	NA	NA
	Fluoranthene	1,000	1,000	3,000	3,000	1,000	790	0.196 U	1.09	0.193 U	0.192 U	NA .	NA	NA	NA	NA	NA	NA	NA	NA
	Fluorene	1,000	1,000	3,000	3,000	1,000	46	0.196 U	0.222 U	0.193 U	0.192 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Indeno(1,2,3-cd)pyrene	7	7	40	40	7	140	0.196 U	0.341	0.193 U	0.192 U	NA	NA	NA.	NA	NA	NA	NA.	NA	NA
	Naphthalene	40	500	40	1,000	4	53	0.196 U	0.222 U	0.193 U	0.192 U	NA	NA	NA.	NA	NA	NA	NA	NA	NA
	Phenanthrene	500	500	1,000	1,000	10	1,000	0.196 U	1.23	0.193 U	0.192 U	NA.	NA	NA	NA	NA.	NA	NA	NA NA	NA NA
	Pyrene	1,000	1,000	3,000	3,000	1,000	780	0.196 U	1.08	0.193 U	0.192 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs			_	_	_	_			l											1
(mg/kg)	Aroclor 1016/1242	2	2	3	3	2	0.065 U	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
	Aroclor 1016	2	2	3	3	2	NA	0.0585 U	0.0636 U	0.0556 U	0.0546 U	NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA
	Aroclor 1221	2	2	3 3	3	2	0.129 U	0.0585 U 0.0585 U	0.0636 U 0.0636 U	0.0556 U 0.0556 U	0.0546 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Aroclor 1232	2	2 2	3	3	2 2	0.065 U		0.0636 U		0.0546 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Aroclor 1242 Aroclor 1248	2 2	2	3	3	2	NA 0.065 U	0.0585 U 0.0585 U	0.0636 U	0.0556 U 0.0556 U	0.0546 U 0.0546 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	1	1	_	3	3	2	1.21	0.0383 0	0.0030 0	0.0330 0	0.0340 0	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA
	Aroclor 1254	2	2			~		1	1		1	1	E .	1	1	1	I	l .		E
	Aroclor 1260	2	2	3	3	2	0.065 U	0.0585 U	0.0636 U	0.0556 U	0.0546 U	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Aroclor 1262	2 2	2 2	3 3	3	2	0.065 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Aroclor 1268	2 2	2	3	3	2	0.065 U	NA 0.104	0.833	0.142	NA 0.67	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Total PCBs	2	Z	3	3		1.21	0.104	0.833	0.142	0.67	NA.	INA	NA.	IVA	NA.	IVA	NA NA	NA.	NA NA
Metals, t	•				20	20 ·	22	221 77	40.0	0.00.11	202 11	202 11	200 11	2.62	2.10	.,,	374	374	37.4	
(mg/kg)	Arsenic	20	20	20	20	20	25	2.94 U	40.0	2.90 U 41.9	2.88 U 27.7	2.93 U 232	2.86 U 110	3.62 226	3.10 48.3	NA NA	NA NA	NA NA	NA NA	NA NA
	Barium	1,000	1,000	3,000	3,000	1,000	2,910	20.0	7,920		1			1	0.49	1	NA			
	Cadmium Chromium	2 30	30	30 200	30 200	2 30	4.81 1.100	0.30 U 4.57	2.01 1.960	0.29 U 6.74	0.48 5.52	0.30 U 10.6	0.29 U 12.0	0.49 15.1	42.4	NA 6.58	NA 6.05	NA 5.12	NA 4.93	NA 5.81
		300 300	300	300	300	300	333	4.57 10.0	1,960 543	9.74 21.9	18.4	36.2	32.6	15.1	79.4	9.58 NA	0.05 NA	5.12 NA	4.93 NA	NA NA
	Lead Mercury	20	20	300	300	20	0.38	NA	NA.	21.9 NA	16.4 NA	NA NA	NA NA	NA	/9.4 NA	NA NA	NA NA	NA NA	NA NA	NA NA
1	Selenium	400	400	800	800	400	0.36 0.75 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Silver	100	100	200	200	100	0.73 U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1	Chromium (VI)	30	30	200	200	30	0.38 U NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.37 U	0.39 U	0.38 U	0.38 U	0.38 U
н	Can cantom (rx)			200	1 200	20	177	101	177		17/1	1774	17/1	7.//	****	9.57	V.27 0	0.50 0	0.50 0	0.50 0
(s.u.)	На	N/A	N/A	N/A	N/A	N/A	NA	NA NA	NA.	NA.	NA.	NA.	NA.	NA.	NA	5.81	5.87	5,97	5,93	5.93
10.0.7	.1E	1 1771	1774	1 1771	1 1471	17/13	4774	1 '''	1 41/2	L	1 1.77	t	1	l	· · · · · · · · · · · · · · · · · · ·	1 2.0.		L	L	

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

s.u. - standard units

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

NS - No MassDEP GW-2 standards exist for this compound.

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected. Values shown in Bold and shaded type exceed one or more of the listed Method I standards.

PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls.

RC - Reportable Concentration,

TCLP - Toxicity Characteristic Leaching Procedure.

TSCA - Toxic Substances Control Act criteria.

* - The sample exhibits altered PCB pattern; best possible Aroclor match reported.

** - For reference purpose only.

^ - TRC developed Method 1 standards.

TABLE 2 Summary of Analytical Results for Groundwater - April 2009 New Bedford High School HH-13 Area New Bedford, Massachusetts

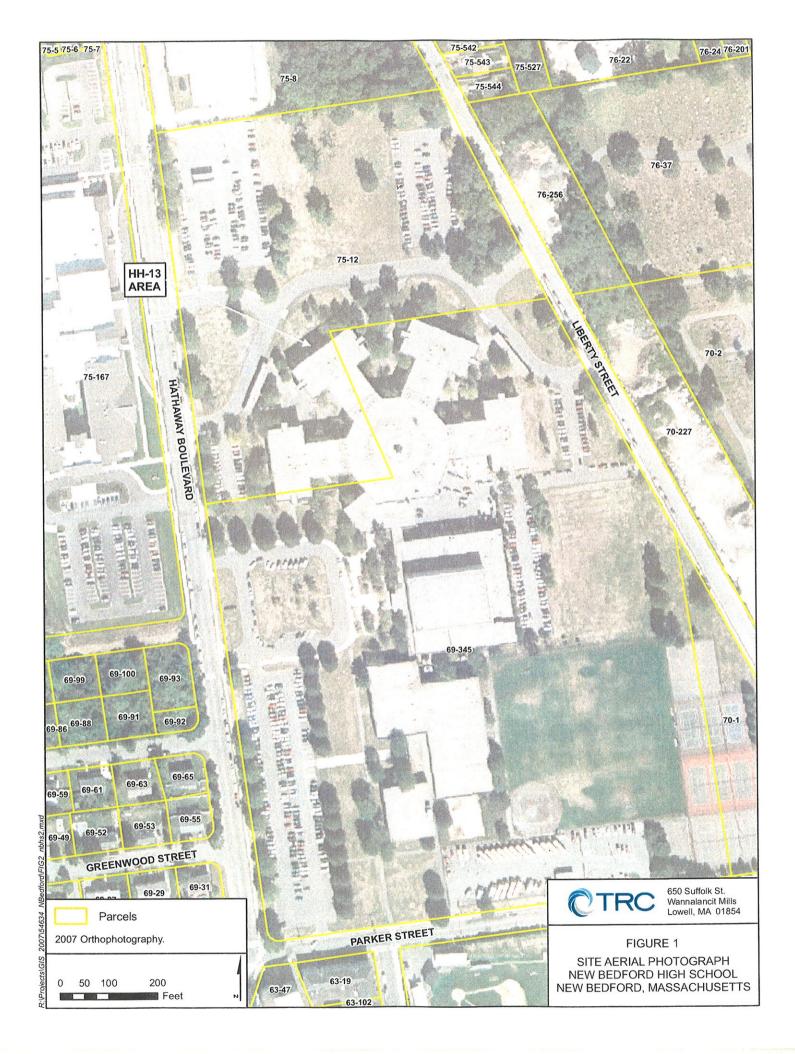
Analysis	Analyte	<u></u>	Sample ID:	MW-I	H-13
			Sample Date:	4/23/2009	4/23/2009
		GW-2	GW-3		Field Dup
PAHs					
(ug/L)	Acenaphthene	NS	6,000	0.30 U	0.30 U
	Acenaphthylene	10,000	40	0.30 U	· 0.30 U
	Anthracene	NS	30	0.20 U	0.20 U
	Benzo(a)anthracene	NS	1,000	0.05 U	0.05 U
	Benzo(a)pyrene	NS	500	0.10 U	0.10 U
	Benzo(b)fluoranthene	NS	400	0.05 U	0.05 U
	Benzo(g,h,i)perylene	NS	20	0.50 U	0.50 U
	Benzo(k)fluoranthene	NS	100	0.20 U	0.20 U
	Chrysene	NS	70	0.20 U	0.20 U
	Dibenz(a,h)anthracene	NS	40	0.20 U	0.20 U
	Fluoranthene	NS	200	0.50 U	0.50 U
	Fluorene	NS	40	1.0 U	1.0 U
	Indeno(1,2,3-cd)pyrene	NS	100	0.20 U	0.20 U
	2-Methylnaphthalene	2,000	20,000	1.0 U	1.0 U
	Naphthalene	1,000	20,000	1.0 U	1.0 U
	Phenanthrene	NS	10,000	0.05 U	0.05 U
	Pyrene	NS	20	1.0 U	1.0 U
PCBs					
(ug/L)	Aroclor 1016	5	10	0.050 U	NA
	Aroclor 1221	5	10	0.050 U	NA
	Aroclor 1232	5	10	0.050 U	NA
	Aroclor 1242	5	10	0.050 U	NA
	Aroclor 1248	5	10	0.050 U	NA
	Aroclor 1254	5	10	0.050 U	NA
	Aroclor 1260	5	10	0.050 U	NA
	Total PCBs	5	10	0.050 U	NA
Metals, d	issolved				
(ug/L)	Antimony	NS	8,000	40.0 U	40.0 U
	Arsenic	NS	900	5.0 U	5.0 U
	Barium	NS	50,000	5,340	5,490
	Beryllium	NS	200	2.0 U	2.0 U
	Cadmium	NS	4	2.5 U	2.5 U
	Chromium	NS	300	5.0 U	. 5.0 U
	Lead	NS	10	7.5 U	7.5 U
	Mercury	NS	20	0.10 ป	0.10 U
	Nickel	NS	200	5.0 U	5.0 U
	Selenium	NS	100	30.0 U	30.0 U
	Silver	NS	7	3.0 U	3.0 U
	Thallium	NS	3,000	30.0 U	30.0 U
	Vanadium	NS	4,000	25.0 U	25.0 U
	Zinc	NS	900	14.0	15.0
Metals, t	otal		_		
(ug/L)	Antimony	NS	8,000	40.0 U	40.0 U
	Arsenic	NS	900	5.0 U	5.0 U
	Barium	NS	50,000	5,570	5,710
	Beryllium	NS	200	2.0 U	2.0 U
	Cadmium	NS	4	2.5 U	2.5 U
	Chromium	NS	300	5.0 U	5.0 U
	Lead	NS	10	7.5 U	7.5 U
	Mercury	NS	20	0.10 U	0.10 U
	Nickel	NS	200	5.0 U	5.0 U
	Selenium	NS	100	30.0 U	30.0 U
	Silver	NS	7	3.0 U	3.0 U
	Thallium	NS	3,000	30.0 U	30.0 U
	Vanadium	NS	4,000	25.0 U	25.0 U
			900		20.0

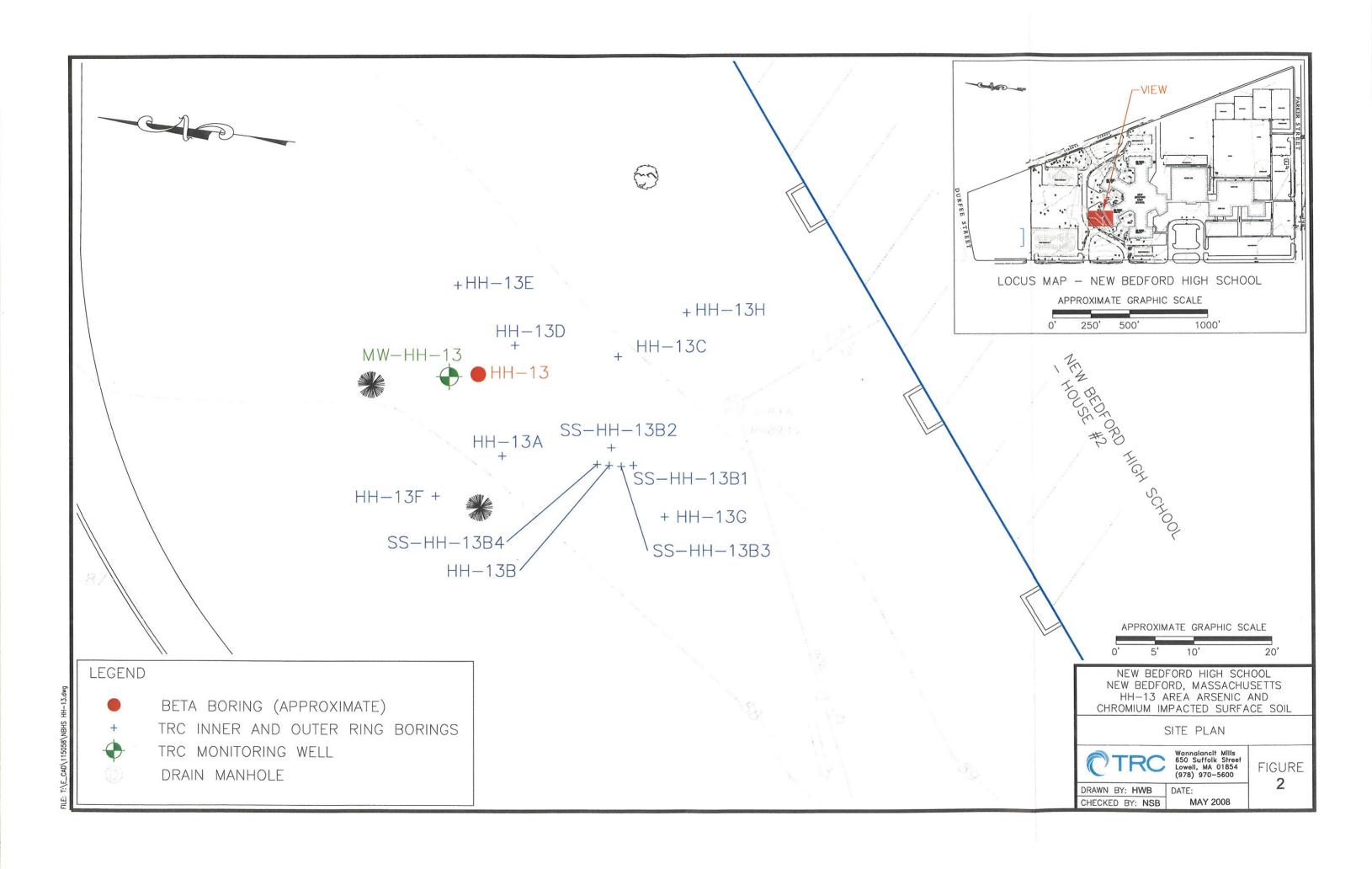
Note

ug/L - micrograms per liter.

NA - Sample not analyzed for the listed analyte.

U - Compound was not detected at specified quantitation limit.


Values in Bold indicate the compound was detected.


Values shown in Buid and shaded type exceed one or more of the listed MCP Method 1 standards.

PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls.

FIGURES

ATTACHMENT A IMMINENT HAZARD EVALUATION

IMMINENT HAZARD EVALUATION HH-13 SURFACE SOIL NEW BEDFORD HIGH SCHOOL NEW BEDFORD, MASSACHUSETTS

Due to the potential Imminent Hazard (IH) condition that was triggered at the Site on April 2, 2009 for the detection of arsenic and chromium in surface soil (0 to 1 foot in depth) at the HH-13 area of the New Bedford High School (NBHS) campus, an IH evaluation has been performed. The potential IH condition was discovered during additional investigation to delineate the extent of elevated levels of polycylic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), arsenic, barium, cadmium, chromium and lead in soil surrounding the four academic wings (called House 1 through House 4) on the NBHS campus and to determine the extent of potential soil removal necessary to achieve a condition of no significant risk for the top three feet of soil within these areas. The HH-13 sampling location had been identified as one of three areas requiring further delineation sampling in the area surrounding the Houses.

The protocol for the delineation sampling called for the collection of four "inner ring" soil borings (0 to 1 foot and 1 to 3 feet in depth) within ten feet of the original HH-13 sampling location to the northwest, southwest, southeast, and northeast (designated "A" through "D"). The protocol further called for the collection of four additional "outer ring" borings twenty feet from the original HH-13 sampling location (designated "E" through "H"). "Outer ring" samples were also collected from the 0 to 1 and 1 to 3 feet intervals. All samples were collected on March 11, 2009 and the "A" through "D" samples were authorized for PAH, total PCBs, and selected metals analysis. The "E" through "H" samples were held at the laboratory, pending the results of the "A" through "D" sample analysis.

PAHs and total PCB concentrations were below the Method 1 S-1/GW-2 and S-1/GW-3 standards at all four 0 to 1 foot locations. Arsenic, barium, cadmium, chromium and lead concentrations were also below the applicable Method 1 soil standards at three of the four initial 0 to 1 foot locations (HH-13A, HH-13C and HH-13D). However, at location HH-13B (0 to 1 foot), concentrations of all five metals exceeded applicable Method 1 soil standards and arsenic and chromium were detected at concentrations equal to or exceeding the MCP Imminent Hazard Reporting Thresholds (Table 1). Due to the detection of arsenic and chromium at levels equal to or exceeding the MCP Imminent Hazard Reporting Thresholds at the HH-13B location, the potential IH condition was reported and the "E" through "H" samples were immediately authorized for selected metals analysis to determine the extent of the elevated surficial arsenic and chromium. Samples HH-13E, HH-13G and HH-13J were authorized primarily to determine the extent of metals in the 1 to 3 foot interval, while HH-13F, which flanked HH-13B, was authorized to determine the extent of surficial metals at the HH-13B location. In addition, four 0 to 1 foot soil samples were collected in close proximity to the HH-13B location for chromium speciation.

The metals results for HH-13E through HH-13H were reported by the laboratory on April 3, 2009. The concentrations of arsenic, barium, cadmium, chromium and lead in the HH-13E through HH-13H 0 to 1 foot samples were less than the Method 1 S-1 standards except for the

chromium result at location HH-13H (42.4 mg/kg) which slightly exceeded the Method 1 S-1 standard (30 mg/kg). These results confirmed that the extent of the surficial arsenic and chromium contamination that triggered an IH conditions had been delineated. Sample-specific results for the HH-13 0 to 1 foot samples are presented in Table 1.

This IH evaluation reflects surface soil sampling conducted to date for the HH-13 area. The surface soil sample results are summarized in Table 2. PAHs were not considered further because their maximum detected concentrations were less than their Massachusetts Department of Environmental Protection (MassDEP) background concentrations for natural soil. Arithmetic mean concentrations were used as exposure point concentrations (EPCs) for total PCBs, arsenic, barium and lead. However, because the maximum detected chromium concentration (1,960 mg/kg) is more than 10-fold greater than its Method 1 S-1 standard, averaging of the 0 to 1 foot chromium concentrations from the HH-13 area is not appropriate. Therefore, the maximum detected concentration or a 95 percent upper confidence limit (95% UCL) on the arithmetic mean concentration may be used as the EPC to determine whether an IH condition exists at the site. Due to the variability in the data set, the calculated 95% UCL was greater than the maximum detected concentration. Therefore, the maximum detected concentration was used as the EPC for chromium.

Chromium speciation data collected in close proximity to the HH-13B locations indicated that chromium (VI) was not present at concentrations above the analytical reporting limit in the samples (Table 3). Therefore, chromium has been evaluated as chromium (III). However, to conservatively evaluate the chromium data and the associated risk and hazard, chromium was also evaluated as chromium (VI).

The area of concern is located immediately to the north of House 2. This area may be accessed by students, staff and child and adult visitors at the high school. The area is vegetated and periodically maintained by mowing. For the purposes of this IH evaluation, exposures are assumed to occur over 24 weeks, during the spring and fall when the ground is not frozen and school is in session. During this 24-week period, exposures are assumed to occur 5 days per week for 1 hour per day. These values are conservative because their use assumes that: (1) a child always contacts this small area when at the school; (2) children go to this area even during inclement weather; and (3) children remain at this location for 1 hour per day which is unlikely to occur due to small size and lack of attractive potential of this area.

To estimate exposures, a young child (age 1 to 6) was selected for evaluation because this age group may be present at this location, accompanying parents or older siblings on their way to and from school. Incidental ingestion of and dermal contact with impacted soils are assumed to occur while the young child plays at this location. The inhalation of fugitive dust generated while the child plays at this location is also considered a complete exposure pathway, even though the area is vegetated. Older children may also exposed to the HH-13 surface soils, but a young child is evaluated as the most sensitive receptor due to their higher soil intake rate, lower body weight, and sensitive developmental stage.

Exposure assumptions applicable to the young child are provided on the risk calculation spreadsheets (Tables 4 through 11). Exposure assumptions selected for use are consistent with

those used by MassDEP in the park visitor IH shortform, adjusted to be applicable to the 24-week exposure period of concern. For the fugitive dust pathway, methods and assumptions consistent with the MassDEP Technical Update "Characterization of Risks Due to Inhalation of Particulates by Construction Workers" (July 2008) were used including a PM₁₀ of 60 ug/m³. Inhalation rates used are age-specific values provided by MassDEP in the 1995 risk assessment guidance document.

Tables 4 through 7 provide risk calculations assuming chromium is entirely present as chromium (III). The hazard index (HI) of 1 is less than the MCP noncarcinogenic IH limit of 10. The excess lifetime cancer risk (ELCR) of 3E-06 is less than the MCP carcinogenic IH limit of 1E-05. Tables 8 through 11 present risk calculations assuming chromium is entirely present as chromium (VI). The HI of 2 and the ELCR of 6E-06 are also less than the MCP noncarcinogenic and carcinogenic IH limits of 10 and 1E-05, respectively. Therefore, no IH condition exists at the HH-13 area of the NBHS campus.

Table 1. Summary of Analytical Results for Surface Soil Samples - HH-13 Area New Bedford, Massachusetts

Analysis	Analyte	Sam	ple Location:	HH-13A	HH-13B	HH-13C	HH-13D	HH-13E	HH-13F	HH-13G	НН-13Н
		Samp	e Depth (ft.):	0-1	0-1	0-1	0-1	0-1	0-1	0-1	0-1
			Sample Date:	3/11/2009	3/11/2009	3/11/2009	3/11/2009	3/11/2009	3/11/2009	3/11/2009	3/11/2009
		S-1/GW-2	S-1/GW-3						l		
PAHs											
(mg/kg)	2-Methylnaphthalene	80	300	0.196 U	0.222 U	0.193 U	0.192 U	NA	NA	NA	NA
	Acenaphthene	1,000	1,000	0.196 U	0.222 U	0.193 U	0.192 U	NA	NA	NA	NA
	Acenaphthylene	600	10	0.196 U	0.222 U	0.193 U	0.192 U	NA	NA	NA	NA
	Anthracene	1,000	1,000	0.196 U	0.294	0.193 U	0.192 U	NA	NA	NA	NA
	Benzo(a)anthracene	7	7	0.196 U	0.621	0.193 U	0.192 U	NA	NA	NA	NA
	Benzo(a)pyrene	2	2	0.196 U	0.528	0.193 U	0.192 U	NA	NA	NA	NA
	Benzo(b)fluoranthene	7	7	0.196 U	0.672	0.193 U	0.192 U	NA	NA	NA	NA
	Benzo(g,h,i)perylene	1,000	1,000	0.196 U	0.281	0.193 U	0.192 U	NA	NA	NA	NA
	Benzo(k)fluoranthene	70	_、 70	0.196 U	0.250	0.193 U	0.192 U	NA	NA	NA	NA
	Chrysene	70	70	0.196 U	0.621	0.193 U	0.192 U	NA	NA	NA	NA
	Dibenz(a,h)anthracene	0.7	0.7	0.196 U	0.222 U	0.193 U	0.192 U	NA	NA NA	NA	NA
	Fluoranthene	1,000	1,000	0.196 U	1.09	0.193 U	0.192 U	NA	NA	NA	NA
	Fluorene	1,000	1,000	0.196 U	0.222 U	0.193 U	0.192 U	NA	NA NA	NA	NA
	Indeno(1,2,3-cd)pyrene	7	7	0.196 U	0.341	0.193 U	0.192 U	NA	NA	NA	NA
	Naphthalene	40	500	0.196 U	0.222 U	0.193 U	0.192 U	NA	NA	NA	NA
	Phenanthrene	500	500	0.196 U	1.23	0.193 U	0.192 U	NA	NA	NA	NA
	Pyrene	1,000	1,000	0.196 U	1.08	0.193 U	0.192 U	NA	NA	NA	NA
PCBs											
(mg/kg)	Total PCBs	2	2	0.104	0.833	0.142	0.670	NA	NA	NA	NA
Metals											
(mg/kg)	Mercury	20	20	NA							
	Antimony	20	20	NA							
	Arsenic	20	20	2.94 U	40.0	2.90 U	2.88 U	2.93 U	2.86 U	3.62	3.10
	Barium	1,000	1,000	20.0	7.920	41.9	27.7	232	110	226	48.3
	Beryllium	100	100	NA	NA	NA	NA	NA	NA	ÑΑ	NA
	Cadmium	2	2	0.30 U	2.01	0.29 U	0.48	0.30 U	0.29 U	0.49	0.49
	Chromium	30	30	4.57	1,960	6.74	5.52	10.6	12.0	15.1	42.4
	Lead	300	300	10.0	543	21.9	18.4	36.2	32.6	146	79.4
	Nickel	20	20	NA	NA	NA	NA	NA	NA	ŇΑ	NA
	Selenium	400	400	NA							
	Silver	100	100	NA							
	Thallium	8	8	NA							
	Vanadium	600	600	NA							
	Zinc	2,500	2,500	NA							

All units in mg/kg unless otherwise specified.

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

NA - Sample not analyzed for the listed analyte.

N/A - Not applicable.

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method 1 standards.

PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls.

Table 2. Summary of Analytical Results for Surface Soil Samples - HH-13 Area **NBHS** New Bedford, Massachusetts

Analysis	Analyta	<u> </u>			# of	# of	Freq of	Min. of	May of	Location of	Min, of	Max. of	Mean		
Alialysis	Analyte				Samples	I	Detects	Detects	Detects	Max. Detected	Non-Detects	Non-Detects	Concentration	EPC	EPC Rationale
	-				Sumples	Delection	Delecto		(mg/kg)	Mux. Detected	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
	}	S-1/GW-2	S-1/GW-3	Background				(1116) 116)	(Mg/Kg)		(67.6)	(************	(((()	(1119/119)	
PAHs		0 1/011 2	G I/O II S	, Duonground	 										
FAHS	Anthracene	1,000	1,000	1		1	25.0%	0.294	0.294	HH-13B	0.192	0.196	1.5E-01	NA	Below background
ļ.		7	1,000	1	1 7	1	1		1 1	HH-13B	0.192	0.196	2.3E-01	NA NA	Below background
	Benzo(a)anthracene	l ′	'	2	4	1	25.0%	0.621	0.621		1	•			v
	Benzo(a)pyrene	2	2	2	4		25.0%	0.528	0.528	HH-13B	0.192	0.196	2.0E-01	NA	Below background
E	Benzo(b)fluoranthene	7	7	2	4	1	25.0%	0.672	0.672	HH-13B	0.192	0.196	2.4E-01	NA	Below background
	Benzo(g,h,i)perylene	1,000	1,000	1	4	1	25.0%	0.281	0.281	HH-13B	0.192	0.196	1.4E-01	NA	Below background
	Benzo(k)fluoranthene	70	70	1	4	1	25.0%	0.25	0.25	HH-13B	0.192	0.196	1.4E-01	NA	Below background
	Chrysene	70	70	2	4	1	25.0%	0.621	0.621	HH-13B	0.192	0.196	2.3E-01	NA	Below background
	Fluoranthene	1,000	1,000	4	4	1	25.0%	1.09	1.09	HH-13B	0.192	0.196	3.5E-01	NA	Below background
	Indeno(1,2,3-cd)pyrene	7	7	1	4	1	25.0%	0.341	0.341	HH-13B	0.192	0.196	1.6E-01	NA	Below background
	Phenanthrene	500	500	3	4	1	25.0%	1.23	1.23	HH-13B	0.192	0.196	3.8E-01	NA	Below background
	Pyrene	1,000	1,000	4	4	1	25.0%	1.08	1.08	HH-13B	0.192	0.196	3.4E-01	NA	Below background
PCBs							Ì								
	Total PCBs	2	2	NA	4	4	100.0%	0.104	0.833	HH-13B			4.4 E -01	4.4E-01	Mean
Metals															
	Arsenic	20	20	20	8	3	37.5%	3.1	40	HH-13B	2.86	2.94	6.7E+00	6.7E+00	Mean
	Barium	1,000	1,000	50	8	8	100.0%	20	7920	HH-13B			1.1E+03	1.1E+03	Mean
	Cadmium	2	2	2	8	4	50.0%	0.48	2.01	HH-13B	0.29	0.3	5.1E-01	5.1E-01	Mean
	Chromium	30	30	30	8	8	100.0%	4.57	1960	HH-13B			2.6E+02	2.0E+03	Maximum
1	Lead	300	300	100	8	8	100.0%	1	543	HH-13B			1.1E+02	1.1E+02	Mean

All units in mg/kg unless otherwise specified.

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

NA - Not applicable or not available.

Values in Bold indicate the compound was detected.

Values shown in Bold and shaded type exceed one or more of the listed Method I standards.

PAHs - Polynuclear Aromatic Hydrocarbons.

PCBs - Polychlorinated Biphenyls.

Table 3. Chromium Speciation Data - HH-13 Area NBHS New Bedford, Massachusetts

Analysis	Analyte	Sam	Sample Location:		-13B1	SSHH-13B2 SSHH-13B3		SSHH-13B4
		Samp	Sample Depth (ft.):		0-1	0-1	0-1	0-1
			Sample Date:		4/10/2009	4/10/2009	4/10/2009	4/10/2009
		S-1/GW-2	S-1/GW-3		Field Dup			
Metals								
(mg/kg)	Chromium	30	30	6.58	6.05	5.12	4.93	5.81
	Chromium (VI)	30	30	0.37 U	0.39 U	0.38 U	0.38 U	0.38 U
pН								***************************************
(s.u.)	рH	N/A	N/A	5.81	5.87	5.97	5.93	5.93

Notes:

mg/kg - milligrams per kilogram (dry weight) or parts per million (ppm).

U - Compound was not detected at specified quantitation limit.

Values in Bold indicate the compound was detected.

Visitor - Child Incidential Ingestion of Surface Soil HH13 - New Bedford High School (Chromium as Chromium HI)

N	ew	Be	dforc	1. 1	Jassa	ichi	ıset	ts	

		EPC		E:	xposure Estima	cs	Toxicity		Risk Es	stimates
						•		Subchronic		
		Surface	RAF		RAF		Cancer	Noncancer		
		Soil	Ingestion	LADD	Ingestion	ADD	Slope	Reference	Cancer	Hazard
		Concentration	Cancer	Cancer	Noncancer	Noncancer	Factor (Oral)	Dose (Oral)	Risk	Quotient
	Constituent	(mg/kg)	()	(mg/kg-d)	()	(mg/kg-d)	(mg/kg-d)-1	(mg/kg-d)	()	()
1336-36-3	Total PCBs	4.4E-01	8.5E-01	5,9E-08	8.5E-01	2.5E-06	2.0E+00	5.015-05	1E-07	5.0E-02
Metals							į			
7440-38-2	Arsenic	6.7	1.013+00	1.1E-06	1.0E+00	4.5E-05	1.5E+00	3.015-04	2E-06	1.5E-01
7440-39-3	Barium	1078	NC	NΑ	1.0E+00	7.2E-03	NA	7.013-02	NA	1.0E-01
7440-43-9	Cadmium	0.51	NC	NA	1.0E+00	3.4E-06	NA	5.012-04	NA	6.8E-03
16065-83-1	Chromuim +3	1960	NC	NΑ	1.0E+00	1.3E-02	NA NA	L5E+00	NA	8.7E-03
18540-29-9	Chromium +6	0	NC	NA	1.0E+00	0.0E+00	NA.	2.015-02	NA	0.0E+00
7439-92-1	Lead	110.9	NC	NA	5.0E-01	3.7E-04	NA	7.58-04	NA	4.9E-01
			ļ				i			

Cancer Hazard Index 8E-01 TOTAL: 2E-06

NA = Not Applicable NC = No Criteria Where:

LADDeanoor = [Soil Concentration x UC x RAF x IR x EF x ED x EF] / [BW x APeanoor]
ADDnon-cancer = [Soil Concentration x UC x RAF x IR x EF x ED x EF] / [BW x APnon-cancer]
Cancer Risk = LADDeanoor x Slope Factor
Hazard Quotient = ADDnon-cancer / Reference Dose

Hazard Quotient = ADDanon-cancer / Reference Dose		
Unit Conversion (UC) =	1.0E-06	kg/mg
Relative Absorption Factor (RAF) =	CS	(unitless) [1]
Ingestion Rate (IR) =	100	mg/d [1]
Exposure Duration (ED) =	1	day/event [1]
Exposure Frequency (EF) - Noncancer =	0.714	event/day [2] - 5 days/week
Exposure Frequency (EF) - Cancer =	0.329	event/day [2] - 5 days/week for 24 weeks
Exposure Period (EP) - Noncancer =	0.460	years [2] - 24 weeks
Exposure Period (EP) - Cancer =	5	years [1]
Body Weight (BW) - Noncancer =	10.7	kg (1-2 year old)[1]
Body Weight (BW) - Cancer =	15	kg (1-6 year old) [1]
Averaging Period Cancer (AP _{encer}) =	70	years [1]
Averaging Period Noncancer (APpopulater) =	0.460	years [2]

[1] MassDEP, 2007; Park User Soil Imminent Hazard Short-form

[2] Site-specific information for practices and games during 18-week sport season (includes pre-season and playoffs)

Bold = Cancer Risk > 1.0E-05 or Hazard Quotient > 1.0E+00

Table 5 Visitor - Child Dermal Contact with Surface Soil HIH 3 - New Bedford High School (Chromium as Chromium III) New Bedford, Massachusetts

		1:PC		Exposure	Estimates		Toxicity	/ Values	Risk lis	timates
		Surface Soil	RAF Dermal	LADD	RAF Dermal Noncancer	ADD Noncancer	Cancer Slope Factor (Oral)	Subchronic Noncancer Reference Dose (Oral)	Cancer Risk	Hazard Ouotient
	Constituent	Concentration (mg/kg)	Cancer ()	Cancer (mg/kg-d)	()	(mg/kg-d)	(mg/kg-d)-l	(mg/kg-d)	()	()
1336-36-3	Total PCBs	0.44	0.16	8.71:-08	0.16	2.7E-06	2.0E+00	5.0E-05	215-07	5.5E-02
Metals										
7440-38-2	Arsenic	6.7	0.03	2.512-07	0.03	7.8E-06	1.5E+00	3.0E-04	41E-07	2.6E-02
7440-39-3	Barium	1078	NC	NA	0.05	2.1E-03	NA	7.0E-02	NΛ	3.0E-02
7440-43-9	Cadmium	0.51	NC	NA	0.14	2.8E-06	NA	5.0E-04	NΛ	5.6E-03
16065-83-1	Chromuim +3	1960	NC	NA	0.04	3.1E-03	NA	1.5E+00	NΑ	2.0E-03
18540-29-9	Chromium +6	0	NC	NΑ	0.09	0.015+00	NA	2.0E-02	NΑ	0.0E+00
7439-92-1	Lead	110.9	NC	NΛ	0.006	2.6E-05	NA	7.5E-04	NΛ	3.5E-02
		1								

NA = Not Applicable NC = No Criteria

Where:

 $LADD cancer = Soil Concentration \ x \ UC1 \ x \ SA \ x \ SAF \ x \ RAF \ x \ EF \ x \ ED \ x \ EP \ / \ (BW \ x \ APron-cancer)$ $ADD non-cancer = Soil Concentration \ x \ UC1 \ x \ SA \ x \ SAF \ x \ RAF \ x \ EF \ x \ ED \ x \ EP \ / \ (BW \ x \ APron-cancer)$ $Cancer \ Risk = LADD cancer \ x \ Slope \ Factor$ $Hazard \ Quotient = ADD non-cancer \ / \ Reference \ Dose$

Unit Conversion (UC1) =	1E-06	kg/mg
Skin Surface Area (\$A) - Noncancer =	1670	cm2/d [1] - (1-2 year old)
Skin Surface Area (SA) - Cancer =	2231	cm2/d [1] - (1-6 year old)
Soil Adherence Factor (SAF) =	0.35	mg/cm2 [1]
Relative Absorption Factor (RAF) =	CS	(unitless) [1]
Exposure Duration (ED) =	1	day/event [1]
Exposure Frequency (EF) - Noncancer =	0.714	event/day [2] - 5 days/week
Exposure Frequency (EF) - Cancer =	0.329	event/day [2] - 5 days/week for 24 weeks
Exposure Period (EP) - Noncancer ==	0.460	years [2] - 24 weeks
Exposure Period (EP) - Cancer =	5	years [1]
Body Weight (BW) - Noncancer =	10.7	kg (1-2 year old)[1]
Body Weight (BW) - Cancer =	15	kg (1-6 year old) [1]
Averaging Period Cancer (APencer) =	70	years [1]
Averaging Period Noncancer (AP _{noncancer}) =	0.460	years [2]

[1] MassDEP, 2007; Park User Soil Imminent Hazard Short-form [2] Site-specific information for practices and games during 18-week sport season (includes pre-season and playoffs)

Hazard Index 2E-01 Сапсег Risk 5E-07 :JATOT

= Cancer Risk >1.0E-05 or Hazard Quotient > 1.0E+00 Bold

Table 6 Visitor - Child Inhalation of Fugitive Dusts - Exposure Via the Lungs HH13 - New Bedford High School (Chromium as Chromium III) New Bedford, Massachusetts

			Exposure l	Estimates	Toxicity	Values	Risk	Estimates
						Subchronic		
		Surface			Unit	Noncancer		
		Soil	LADE	ADE _{lah}	Risk	Reference	Cancer	Hazard
		Concentration	Cancer	Noncancer	Factor (Inh)	Conc. (Inh)	Risk	Quotient
	Constituent	(mg/kg)	(ug/m³)	(ug/m³)	(ug/m³) ⁻¹	(ug/m³)	(- ·)	()
1336-36-3	Total PCBs	0.44	6.5E-08	L6E-06	1.0E-04	2.0E-02	6E-12	8.2E-05
Metals								
7440-38-2	Arsenic	6.7	9.9E-07	2.5E-05	4.3E-03	2.5E-03	4E-09	1.0F-02
7440-39-3	Barium	1078	1.6E-04	4.0E-03	NA	5.0E+00	NΛ	8.1E-04
7440-43-9	Cadmium	0.51	7.5E-08	1.9E-06	1.8E-03	2.0E-02	115-10	9.66-05
6065-83-1	Cluonwim +3	1960	2.9E-04	7.415-03	NA	3.0E-01	NΛ	2.51:-02
8540-29-9	Chromium +6	0 1	0.0E+00	0.08+00	1.2E-02	3.0E-01	0E+00	0.0E+00
7439-92-1	Lead	110.9	1.6E-05	4.2E-04	NA	1.0E+00	N۸	4.2E-04

NA = Not Applicable

Cancer Hazard Risk 4E-09 TOTAL: 4E-02

 $\begin{array}{l} L. ADBeancer = (OHM \times 0.5 \times PM10 \times IR \times RAF \times EF \times ED \times EP \times UC1 / (APcancer \times BW)) \times (BW \ assumed/IR \ assumed) \\ ADBeance = (OHM \times 0.5 \times PM10 \times IR \times RAF \times EF \times ED \times EP \times UC1 / APnon-cancer \times BW) \times (BW \ assumed/IR \$

Bold = Cancer Risk > 1.0E-05 or Hazard Quotient > 1.0E+00

Respirable Dust (PM ₁₀) =	60	ug/m3 [4]
Relative Absorption Factor (RAF) =	1	unitless
Inhalation Rate (IR) - Noncancer (1-2 year old) =	8.92	I/min [4] - heavy exertion; 1-2 year old; average of male/female
Inhalation Rate (IR) - Cancer (1-6 year old) =	14.77	I/min [4] - heavy exertion; 1-6 year old; average of male/female
Exposure Prequency (FF) - Noncancer =	0.714	event/day [5] - 5 days/week
Exposure Frequency (EF) - Cancer =	0.329	event/day [5] - 5 days/week for 24 weeks
Exposure Duration (ED) =	1	hours/event [3]
Exposure Period (EP) - Noncancer =	168	days [5] - 24 weeks
Exposure Period (EP) - Cancer =	1825	days [1]
Body Weight (BW) - Noncancer =	10.7	kg (1-2 year old)[1]
Body Weight (BW) - Cancer =	14.8	kg (1-6 year old) [1]
Averaging Period Cancer (AP _{traterr}) =	25550	days [1]
Averaging Period Noncancer (AP DODGLACOR) =	168	days [5]
Inhalation Rate assumed (IR assumed) =	20	m3/day [2] - for adjustment of toxicity value
Body Weight (BW assumed) =	70	kg [2] - for adjustment of toxicity value
Unit Conversion (UC) =	6.00E-11	(60 min/hour; 1x 10-9 kg/ug; 0.001 m3/i)

- [1] MassDEP, 2007; Park User Soil Imminent Hazard Short-form
 [2] MassDEP, 2008; Characterization of Risk Due to Inhalation of Particulats by Construction Workers
 [3] Professional Judgment
 [4] MassDEP, 1995; Guidance for Disposal Site Risk Characterization
 [5] Site-specific information for practices and games during 18-week sport season (includes pre-season and playoffs)

Table 7 Visitor - Child Inhalation of Fugitive Dusts - Exposure Via the GI Tract HH13 - New Bedford High School (Chromium as Chromium III) New Bedford, Massachusetts

,			E	cposure Estima	tes	Toxicity		Risk listimates	
		Ĭ					Subchronic		
	Surface	RAF		RAF		Cancer	Noncancer		
	Soil	Cancer	$LADD_{GUbb}$	Noncancer	ADDoptes	Slope	Reference	Cancer	Hazard
	Concentration	Ing	Cancer	Ing	Noncancer	Factor (Oral)	Dose (Oral)	Risk	Quotient
Constituent	(mg/kg)	()	(mg/kg-day)	()	(mg/kg-day)	(mg/kg-day) ⁻¹	(mg/kg-day)	()	()
1336-36-3 Total PCBs	0.44	8.5E-01	4,70E-11	8.5015-01	1.20E-09	2.0E+00	5.0E-05	9E-11	2.4E-05
Metals									
7440-38-2 Arsenic	6.70	1.0E+00	8.48E-10	1.0013+00	2.15E-08	1.5E+00	3.01:-04	1E-09	7.2E-05
7440-39-3 Barium	1078	NC	NA	00+300.1	3.47E-06	NΑ	7.0E-02	NA	5.0E-05
7440-43-9 Cadmium	0.51	NC	NA	1.00E+00	1.64E-09	NA	5.OE-04	NA.	3.3E-06
16065-83-1 Chromuim +3	1960	NC	NA	1.00E+00	6.30E-06	NA.	1.5E+00	NA	4.26-06
18540-29-9 Chromium +6	0	NC	NA	1.00E+00	0.00E+00	NA.	2.013-02	NA	0.083+00
7439-92-1 Lead	110.9	NC	NA	5.00E-01	1.7813-07	I NA	7.5E-04	NA	2.4E-04

NA = Not Applicable

Where:

LADDeancer = (OHM x 1.5 X PM10 x IR x RAF x EF x ED x EP x UC1 / (APcancer x BW))
ADDEnon-cancer = (OHM x 1.5 X PM10 x IR x RAF x EF x ED x EP x UC1 / APnon-cancer x BW)
Cancer Risk = LADDeancer x Cancer Slope Factor
Hazard Quotient = ADEnon-cancer / Reference Dose

60	ug/m3 {1}
8.92	1/min [4] - heavy exertion; 1-2 year old; average of male/female
14.77	Umin [4] - heavy exertion; 1-6 year old; average of male/female
0.714	event/day [5] - 5 days/week
0.329	event/day [5] - 5 days/week for 24 weeks
1	hours/event {3}
168	days [5] - 24 weeks
1825	days [1]
10.7	kg (1-2 year old)[1]
14.8	kg (1-6 year old) [1]
25550	days (1)
168	days [5]
6.00E-11	(60 min/hour; 1x 10-9 kg/ug; 0.001 m3/l)
	8.92 14.77 0.714 0.329 1 168 1825 10.7 14.8 25550

[1] MassDiPP, 2007; Park User Soil Imminent Hazard Short-form
[2] MassDiPP, 2008; Characterization of Risk Due to Inhalation of Particulats by Construction Workers
[3] Professional Judgment
[4] MassDiPP, 1995; Guidance for Disposal Site Risk Characterization
[5] Site-specific information for practices and games during 18-week sport season (includes pre-season and playoffs)

Cancer Risk TOTAL: 1E-09 Hazard Index 4E-04

Bold = Cancor Risk > 1.0E-05 or Hazard Quotient > 1.0E-00

Table 8

Visitor - Child

Incidential Ingestion of Surface Soil

HH13 - New Bedford High School (Chromium as Chromium VI) New Bedford, Massachusetts

		EPC		E	xposure Estima	ics	Toxicity	Values	Risk E	stimates
								Subchronic		
		Surface	RAF		RAF		Cancer	Noncancer		
		Soil	Ingestion	LADD	Ingestion	ADD	Slope	Reference	Cancer	Hazard
		Concentration	Cancer	Cancer	Noncancer	Noncancer	Factor (Oral)	Dose (Oral)	Risk	Quotient
	Constituent	(mg/kg)	()	(mg/kg-d)	()	(mg/kg-d)	(mg/kg-d)-l	(mg/kg-d)	()	()
1336-36-3	Total PCBs	4.4E-01	8.5E-01	5.9E-08	8.513-01	2.5E-06	2.0E+00	5.0E-05	1E-07	5.0E-02 ·
Metals										
7440-38-2	Arsenic	6.7	1.0E+00	1.1E-06	1.0E+00	4.5E-05	1.5£+00	3.0E-04	2E-06	1.5E-01
7440-39-3	Barium	1078	NC	NA	1.0E+00	7.2E-03	NΛ	7.0E-02	NA	1.0E-01
7440-43-9	Cadmium	0.51	NC	NA	1.0E+00	3.4E-06	NΛ	5.0E-04	NΛ	6.8E-03
16065-83-1	Chromuim +3	0	NC	NA	1.06+00	0.0E+00	NA	1.5E+00	NΛ	0.0E+00
18540-29-9	Chromium +6	1960	NC	NΑ	1.0E+00	1.3E-02	NA	2.0E-02	NΑ	6.5E-01
7439-92-1	Lead	110.9	NC	NA	5.0E-01	3.7E-04	NA	7.5E-04	NΛ	4.9E-01
i		ļ								

Cancer Hazard
Risk Index
TOTAL: 2E-06 1E+00

NA = Not Applicable NC = No Criteria Where:

I.ADDcancer = [Soil Concentration x UC x RAF x IR x EF x ED x EP] / [BW x APcancer]
ADDnon-cancer = [Soil Concentration x UC x RAF x IR x EF x ED x EP] / [BW x APnon-cancer]
Cancer Risk = LADDcancer x Slope Factor

Hazard Quotient = ADDnon-cancer / Reference Dose

1.0E-06	kg/mg
CS	(unitless) [1]
100	mg/d [1]
1	day/event [1]
0.714	event/day [2] - 5 days/week
0.329	event/day [2] - 5 days/week for 24 weeks
0.460	years [2] - 24 weeks
5	years [1]
10.7	kg (1-2 year old)[1]
15	kg (1-6 year old) [1]
70	years [1]
0.460	years [2]
	CS 100 1 0.714 0.329 0.460 5 10.7 15

[1] MassDEP, 2007; Park User Soil Imminent Hazard Short-form

[2] Site-specific information for practices and games during 18-week sport season (includes pre-season and playoffs)

Bold = Cancer Risk >1.0E-05 or Hazard Quotient > 1.0E+00

Table 9 Visitor - Child

Dermal Contact with Surface Soil

HH13 - New Bedford High School (Chromium as Chromium VI) New Bedford, Massachusetts

		EPC		Exposure	Estimates		Toxicity	/ Values	Risk Es	stimates
١		Surface	RAF		RAF	100	Cancer	Subchronic Noncancer		
		Soil	Dermal	LADD	Dermal	ADD	Slope	Reference	Cancer	Hazard
		Concentration	Cancer	Cancer	Noncancer	Noncancer	Pactor (Oral)	Dose (Oral)	Risk	Quotient
	Constituent	(mg/kg)	()	(mg/kg-d)	()	(mg/kg-d)	(mg/kg-d)-l	(mg/kg-d)	()	()
336-36-3	Total PCBs	0.44	0.16	8.7E-08	0.16	2.713-06	2.0E+00	5.0E-05	2E-07	5.5E-02
Metals										
7440-38-2	Arsenic	6.7	0.03	2.5E-07	0.03	7.8E-06	1.5E+00	3.0E-04	4E-07	2.6E-02
1440-39-3	Barium	1078	NC	NA	0.05	2.1E-03	NΛ	7.0E-02	NΛ	3.0E-02
7440-43-9	Cadmium	0.51	NC	NA	0.14	2.813-06	NA	5.0E-04	NΛ	5.6E-03
16065-83-1	Chromuim +3	0	NC	NA	0.04	0.015+00	NA	1.5E+00	NΛ	0.0E+00
18540-29-9	Chromium +6	1960	NC	NA	0.09	6.9E-03	NA	2.0E-02	NΛ	3.4E-01
7439-92-1	Lead	110.9	NC	NA	0.006	2.6E-05	NA.	7.5E-04	NA NA	3.5E-02

NA = Not Applicable NC = No Criteria

Where:

LADDcancer = Soil Concentration x UC1 x SA x SAF x RAF x EF x ED x EP / (BW x APcancer)

ADDnon-cancer = Soil Concentration x UC1 x SA x SAF x RAF x EF x ED x EP / (BW x APnon-cancer)

Cancer Risk = LADDcancer x Slope Factor

Hazard Quotient = ADDnon-cancer / Reference Dose

Unit Conversion (UC1) =	IE-06	kg/mg
Skin Surface Area (SA) - Noncancer =	1670	cm2/d [1] - (1-2 year old)
Skin Surface Area (SA) - Cancer =	2231	cm2/d [1] - (1-6 year old)
Soil Adherence Pactor (SAF) =	0.35	mg/cm2 [1]
Relative Absorption Factor (RAF) =	CS	(unitless) [1]
Exposure Duration (ED) =	i	day/event [1]
Exposure Frequency (EF) - Noncancer =	0.714	event/day [2] - 5 days/week
Exposure Frequency (EF) - Cancer =	0.329	event/day [2] - 5 days/week for 24 weeks
Exposure Period (EP) - Noncancer =	0.460	years {2] - 24 weeks
Exposure Period (EP) - Cancer =	5	years [1]
Body Weight (BW) - Noncancer =	10.7	kg (1-2 year old)[1]
Body Weight (BW) - Cancer =	15	kg (1-6 year old) [1]
Averaging Period Cancer (AP _{cancer}) =	70	years [1]
Averaging Period Noncancer (APproximate) =	0.460	years [2]

^[1] MassDEP, 2007; Park User Soil Imminent Hazard Short-form

Cancer Hazard
Risk Index
TOTAL: 5E-07 5E-01

Bold = Cancer Risk >1.0E-05 or Hazard Quotient > 1.0E+00

^[2] Site-specific information for practices and games during 18-week sport season (includes pre-season and playoffs)

Table 10 Visitor - Child Inhalation of Fugitive Dusts - Exposure Via the Lungs HH13 - New Bedford High School (Chromium as Chromium VI) New Bedford, Massachusetts

			Exposure I	stimates	Toxicity	Values	Risk l	Estimates
		Surface Soil	LADE	ADE	Unit Rísk	Subchronic Noncancer Reference	Cancer	Hazard
		Concentration	Cancer	Noncancer	Factor (Inh)	Conc. (Inh)	Risk	Quotient
	Constituent	(mg/kg)	(ug/m³)	(ug/m³)	(ng/m³).1	(ug/m³)	()	()
336-36-3	Total PCBs	0.44	6.5E-08	1.6E-06	1.0E-04	2.0E-02	6E-12	8.2E-05
Metals								
440-38-2	Arsenic	6.7	9.9E-07	2.5E-05	4.3E-03	2.5E-03	415-09	1.0E-02
440-39-3	Barium	1078	1.6E-04	4.0E-03	NA	5.0E+00	NΛ	8.1E-04
440-43-9	Cadmium	0.51	7.5E-08	1.9E-06	1.8E-03	2.0E-02	HE-10	9.6E-05
16065-83-1	Chromvim +3	0	0.015+00	0.0+30.0	NA NA	3.0E-01	NΛ	0.0E+00
18540-29-9	Chromiuru +6	1960	2.9E-04	7.4E-03	1.2E-02	3.0E-01	3E-06	2.5E-02
439-92-1	Lead	110.9	1.68-05	4.2E-04	NΑ	00+30.1	NΛ	4.2E-04

NA = Not Applicable

Where:

LADEcancer = (OHM x 0.5 X PM10 x IR x RAF x EF x ED x EP x UC1 / (APcancer x BW)) x (BW assumed/IR assumed) ADEnon-cancer = (OHM x 0.5 X PM10 x IR x RAF x EF x ED x EP x UC1 / APnon-cancer x BW) x (BW assumed/IR assumed) Cancer Risk = LADEcancer x Cancer Slope Factor Hazard Quotient = ADEnon-cancer / Reference Dosc

Bold = Cancer Risk > 1.0E-05 or Hazard Quotient > 1.0E+00

Cancer

Risk TOTAL: 3E-06

Hazard

Index

4E-02

Respirable Dust (PM ₁₀) =	60	ug/m3 (4)
Relative Absorption Factor (RAF) =	j	unitless
Inhalation Rate (IR) - Noncancer (1-2 year old) =	8.92	Umin [4] - heavy exertion; 1-2 year old; average of male/female
Inhalation Rate (IR) - Cancer (1-6 year old) =	14,77	I/min [4] - heavy exertion; 1-6 year old; average of male/female
Exposure Frequency (EF) - Noncancer =	0.714	event/day [5] - 5 days/week
Exposure Frequency (EF) - Cancer =	0.329	event/day [5] - 5 days/week for 24 weeks
Exposure Duration (ED) =	1	hours/event [3]
Exposure Period (EP) - Noncancer =	168	days [5] - 24 weeks
Exposure Period (EP) - Cancer =	1825	days [1]
Body Weight (BW) - Noncancer =	10.7	kg (1-2 year old)[1]
Body Weight (BW) - Cancer =	14.8	kg (1-6 year old) [1]
Averaging Period Cancer (AP _{eacerr}) =	25550	days [1]
Averaging Period Noncancer (APaoocuser) =	168	days [5]
Inhalation Rate assumed (IR assumed) =	20	m3/day [2] - for adjustment of toxicity value
Body Weight (BW assumed) =	70	kg [2] - for adjustment of toxicity value
Unit Conversion (UC) =	6.00E-11	(60 min/hour; 1x 10-9 kg/ug; 0.001 m3/l)

- [1] MassDEP, 2007; Park User Soil Imminent Hazard Short-form
 [2] MassDEP, 2008; Characterization of Risk Due to Inhalation of Particulats by Construction Workers
 [3] Professional Judgment
 [4] MassDEP, 1995; Guidance for Disposal Site Risk Characterization

- [5] Site-specific information for practices and games during 18-week sport season (includes pre-season and playoffs)

Table 11 Visitor - Child Inhalation of Fugitive Dusts - Exposure Via the GI Tract HH13 - New Bedford High School (Chromium as Chromium VI) New Bedford, Massachusetts

				E>	posure Estima	les	Toxicity	Values		Estimates
1								Subchronic		
1	ŀ	Surface	RAF		RAF		Салсег	Noncancer		
		Soil	Cancer	LADD _{GI-leb}	Noncancer	$ADD_{G!-lob}$	Slope	Reference	Cancer	Hazard
		Concentration	Ing	Cancer	Ing	Noncancer	Factor (Oral)	Dosc (Oral)	Risk	Quotient
	Constituent	(mg/kg)	()	(mg/kg-day)	()	(mg/kg-day)	(mg/kg-day)	(mg/kg-day)	()	()
1336-36-3 Total I	PCBs	0.44	8.5E-01	4.70E-11	8.50E-01	1.20E-09	2,0E+00	5.0E-05	9E-11	2.4E-05
Metals										
7440-38-2 Arseni	ie	6.70	L0E+00	8.48E-10	1.00E+00	2.156-08	1.5E+00	3.0E-04	1E-09	7.2E-05
7440-39-3 Bacium	m	1078	NC	NA	1.00€+00	3.47E-06	NΛ	7.0E-02	NA.	5.08-05
7440-43-9 Cadmi	ium ium	0.51	NC	NA	1.00E+00	L64E-09	NA.	5.0E-04	NΛ	3.3E-06
16065-83-1 Chrom	nuim +3	0	NC	NA	1.00E+00	0.00E+00	NΛ	1.5E+00	NΛ	0.015+00
18540-29-9 Chrom	nium +6	1960	NC	NΑ	1.00E+00	6.30E-06	§ NA	2.0E-02	NA	3.28-04
7439-92-1 Lead	1	110.9	NC	NA	5.00E-01	1.78E-07	NA	7.5E-04	NA	2.4E-04

NA = Not Applicable

LADDcancer = (OHM x 1.5 X PM10 x IR x RAF x EF x ED x EP x UC1 / (APcancer x BW))
ADDfinon-cancer = (OHM x 1.5 X PM10 x IR x RAF x EF x ED x EP x UC1 / APnon-cancer x BW)
Cancer Risk = LADEcancer x Cancer Slope Factor
Hazard Quotient = ADEnon-cancer / Reference Dose

Respirable Dust (PM ₁₀) =	60	ug/m3 [1]
inhalation Rate (IR) - Noncancer (1-2 year old) =	8.92	I/min [4] - heavy exertion; 1-2 year old; average of male/female
Inhalation Rate (IR) - Cancer (1-6 year old) =	14.77	I/min [4] - heavy exertion; 1-6 year old; average of male/female
Exposure Frequency (EF) - Noncancer =	0.714	event/day [5] - 5 days/week
Exposure Prequency (EF) - Cancer =	0.329	event/day [5] - 5 days/week for 24 weeks
Exposure Duration (ED) =	1	hours/event [3]
Exposure Period (EP) - Noncancer =	168	days [5] - 24 weeks
Exposure Period (EP) - Cancer =	1825	days [1]
Body Weight (BW) - Noncancer ==	10.7	kg (1-2 year old)[1]
Body Weight (BW) - Cancer =	14.8	kg (1-6 year old) [1]
Averaging Period Cancer (APercer) =	25550	days [1]
Averaging Period Noncancer (AP nocember) =	168	days (5)
Unit Conversion (UC1)=	6.00E-11	(60 min/hour; 1x 10-9 kg/ug; 0.001 m3/l)

[1] MassDEP, 2007; Park User Soil Imminent Hazard Short-form

[1] MassDEP, 2009; Park user soul immanent Hazard Short-form
[2] MassDEP, 2008; Characterization of Risk Due to Inhalation of Particulats by Construction Workers
[3] Professional Judgment
[4] MassDEP, 1995; Guidance for Disposal Site Risk Characterization
[5] Site-specific information for practices and games during 18-week sport season (includes pre-season and playoffs)

Cancer Risk Hazard Index 7E-04 TOTAL: 1E-09

= Cancer Risk >1.0E-05 or Hazard Quotient > 1.0E+00 Bold

ATTACHMENT B PUBLIC NOTIFICATION LETTERS

Wannalancit Mills 650 Suffolk Street, Suite 200 Lowell, MA 01854

978.970.5600 PHONE 978.453.1995 FAX

www.TRCsolutions.com

May 29, 2009

TRC Reference Number: 115058.0000

Mayor Scott W. Lang City Hall, Room 311 133 William Street New Bedford, MA 02740

RE: Notice of Immediate Response Action Completion Report New Bedford High School – Impacted Soil at the HH-13 Area, New Bedford, Massachusetts; MassDEP RTN 4-21847

Mayor Lang:

On behalf of the City of New Bedford, Massachusetts, and pursuant to 310 CMR 40.1403 of the Massachusetts Contingency Plan (MCP), TRC Environmental Corporation (TRC) has prepared this letter to inform you of the submittal of an Immediate Response Action Completion Report pertaining to soils containing elevated concentrations of arsenic and chromium at the New Bedford High School in New Bedford, Massachusetts. This submittal will be made to the Massachusetts Department of Environmental Protection (MassDEP) by June 1, 2009.

A copy of this document can be obtained from David Fredette in the Department of Environmental Stewardship. If you have any questions concerning this letter please contact me at (978) 656-3565.

Sincerely,

TRC Environmental Corporation

David M. Sullivan, CHMM, LSP

Sr. Project Manager

Cc: David Fredette, New Bedford Department of Environmental Stewardship

Wannalancit Mills 650 Suffolk Street, Suite 200 Lowell, MA 01854

978.970.5600 PHONE 978.453.1995 FAX

www.TRCsolutions.com

May 29, 2009

TRC Reference Number: 115058.0000

Marianne B. De Souza Health Department 1213 Purchase Street First Floor New Bedford, MA 02740

RE: Notice of Immediate Response Action Completion Report New Bedford High School – Impacted Soil at the HH-13 Area, New Bedford, Massachusetts; MassDEP RTN 4-21847

Ms. De Souza:

On behalf of the City of New Bedford, Massachusetts, and pursuant to 310 CMR 40.1403 of the Massachusetts Contingency Plan (MCP), TRC Environmental Corporation (TRC) has prepared this letter to inform you of the submittal of an Immediate Response Action Completion Report pertaining to soils containing elevated concentrations of arsenic and chromium at the New Bedford High School in New Bedford, Massachusetts. This submittal will be made to the Massachusetts Department of Environmental Protection (MassDEP) by June 1, 2009.

A copy of this document can be obtained from David Fredette in the Department of Environmental Stewardship. If you have any questions concerning this letter please contact me at (978) 656-3565.

Sincerely, TRC Environmental Corporation

David M. Sullivan, CHMM, LSP

Sr. Project Manager

Cc: David Fredette, New Bedford Department of Environmental Stewardship

ATTACHMENT C
SOIL BORING LOGS

Wannalancit Mills

BORING/WELL CONSTRUCTION LOG

				((ン	Lowell MA Telephone: 978-970-5600 Fax: 978-453-1995				
CLIEN	IT/PRO	JECT N	IUME	BER_	City o	f New Bedford (NBHS)/115058	SCREEN TYPE/SLOT	0.010 2-	inch slotted	d PVC: 4-14 feet
		LL NUN		•	MW-F	IH-13	_ FILTER PACK TYPE _	Sand		
		GIST _					SEAL TYPE _	Bentonit		
					REMAN	New England Geotech/Steve Perry		•	Feet) 6	.5
		ED <u>4</u>					_ TOTAL DEPTH (Feet) _			
						se #2 (C-block)	_ GROUND ELEVATION (
		METHO					REFERENCE ELEVATION	Ји (геет, і	NAVD 86)_	טטו
						620 DT Track Rig ed for Dibenzofuran				
DEPTH (ft. BGL)	BLOW COUNTS	PEN/REC (INCHES)	CORE#	TRC ID	GRAPHIC LOG	LITHOLOGIC DE:	SCRIPTION	Field Testing (ppm)	SAMPLE ID/ TIME	WELL DIAGRAM
	NA	48/22		S-1		12" Dark brown SILT and fine S/ gravel, moist, no odor, no stainir		,:	HH-13(0-1) 1515	Concrete Seal/Roadbox 2-inch PVC Riser in Sand
- 2 -						9" FILL (silty matrix with ash, tra plastic and wood debris), moist,	ce to little coal, brick, no odor, no staining.	0.0	HH-13(1-3) 1520	◆1 foot Bentonit Seal
- 3 -		Wilder Control of the								-2-inch PVC Riser in Sand
- 4 - 5	NA	48/20		S-2	77. 77. 77. 77. 77. 77.	18" Dark brown to black organic staining.	PEAT, wet, no odor, no			
- 6 - - 7 -						2" Gray fine SAND and GRAVEI staining.	L, wet, no odor, no	0.0	жение менения и польта пол	▼
 - 8 -					.0	28" Gray fine SAND, little sift, we	ot no odor no staining		Conditions or service of the Conditions of the C	
- 9 -	NA	48/25		S-3		20 Gray line of the prince only the	5, 10 ccs, 10 ccc, 10		STATE THE STATE OF	-0.010 Slotted PVC Screen in Sand
10								0.0		
- 11 -										
 - 12						Na Canada O. U4-4				
- 13 -		NA		NA		No Sample Collected		NA.		

End of Boring - Terminated at 14 feet

Wannalancit Mills 650 Suffolk Street Lowell MA

BORING/WELL CONSTRUCTION LOG

BORIN TRC G	IG/WEI IEOLO	JECT N _L NUM GIST _	BER J. S	BER	HH-13 ers	Lowell MA Telephone: 978-970-5600 Fax: 978-453-1995 f New Bedford (NBHS)/115058 SA	SCREEN TYPE/SLOT FILTER PACK TYPE SEAL TYPE DEPTH TO WATER (Ap	NA NA	: Feet) N	<u> </u>	
DATE LOCA SAMP	DRILL TION LING N	ED <u>3</u> NBH:	5/11/0 S - A	9 pprox 48" N	imatel Iacroc	y 10 feet North of center point	TOTAL DEPTH (Feet) GROUND ELEVATION REFERENCE ELEVATION	4 (Feet, NAV	'D 88) TBI)	
						Bs, PAHs, and Metals	-				··
DEPTH (ft. BGL)	BLOW	PEN/REC (INCHES)	CORE #	TRCID	GRAPHIC LOG	LITHOLOGIC DES	CRIPTION	Field Testing (ppm)	SAMPLE ID/ TIME	WELL C	NAGRAM
- 1 -	NA	48/30		S-1		10" Dark brown organic TOPSOII fine gravel, moist, no odor, no sta 6" Tan to brown fine SAND, little coarse sand. 14" Dark brown silty sand matrix	sift and medium to		HH-13A(0-1) 1720		
- 2 -						ash, trace glass, plastic and slag), moist, slight waste-like	0.0	HH-13A(1-3) 1725		No Monitoring Well Installed
- 4 -						End of Boring - Terminated at 4 f	eet				

BORING/WELL CONSTRUCTION LOG

Fax: 978-453-1995 CLIENT/PROJECT NUMBER City of New Bedford (NBHS)/115058 SCREEN TYPE/SLOT NA		
The state of the s		
BORING/WELL NUMBER HH-13B FILTER PACK TYPE NA		
TRC GEOLOGIST J. Saunders SEAL TYPE NA		
DRILLING CONTRACTOR/FOREMAN New England Geotech/Bill Meadows DEPTH TO WATER (Approximate Feet) NA		
DATE DRILLED 3/11/09 TOTAL DEPTH (Feet) 4		
	GROUND ELEVATION (Feet, NAVD 88) TBD	
SAMPLING METHOD 48" Macrocore REFERENCE ELEVATION (Feet, NAVD 88)	NA	
DRILLING METHOD		
(it. BGL) BLOW COUNTS PEN/REC (INCHES) CORE # TRC ID GRAPHIC LOG (Ppm) SAMPLE ID/ TIME	WELL DIAGRAM	
NA 48/30 S-1 12" Dark brown SILT and fine SAND, trace fine gravel, roots and grass, moist, no odor, no staining. 12" Dark brown SILT and fine SAND, trace fine gravel, roots and grass, moist, no odor, no staining. 13" FILL (ash, coal, slag, trace glass, and fibrous material (at approximately 30 inches)), moist, no odor, no staining. 2 - 0.0 Hsh 138(4-3) 1595 End of Boring - Terminated at 4 feet	No Monitoring Well Installed	

Wannalancit Mills 650 Suffolk Street

BORING/WELL CONSTRUCTION LOG

Tolephone: 978-970-560 Fax: 978-453-1995 CLIENT/PROJECT NUMBER City of New Bedford (NBHS)/1150 CORING/WELL NUMBER HH-13C FRC GEOLOGIST J. Saunders ORILLING CONTRACTOR/FOREMAN New England Geotech/Bill Medical Date DRILLED 3/11/09 COCATION NBHS - Approximately 10 feet South of center polymers CAMPLING METHOD 48" Macrocore ORILLING METHOD Direct Push/5400 Truck Rig LOVEN 1995 LOVEN	FILTER PACK TYPE SEAL TYPE WS DEPTH TO WATER (App TOTAL DEPTH (Feet) GROUND ELEVATION (F	SEAL TYPE NA DEPTH TO WATER (Approximate Feet) NA TOTAL DEPTH (Feet) 4		
H	C DESCRIPTION	Field Testing (ppm)	SAMPLE ID/ TIME	WELL DIAGRAM
fine to medium gravel, i	lt, moist, no odor, no staining.	0.0	HH-13C(0-1) 1650 Pius MS/DUA HH-13C(1-3) 1655	No Monitoring Well Installed

Wannalancit Mills 650 Suffolk Street

BORIN TRC G DRILL DATE LOCA SAMP DRILL	IG/WEL EOLOGING CO DRILLI TION LING ME	L NUM GIST _ ONTRAI ED _ 3 _ NBHS METHOL	J. S. CTOF /11/0 S - Ar D	aunde VFOR 9 oproxi 48" M	rs EMAN matel lacroc	New England Geotech/Bill Meadows y 10 feet East of center point	SCREEN TYPE/SLOT NA FILTER PACK TYPE NA SEAL TYPE NA DEPTH TO WATER (Approximate Feet) NA TOTAL DEPTH (Feet) 4 GROUND ELEVATION (Feet, NAVD 88) TBD REFERENCE ELEVATION (Feet, NAVD 88) NA				
DEPTH (ft. BGL)	BLOW COUNTS	PEN/REC (INCHES)	CORE#	TRC ID	GRAPHIC LOG	LITHOLOGIC DES	CRIPTION	Field Testing (ppm)	SAMPLE ID/ TIME	WELL D	IAGRAM
- 1	NA	48/36		S-1		6" Dark brown organic TOPSOIL, fine gravel, moist, no odor, no state 4" Gray-brown fine SAND, little si odor, no staining. 26" FILL (silty matrix with ash and wood debris), moist, no odor, no state and the state are stated at 4 feet and of Boring - Terminated at 4 feet and of Boring - Terminated at 4 feet and the state are stated at 4 feet and the stated at 4 feet and	ining. It, trace glass, moist, no I slag, trace glass and staining.	0.0	HH-13D(0-1) 1810 HH-13D(1-3) 1815 HH-113D(1-3) 1715	- 1	No Monitoring Well Installed

Wannalancit Mills 650 Suffolk Street

BORIN TRC G DRILL DATE LOCA SAMP	IG/WEI EOLO ING CO DRILLI TION LING MI	L NUM GIST _ ONTRAC ED _ 3 NBHS METHOD	J. S. J. S. CTOF /11/0 S - A. Di	aunde VFOR 9 oprox 48" M	HH-13 ers REMAN imately facroco	New England Geotech/Bill Meadows y 20 feet East of center point	SEAL TYPE DEPTH TO WATER (App TOTAL DEPTH (Feet) GROUND ELEVATION (F REFERENCE ELEVATION	NA NA roximate 4 eet, NAV	Feet) <u>N</u>	A D	
DEPTH (ft. BGL)	BLOW COUNTS	PEN/REC (INCHES)	CORE#	TRC ID	GRAPHIC LOG	LITHOLOGIC DES	CRIPTION	Field Testing (ppm)	SAMPLE ID/ TIME	WELL D	IAGRAM
2 - 3 - 4 -	NA ,	48/30		S-1		8" Dark brown organic TOPSOIL, fine gravel, slightly moist, no odor 2" Tan fine SAND, moist, no odor 20" FILL (silty matrix with brick, as and rubber (in cutting shoe)), moi	, no staining. , no staining. sh/cinders, trace glass st, no odor, no staining.	0.0	HH-13E(0-1) 1630		No Monitoring Well Installed

CLIEN	T/PRO	JECT N	amui	ER	City of	Fax: 978-453-1995 f New Bedford (NBHS)/115058	SCREEN TYPE/SLOT N.	A			
BORIN	IG/WEI	L NUM	BER		HH-13	F	FILTER PACK TYPE N	Α			***************************************
TRC G	SEOLO	GIST _	J. Sa	aunde	ers		SEAL TYPE N	Α			
DRILL	ING CO	ONTRA	CTOF	VFOR	REMAN	New England Geotech/Bill Meadows	DEPTH TO WATER (Appro	ximate	Feet) N	A	·
DATE	DRILLI	ED _3	/11/ <u>0</u>	9			TOTAL DEPTH (Feet) 4				
						y 20 feet North of center point	GROUND ELEVATION (Fee				
		METHO					REFERENCE ELEVATION	(Feet, N	IAVD 88)_	NA	
						400 Truck Rig					
NOIE	S S	amples	analy	zed t	or PC	Bs (Hold), PAHs (Hold), and Metals (H	old)				
DEPTH (ft. BGL)	BLOW COUNTS	PEN/REC (INCHES)	CORE#	TRC ID	GRAPHIC LOG	LITHOLOGIC DES	CRIPTION	Field Testing (ppm)	SAMPLE ID/ TIME	WELL D	IAGRAM
	NA	48/30		S-1	7 7 7 7 7 7	6" Dark brown organic TOPSOIL, moist, no odor, no staining.	trace grass and roots,				
-						6" Tan to brown fine SAND, little s moist, no odor, no staining.	ilt, trace fine gravel,		HH-13F(0-1) 1730		
1 ~						8" Dark brown SILT, moist, no odd	or, no staining.				
2 -					×××	5" Gray-brown fine to medium SA and fine gravel, moist, no odor, no 5" Dark gray FILL (ash, wood, trac	staining.	0.0	HH-13F(1-3) 1735		No Monitoring Well Installed
						moist, slight waste like odor, no st	aining.				
3 -											
						•					
4 ~					XXX	End of Boring - Terminated at 4 fe	et				
								:			
							į				

Wannalancit Mills 650 Suffolk Street Lowell MA

BORING/WELL CONSTRUCTION LOG

Telephone: 978-970-5600 Fax: 978-453-1995 CLIENT/PROJECT NUMBER _ City of New Bedford (NBHS)/115058 SCREEN TYPE/SLOT NA **FILTER PACK TYPE** HH-13G BORING/WELL NUMBER __ SEAL TYPE NA TRC GEOLOGIST J. Saunders DRILLING CONTRACTOR/FOREMAN New England Geotech/Bill Meadows DEPTH TO WATER (Approximate Feet) NA DATE DRILLED 3/11/09 TOTAL DEPTH (Feet) __4 LOCATION NBHS - Approximately 20 feet West of center point GROUND ELEVATION (Feet, NAVD 88) TBD SAMPLING METHOD 48" Macrocore REFERENCE ELEVATION (Feet, NAVD 88) NA DRILLING METHOD Direct Push/5400 Truck Rig NOTES Samples analyzed for PCBs (Hold), PAHs (Hold), and Metals (Hold) Field Testing (ppm) ò GRAPHIC LOG BLOW COUNTS TRC ID SAMPLE II TIME CORE # LITHOLOGIC DESCRIPTION WELL DIAGRAM 24" Dark brown SILT and fine SAND, trace roots and NA 48/30 S-1 grass, little fill (coal, slag, and glass), moist, no odor, no HH-13G(0-1) 1 No Monitoring 2 6" FILL (ash, coal, slag and glass, trace wood debris), moist, no odor, no staining. HH-13G(1-3) 0.0 Installed 3 4 End of Boring - Terminated at 4 feet

1	SECTION .	• •				Telephone: 978-970-5600 Fax: 978-453-1995					
CLIEN	IT/PRO	JECT N	IUME	BER	City o	f New Bedford (NBHS)/115058	SCREEN TYPE/SLOT	NΑ			
		L NUM			HH-13	······································	FILTER PACK TYPE	VA			
TRC (SEOLO	GIST	J.S	aunde	ers		SEAL TYPE	VA			
					REMAI	N New England Geotech/Bill Meadows	DEPTH TO WATER (Appr	oximate	Feet) N	A	
		ED <u>3</u>					TOTAL DEPTH (Feet)				
						y 20 feet South of center point	GROUND ELEVATION (Fe				
		METHO					REFERENCE ELEVATION	l (Feet, l	_(88 DVA	NA	
						<u>400 Truck Rig</u> Bs (Hold), PAHs (Hold), and Metals (H	Iold)				
					1	I					
DEPTH (ft. BGL)	BLOW COUNTS	PEN/REC (INCHES)	CORE#	TRC ID	GRAPHIC LOG		CRIPTION	Field Testing (ppm)	SAMPLE ID/ TIME	WELL C	NAGRAM
-	NA	48/34		S-1	70.7 7.77 7.77	12" Dark brown organic TOPSOIL fine to medium gravel, moist, no c	., trace roots, grass, and odor, no staining.		HH-13H(0-1) 1640		
1 -					, X	18" Tan fine SAND, little silt, trace no odor, no staining.	medium sand, moist,	_			
2 -		:			~~~			0.0	HH-13H(1-3) 1645)	No Monitoring Well Installed
3 -						4" Rusty colored FILL (ash, slag, moist, no odor, no staining.	trace metal and glass),	,			
4 -					XXXX	End of Boring - Terminated at 4 fe	eet	_			
:									•		

ATTACHMENT D

SAMPLE RESULTS FROM LABORATORY REPORTS

Laboratory Name: _	Northeast Analytical, Inc.	SDG No:	09030065
ELAP ID No:	11078	_ LRF ID:	09030065-07
Matrix:	Soil	Client ID:	HH-13B (0-1)
Sample wt(Dry)/vol:	7.8675 g	Lab Sample ID:	AM02267
Percent Moisture:	24.3	Date Received:	03/13/2009
Extraction:	SOXHLET	Date Extracted:	03/16/2009
Conc. Extract Volume: _	25000 uL	Date Analyzed:	03/18/2009
Method:	SW-846 8082 (PCB)	Dilution Factor:	1
Column 1 Information:	ARROWBORE CAPILLARY, ZB-5, 30M; ID: 0.25 mm	Sulfur Cleanup:	YES
Injection Volume:			
Lab File ID:	GC20B-342-12		
Column 2 Information:			
GC Column: J&W, NARROWBOR	RE CAPILLARY, DB-1, 30M; ID: 0.25 mm	·····	
Injection Volume:	1.0 uL		
Lab File ID:	GC20F-381-12		

Column Number	CAS NO	COMPOUND NAME	CONCENTRATION UG/G	Q
1	12674-11-2	Aroclor 1016	0.0636	U
1	11104-28-2	Aroclor 1221	0.0636	U
1	11141-16-5	Aroclor 1232	0.0636	Ü
1	53469-21-9	Aroclor 1242	0.0636	U
1	12672-29-6	Aroclor 1248	0.0636	U
1	11097-69-1	Aroclor 1254	0.833	AF
1	11096-82-5	Aroclor 1260	0.0636	U

Laboratory Qualifiers:

AF-Aroclor 1254 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.
U - Denotes analyte not detected at concentration greater than or equal to the Practical Quantitation Limit (PQL). PQLs are adjusted for sample weight/volume and dilution

Laboratory Name: _	Northeast Analytical, Inc.	SDG No:	09030065	
ELAP ID No:	11078	LRF ID:	09030065-09	
Matrix:	Soil	Client ID:	HH-13D (0-1)	_
Sample wt(Dry)/vol:	9,1510 g	Lab Sample ID:	AM02269	
Percent Moisture:	13.8	Date Received:	03/13/2009	_
Extraction:	SOXHLET	Date Extracted:	03/16/2009	_
Conc. Extract Volume: _	25000 uL	Date Analyzed:	03/18/2009	
Method:	SW-846 8082 (PCB)	Dilution Factor:	1	
		Sulfur Cleanup:	YES	
Column 1 Information			*	
GC Column: J&W, NARROWBO	RE CAPILLARY, DB-1, 30M; ID: 0.25 mm			
Injection Volume:	1.0 uL			
Lab File ID:	GC20F-381-14			
Column 2 Information				
GC Column: PHENOMENEX, N	ARROWBORE CAPILLARY, ZB-5, 30M; ID: 0.25 mm			
Injection Volume:				
Lab File ID:	GC20B-342-14	•		

Column Number	CAS NO	COMPOUND NAME	CONCENTRATION UG/G	Q
1	12674-11-2	Aroclor 1016	0.0546	U
1	11104-28-2	Aroclor 1221	0.0546	U
1	11141-16-5	Aroclor 1232	0.0546	U
1	53469-21-9	Aroclor 1242	0.0546	υ
1	12672-29-6	Aroclor 1248	0.0546	U
1	11097-69-1	Aroclor 1254	0.670	AF
1	11096-82-5	Aroclor 1260	0.0546	U

AF-Arcclor 1254 is being reported as the best Arcclor match. The sample exhibits an altered PCB pattern.
U - Denotes analyte not defected at concentration greater than or equal to the Practical Quantitation Limit (PQL). PQLs are adjusted for sample weight/volume and dilution

Laboratory Name:	Northeast Analytical, Inc.	SDG No:	09030065	
ELAP ID No:	11078	_ LRF ID:	09030065-16	_
Matrix:	Soil	Client ID:	HH-13C (0-1)	_
Sample wt(Dry)/vol:	8.9852 g	Lab Sample ID:	AM02276	
Percent Moisture:	17.4	Date Received:	03/13/2009	_
Extraction:	SOXHLET	Date Extracted:	03/16/2009	
Conc. Extract Volume:	25000 uL	Date Analyzed:	03/18/2009	
Method:	SW-846 8082 (PCB)	Dilution Factor:	1	
Column 1 Information:	RROWBORE CAPILLARY, ZB-5, 30M; ID: 0.25 mm	Sulfur Cleanup:	YES	*****
Injection Volume:		_		
Lab File ID:	GC20B-342-17			
Column 2 Information:				
GC Column: J&W, NARROWBOF	RE CAPILLARY, DB-1, 30M; fD: 0.25 mm			
Injection Volume:	1.0 uL	•		
Lab File ID:	GC20F-381-17			

Column Number	CAS NO	COMPOUND NAME	CONCENTRATION UG/G	Q
1	12674-11-2	Aroclor 1016	0.0556	U
1	11104-28-2	Aroclor 1221	0.0556	U
1	11141-16-5	Aroclor 1232	0.0556	U
1	53469-21-9	Aroclor 1242	0.0556	Ū
1	12672-29-6	Aroclor 1248	0.0556	U
1	11097-69-1	Aroclor 1254	0.142	AF
1	11096-82-5	Aroclor 1260	0.0556	U

Laboratory Qualifiers:

AF-Aroclor 1254 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.

U - Denotes analyte not detected at concentration greater than or equal to the Practical Quantitation Limit (PQL), PQLs are adjusted for sample weight/volume and dilution factors.

Laboratory Name:	Northeast Analytical, Inc.	SDG No:	09030065	
ELAP ID No:	11078	LRF ID:	09030065-18	
Matrix:	Soil	Client ID:	HH-13A (0-1)	
Sample wt(Dry)/vol:	8.5455 g	Lab Sample ID:	AM02278	
Percent Moisture:	15.6	Date Received:	03/13/2009	
Extraction:	SOXHLET	Date Extracted:	03/16/2009	
Conc. Extract Volume: _	25000 uL	Date Analyzed:	03/19/2009	
Method:	SW-846 8082 (PCB)	_ Dilution Factor:	1	
		Sulfur Cleanup:	YES	
Column 1 Information:				
GC Column: PHENOMENEX, NA	RROWBORE CAPILLARY, ZB-5, 30M; ID: 0.25 mm	····		
Injection Volume:	1.0 uL			
Lab File ID:	GC20B-342-22			
Column 2 Information:				
GC Column: J&W, NARROWBOF	RE CAPILLARY, DB-1, 30M; ID: 0.25 mm	·····		

Column Number	CAS NO	COMPOUND NAME	CONCENTRATION UG/G	Q
1	12674-11-2	Aroclor 1016	0.0585	U
1	11104-28-2	Aroclor 1221	0.0585	U
1	11141-16-5	Aroclor 1232	0.0585	U
1	53469-21-9	Aroclor 1242	0.0585	U
1	12672-29-6	Aroclor 1248	0.0585	U
1	11097-69-1	Aroclor 1254	0.104	AF
1	11096-82-5	Aroclor 1260	0.0585	U

 Injection Volume:
 1.0 uL

 Lab File ID:
 GC20F-381-22

Laboratory Qualifiers:

AF-Aroclor 1254 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.

U - Denotes analyte not detected at concentration greater than or equal to the Practical Quantitation Limit (PQL). PQLs are adjusted for sample weight/volume and dilution factors.

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

3/19/2009

Page 4 of 33

LOWELL, MA 01852

Purchase Order No.:

Project Location: CITY OF NEW BEDFORD (NBHS)

LIMS-BAT #: Job Number: LIMT-23901 115058

Date Received:

3/12/2009

Field Sample #: HH-113D (1-3)

Sample ID:

09807545

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

Date

Analyzed

Date

Analyzed

Analyst RL

SPEC Limit

P/F

mg/kg dry wt

14.5

03/18/09 OP 3.22

Lo Hi

Arsenic

Field Sample #: HH-13A (0-1)

Sample ID:

09B07548

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

Analyst

RL

SPEC Limit

Hi

Lo

P/F

Arsenic

mg/kg dry wt

03/18/09 OP 2.94

Field Sample #: HH-13A (1-3) Sample ID:

09B07549

±Sampled: 3/11/2009

ND

Not Specified

Sample Matrix:

SOIL

Units

mg/kg dry wt

Results

Date Analyst RL

SPEC Limit

P/F

10.9

03/18/09 OP

Analyzed

2.89

Lo Hi

Arsenic

Field Sample #: HH-13B (0-1)

Sample ID:

09B07541

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

Date Analyst

RL.

SPEC Limit

Hi

Analyzed

Lo

P/F

Arsenic

mg/kg dry wt

40.0

03/18/09 OP 3.33

Field Sample #: HH-13B (1-3)

Sample ID:

09B07542

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units Results

Analyst

RL

SPEC Limit

Lo

P/F

Arsenic

mg/kg dry wt

ND

Analyzed 03/18/09

Date

OP

2.97

Hì

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

* = See end of report for comments and notes applying to this sample

= See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

3/19/2009

Page 5 of 33

LOWELL, MA 01852

Purchase Order No.:

Project Location: CITY OF NEW BEDFORD (NBHS)

LIMS-BAT #:

LIMT-23901

Date Received:

3/12/2009

Job Number:

115058

Field Sample #: HH-13C (0-1) QC Sample ID:

09B07546

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Results

Date Analyst SPEC Limit

P/F

Units

Analyzed

RL

Нí

Arsenic

mg/kg dry wt

ND

03/18/09 OP 2.90

Lo

Field Sample #: HH-13C (1-3)

Sample ID:

09B07547

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

Date

Analyst RL SPEC Limit

Ηί

Lo

P/F

Arsenic

mg/kg dry wt

31.9

Analyzed 03/19/09

OP

4.04

Sample ID:

Field Sample #: HH-13D (0-1) 09B07543

±Sampled: 3/11/2009 Not Specified

Sample Matrix:

SOIL

Results

Date Analyst

SPEC Limit

Units

Analyzed

RL

P/F

mg/kg dry wt

ND

03/18/09 OP 2.88

Lo Hi

Arsenic

Field Sample #: HH-13D (1-3) 09B07544

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

Sample ID:

SOIL

Units

mg/kg dry wt

Results

Date

Analyst

RL

3.07

SPEC Limit

Lo

P/F

Arsenic

16.7

Analyzed 03/18/09

OP

Hi

Analytical Method:

SW846 3050/6010

SAMPLES ARE DIGESTED WITH NITRIC ACID AND THEN ANALYZED BY INDUCTIVELY COUPLED PLASMA EMISSION SPECTROSCOPY.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

= See attached chain-of-custody record for time sampled

^{* =} See end of report for comments and notes applying to this sample

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

3/19/2009

Page 6 of 33

LOWELL, MA 01852

Purchase Order No.:

Project Location: CITY OF NEW BEDFORD (NBHS)

LIMS-BAT #:

LIMT-23901

Date Received:

3/12/2009

Field Sample #: HH-113D (1-3)

Job Number:

115058

Sample ID:

09B07545

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

Date Analyst RL

SPEC Limit

P/F

Analyzed

Ηi

Barium

mg/kg dry wt

3330

03/18/09 OP 6.43

RL

5.87

Lo

Field Sample #: HH-13A (0-1)

Sample ID:

09B07548

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units

mg/kg dry wt

mg/kg dry wt

Results

20.0

Date Analyzed

03/18/09

Analyst

OP

SPEC Limit

Hi

Lo

P/F

Barium

Field Sample #: HH-13A (1-3) 09B07549

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

Sample ID:

SOIL

Units

Results

Date Analyst

OP

RL

SPEC Limit

Barium

1280

Analyzed 03/18/09

5.77

Hi lο

P/F

Field Sample #: HH-13B (0-1)

Sample ID:

09B07541

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL.

Units

Results

7920

Date Analyst

OP

Analyzed

03/19/09

RL.

6.65

SPEC Limit

Hi

Lo

P/F

Barium

Field Sample #: HH-13B (1-3)

09B07542

mg/kg dry wt

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

Sample ID:

SOIL

Units

mg/kg dry wt

Results

142

Date

Analyst

RL

5.93

SPEC Limit Hi

Barium

Analyzed

03/18/09

OP

Lo

P/F

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{# =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

3/19/2009

Page 7 of 33

LOWELL, MA 01852

Purchase Order No.:

Project Location: CITY OF NEW BEDFORD (NBHS)

LIMS-BAT #: Job Number: LIMT-23901 115058

Date Received: Field Sample #: HH-13C (0-1) QC

Sample ID:

3/12/2009

09B07546

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

Analyst

RL

SPEC Limit

Hi

P/F

mg/kg dry wt

41.9

03/18/09 OP

Date

Date

Analyzed

Analyzed

5.79

Lo

Barium

Field Sample #: HH-13C (1-3)

Sample ID:

09B07547

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

Analyst

RL

SPEC Limit

H

Lo

P/F

Barium

mg/kg dry wt

6780

03/19/09 QР 8.07

Field Sample #: HH-13D (0-1) Sample ID:

09B07543

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

Date Analyst RL

SPEC Limit

mg/kg dry wt

Analyzed

Ηi

P/F

Barium

27.7

03/18/09 OP 5.75

Lo

Field Sample #: HH-13D (1-3)

‡Sampled: 3/11/2009 Not Specified

Sample Matrix:

Sample ID:

SOIL

09B07544

Units

Results

Date

Analyst

RL

6.14

SPEC Limit

Lο

P/F

Barium

mg/kg dry wt

3850

Analyzed 03/18/09

OP

Analytical Method:

SW846 3050/6010

SAMPLES ARE DIGESTED WITH NITRIC ACID AND THEN ANALYZED BY INDUCTIVELY COUPLED PLASMA EMISSION SPECTROSCOPY.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{# =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

3/19/2009

Page 8 of 33

LOWELL, MA 01852

Purchase Order No.:

Project Location: CITY OF NEW BEDFORD (NBHS)

3/12/2009

LIMS-BAT #: Job Number:

Lo

LIMT-23901 115058

Date Received: Field Sample #: HH-113D (1-3)

Sample ID:

09B07545

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Results

Date Analyst RL

SPEC Limit

P/F

Units

mg/kg dry wt

03/18/09 OP

Analyzed

0.33

Ηí

Cadmium

Field Sample #: HH-13A (0-1)

Sample ID:

09B07548

‡Sampled: 3/11/2009

8.09

Not Specified

Sample Matrix:

SOIL

Units

Results

Analyst

RL.

SPEC Limit

Hi

Lo

P/F

Cadmium

mg/kg dry wt

ND

Analyzed 03/18/09 OP

Date

0.30

Field Sample #: HH-13A (1-3)

09B07549

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

Sample ID:

SOIL

Units

Results

Date Analyst RL

SPEC Limit Lο

P/F

Cadmium

mg/kg dry wt

0.63

03/18/09 OP

Analyzed

0.29

Hi

Field Sample #: HH-13B (0-1)

Sample ID:

09B07541

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

Date Analyst

03/18/09

RL.

SPEC Limit

P/F

mg/kg dry wt

mg/kg dry wt

2.01

Analyzed

OP

0.34

Lo Hi

Cadmium

Field Sample #: HH-13B (1-3)

Sample ID:

09B07542

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units Results

Analyst

OP

RL.

SPEC Limit

P/F

Cadmium

0.37

Analyzed 03/18/09

Date

0.30

Hi 10

RL = Reporting Limit ND = Not Detected at or above the Reporting Limit SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to

determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

* = See end of report for comments and notes applying to this sample

= See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL 650 SUFFOLK STREET

Purchase Order No.:

3/19/2009 Page 9 of 33

LOWELL, MA 01852

Project Location: CITY OF NEW BEDFORD (NBHS)

LIMS-BAT #:

LIMT-23901

Date Received:

3/12/2009

Job Number:

115058

Field Sample #: HH-13C (0-1) QC Sample ID:

09B07546

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

Date Analyst RL

SPEC Limit

P/F

mg/kg dry wt

ND

03/18/09 OP

Analyzed

0.29

10 Hi

Cadmium

Field Sample #: HH-13C (1-3)

Sample ID:

09B07547

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units

Units

Results

Analyst

RL

0.41

SPEC Limit

Hì

Lo

P/F

Cadmium

mg/kg dry wt

40.6

03/18/09 OP

Sample ID:

Field Sample #: HH-13D (0-1) 09B07543

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Results

Date

Date

Analyzed

Analyst

RL

SPEC Limit

P/F

Cadmium

mg/kg dry wt

0.48

Analyzed 03/18/09 OP

0.29

Lo Hi

Field Sample #: HH-13D (1-3)

Sample ID:

09B07544

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

7.47

Date Analyst

OP

RL

SPEC Limit

Lo

Lo

P/F

mg/kg dry wt

Analyzed 03/18/09

0.31

Hi

Cadmium

Field Sample #: HJ-10C (0-1)

Sample ID:

09B07535

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units Results Date

Analyst

RL.

0.30

SPEC Limit

Hi

P/F

Cadmium

mg/kg dry wt

0.52

Analyzed 03/18/09

OP

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

* = See end of report for comments and notes applying to this sample

= See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

Purchase Order No.:

3/19/2009 Page 10 of 33

LOWELL, MA 01852

Project Location: CITY OF NEW BEDFORD (NBHS)

LIMS-BAT #:

LIMT-23901

Date Received:

3/12/2009

Job Number:

115058

Field Sample #: HJ-10C (1-3)

‡Sampled: 3/11/2009

Sample ID:

09B07536

Not Specified

Sample Matrix:

SOIL

1	t.	٠.	1.

Results

Analyst

RL.

SPEC Limit P/ F

Hi

mg/kg dry wt

14.9

03/18/09 OP

Date

Analyzed

0.33

Lo

Cadmium

Field Sample #: HJ-10D (0-1)

Sample ID:

09B07539

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

Analyst

RL

SPEC Limit

P/F

Cadmium

mg/kg dry wt

0.55

Analyzed 03/18/09 OP

Date

0.32

Lo Hi

Sample ID:

Field Sample #: HJ-10D (1-3)

09B07540

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units

mg/kg dry wt

Results

Date Analyst RL

SPEC Limit

P/F

Cadmium

19.2

Analyzed 03/18/09

OP

0.35

Lo Hi

Field Sample #: HJ-10F (0-1)

09B07537

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

Sample ID:

mg/kg dry wt

Units

Units

mg/kg dry wt

Results

3.06

Date

03/18/09

Analyst

RL

0.35

SPEC Limit

P/F

SOIL

Analyzed

OP

Hi Lo

Cadmium

Field Sample #: HJ-10F (1-3)

09B07538

‡Sampled: 3/11/2009 Not Specified

Sample Matrix: SOIL

Sample ID:

Results

Analyst

RL

SPEC Limit

Lo

Hi

P/F

Cadmium

ND

Analyzed 03/18/09

Date

OP

0.34

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

* = See end of report for comments and notes applying to this sample

‡ = See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

3/19/2009

Page 12 of 33

LOWELL, MA 01852

Purchase Order No.:

Project Location: CITY OF NEW BEDFORD (NBHS)

LIMS-BAT #: Job Number: LIMT-23901 115058

Date Received:

3/12/2009

Field Sample #: HH-113D (1-3)

09B07545

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

Sample ID:

SOIL

Units

Results

Date Analyst **SPEC Limit**

P/F

Analyzed

RL

Hi

Chromium

mg/kg dry wt

496

03/18/09 OP 0.65

Lo

Field Sample #: HH-13A (0-1)

Sample ID:

09B07548

±Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

Date Analyst RL

SPEC Limit

Iο

Hi

P/F

Chromium

mg/kg dry wt

4.57

03/18/09 OP

Analyzed

0.59

Sample ID:

Field Sample #: HH-13A (1-3) 09B07549

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Results

Date Analyst

RŁ

0.58

RL

0.67

SPEC Limit

P/F

Chromium

mg/kg dry wt

492

Analyzed 03/18/09 OP Lo

Field Sample #: HH-13B (0-1)

Sample ID:

09B07541

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units

Units

Results

Date

Analyst

SPEC Limit

P/F

mg/kg dry wt

1960

Analyzed

03/18/09

Date

Analyzed

Lo Hi

Chromium

Field Sample #: HH-13B (1-3)

Sample ID:

09B07542

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units

mg/kg dry wt

Results

Analyst

OP

RL

SPEC Limit

Hi

Lo

P/F

Chromium

17.2

03/18/09

OP

0.60

RL = Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

ND = Not Detected at or above the Reporting Limit

^{* =} See end of report for comments and notes applying to this sample

^{# =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET LOWELL, MA 01852

Purchase Order No.:

Project Location: CITY OF NEW BEDFORD (NBHS)

LIMS-BAT#: LIMT-23901

Date Received:

3/12/2009

Job Number:

Field Sample #: HH-13C (0-1) QC

115058

3/19/2009

Page 13 of 33

Sample ID:

09B07546

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units	

mg/kg dry wt

Results

Date Analyst SPEC Limit

P/F

6.74

03/18/09 OP

Analyzed

0.58

RL.

Нi

Chromium

Field Sample #: HH-13C (1-3)

Sample ID:

09B07547

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units	
-------	--

Results

Analyst

RL

SPEC Limit

Lo

P/F

Chromium

mg/kg dry wt

384

03/18/09 OP

Date

Date

Analyzed

03/18/09

Analyzed

0.81

Hi

Hi

Field Sample #: HH-13D (0-1)

Sample ID:

Field Sample #: HH-13D (1-3)

09B07543

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units

mg/kg dry wt

Results

Analyst

OP

RL

0.58

SPEC Limit

Lo

P/F

Chromium

Sample ID:

09B07544

‡Sampled: 3/11/2009

5.52

Not Specified

Sample Matrix:

SOIL

Units

Results

Date Analyst

OP

RL

0.62

SPEC Limit

P/F

mg/kg dry wt

594

Analyzed

03/18/09

Lo Ηi

Chromium

Field Sample #: HJ-10C (0-1)

Sample ID:

09B07535

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

Date

Analyst

SPEC Limit

P/F

Chromium

mg/kg dry wt

17.6

Analyzed 03/18/09 OP

RL

0.60

Lo Hi

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{# =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

3/19/2009

Page 14 of 33

LOWELL, MA 01852

Purchase Order No.:

Project Location: CITY OF NEW BEDFORD (NBHS)

LIMS-BAT#:

LIMT-23901

Date Received:

3/12/2009

Job Number:

115058

Field Sample #: HJ-10C (1-3)

09B07536

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

Sample ID:

SOIL

Units

Results

Date Analyst RL.

SPEC Limit

P/F

Analyzed

Chromium

mg/kg dry wt

332

03/18/09 OP 0.65

Lo Hi

Field Sample #: HJ-10D (0-1)

Sample ID:

09B07539

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL.

Units

Results

Analyst

OP

RL

SPEC Limit

P/F

mg/kg dry wt

19.3

Analyzed 03/18/09

Date

0.63

Hi 10

Chromium

Field Sample #: HJ-10D (1-3)

Sample ID:

09B07540

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units

mg/kg dry wt

Results

Date Analyst

RL

RL

0.69

SPEC Limit

P/F

Chromium

368

Analyzed 03/18/09 OP 0.70

Lo Hi

Field Sample #: HJ-10F (0-1)

Sample ID:

09B07537

#Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units

mg/kg dry wt

Results

Date Analyzed

03/18/09

Analyst

OP

SPEC Limit

Lo

P/F

Hi

Chromium

Field Sample #: HJ-10F (1-3) Sample ID:

09B07538

‡Sampled: 3/11/2009

133

Not Specified

Sample Matrix:

SOIL

Units

mg/kg dry wt

Results

Date

Analyst

RL

SPEC Limit

P/F

Chromium

11.8

Analyzed 03/18/09

Ηi

OP

0.68

Lo

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{# =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

3/19/2009

Page 17 of 33

LOWELL, MA 01852

Purchase Order No.:

Project Location: CITY OF NEW BEDFORD (NBHS)

LIMS-BAT #: LIMT-23901

Date Received:

3/12/2009

Job Number: 115058

Field Sample #: HH-13A (0-1) Sample ID:

09B07548

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

	Units	Results	Date Analyzed	Analyst	RL	SPEC Limit Lo Hi	P/F
Acenaphthene	mg/kg dry wt	ND	03/18/09	BGL	0.196		
Acenaphthylene	mg/kg dry wt	ND	03/18/09	BGL	0.196		
Anthracene	mg/kg dry wt	ND	03/18/09	BGL	0.196		
Benzo(a)anthracene	mg/kg dry wt	ND	03/18/09	BGL	0.196	•	
Benzo(a)pyrene	mg/kg dry wt	ND	03/18/09	BGL	0.196		
Benzo(b)fluoranthene	mg/kg dry wt	ND	- 03/18/09	BGL	0.196		
Benzo(g,h,i)perylene	mg/kg dry wt	ND	03/18/09	BGL	0.196		
Benzo(k)fluoranthene	mg/kg dry wt	ND	03/18/09	BGL	0.196		
Chrysene	mg/kg dry wt	ND	03/18/09	BGL	0.196		
Dibenz(a,h)anthracene	mg/kg dry wt	ND	03/18/09	BGL	0.196		
Fluoranthene	mg/kg dry wt	ND	03/18/09	BGL	0.196		
Fluorene	mg/kg dry wt	ND	03/18/09	BGL	0.196		
Indeno(1,2,3-cd)pyrene	mg/kg dry wt	ND	03/18/09	BGL.	0.196		
2-Methylnaphthalene	mg/kg dry wt	ND	03/18/09	BGL	0.196		
Naphthalene	mg/kg dry wt	ND	03/18/09	BGL	0.196		
Phenanthrene	mg/kg dry wt	ND	03/18/09	BGL	0.196		
Pyrene	mg/kg dry wt	ND	03/18/09	BGL	0.196		
Extraction Date 8270		3/16/2009	03/18/09	BGL			

Analytical Method:

SW846 8270

SAMPLES ARE EXTRACTED IN METHYLENE CHLORIDE/ACETONE AND FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{# =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

3/19/2009

Page 19 of 33

LOWELL, MA 01852

Purchase Order No.:

Project Location: CITY OF NEW BEDFORD (NBHS)

LIMS-BAT#: LIMT-23901

Date Received:

3/12/2009

Job Number: 115058

Sample ID:

Field Sample #: HH-13B (0-1) 09B07541

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

	Units	Results	Date	Analyst	RL	SPEC Limit	P/F
			Analyzed			Lo Hi	
Acenaphthene	mg/kg dry wt	ND	03/17/09	BGL.	0.222		
Acenaphthylene	mg/kg dry wt	ND	03/17/09	BGL	0.222		
Anthracene	mg/kg dry wt	0.294	03/17/09	BGL	0.222		
Benzo(a)anthracene	mg/kg dry wt	0.621	03/17/09	BGL	0.222		
Benzo(a)pyrene	mg/kg dry wt	0.528	03/17/09	BGL	0.222		
Benzo(b)fluoranthene	mg/kg dry wt	0.672	03/17/09	BGL	0.222		
Benzo(g,h,i)perylene	mg/kg dry wt	0.281	03/17/09	BGL	0.222		
Benzo(k)fluoranthene	mg/kg đry wt	0.250	03/17/09	BGL	0.222		
Chrysene	mg/kg dry wt	0.621	03/17/09	BGL	0.222		
Dibenz(a,h)anthracene	mg/kg dry wt	ND	03/17/09	BGL	0.222		
Fluoranthene	mg/kg dry wt	1.09	03/17/09	BGL.	0.222		
Fluorene	mg/kg dry wt	ND	03/17/09	BGL	0.222		
Indeno(1,2,3-cd)pyrene	mg/kg dry wt	0.341	03/17/09	BGL	0.222		
2-Methylnaphthalene	mg/kg dry wt	ND	03/17/09	BGL	0.222		
Naphthalene	mg/kg dry wt	ND	03/17/09	BGL	0.222		
Phenanthrene	mg/kg dry wt	1.23	03/17/09	BGL.	0.222		
Pyrene	mg/kg dry wt	1.08	03/17/09	BGL	0.222		
Extraction Date 8270		3/16/2009	03/17/09	BGL			

Analytical Method:

SW846 8270

SAMPLES ARE EXTRACTED IN METHYLENE CHLORIDE/ACETONE AND FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{# =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

3/19/2009 Page 21 of 33

650 SUFFOLK STREET

Purchase Order No.:

LOWELL, MA 01852

Project Location: CITY OF NEW BEDFORD (NBHS)

LIMS-BAT #: LIMT-23901

Date Received:

3/12/2009

Job Number: 115058

Field Sample #: HH-13C (0-1) QC Sample ID:

09B07546

±Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

	Units	Results	Date	Analyst	RL	SPEC	Limit	P/F
			Analyzed			Lo	Hi	
Acenaphthene	mg/kg dry wt	ND	03/19/09	BGL	0.193			
Acenaphthylene	mg/kg dry wt	ND	03/19/09	BGL	0.193			
Anthracene	mg/kg dry wt	ND	03/19/09	BGL	0.193			
Benzo(a)anthracene	mg/kg dry wt	ND	03/19/09	BGL	0.193			
Benzo(a)pyrene	mg/kg dry wt	ND	03/19/09	BGL	0.193			
Benzo(b)fluoranthene	mg/kg dry wt	ND	03/19/09	BGL.	0.193			
Benzo(g,h,i)perylene	mg/kg dry wt	ND	03/19/09	BGL	0.193			
Benzo(k)fluoranthene	mg/kg dry wt	ND	03/19/09	BGL	0.193			
Chrysene	mg/kg dry wt	ND	03/19/09	BGL	0.193			
Dibenz(a,h)anthracene	mg/kg dry wt	ND	03/19/09	BGL	0.193			
Fluoranthene	mg/kg dry wt	ND	03/19/09	BGL.	0.193			
Fluorene	mg/kg dry wt	ND	03/19/09	BGL	0.193			
Indeno(1,2,3-cd)pyrene	mg/kg dry wt	ND	03/19/09	BGL	0.193			
2-Methylnaphthalene	mg/kg dry wt	ND	03/19/09	BGL	0.193			
Naphthalene	mg/kg dry wt	ND	03/19/09	BGL	0.193			
Phenanthrene	mg/kg dry wt	ND	03/19/09	BGL	0.193			
Pyrene	mg/kg dry wt	ND	03/19/09	BGL	0.193			
Extraction Date 8270		3/16/2009	03/19/09	BGL				

Analytical Method:

SW846 8270

SAMPLES ARE EXTRACTED IN METHYLENE CHLORIDE/ACETONE AND FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

3/19/2009

Page 23 of 33

LOWELL, MA 01852

Purchase Order No.:

Project Location: CITY OF NEW BEDFORD (NBHS)

LIMS-BAT#: LIMT-23901

Date Received:

3/12/2009

Job Number: 115058

Sample ID:

Field Sample #: HH-13D (0-1)

09B07543

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

	Units	Results	Date Analyzed	Analyst	RL.	SPEC Limit Lo Hi	P/F
Acenaphthene	mg/kg dry wt	ND	03/17/09	BGL	0.192		
Acenaphthylene	mg/kg dry wt	ND	03/17/09	BGL	0.192		
Anthracene	mg/kg dry wt	ND	03/17/09	BGL	0.192		
Benzo(a)anthracene	mg/kg dry wt	ND	03/17/09	BGL	0.192		
Benzo(a)pyrene	mg/kg dry wt	ND	03/17/09	BGL	0.192		
Benzo(b)fluoranthene	mg/kg dry wt	ND	03/17/09	BGL	0.192		
Benzo(g,h,i)perylene	mg/kg dry wt	ND	03/17/09	BGL	0.192		
Benzo(k)fluoranthene	mg/kg dry wt	ND	03/17/09	BGL	0.192		
Chrysene	mg/kg dry wt	ND	03/17/09	BGL	0.192		
Dibenz(a,h)anthracene	mg/kg dry wt	ND	03/17/09	BGL	0.192		
Fluoranthene	mg/kg dry wt	ND	03/17/09	BGL	0.192		
Fluorene	mg/kg dry wt	ND	03/17/09	BGL	0.192		
Indeno(1,2,3-cd)pyrene	mg/kg dry wt	ND	03/17/09	BGL.	0.192		
2-Methylnaphthalene	mg/kg dry wt	ND	03/17/09	BGL	0.192		
Naphthalene	mg/kg dry wt	ND	03/17/09	BGL.	0.192		
Phenanthrene	mg/kg dry wt	ND	03/17/09	BGL	0.192		
Pyrene	mg/kg dry wt	ND	03/17/09	BGL.	0.192		
Extraction Date 8270		3/16/2009	03/17/09	BGL			

Analytical Method:

SW846 8270

SAMPLES ARE EXTRACTED IN METHYLENE CHLORIDE/ACETONE AND FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

LOWELL, MA 01852

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

Purchase Order No.:

Project Location: CITY OF NEW BEDFORD (NBHS)

Date Received: 3/12/2009

Field Sample #: HH-113D (1-3)

Sample ID:

09B07545

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

Date Analyst

RL

SPEC Limit

Hi

P/F

3/19/2009

Page 25 of 33

115058

LIMT-23901

mg/kg dry wt

982

03/18/09 OP

Analyzed

0.97

LIMS-BAT #:

Job Number:

Lead

Field Sample #: HH-13A (0-1)

Sample ID:

09B07548

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

Date Analyzed Analyst

SPEC Limit

Lo

P/F

Lead

mg/kg dry wt

10.0

03/18/09 OP

Date

0.89

RL

Hi

Sample ID:

Field Sample #: HH-13A (1-3)

09B07549

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

Analyst

RL

SPEC Limit

P/F

216

Analyzed

Lo Ηí

Lead

mg/kg dry wt

03/18/09 OΡ 0.87

Field Sample #: HH-13B (0-1)

Sample ID:

09B07541

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

Units

Results

543

Date

1.00

0.89

P/F

SOIL

Analyst Analyzed

OP

RL

SPEC Limit Lo Hi

Lead

Field Sample #: HH-13B (1-3)

Sample ID:

09B07542

‡Sampled: 3/11/2009

Not Specified

Sample Matrix: · SOIL

Units

mg/kg dry wt

mg/kg dry wt

Results

Date

03/18/09

Analyst

RL

SPEC Limit

P/F

Lead

72.3

Analyzed 03/18/09

OP

Lo Hi

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

* = See end of report for comments and notes applying to this sample

= See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

Purchase Order No.:

3/19/2009 Page 26 of 33

LOWELL, MA 01852

Project Location: CITY OF NEW BEDFORD (NBHS)

LIMS-BAT #:

Date Received:

3/12/2009

Job Number:

LIMT-23901

Field Sample #: HH-13C (0-1) QC

115058

Sample ID:

09B07546

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Results

Date Analyst

RL.

SPEC Limit

Hi

Hi

Hi

P/F

mg/kg dry wt

Units

21.9

03/18/09 OP

Analyzed

0.87

10

Field Sample #: HH-13C (1-3)

Sample ID:

Lead

09B07547

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

Date Analyzed

Analyst

SPEC Limit

Lo

P/F

Lead

mg/kg dry wt

3250

03/18/09 OP 1.21

RL

RL

0.87

Field Sample #: HH-13D (0-1)

Sample ID:

09B07543

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units

mg/kg dry wt

Results

Date Analyst

Analyzed

SPEC Limit

P/F

Lead

18.4

03/18/09 OP Lo

Field Sample #: HH-13D (1-3)

Sample ID:

09B07544

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units

mg/kg dry wt

Results

987

Date Analyst

OP

Analyzed

03/18/09

RL.

0.93

0.89

SPEC Limit

Lo

Lo

Hi

P/F

Lead

Field Sample #: HJ-10C (0-1)

Sample ID:

09B07535

‡Sampled: 3/11/2009

Not Specified

Sample Matrix:

SOIL

Units

mg/kg dry wt

Results

98.5

Date

Analyzed

03/18/09

Analyst

OP

RL

SPEC Limit

Hi

P/F

Lead

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{# =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

4/15/2009

Page 7 of 29

LOWELL, MA 01852

Purchase Order No.:

Project Location: CITY OF NEW BEDFORD(NBHS)

LIMS-BAT #:

LIMT-24666

Date Received:

115058

Field Sample #: SSHH-013B1(0-1)

4/10/2009

Job Number:

Sample ID:

09B11441

‡Sampled: 4/10/2009

Not Specified

Sample Matrix:

SOIL

Results	Date	Analyst	RL
	Analyzed		

SPEC Limit

P/F

Chromium (+6)

mg/kg dry wt

04/14/09

AED

Lο

ND

AED

0.37

Extraction Date CR+6

04/14/09

Units

04/13/2009

Sample ID:

Field Sample #: SSHH-013B2(0-1)QC

09B11443

‡Sampled: 4/10/2009

Not Specified

Sample Matrix:

SOIL

Jnits	Results

Date Analyst Analyzed

RL

0.38

SPEC Limit

Chromium (+6)

mg/kg dry wt

ND

04/14/09 AED

AED

P/F

Extraction Date CR+6

4/13/2009 04/14/09

Field Sample #: SSHH-013B3(0-1)

Sample ID:

09B11444

‡Sampled: 4/10/2009

Not Specified

Sample Matrix:

SOIL

	•	
Units	Results	Date

Analyst · RL. SPEC Limit

Ηi

Lo

P/F

Chromium (+6)

mg/kg dry wt

ND

4/13/2009

Analyzed

0.38

AED

04/14/09 04/14/09 AED

Extraction Date CR+6

Field Sample #: SSHH-013B4(0-1) Sample ID:

09B11445

Sample Matrix:

SOIL

‡Sampled: 4/10/2009

Not Specified

Extraction Date CR+6

Units

Results

Analyst Analyzed

RL

0.38

SPEC Limit

Hi

Lo

P/F

Chromium (+6)

mg/kg dry wt

ND 4/13/2009 04/14/09 AED 04/14/09 **AED**

Date

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{# =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

4/15/2009

Page 8 of 29

LOWELL, MA 01852

Purchase Order No.:

Project Location: CITY OF NEW BEDFORD(NBHS)

LIMS-BAT #: LIMT-24666

Date Received:

4/10/2009

Field Sample #: SSHH-113B1(0-1)

Job Number:

115058

Sample ID:

09B11442

‡Sampled: 4/10/2009

Not Specified

Sample Matrix:

SOIL

Units	Results	Date	Analyst	RL	SPEC	Limit	P/F
		Analyzed			Lo	Hi	
mg/kg dry wt	ND	04/14/09	AED	0.39			

Extraction Date CR+6

4/13/2009 04/14/09 AED

Analytical Method:

Chromium (+6)

SW846 7196

ALKALINE DIGESTION BY SW846 3060A OF SOLID FOLLOWED BY COLORIMETRIC ANALYSIS WITH S-DIPHENYLCARBAZIDE.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{# =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

Field Sample #: HD-022(1-3)

650 SUFFOLK STREET

4/15/2009

Page 10 of 29

LOWELL. MA 01852

Purchase Order No.:

Project Location: CITY OF NEW BEDFORD(NBHS)

LIMS-BAT #: Job Number: LIMT-24666 115058

Date Received:

4/10/2009

Sample ID:

09B11440

‡Sampled: 4/9/2009

Not Specified

Sample Matrix:

SOIL

Results

Date

Analyst RL SPEC Limit

P/F

mg/kg dry wt

Units

22.9

Analyzed 04/13/09

OP

0.58

Chromium

Field Sample #: SSHH-013B1(0-1)

Sample ID:

09B11441

#Sampled: 4/10/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

Date Analyzed Analyst

SPEC Limit

Ηĭ

Lo

P/F

Chromium

mg/kg dry wt

6.58

04/13/09 OP 0.59

RL.

Field Sample #: SSHH-013B2(0-1)QC

Sample ID: 09B11443 ‡Sampled: 4/10/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

Date Analyst RL.

SPEC Limit

mg/kg dry wt

5.12

Analyzed

Hi

P/F

Chromium

04/13/09 OP 0.59

Lo

Field Sample #: SSHH-013B3(0-1)

Sample ID:

09B11444

‡Sampled: 4/10/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

4.93

Date Analyzed

04/13/09

Date

Analyst

OP

RL.

0.60

SPEC Limit

Hi

Hi

Lo

P/F

Chromium

mg/kg dry wt

Field Sample #: SSHH-013B4(0-1) Sample ID:

09B11445

‡Sampled: 4/10/2009 Not Specified

Sample Matrix:

SOIL

Units

Results

5.81

Analyst RL.

SPEC Limit

Lo

P/F

Chromium

mg/kg dry wt

Analyzed 04/13/09 OP

0.59

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{# =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

4/15/2009

650 SUFFOLK STREET

Purchase Order No.:

Page 11 of 29

LOWELL, MA 01852

LIMS-BAT #:

LIMT-24666

Date Received:

Project Location: CITY OF NEW BEDFORD(NBHS)

4/10/2009

115058

Field Sample #: SSHH-113B1(0-1)

Job Number:

Sample ID:

09B11442

‡Sampled: 4/10/2009

Not Specified

Sample Matrix:

SOIL

Results

Date

Analyst

OP

RL.

SPEC Limit

Hi

P/F

Chromium

Lo

mg/kg dry wt

Units

6.05

Analyzed 04/13/09

0.60

Analytical Method:

SW846 3050/6010

SAMPLES ARE DIGESTED WITH NITRIC ACID AND THEN ANALYZED BY INDUCTIVELY COUPLED PLASMA EMISSION SPECTROSCOPY.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{# =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

LOWELL, MA 01852

Purchase Order No.:

Project Location: CITY OF NEW BEDFORD(NBHS)

Date Received: Field Sample #: SSHH-013B1(0-1)

4/10/2009

Sample ID:

*09B11441

‡Sampled: 4/10/2009

Not Specified

Sample Matrix:

SOIL

Units

units

Results

5.81

Date Analyst Analyzed

LL

LL

RL

SPEC Limit Hi

LIMS-BAT#:

Job Number:

Lo

4/15/2009

Page 21 of 29

115058

LIMT-24666

P/F

рН

Field Sample #: SSHH-013B2(0-1)QC

Sample ID:

*09B11443

‡Sampled: 4/10/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

Date Analyzed

04/10/09

Analyst RL SPEC Limit

P/F

ρН

units

5.97

04/10/09

Lo Hi

Field Sample #: SSHH-013B3(0-1)

Sample ID:

*09B11444

‡Sampled: 4/10/2009

Not Specified

Sample Matrix:

SOIL.

Units

Results

Date Analyst RL

SPEC Limit

P/F

ρН

units

5.93

Analyzed 04/10/09 LL Lo Ηi

Field Sample #: SSHH-013B4(0-1)

Sample ID:

*09B11445

‡Sampled: 4/10/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

Date Analyst

RL

SPEC Limit Lo

Hi

P/F

рΗ

units

5.93

Analyzed

04/10/09 LL.

Field Sample #: SSHH-113B1(0-1)

Sample ID:

*09B11442

‡Sampled: 4/10/2009

Not Specified

Sample Matrix:

SOIL

Units

units

Results

Date

Analyzed

Analyst

RL

SPEC Limit

P/F

рΗ

5.87

04/10/09 LL Lo Hi

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

4/15/2009

Page 27 of 29

LOWELL, MA 01852

Purchase Order No.:

Project Location: CITY OF NEW BEDFORD(NBHS)

LIMS-BAT #:

LIMT-24666

Date Received:

4/10/2009

115058

Field Sample #: SSHH-013B1(0-1)

Job Number:

Sample ID:

09B11441

‡Sampled: 4/10/2009

Not Specified

Sample Matrix:

SOIL

RL.

SPEC Limit

P/F

Units

Units

Results

Date Analyzed Analyst

SPECIAL TEST

04/10/09 LL Lo

Hi

ORP Method SM2580A

Result: 169 MV

Field Sample #: SSHH-013B2(0-1)QC

Sample ID:

09B11443

‡Sampled: 4/10/2009

Not Specified

Sample Matrix:

SOIL

Results

Date

Analyzed

Analyst

ŔL

SPEC Limit

Lo

Hi

SPECIAL TEST

04/10/09 LL

P/F

ORP Method SM2580A

Result: 244 MV

Duplicate Result: 242 MV

Field Sample #: SSHH-013B3(0-1)

09B11444

‡Sampled: 4/10/2009

Not Specified

Sample Matrix:

Sample ID:

SOIL

Units

Results

Date

Analyzed

Analyst

SPEC LIMIT = a client specified recommended or

RI.

SPEC Limit

Lo

P/F

SPECIAL TEST

04/10/09 LL

ORP Method SM2580A

Result: 189 MV

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

* = See end of report for comments and notes applying to this sample

= See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

4/15/2009

650 SUFFOLK STREET

Purchase Order No.:

Page 28 of 29

LOWELL, MA 01852

LIMS-BAT #:

LIMT-24666

Date Received:

Project Location: CITY OF NEW BEDFORD(NBHS)

Job Number:

115058

Field Sample #: SSHH-013B4(0-1)

4/10/2009

Sample ID:

09B11445

‡Sampled: 4/10/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

Date Analyzed Analyst

RL

SPEC Limit

P/F

10 Hi

SPECIAL TEST

04/10/09 LL

ORP Method SM2580A

Result: 227 MV

Field Sample #: SSHH-113B1(0-1)

Sample ID:

09B11442

‡Sampled: 4/10/2009

Not Specified

Sample Matrix:

SOIL

Units

Results

Date

Analyst

LL

SPEC Limit

Analyzed 04/10/09

RL

L.o Hi P/F

SPECIAL TEST ORP Method SM2580A

Result: 229 MV

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{# =} See attached chain-of-custody record for time sampled

DAVID SULLIVAN

TRC SOLUTIONS - LOWELL

650 SUFFOLK STREET

Purchase Order No.:

4/15/2009 Page 29 of 29

LOWELL, MA 01852

Project Location: CITY OF NEW BEDFORD(NBHS)

LIMS-BAT #: LIMT-24666 .

Date Received:

4/10/2009

Job Number: 115058

The following notes were attached to the reported analysis:

Sample ID:

09B11441

Analysis:

рΗ

19.3 degrees celsius

Sample ID:

09B11442

Analysis:

рΗ

20.7 degrees celsius

Sample ID:

09B11443

Analysis:

pН

20.0 degrees celsius

Sample ID:

09B11444

Analysis:

рΗ

20.6 degrees celsius

Sample ID:

09B11445

Analysis:

рΗ

20.5 degrees celsius

** END OF REPORT **

SPEC LIMIT = a client specified recommended or

determine PASS (P) or FAIL (F) condition of results.

regulatory level for comparison with data to

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

^{* =} See end of report for comments and notes applying to this sample