tel: 508-698-3034 fax: 508-698-0843 www.westonandsampson.com



478 – 480 Union Street, New Bedford Weston & Sampson Project No. 2100451

December 13, 2012

City of New Bedford Ms. Michele Paul, LSP, Director Department of Environmental Stewardship 133 Williams Street New Bedford, Massachusetts 02740

Re: Additional Phase II Environmental Site Assessment 478 - 480 Union Street New Bedford, Massachusetts

Dear Ms. Paul:

Weston & Sampson is pleased to submit this letter report summarizing the results of an Additional Phase II Environmental Site Assessment (ESA) performed at 478 - 480 Union Street, New Bedford, Massachusetts (the "Site"). This additional assessment was funded by the United States Environmental Protection Agency (EPA) through a Brownfield Assessment Grant issued to the City of New Bedford. It is the City's intent to redevelop this Site and this assessment is part of the process. This additional assessment was designed to supplement previous investigation at the Site. The Scope of Services for this additional Phase II ESA was documented in a Site Specific Addendum to Weston & Sampson's Generic Quality Assurance Project Plan, approved by the EPA on September 28, 2012. The following is a summary of the Site and the Phase II ESA performed:

# SITE DESCRIPTION

The Site consists of an undeveloped 0.42 acre parcel of land. An automobile service garage was located at the Site between 1915 and the late 1970's. Numerous underground storage tanks (USTs) were historically located at the Site. Information regarding the assessment and closure of the USTs is very limited. Weston & Sampson performed an initial Phase II ESA at the Site in the spring of 2011. The Phase II ESA identified petroleum impacted soil in exceedance of applicable Massachusetts Department of Environmental Protection (DEP) reportable concentration (RC) S-1 standards. The impacted soils were identified on the northwestern and northern portion of the Site in the area of former fuel oil USTs. Additionally, a concentration of lead was identified in fill material soils on the northern portion of the Site above the RCS-1 standard.

The identification of soil impacted above RCS-1 standards represented a 120-day reportable release condition to the DEP. On October 3, 2011, Weston & Sampson reported the release condition to the DEP on behalf of the City of New Bedford. At that time the DEP assigned Release Tracking Number (RTN) 4-23596 to the Site. An Additional Phase II ESA was performed in May 2012 to further assess the nature and extent of impacted soil and groundwater. Results of the assessment confirmed that petroleum impacted soils remain at the Site above DEP Method 1 S-1 standards. However, analysis of groundwater samples collected throughout the Site did not identify concentrations above applicable GW-2/3 standards.

Massachusetts Connecticut Rhode Island New Hampshire Vermont New York Pennsylvania New Jersey South Carolina Florida

In October 2012, Weston & Sampson submitted a Phase I Initial Site Investigation Report and Tier Classification to the DEP. The Site was classified as a Tier II Site.

## ADDITIONAL PHASE II ESA

Weston & Sampson performed an Additional Phase II ESA at the Site in November 2012 to further define the extent of impacted soil, including potential impacts to neighboring properties to the west and south, and to obtain additional data within the boundaries of the Site for remedial planning / risk characterization purposes. The assessment included:

- Advancement of ten (10) soil borings.
- Field screening of soil samples for the presence of total volatile organics.
- Collection and analysis of soil samples.

The following is a summary of the results of the assessment. See Figure 1 - Site Locus for the Site location and Figure 2 – Site Plan for sample locations.

### **SOIL BORINGS**

On November 2, 2012, Weston & Sampson documented the advancement of 10 soil borings (WS-25 through WS-34) at the Site. The borings were advanced by New England Geotech of Jamestown, Rhode Island utilizing Geoprobe drilling techniques. The soil borings were installed in the following areas:

- **Area 1 Former Gasoline USTs Northwestern Portion of Site**: Borings WS-25 and WS-26 were advanced on the neighboring property to the west.
- **Area 2 Former Gasoline USTs Northern Portion of Site**: Borings WS-33 and WS-34 were advanced on-Site to the north and west of Area 2.
- **Area 3 Former Fuel Oil USTs Western Portion of Site:** Borings WS-27 through WS-30 were advanced on the neighboring property to the west. Boring WS-31 was advanced on the neighboring property to the south. Boring WS-32 was advanced on-Site to the east of Area 3.

The borings were installed to depths between 15 and 20 feet below grade surface (bgs). Boring logs are included as Appendix A.

# SOIL SAMPLING / FIELD SCREENING / ANALYSIS

Soil samples were collected from each soil boring by a Weston & Sampson geologist at continuous intervals during the advancement of the borings. In general, soils encountered consisted of fine to medium sand with some gravel in each of the borings. Fill material was identified in boring WS-33 and WS-34 between 0-5' bgs. The fill consisted of fine to medium sand with pieces of asphalt and concrete.

Each soil sample was field-screened for total volatile organics (TVOCs) using a photoionization detector (PID). Detectable field screening results are summarized in Tables 1a, 1b and 1c, attached. Complete field screening results are included in the attached boring logs. A summary of our field screening findings are included below:

Area 1 - Former Gasoline USTs - Northwestern Portion of Site: As shown in Table 1a, field screening of soil samples collected from WS-25 and WS-26 between 15-20 feet bgs identified concentrations of TVOCs ranging from 110 to 127 ppmv. However, field screening of soil samples collected from 0-15' within these borings did not identify levels of TVOCs above 5 ppmv. Based on field screening results, soil sample WS-26 (13-15') was selected for laboratory analysis in an effort to delineate the western extent of soil impacts between 0-15' in this area.

Area 2 - Former Gasoline USTs - Northern Portion of Site: As shown in Table 1b, field screening of soil samples collected from WS-33 and WS-34 between 10-20 feet bgs identified concentrations of TVOCs ranging from 8.7 to 941 ppmv. These results were similar to results obtained from previous assessments in this area of the Site and soil samples were therefore not submitted for analysis. However, the field screening data generated from these borings can be utilized for remedial planning purposes as they help define the extent of contamination.

Area 3 - Former Fuel Oil USTs - Western Portion of Site: As shown in Table 1c, field screening of soil samples collected from boring WS-27, WS-28 and WS-29 between 10-20 feet bgs identified concentrations of TVOCs ranging from 7.5 to 163 ppmv. Field screening of soil samples collected from WS-30, 31 and 32 did not identify TVOCs above 1 ppmv. Based on field screening results, soil samples WS-30 (13-15') and WS-31 (13-15') were selected for laboratory analysis in an effort to delineate the western and southern extent of soil impacts between 0-15' bgs in this area.

## SOIL ANALYTICAL RESULTS

Soil samples WS-26 (13-15'), WS-30 (13-15') and WS-31(13-15') were placed in pre-labeled laboratory supplied containers, preserved on ice in a cooler, and transported to Con-test Analytical Laboratory in East Longmeadow, Massachusetts. Sample WS-26 (13-15') was submitted for analysis of Volatile Petroleum Hydrocarbons (VPH) with targeted Volatile Organic Compounds (VOCs) via DEP methodology, and samples WS-30 (13-15') and WS-31 (10-15') were submitted for Extractable Petroleum Hydrocarbons (EPH) with targeted Polynuclear Aromatic Hydrocarbons (PAHs) and VPH with targeted VOCs via DEP methodology.

A summary table of the soil analytical results is attached as Table 2. Complete copies of laboratory analytical reports are attached as Appendix B. As shown on the attached table, analysis of the soil samples did not identify detectable concentrations of EPH, PAHs, VPH and/or VOCs. Results are compared to Method 1 standards as a preliminary characterization of risk. No contaminant concentrations were detected above Method 1 standards.

# **CONCLUSIONS**

The Additional Phase II ESA was successful in delineating the horizontal extent of petroleum impacted soil located between 0-15 feet on the neighboring properties to the west and to the south of the Site. In Area 1, the western extent has been delineated by boring WS-26. In Area 3, the western extent is delineated by boring WS-30 and the southern extent is delineated by boring WS-31.

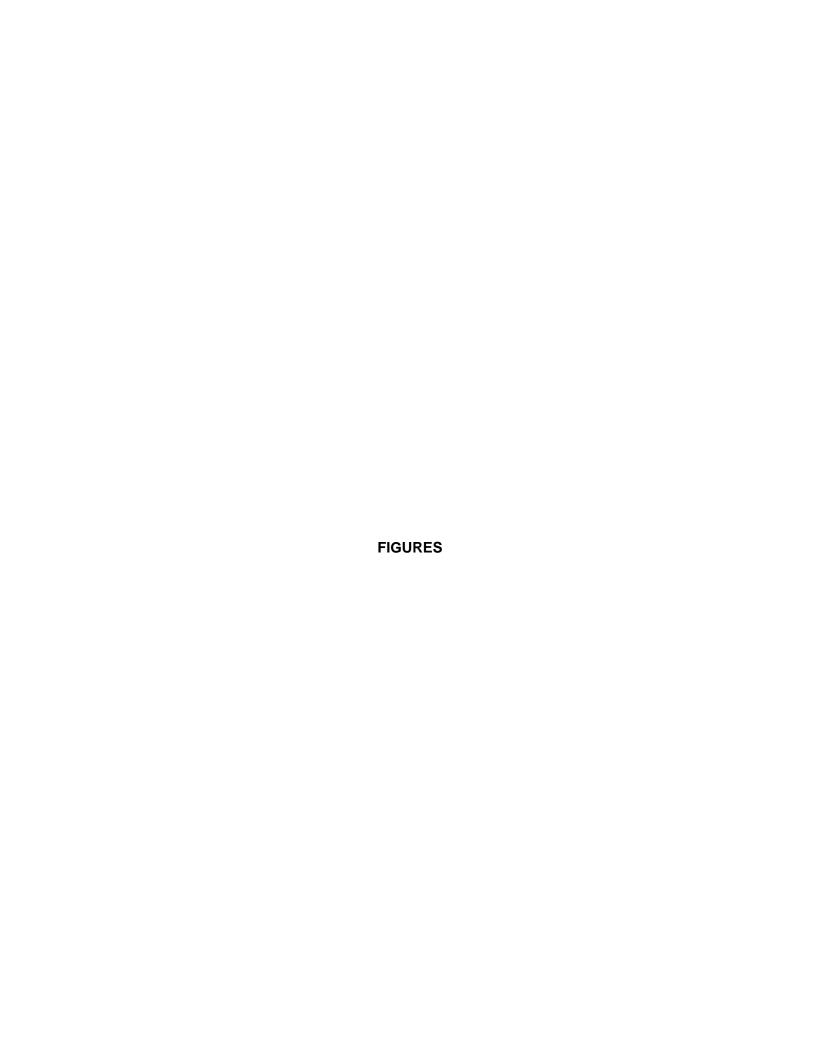
The results of this investigation have been provided to the owners of the neighboring properties to the south and west of the Site, in accordance with 310 CMR 40.1403(10) of the Massachusetts Contingency Plan (MCP).

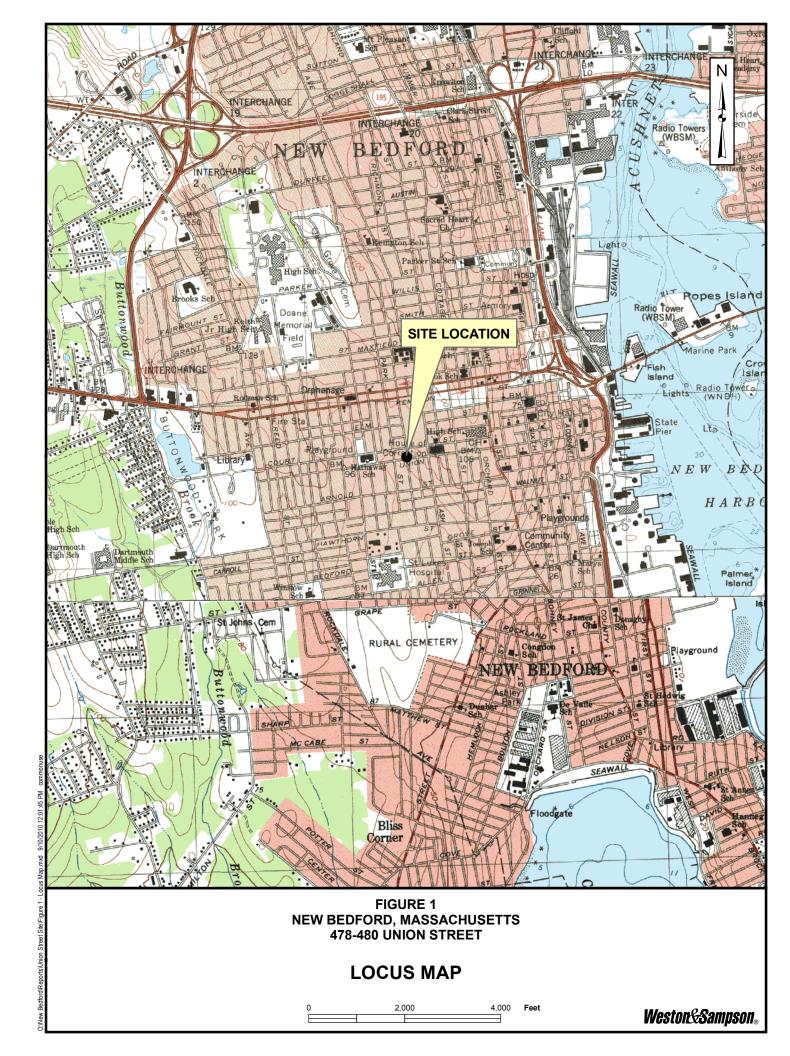
Based on the results of our assessments performed at the Site, Weston & Sampson recommends the following:

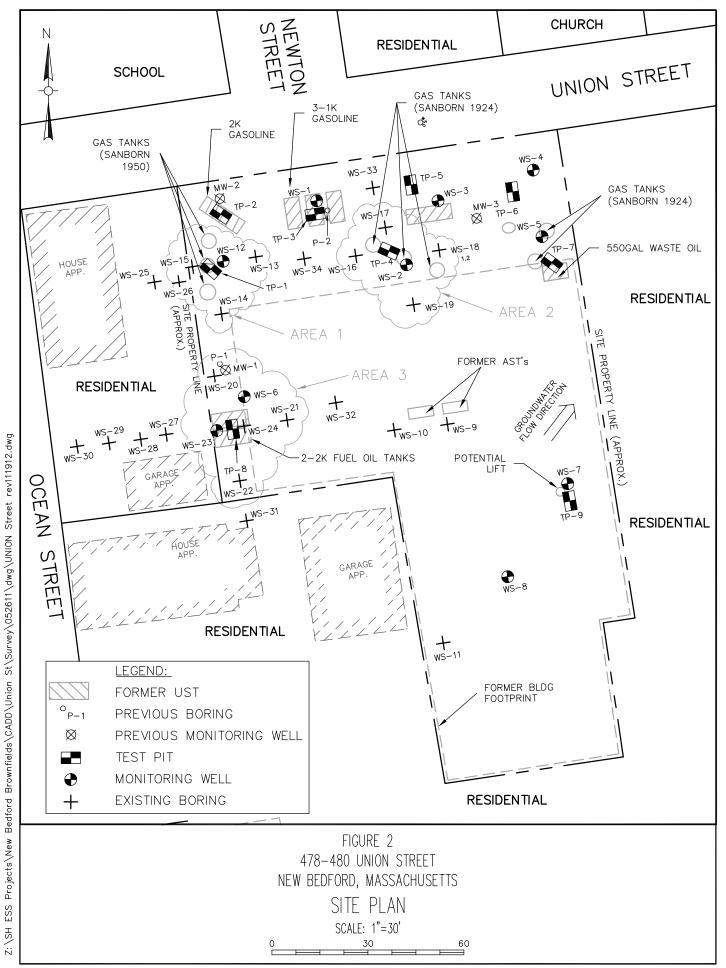
1) We recommend proceeding with evaluation and planning for remediation of petroleum impacted soil. Additional soil and groundwater samples should be collected and analyzed to determine the scope and extent of impacted soil removal. Remedial activities should be performed in accordance with the MCP, either as a Release Abatement Measure (RAM) or following a Phase III Evaluation of Remedial Alternatives and documented Phase III Remedial Action Plan (RAP) under a Phase IV Remedial Implementation Plan (RIP).

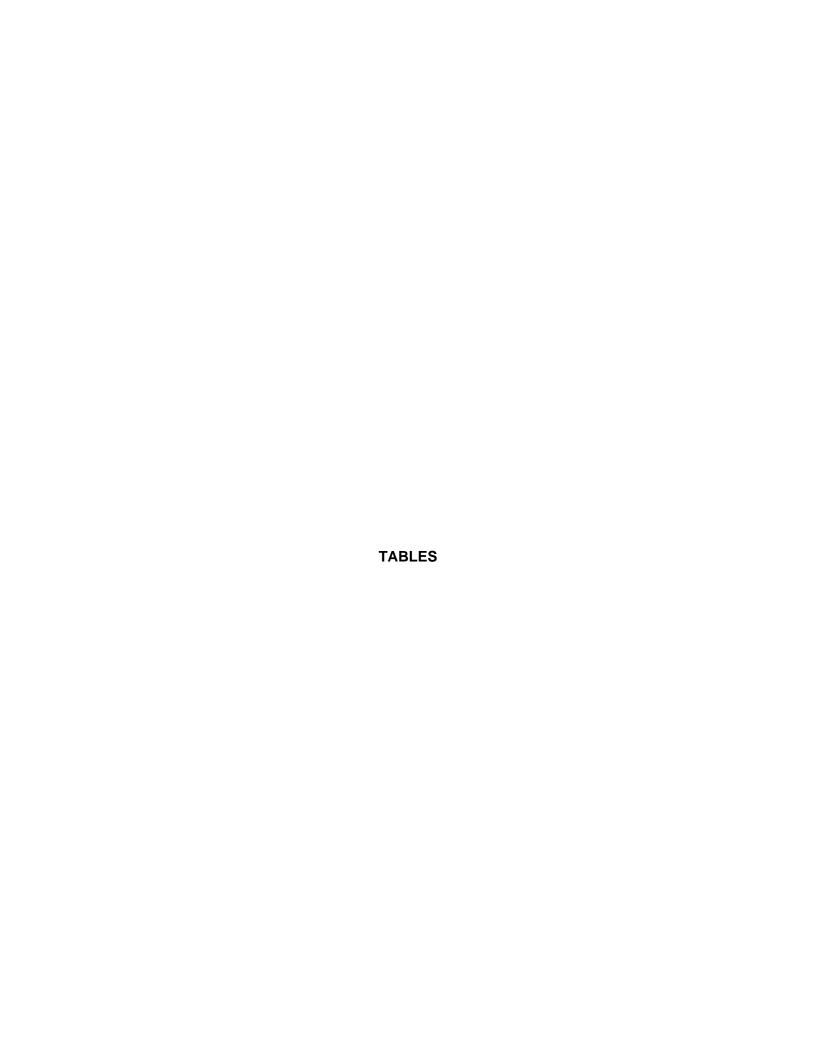
If you have any questions regarding this letter report, please do not hesitate to contact the undersigned at (978) 532-1900.

Very truly yours,


WESTON & SAMPSON


Sean Hancey


Sean F. Healey Project Manager George Naslas, P.G., LSP Associate


leinge Q. Naslus

Attachments: Figures, Tables, Appendix A, B









| Table 1a<br>Area 1 - Field Screening Results   |                |              |  |  |  |  |  |  |  |  |  |  |
|------------------------------------------------|----------------|--------------|--|--|--|--|--|--|--|--|--|--|
| Location                                       | Sample ID      | TVOCs (ppmv) |  |  |  |  |  |  |  |  |  |  |
|                                                | WS-25 (10-14') | 0.6          |  |  |  |  |  |  |  |  |  |  |
| Area 1                                         | WS-25 (15-20') | 110          |  |  |  |  |  |  |  |  |  |  |
| Former Gasoline USTs - Northwestern Portion of | WS-26 (13-15') | 4.0          |  |  |  |  |  |  |  |  |  |  |
| Site (1950 Sanborn)                            | WS-26 (15-17') | 127          |  |  |  |  |  |  |  |  |  |  |
|                                                | WS-26 (17-20') | 0.6          |  |  |  |  |  |  |  |  |  |  |
|                                                |                |              |  |  |  |  |  |  |  |  |  |  |

| Table 1b  Area 2- Field Screening Results                            |                                                                      |                          |  |  |  |  |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------|--|--|--|--|--|--|--|--|--|--|--|--|
| Location                                                             | Location Sample ID TVOCs (ppmv)                                      |                          |  |  |  |  |  |  |  |  |  |  |  |  |
| Area- 2                                                              | WS-33 (10-15')<br>WS-33 (15-20')                                     | 8.7<br>623               |  |  |  |  |  |  |  |  |  |  |  |  |
| Former Gasoline USTs -<br>Northern Portion of Site (1924<br>Sanborn) | WS-34 (10-13')<br>WS-34 (13-15')<br>WS-34 (15-19')<br>WS-34 (19-20') | 0.1<br>194<br>941<br>6.9 |  |  |  |  |  |  |  |  |  |  |  |  |

| Table 1c  Area 3 - Field Screening Results                                                                                                                                                                                                      |                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|
| Sample ID                                                                                                                                                                                                                                       | TVOCs (ppmv)                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |  |  |  |
| WS-27 (10-13') WS-27 (13-15') WS-27 (15-17') WS-27 (17-20') WS-28 (10-13') WS-28 (13-15') WS-28 (15-20') WS-29 (10-13') WS-29 (13-15') WS-29 (15-17') WS-30 (10-13') WS-30 (15-17') WS-31 (10-13') WS-31 (10-13') WS-31 (15-17') WS-32 (10-13') | 7.5 162 47.3 7.8 18.2 163 0.4 118 110 1.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1                                                                                                                              |  |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                 | WS-27 (10-13') WS-27 (13-15') WS-27 (15-17') WS-27 (17-20') WS-28 (10-13') WS-28 (13-15') WS-29 (10-13') WS-29 (10-13') WS-29 (15-17') WS-30 (10-13') WS-30 (15-17') WS-31 (10-13') WS-31 (10-13') |  |  |  |  |  |  |  |  |  |  |  |  |

# Table 2 Weston & Sampson Summary of Soil Analytical Results - Adjacent Properties 478 - 480 Union Street New Bedford, MA

| Sample ID                          | WS-26<br>(13-15') | WS-30<br>(13-15') | DUP<br>WS-30<br>( 13-15') | WS-31<br>(13-15') | Meth<br>Soil Sta | ood 1<br>Indards |
|------------------------------------|-------------------|-------------------|---------------------------|-------------------|------------------|------------------|
| Date Sampled<br>Parameters (mg/kg) | 11/2/2012         | 11/2/2012         | 11/2/2012                 | 11/2/2012         | S1/GW2<br>mg/kg  | S1/GW3<br>mg/kg  |
| <u>EPH</u>                         |                   |                   |                           |                   |                  |                  |
| C9-C18 Aliphatics                  |                   | <23               | <12                       | <12               | 1,000            | 1,000            |
| C19-C36 Aliphatics                 |                   | <23               | <12                       | <12               | 3,000            | 3,000            |
| C11-C22 Aromatics                  |                   | <23               | <12                       | <12               | 1,000            | 1,000            |
| Target PAH's                       |                   | <.023             | <0.12                     | <0.12             | ***              | ***              |
| VPH                                |                   |                   |                           |                   |                  |                  |
| C5-C8 Aliphatics                   | <7.9              | <9.1              | <8.7                      | <8.6              | 100              | 100              |
| C9-C12 Aliphatics                  | <7.9              | <9.1              | <8.7                      | <8.6              | 1,000            | 1,000            |
| C9-C10 Aromatics                   | <7.9              | <9.1              | <8.7                      | <8.6              | 100              | 100              |
| Target VOCs                        | ND                | ND                | ND                        | ND                | ***              | ***              |

ND= Not Detected. Detection Limit Varies with Compound.

\*\*\* = Standard varies with Compound.

Method 1 Standards are from the MCP, 310 CMR 40.0000, revised February 14, 2008.

Notes:
"--" = Not Analyzed

# APPENDIX A

SOIL BORING LOGS

|                |        |                  |            |                      | <u> </u>     | PROJI                           | <u>ECT</u>                   | REPO    | RT OF BORI     | NG No.       |         | V      | /S-25         |
|----------------|--------|------------------|------------|----------------------|--------------|---------------------------------|------------------------------|---------|----------------|--------------|---------|--------|---------------|
| We             | on     |                  |            | on Street<br>ord, MA |              | SHEET<br>Project No.<br>CHKD BY | 1                            |         | OF<br>100451   | 1            |         |        |               |
| BORING Co.     | Now    | England God      | toch       |                      |              | BOD                             | NG LOCA                      | TION    |                | S00.00       | ttached | Lolon  |               |
| FOREMAN        | Haye   |                  | necn       |                      |              |                                 | UND SUR                      |         | FLEV           | See a        |         | DATUM  | <del></del> - |
| WSE GEOLO      |        |                  | vanagh     |                      |              | _                               | START                        |         |                | DATE ENI     |         |        | 1/2/12        |
| SAMPLER:       | Geon   | robe Truck R     | Ria        |                      |              |                                 |                              |         | GROUNI         | DWATER F     | READIN  | NGS    | <u> </u>      |
| O,             | 0000   | . coo macin      | 9          |                      |              | =                               | DATE                         | TIME    | WATER AT       | CASING       |         |        | IZATION TIME  |
| CASING:        |        |                  |            |                      |              | _                               |                              |         | 11             |              |         |        |               |
| CASING SIZE:   | Ν/Δ    |                  | Method     | Direct push          | 1            | -                               |                              |         |                |              |         |        |               |
| DEPTH CASING   |        | 9                | AMPLE      | Direct pasi          | PID          | <u> </u>                        | SA                           | MPLET   | ESCRIPTION     |              |         |        |               |
| (feet) (lb/ft) | No.    | PEN/REC (in)     |            | BLOWS/6"             | (ppm)        |                                 |                              |         | Classification |              | NOTES   | STRATU | M DESCRIPTION |
|                |        | 60/48            | 0-5        |                      | 0.3          |                                 | Гор soil                     |         |                |              |         |        |               |
|                |        |                  |            |                      |              | 4"- 5'<br>GRA                   |                              | ty SAN  | D with some    |              |         |        |               |
|                |        |                  |            |                      |              | GKA                             | VEL.                         |         |                |              |         |        |               |
| 5              |        |                  |            |                      |              |                                 |                              |         |                |              |         |        |               |
|                |        | 60/48            | 5-10       |                      | 0.9          |                                 |                              |         | vith some gra  | ıvel.        |         |        |               |
|                |        |                  |            |                      |              | Medi                            | um to coar                   | se SA   | ND 9-10'.      |              |         |        |               |
|                |        |                  |            |                      |              |                                 |                              |         |                |              |         |        |               |
| 10             |        |                  |            |                      |              |                                 |                              |         |                |              |         |        |               |
|                |        | 60/60            | 10-14      |                      | 0.6          | 4                               |                              | nedium  | SAND with s    | ome          |         |        |               |
|                |        |                  |            |                      |              | GRA'                            | VEL.                         |         |                |              |         |        |               |
|                |        |                  | 14-15      |                      | 0.3          | 13.5-                           | 14' feet -W                  | /ET.    |                |              |         |        |               |
| 15             |        |                  |            |                      |              | l                               |                              |         |                |              |         |        |               |
|                |        | 60/60            | 15-20      |                      | 110          |                                 | '' Brown to<br>)' Fine silty |         | ine to mediur  | n SAND.      |         |        |               |
|                |        |                  |            |                      |              | 17-20                           | i i iie siity                | JANL    | ).             |              |         |        |               |
|                |        |                  |            |                      |              |                                 |                              |         |                |              |         |        |               |
| 20             |        |                  |            |                      |              |                                 |                              |         |                |              |         |        |               |
|                |        |                  |            |                      |              | •                               |                              |         |                |              |         |        |               |
|                |        |                  |            |                      |              |                                 |                              |         |                |              |         |        |               |
|                |        |                  |            |                      |              |                                 |                              |         |                |              |         |        |               |
| 25             |        |                  |            |                      |              |                                 |                              |         |                |              |         |        |               |
|                |        |                  |            |                      |              |                                 |                              |         |                |              |         |        |               |
|                |        |                  |            |                      |              |                                 |                              |         |                |              |         |        |               |
| 30             |        |                  |            |                      |              |                                 |                              |         |                |              |         |        |               |
| 30             |        |                  |            |                      |              | 1                               |                              |         |                |              |         |        |               |
|                |        |                  |            |                      |              |                                 |                              |         |                |              |         |        |               |
|                |        |                  |            |                      |              |                                 |                              |         |                |              |         |        |               |
| 35             |        |                  |            |                      |              |                                 |                              |         |                |              |         |        |               |
| GRANI          | JLAR : | SOILS            | COHESI     | VE SOILS             | REMA         | RKS:                            |                              |         |                |              |         |        |               |
| BLOWS/FT       |        | DENSITY          | BLOWS/FT   |                      |              |                                 |                              |         |                |              |         |        |               |
| 0-4<br>4-10    |        | . LOOSE<br>LOOSE | 0-2<br>2-4 | V. SOFT<br>SOFT      |              |                                 |                              |         |                |              |         |        |               |
| 10-30          |        | . DENSE          | 4-8        | M. STIFF             |              |                                 |                              |         |                |              |         |        |               |
| 30-50          |        | DENSE            | 8-15       | STIFF                |              |                                 |                              |         |                |              |         |        |               |
| > 50           | V      | . DENSE          | 15-30      | V. STIFF<br>HARD     |              |                                 |                              |         |                |              |         |        |               |
| NOTES:         | 1) THF | STRATIFICATION   | > 30       |                      | I<br>ROXIMAT | E BOUN                          | DARY BETWE                   | EN SOII | TYPES. TRANSI  | TIONS MAY RE | GRADII  | AL.    |               |
|                |        |                  |            |                      |              |                                 |                              |         | CONDITIONS STA |              |         |        |               |
|                |        |                  |            | GROUNDWATER          | MAY OC       | CUR DU                          | E TO OTHER                   | FACTOR  | S THAN THOSE P | RESENT AT TI | HE TIME |        |               |
|                | MEA    | ASUREMENTS AF    | RE MADE.   |                      |              |                                 |                              |         | į              | BORING       | No      | ١      | NS-25         |
|                |        |                  |            |                      |              |                                 |                              |         | J              | DOM:         | . 10.   | ,      |               |

|               |             |        |                                |                 |                   |         |             |                          |          | REPORT OF BORING No. |              |         |         | /S-26         |
|---------------|-------------|--------|--------------------------------|-----------------|-------------------|---------|-------------|--------------------------|----------|----------------------|--------------|---------|---------|---------------|
| V             | Ve:         | sto    | n & Sa                         | amps            | on                | 478-4   | 30 Uni      | on Street                |          | SHEET                | 1            |         | OF      | 1             |
| •             |             |        |                                |                 | <b></b>           |         |             | ord, MA                  |          | Project No.          |              | 2       | 100451  |               |
|               |             |        |                                |                 |                   |         |             |                          |          | CHKD BY              |              |         |         |               |
| BORING        | Co.         | New E  | Ingland Geo                    | tech            |                   |         | BOR         | ING LOCA                 | TION     |                      | See at       | tached  | l plan  |               |
| FOREMA        |             | Hayes  |                                |                 |                   |         |             | UND SUR                  |          |                      |              |         | DATUM   |               |
| WSE GE        | OLO         | SIST:  | Padraic Ka                     | vanagh          |                   |         | DATI        | START                    |          | 11/2/12              | DATE END     | )       | 11      | 1/2/12        |
| SAMPLE        | R:          | Geopr  | robe Truck R                   | lig             |                   |         |             |                          |          |                      | DWATER R     |         | NGS     |               |
| CASING        |             |        |                                |                 |                   |         |             | DATE                     | TIME     | WATER AT             | CASING       | AT      | STABIL  | IZATION TIME  |
| JASING.       |             |        |                                |                 |                   |         |             |                          |          |                      |              |         |         |               |
| CASING S      | SIZE:       | N/A    |                                | Method          | Direct push       | 1       |             |                          |          |                      |              |         |         |               |
| DEPTH CA      | SING        |        | S                              | AMPLE           |                   | PID     |             | SA                       | MPLE D   | ESCRIPTION           |              | NOTES   | STDATII | M DESCRIPTION |
| (feet) (I     | b/ft)       | No.    | PEN/REC (in)                   |                 | BLOWS/6"          | (ppm)   |             |                          | mister   | Classification       |              | HOTEO   | OTTATO  |               |
|               |             |        | 60/48                          | 0-5             |                   | 0.0     |             | op soil<br>brown silty   | , SANI   | ח                    |              |         |         |               |
|               |             |        |                                |                 |                   |         | Ligiti      | DIOWII SIII              | , 0,     | ٥.                   |              |         |         |               |
|               |             |        |                                |                 |                   |         |             |                          |          |                      |              |         |         |               |
| 5             |             |        | 00/00                          | F 40            |                   | 0.0     | O           | £: t                     | ٠ ٢      | `^ ND                |              |         |         |               |
|               |             |        | 60/36                          | 5-10            |                   | 0.0     | Grey<br>GRA |                          | aium S   | SAND with so         | me           |         |         |               |
|               |             |        |                                |                 |                   |         | 0.0.        |                          |          |                      |              |         |         |               |
|               |             |        |                                |                 |                   |         |             |                          |          |                      |              |         |         |               |
| 10            |             |        | 60/36                          | 10-13           |                   | 0.0     | 10-13       | R' Fine to n             | adium    | SAND with s          | come         |         |         |               |
|               |             |        | 00/30                          | 10-13           |                   | 0.0     | GRA'        |                          | lediuii  | I SAND WILL S        | Some         |         |         |               |
|               |             |        |                                |                 |                   |         |             |                          |          |                      |              |         |         |               |
| 45            |             |        |                                | 13-15           |                   | 4.0     |             |                          | silty S  | SAND with so         | me           |         |         |               |
| 15            | 60/55 15-17 |        |                                |                 |                   |         |             | se SAND.<br>n to grev fi | ine to r | medium SAN           | D with       |         |         |               |
|               | 60/55 15-17 |        |                                |                 |                   |         |             | GRAVEL                   |          |                      | D With       |         |         |               |
|               |             |        |                                | 17-20           |                   | 0.6     |             |                          |          |                      |              |         |         |               |
| 20            |             |        |                                |                 |                   |         |             |                          |          |                      |              |         |         |               |
| 20            |             |        |                                |                 |                   |         |             |                          |          |                      |              |         |         |               |
|               |             |        |                                |                 |                   |         |             |                          |          |                      |              |         |         |               |
|               |             |        |                                |                 |                   |         |             |                          |          |                      |              |         |         |               |
| 25            |             |        |                                |                 |                   |         |             |                          |          |                      |              |         |         |               |
|               |             |        |                                |                 |                   |         |             |                          |          |                      |              |         |         |               |
|               |             |        |                                |                 |                   |         |             |                          |          |                      |              |         |         |               |
|               |             |        |                                |                 |                   |         |             |                          |          |                      |              |         |         |               |
| 30            |             |        |                                |                 |                   |         |             |                          |          |                      |              |         |         |               |
|               |             |        |                                |                 |                   |         |             |                          |          |                      |              |         |         |               |
|               |             |        |                                |                 |                   |         |             |                          |          |                      |              |         |         |               |
|               |             |        |                                |                 |                   |         |             |                          |          |                      |              |         |         |               |
| 35            |             |        |                                |                 |                   |         |             |                          |          |                      |              |         |         |               |
|               |             |        | SOILS                          |                 |                   | REMA    | RKS:        |                          |          |                      |              |         |         |               |
| BLOWS<br>0-4  |             |        | LOOSE                          | BLOWS/FT<br>0-2 | V. SOFT           |         |             |                          |          |                      |              |         |         |               |
| 4-10          |             |        | LOOSE                          | 2-4             | SOFT              |         |             |                          |          |                      |              |         |         |               |
| 10-30         |             |        | DENSE                          | 4-8             | M. STIFF          |         |             |                          |          |                      |              |         |         |               |
| 30-50<br>> 50 |             |        | DENSE<br>DENSE                 | 8-15<br>15-30   | STIFF<br>V. STIFF |         |             |                          |          |                      |              |         |         |               |
| > 50          | '           | ٧.     | DLINGE                         | > 30            | V. STIFF<br>HARD  |         |             |                          |          |                      |              |         |         |               |
| NOTES:        |             | 1) THE | STRATIFICATION                 |                 |                   | ROXIMAT | E BOUN      | DARY BETWE               | EN SOIL  | TYPES. TRANSI        | TIONS MAY BE | GRADU   | AL.     |               |
|               |             | -      |                                |                 |                   |         |             |                          |          | CONDITIONS STA       |              |         | LOG.    |               |
|               |             |        | CTUATIONS IN T<br>SUREMENTS AF |                 | GROUNDWATER       | MAY OC  | CUR DU      | E TO OTHER               | FACTOR   | S THAN THOSE P       | RESENT AT TH | IE TIME |         |               |
|               |             | WEA    | CONCINENTO AP                  | L MADE.         |                   |         |             |                          |          |                      | BORING       | No.     | \       | WS-26         |

|                 |        |                |                 |                  | <u> </u> | PROJE  | <u>ECT</u>    | REPO     | RT OF BORI     | NG No.       |         | \        | NS-27          |
|-----------------|--------|----------------|-----------------|------------------|----------|--------|---------------|----------|----------------|--------------|---------|----------|----------------|
| M/a             | cto    | n & Sa         | mne             | nn n             | 170 10   | 20 Hni | on Street     |          | SHEET          | 1            |         | OF       | 1              |
| MAC             | 310    | 11 & J         | imps            | JII              |          |        | ord, MA       |          | Project No.    |              |         | 100451   |                |
|                 |        |                |                 |                  |          |        | ,             |          | CHKD BY        |              |         |          | _              |
| BORING Co.      | Now F  | England Geo    | tech            |                  |          | B∩RI   | NG LOCA       | TION     |                | See at       | tachec  | l nlan   |                |
| FOREMAN         | Hayes  | _              | 10011           |                  |          |        | UND SUR       |          | ELEV.          | 000 01       | taorica | DATUM    |                |
| WSE GEOLO       |        |                | vanagh          |                  |          |        | START         |          |                | DATE END     | )       | 1        | 1/2/12         |
| SAMPLER:        | Geop   | robe Truck R   | iq              |                  |          |        |               |          | GROUNI         | DWATER F     | READIN  | NGS      |                |
|                 |        |                |                 |                  |          |        | DATE          | TIME     | WATER AT       | CASING       |         |          | ILIZATION TIME |
| CASING:         |        |                |                 |                  |          |        |               |          |                |              |         | <u> </u> |                |
| CASING SIZE:    | N/A    |                | Method          | Direct push      | )        |        |               |          |                |              |         | <b>—</b> |                |
| DEPTH CASING    | .,,,   | 9              | AMPLE           | Direct paci      | PID      |        | SA            | MPLED    | ESCRIPTION     |              |         |          |                |
| (feet) (lb/ft)  | No.    | PEN/REC (in)   |                 | BLOWS/6"         | (ppm)    |        |               |          | Classification |              | NOTES   | STRATU   | JM DESCRIPTION |
|                 |        | 60/48          | 0-5             |                  |          |        | Top soil      |          |                |              |         |          |                |
|                 |        |                |                 |                  |          |        |               | e to me  | edium SAND     | with some    |         |          |                |
|                 |        |                |                 |                  |          | GRA'   | /EL.          |          |                |              |         |          |                |
| 5               |        |                |                 |                  |          |        |               |          |                |              |         |          |                |
|                 |        | 60/36          | 5-10            |                  | 0.0      | Brow   | n fine to m   | edium    | SAND with      |              |         |          |                |
|                 |        |                |                 |                  |          | some   | GRAVEL        |          |                |              |         |          |                |
|                 |        |                |                 |                  |          |        |               |          |                |              |         |          |                |
| 10              |        |                |                 |                  |          |        |               |          |                |              |         |          |                |
|                 |        | 60/48          | 10-13           |                  | 7.5      | Brow   | n to grey fi  | ine to r | nedium SANI    | D            |         |          |                |
|                 |        |                |                 |                  |          | with s | ome GRA       | VEL.     |                |              |         |          |                |
|                 |        |                | 13-15           |                  | 162      | Grov   | fine to me    | dium S   | SAND           |              |         |          |                |
| 15              |        |                | 13-13           |                  | 102      | Gley   | illie to frie | ululli C | DAND.          |              |         |          |                |
|                 |        | 60/48          | 15-17           |                  | 47.3     | Brow   | n to grey fi  | ine to r | nedium SANI    | D.           |         |          |                |
|                 |        |                | 47.00           |                  |          | _      | <b>6</b>      | 04415    |                |              |         |          |                |
|                 |        |                | 17-20           |                  | 7.8      | Brow   | n fine silty  | SAND     | •              |              |         |          |                |
| 20              |        |                |                 |                  |          |        |               |          |                |              |         |          |                |
|                 |        |                |                 |                  |          |        |               |          |                |              |         |          |                |
|                 |        |                |                 |                  |          |        |               |          |                |              |         |          |                |
|                 |        |                |                 |                  |          |        |               |          |                |              |         |          |                |
| 25              |        |                |                 |                  |          |        |               |          |                |              |         |          |                |
|                 |        |                |                 |                  |          |        |               |          |                |              |         |          |                |
|                 |        |                |                 |                  |          |        |               |          |                |              |         |          |                |
|                 |        |                |                 |                  |          |        |               |          |                |              |         |          |                |
| 30              |        |                |                 |                  |          |        |               |          |                |              |         |          |                |
|                 |        |                |                 |                  |          |        |               |          |                |              |         |          |                |
|                 |        |                |                 |                  |          |        |               |          |                |              |         |          |                |
|                 |        |                |                 |                  |          |        |               |          |                |              |         |          |                |
| 35              |        |                |                 |                  |          |        |               |          |                |              |         |          |                |
| GRANI           |        |                |                 | VE SOILS         | REMA     | RKS:   |               |          |                |              |         |          |                |
| BLOWS/FT<br>0-4 |        | LOOSE          | BLOWS/FT<br>0-2 | V. SOFT          |          |        |               |          |                |              |         |          |                |
| 4-10            |        | LOOSE          | 2-4             | SOFT             |          |        |               |          |                |              |         |          |                |
| 10-30           |        | . DENSE        | 4-8             | M. STIFF         |          |        |               |          |                |              |         |          |                |
| 30-50           |        | DENSE          | 8-15            | STIFF            |          |        |               |          |                |              |         |          |                |
| > 50            | V.     | DENSE          | 15-30<br>> 30   | V. STIFF<br>HARD |          |        |               |          |                |              |         |          |                |
| NOTES:          | 1) THE | STRATIFICATION |                 |                  | ROXIMAT  | E BOUN | DARY BETWE    | EN SOIL  | TYPES. TRANSI  | TIONS MAY BE | GRADU   | AL.      |                |
|                 |        |                |                 |                  |          |        |               |          | CONDITIONS STA |              |         |          |                |
|                 |        |                |                 | ROUNDWATER       | MAY OC   | CUR DU | E TO OTHER    | FACTOR   | S THAN THOSE P | RESENT AT TH | IE TIME |          |                |
|                 | MEA    | SUREMENTS AR   | E MADÉ.         |                  |          |        |               |          |                | BORING       | No      |          | WS-27          |
|                 |        |                |                 |                  |          |        |               |          |                | 20.1110      |         |          | · ·            |

| We             | n & Sa   | on                              | 478-480 Union Street New Bedford, MA |                   |          |              | SHEET       | NG No.  |                        |              |         |                     |
|----------------|----------|---------------------------------|--------------------------------------|-------------------|----------|--------------|-------------|---------|------------------------|--------------|---------|---------------------|
|                |          |                                 |                                      |                   |          |              |             |         | Project No.<br>CHKD BY |              | 2       | 100451              |
| BORING Co.     | New E    | England Geo                     | tech                                 |                   | •        | BOR          | ING LOCA    | TION    |                        | See at       | tached  | l plan              |
| FOREMAN        | Hayes    |                                 |                                      |                   |          | -            | UND SUR     |         |                        | DATE ENE     |         | DATUM               |
| WSE GEOLO      |          |                                 |                                      |                   |          | DATI         | START       | 1       |                        | DATE END     |         | 11/2/12             |
| SAMPLER:       | Geop     | robe Truck F                    | Rig                                  |                   |          |              |             | - 1     |                        | DWATER F     |         |                     |
| CASING:        |          |                                 |                                      |                   |          | -            | DATE        | TIME    | WATER AT               | CASING       | AT      | STABILIZATION TIME  |
| CASINO.        |          |                                 |                                      |                   |          | -            |             |         |                        |              |         |                     |
| CASING SIZE:   | N/A      |                                 | Method                               | Direct push       | 1        | •            |             |         |                        |              |         |                     |
| DEPTH CASING   |          | S                               | AMPLE                                |                   | PID      |              | SA          | MPLE D  | ESCRIPTION             |              | NOTES   | STRATUM DESCRIPTION |
| (feet) (lb/ft) | No.      | PEN/REC (in)                    |                                      | BLOWS/6"          | (ppm)    |              |             | mister  | Classification         |              | NOTES   | OTTATOM BEOOK!! HOW |
|                |          | 60/60                           | 0-5                                  |                   | 0.0      |              | Fop soil    | a to me | edium SAND             | with some    |         |                     |
|                |          |                                 |                                      |                   |          |              | GRAVEL      |         | JUIUIII JAND           | WILLI SOILIE |         |                     |
|                |          |                                 |                                      |                   |          |              |             |         |                        |              |         |                     |
| 5              |          | 22/22                           |                                      |                   |          |              |             |         | 0.1115                 |              |         |                     |
|                |          | 60/60                           | 5-10                                 |                   | 0.0      | Brow<br>GRA  |             | edium   | SAND with s            | ome          |         |                     |
|                |          |                                 |                                      |                   |          | GKA          | V C L.      |         |                        |              |         |                     |
|                |          |                                 |                                      |                   |          |              |             |         |                        |              |         |                     |
| 10             |          | 22/22                           | 10.10                                |                   | 40.0     |              |             |         |                        |              |         |                     |
|                |          | 60/60                           | 10-13                                |                   | 18.2     | Brow<br>GRA  |             | ne to r | nedium SAN             | D and        |         |                     |
|                |          |                                 |                                      |                   |          | GKA          | V C L.      |         |                        |              |         |                     |
|                |          |                                 | 13-15                                |                   | 163      | Grey         | fine to coa | arse SA | AND.                   |              |         |                     |
| 15             |          |                                 |                                      |                   |          |              |             |         |                        |              |         |                     |
|                |          | 60/60                           | 15-20                                |                   | 0.4      | Brow<br>SANI |             | edium   | SAND with s            | ilty         |         |                     |
|                |          |                                 |                                      |                   |          | SAIN         | J.          |         |                        |              |         |                     |
|                |          |                                 |                                      |                   |          |              |             |         |                        |              |         |                     |
| 20             |          |                                 |                                      |                   |          |              |             |         |                        |              |         |                     |
|                |          |                                 |                                      |                   |          |              |             |         |                        |              |         |                     |
|                |          |                                 |                                      |                   |          |              |             |         |                        |              |         |                     |
|                |          |                                 |                                      |                   |          |              |             |         |                        |              |         |                     |
| 25             |          |                                 |                                      |                   |          |              |             |         |                        |              |         |                     |
|                |          |                                 |                                      |                   |          |              |             |         |                        |              |         |                     |
|                |          |                                 |                                      |                   |          |              |             |         |                        |              |         |                     |
|                |          |                                 |                                      |                   |          |              |             |         |                        |              |         |                     |
| 30             |          |                                 |                                      |                   |          |              |             |         |                        |              |         |                     |
|                |          |                                 |                                      |                   |          |              |             |         |                        |              |         |                     |
|                |          |                                 |                                      |                   |          |              |             |         |                        |              |         |                     |
|                |          |                                 |                                      |                   |          |              |             |         |                        |              |         |                     |
| 35 GRAN        | II A D G | COIL C                          | COLLECT                              | VE SOILS          | REMA     | DIC.         |             |         |                        |              |         |                     |
| BLOWS/FT       |          | DENSITY                         | BLOWS/FT                             | DENSITY           | KEIVIA   | KNS.         |             |         |                        |              |         |                     |
| 0-4            |          | LOOSE                           | 0-2                                  | V. SOFT           |          |              |             |         |                        |              |         |                     |
| 4-10           |          | LOOSE                           | 2-4                                  | SOFT              |          |              |             |         |                        |              |         |                     |
| 10-30<br>30-50 |          | . DENSE<br>DENSE                | 4-8<br>8-15                          | M. STIFF<br>STIFF |          |              |             |         |                        |              |         |                     |
| > 50           |          | DENSE<br>. DENSE                | 15-30                                | V. STIFF          |          |              |             |         |                        |              |         |                     |
|                |          |                                 | > 30                                 | HARD              | <u> </u> |              |             |         |                        |              |         |                     |
| NOTES:         |          |                                 |                                      |                   |          |              |             |         | TYPES. TRANSI          |              |         |                     |
|                |          |                                 |                                      |                   |          |              |             |         | CONDITIONS STA         |              |         | LOG.                |
|                |          | CTUATIONS IN T<br>ASUREMENTS AF |                                      | ROUNDWATER        | MAY OC   | LUK DU       | E IO OTHER  | FACTOR  | S THAN THOSE P         | KESENI AI TE | 1E IIME |                     |
|                | /        |                                 |                                      |                   |          |              |             |         |                        | BORING       | No.     | WS-28               |

| 60/48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                                         |        |                |         |             |         |        |                |          | REPORT OF BORING No. |              |         |           | /S-29       |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------|--------|----------------|---------|-------------|---------|--------|----------------|----------|----------------------|--------------|---------|-----------|-------------|------|
| New Bedford, M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ı         | Ne                                      | sto    | n & Sa         | amns    | on          |         |        |                |          | SHEET                | 1            |         | OF        | 1           |      |
| SORING Co.   New England Geotech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |        | ,, a oc        | πιιρο   | <i>011</i>  |         |        |                |          | Project No.          |              | 2′      | 100451    |             |      |
| DATUM SMS GEOLOGIST:   Padraio Kavanagh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                                         |        |                |         |             |         |        |                |          | CHKD BY              |              |         |           |             |      |
| DATE START   11/2/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BORING    | G Co.                                   | New E  | England Geo    | tech    |             |         | BOR    | ING LOCA       | TION     |                      | See at       | tached  | plan      |             |      |
| CASING   C   |           |                                         |        |                |         |             |         |        |                |          |                      |              |         |           |             |      |
| DATE   TIME   WATER AT   CASING AT   STABILIZATION T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NSE GI    | EOLO                                    | GIST:  | Padraic Ka     | vanagh  |             |         | DATI   | START          |          | 11/2/12              | DATE END     | )       | 11        | /2/12       |      |
| ASING SIZE: NA Method Direct push   SAMPLE   SAMPLE DESCRIPTION   No.   PENREC (n)   DEPTH (r)   BLOWSNF   (ppm)   SAMPLE DESCRIPTION   No.   PENREC (n)   DEPTH (r)   BLOWSNF   (ppm)   SAMPLE DESCRIPTION   No.   PENREC (n)   DEPTH (r)   BLOWSNF   (ppm)   SAMPLE DESCRIPTION   No.   PENREC (n)   DEPTH (r)   BLOWSNF   (ppm)   SAMPLE DESCRIPTION   No.   STRATUM DESCRIF   Some GRAVEL.   Some GRAVEL   Some fine silty SAND with some gravel   Some GRAVEL   Some fine silty SAND with some medium SAND   Some GRAVEL   Some fine silty SAND with some medium SAND   Some GRAVEL   Some fine silty SAND with some fine silty SAND wi | SAMPLI    | ER:                                     | Geop   | robe Truck R   | ≀ig     |             |         | _      |                |          |                      |              |         |           |             |      |
| ASING SIZE: N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - V CIVIC | ٠.                                      |        |                |         |             |         | -      | DATE           | TIME     | WATER AT             | CASING       | AT      | STABIL    | IZATION TIM | ИΕ   |
| Continue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SASING    | J.                                      |        |                |         |             |         | -      |                |          |                      |              |         |           |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CASING    | SIZE:                                   | N/A    |                | Method  | Direct push | 1       | -      |                |          |                      |              |         |           |             |      |
| Month   No.   PENREC (in)   DEPTH (in)   BLOWSP   Open   Surviser   Classification   Control     | DEPTH C   | ASING                                   |        | S              | SAMPLE  |             | PID     |        | SA             | MPLE D   | ESCRIPTION           |              | NOTES   | CTD ATLIA | A DESCRIP.  | TION |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (feet)    | (lb/ft)                                 | No.    |                |         | BLOWS/6"    |         |        |                | mister ( | Classification       |              | NOTES   | STRATUR   | /I DESCRIP  | HON  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                         |        | 60/48          | 0-5     |             | 0.0     |        |                | - 4      | I: CAND              |              |         |           |             |      |
| 5   60/54   5-10   0.0   Grey fine silty SAND with some gravel.  10   60/60   10-13   118   Fine to medium brown to grey SAND with some GRAVEL.  15   60/60   15-17   1.3   Brown fine silty SAND.  16   60/60   15-17   1.3   Brown fine silty SAND.  17-20   0.3   Brown fine silty SAND with some medium SAND.  Brown fine silty SAND with some GRAVEL.  20   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                                         |        | +              |         |             |         |        |                |          | edium SAND           | with some    |         |           |             |      |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                         |        | +              |         |             |         | 301110 | OIOWEL         | •        |                      |              |         |           |             |      |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5         |                                         |        |                |         |             |         |        |                |          |                      |              |         |           |             |      |
| 60/60   10-13   118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                                         |        | 60/54          | 5-10    |             | 0.0     | Grey   | fine silty S   | SAND v   | vith some gra        | vel.         |         |           |             |      |
| 60/60   10-13   118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                                         |        | +              |         |             |         |        |                |          |                      |              |         |           |             |      |
| 60/60   10-13   118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                                         |        | +              |         |             |         |        |                |          |                      |              |         |           |             |      |
| ### With some GRAVEL.    13-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10        |                                         |        |                |         |             |         |        |                |          |                      |              |         |           |             |      |
| 13-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                                         |        | 60/60          | 10-13   |             | 118     |        |                |          | to grey SAN          | D            |         |           |             |      |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                         |        | +              |         |             |         | with   | some GRA       | VEL.     |                      |              |         |           |             |      |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                         |        | +              | 13-15   |             | 110     | Brow   | n fine silty   | SAND     |                      |              |         |           |             |      |
| 17-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15        |                                         |        |                |         |             |         |        | •              |          |                      |              |         |           |             |      |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                         |        | 60/60          | 15-17   |             | 1.3     |        |                |          | with some            |              |         |           |             |      |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                         |        |                | 17-20   |             | 0.3     |        |                |          | with some G          | RAVEI        |         |           |             |      |
| 25 GRANULAR SOILS COHESIVE SOILS  GRANULAR SOILS COHESIVE SOILS  BLOWS/FT DENSITY BLOWS/FT DENSITY  0-4 V. LOOSE 0-2 V. SOFT  4-10 LOOSE 2-4 SOFT  10-30 M. DENSE 4-8 M. STIFF  30-50 DENSE 8-15 STIFF  > 50 V. DENSE 15-30 V. STIFF  > 30 HARD  NOTES: 1) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.  2) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG. FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                                         |        | +              | 17 20   |             | 0.0     | Diow   | ii iii lo onty | 0, 1110  | With Some C          | TO WEL.      |         |           |             |      |
| 30  GRANULAR SOILS  COHESIVE SOILS  BLOWS/FT  DENSITY  0-4  V. LOOSE  2-4  SOFT  10-30  M. DENSE  30-50  DENSE  31-530  V. STIFF  > 50  V. DENSE  15-30  V. STIFF  > 30  HARD  NOTES:  1) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.  2) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG.  FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20        |                                         |        |                |         |             |         |        |                |          |                      |              |         |           |             |      |
| 30  GRANULAR SOILS  COHESIVE SOILS  BLOWS/FT  DENSITY  0-4  V. LOOSE  2-4  SOFT  10-30  M. DENSE  30-50  DENSE  31-530  V. STIFF  > 50  V. DENSE  15-30  V. STIFF  > 30  HARD  NOTES:  1) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.  2) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG.  FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                                         |        |                |         |             |         |        |                |          |                      |              |         |           |             |      |
| 30  GRANULAR SOILS  COHESIVE SOILS  BLOWS/FT  DENSITY  0-4  V. LOOSE  2-4  SOFT  10-30  M. DENSE  30-50  DENSE  31-530  V. STIFF  > 50  V. DENSE  15-30  V. STIFF  > 30  HARD  NOTES:  1) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.  2) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG.  FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                                         |        | +              |         |             |         |        |                |          |                      |              |         |           |             |      |
| 30  GRANULAR SOILS  COHESIVE SOILS  BLOWS/FT  DENSITY  0-4  V. LOOSE  2-4  SOFT  10-30  M. DENSE  30-50  DENSE  30-50  V. DENSE  30-50  STIFF  > 30  HARD  NOTES:  1) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.  2) WATER LEVEL READINGS HAVE BEEN MADE IN THE DIRLL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG.  FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                                         |        |                | 1       |             |         |        |                |          |                      |              |         |           |             |      |
| GRANULAR SOILS COHESIVE SOILS BLOWS/FT DENSITY BLOWS/FT DENSITY  0-4 V. LOOSE 0-2 V. SOFT 4-10 LOOSE 2-4 SOFT 10-30 M. DENSE 4-8 M. STIFF 30-50 DENSE 8-15 STIFF > 50 V. DENSE 15-30 V. STIFF > 30 HARD  NOTES: 1) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.  2) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG. FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25        |                                         |        |                |         |             |         |        |                |          |                      |              |         |           |             |      |
| GRANULAR SOILS COHESIVE SOILS BLOWS/FT DENSITY BLOWS/FT DENSITY  0-4 V. LOOSE 0-2 V. SOFT 4-10 LOOSE 2-4 SOFT 10-30 M. DENSE 4-8 M. STIFF 30-50 DENSE 8-15 STIFF > 50 V. DENSE 15-30 V. STIFF > 30 HARD  NOTES: 1) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.  2) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG. FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                                         |        |                |         |             |         |        |                |          |                      |              |         |           |             |      |
| GRANULAR SOILS COHESIVE SOILS BLOWS/FT DENSITY BLOWS/FT DENSITY  0-4 V. LOOSE 0-2 V. SOFT 4-10 LOOSE 2-4 SOFT 10-30 M. DENSE 4-8 M. STIFF 30-50 DENSE 8-15 STIFF > 50 V. DENSE 15-30 V. STIFF > 30 HARD  NOTES: 1) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.  2) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG. FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                                         |        | +              |         |             |         |        |                |          |                      |              |         |           |             |      |
| GRANULAR SOILS COHESIVE SOILS BLOWS/FT DENSITY BLOWS/FT DENSITY  0-4 V. LOOSE 0-2 V. SOFT 4-10 LOOSE 2-4 SOFT 10-30 M. DENSE 4-8 M. STIFF 30-50 DENSE 8-15 STIFF > 50 V. DENSE 15-30 V. STIFF > 30 HARD  NOTES: 1) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.  2) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG. FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                                         |        |                |         |             |         |        |                |          |                      |              |         |           |             |      |
| GRANULAR SOILS COHESIVE SOILS  BLOWS/FT DENSITY BLOWS/FT DENSITY  0-4 V. LOOSE 0-2 V. SOFT  4-10 LOOSE 2-4 SOFT  10-30 M. DENSE 4-8 M. STIFF  30-50 DENSE 8-15 STIFF  > 50 V. DENSE 15-30 V. STIFF  > 30 HARD  NOTES: 1) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.  2) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG. FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30        |                                         |        |                |         |             |         |        |                |          |                      |              |         |           |             |      |
| GRANULAR SOILS COHESIVE SOILS  BLOWS/FT DENSITY BLOWS/FT DENSITY  0-4 V. LOOSE 0-2 V. SOFT  4-10 LOOSE 2-4 SOFT  10-30 M. DENSE 4-8 M. STIFF  30-50 DENSE 8-15 STIFF  > 50 V. DENSE 15-30 V. STIFF  > 30 HARD  NOTES: 1) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.  2) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG. FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                         |        |                |         |             |         |        |                |          |                      |              |         |           |             |      |
| GRANULAR SOILS COHESIVE SOILS  BLOWS/FT DENSITY BLOWS/FT DENSITY  0-4 V. LOOSE 0-2 V. SOFT  4-10 LOOSE 2-4 SOFT  10-30 M. DENSE 4-8 M. STIFF  30-50 DENSE 8-15 STIFF  > 50 V. DENSE 15-30 V. STIFF  > 30 HARD  NOTES: 1) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.  2) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG. FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                         |        | +              |         |             |         |        |                |          |                      |              |         |           |             |      |
| GRANULAR SOILS COHESIVE SOILS  BLOWS/FT DENSITY BLOWS/FT DENSITY  0-4 V. LOOSE 0-2 V. SOFT  4-10 LOOSE 2-4 SOFT  10-30 M. DENSE 4-8 M. STIFF  30-50 DENSE 8-15 STIFF  > 50 V. DENSE 15-30 V. STIFF  > 30 HARD  NOTES: 1) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.  2) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG. FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                         |        | +              |         |             |         |        |                |          |                      |              |         |           |             |      |
| BLOWS/FT DENSITY BLOWS/FT DENSITY  0-4 V. LOOSE 0-2 V. SOFT  4-10 LOOSE 2-4 SOFT  10-30 M. DENSE 4-8 M. STIFF  30-50 DENSE 8-15 STIFF  > 50 V. DENSE 15-30 V. STIFF  > 30 HARD  NOTES: 1) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.  2) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG. FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                                         |        |                |         |             |         |        |                |          |                      |              |         |           |             |      |
| 0-4 V. LOOSE 0-2 V. SOFT 4-10 LOOSE 2-4 SOFT 10-30 M. DENSE 4-8 M. STIFF 30-50 DENSE 8-15 STIFF > 50 V. DENSE 15-30 V. STIFF > 30 HARD  NOTES: 1) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL. 2) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG. FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                                         |        |                |         |             | REMA    | RKS:   |                |          |                      |              |         |           |             |      |
| 4-10 LOOSE 2-4 SOFT 10-30 M. DENSE 4-8 M. STIFF 30-50 DENSE 8-15 STIFF > 50 V. DENSE 15-30 V. STIFF > 30 HARD  NOTES:  1) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL. 2) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG. FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                         |        |                |         |             |         |        |                |          |                      |              |         |           |             |      |
| 30-50 DENSE 8-15 STIFF > 50 V. DENSE 15-30 V. STIFF > 30 HARD  NOTES:  1) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.  2) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG. FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                                         |        |                |         |             |         |        |                |          |                      |              |         |           |             |      |
| > 50  V. DENSE  15-30  V. STIFF  > 30  HARD  NOTES:  1) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.  2) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG.  FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                         |        |                |         |             |         |        |                |          |                      |              |         |           |             |      |
| NOTES:  1) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.  2) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG.  FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                         |        |                |         |             |         |        |                |          |                      |              |         |           |             |      |
| NOTES:  1) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.  2) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG.  FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | > 5       | U                                       | V.     | DEN2E          |         |             |         |        |                |          |                      |              |         |           |             |      |
| FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NOTES:    |                                         | 1) THE | STRATIFICATION | 1       |             | ROXIMAT | E BOUN | DARY BETWE     | EN SOIL  | TYPES. TRANSI        | TIONS MAY BE | GRADU   | AL.       |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                         | -      |                |         |             |         |        |                |          |                      |              |         |           |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                         |        |                |         | GROUNDWATER | MAY OC  | CUR DU | E TO OTHER     | FACTOR   | S THAN THOSE P       | RESENT AT TH | IE TIME |           |             |      |
| MEASUREMENTS ARE MADE.  BORING No. WS-29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                                         | MEA    | SUREMENTS AR   | Œ MADÉ. |             |         |        |                |          | ĺ                    | BORING       | No.     | 1         | WS-29       |      |

|        |            |                |                                |                 |                   | <u> </u>                                | ROJI   | <u>-C1</u>           |           | KT OF BORI     | NG No.         |        | WS-30               |
|--------|------------|----------------|--------------------------------|-----------------|-------------------|-----------------------------------------|--------|----------------------|-----------|----------------|----------------|--------|---------------------|
|        | We.        | sto            | n & Sá                         | amps            | on                | 478-480 Union Street<br>New Bedford, MA |        |                      | SHEET     | 1              |                | OF 1   |                     |
|        |            |                |                                | •               |                   | New                                     | Bedf   | ord, MA              |           | Project No.    |                | 21     | 00451               |
|        |            |                |                                |                 |                   |                                         |        |                      |           | CHKD BY        |                |        |                     |
|        |            |                | England Geo                    | tech            |                   |                                         | -      | ING LOCA             |           | <u> </u>       | See att        | ached  |                     |
| FORE ( |            | Hayes<br>GIST: | Padraic Ka                     | vanagh          |                   |                                         |        | UND SUR<br>E START   |           |                | DATE END       |        | DATUM               |
|        |            |                | robe Truck R                   | _               |                   |                                         | -      |                      |           |                | DWATER R       | EADIN  |                     |
| OAWI   | LLIX.      | Сеорі          | ODE HUCKIN                     | iig             |                   |                                         | -      | DATE                 | TIME      | WATER AT       | CASING         |        | STABILIZATION TIME  |
| CASIN  | NG:        |                |                                |                 |                   |                                         | -      |                      |           |                |                |        |                     |
| CVSIN  | G SIZE:    | NI/Δ           |                                | Method          | Direct push       | `                                       |        |                      |           |                |                |        |                     |
|        | CASING     | <u> </u>       | 9                              | AMPLE           | Direct pasi       | PID                                     |        | 9/                   | MPLET     | DESCRIPTION    |                |        |                     |
| (feet) | (lb/ft)    | No.            | PEN/REC (in)                   |                 | BLOWS/6"          | (ppm)                                   |        |                      |           | Classification |                | NOTES  | STRATUM DESCRIPTION |
|        |            |                | 60/48                          | 0-5             |                   | 0.0                                     |        | Top soil             |           |                |                |        |                     |
|        |            |                |                                |                 |                   |                                         |        | Brown fine<br>GRAVEL |           | edium sand w   | /ith           |        |                     |
|        |            |                |                                |                 |                   |                                         | Some   | GRAVEL               | •         |                |                |        |                     |
| 5_     |            |                |                                |                 |                   |                                         |        |                      |           |                |                |        |                     |
|        |            |                | 60/50                          | 5-10            |                   | 0.0                                     |        |                      |           | SAND with      |                |        |                     |
|        |            |                |                                |                 |                   |                                         | some   | GRAVEL               |           |                |                |        |                     |
|        |            |                |                                |                 |                   |                                         |        |                      |           |                |                |        |                     |
| 10_    |            |                |                                |                 |                   |                                         | _      | _                    |           |                |                |        |                     |
|        |            |                | 60/60                          | 10-13           |                   | 0.1                                     | Grey   | fine to me           | dium S    | SAND with GF   | RAVEL.         |        |                     |
|        |            |                |                                | 13-15           |                   | 0.3                                     | Brow   | n fine silty         | SAND      | with some G    | RAVEL.         |        |                     |
|        |            |                |                                |                 |                   |                                         |        | •                    |           |                |                |        |                     |
| 15_    |            |                | 00/00                          | 45.47           |                   | 0.4                                     | D      |                      |           | CAND           |                |        |                     |
|        |            |                | 60/60                          | 15-17           |                   | 0.1                                     | Brow   | n to grey f          | ine siity | SAND.          |                |        |                     |
|        |            |                |                                |                 |                   |                                         |        |                      |           |                |                |        |                     |
|        |            |                |                                | 17-20           |                   | 0.2                                     | Brow   | n to grey f          | ine to d  | coarse SAND    |                |        |                     |
| 20_    |            |                |                                |                 |                   |                                         |        |                      |           |                |                |        |                     |
|        |            |                |                                |                 |                   |                                         |        |                      |           |                |                |        |                     |
|        |            |                |                                |                 |                   |                                         |        |                      |           |                |                |        |                     |
| 25     |            |                |                                |                 |                   |                                         |        |                      |           |                |                |        |                     |
| 23_    |            |                |                                |                 |                   |                                         |        |                      |           |                |                |        |                     |
|        |            |                |                                |                 |                   |                                         |        |                      |           |                |                |        |                     |
|        |            |                |                                |                 |                   |                                         |        |                      |           |                |                |        |                     |
| 30     |            |                |                                |                 |                   |                                         |        |                      |           |                |                |        |                     |
|        |            |                |                                |                 |                   |                                         |        |                      |           |                |                |        |                     |
|        |            |                |                                |                 |                   |                                         |        |                      |           |                |                |        |                     |
|        |            |                |                                |                 |                   |                                         |        |                      |           |                |                |        |                     |
| 35     |            |                |                                |                 |                   |                                         |        |                      |           |                |                |        |                     |
|        | GRANI      | 1              |                                | 1               |                   | REMA                                    | RKS:   |                      |           |                |                |        |                     |
|        | WS/FT      |                | LOOSE                          | BLOWS/FT<br>0-2 | V. SOFT           |                                         |        |                      |           |                |                |        |                     |
|        | -10        |                | LOOSE                          | 2-4             | SOFT              |                                         |        |                      |           |                |                |        |                     |
|        | )-30       |                | DENSE                          | 4-8             | M. STIFF          |                                         |        |                      |           |                |                |        |                     |
|        | )-50<br>50 |                | DENSE<br>DENSE                 | 8-15<br>15-30   | STIFF<br>V. STIFF |                                         |        |                      |           |                |                |        |                     |
| >      | 30         | ٧.             | DLINGE                         | > 30            | V. STIFF<br>HARD  |                                         |        |                      |           |                |                |        |                     |
| NOTES  | :          | 1) THE         | STRATIFICATION                 | L               |                   | ROXIMAT                                 | E BOUN | DARY BETWE           | EN SOIL   | TYPES. TRANSI  | TIONS MAY BE O | GRADUA | L.                  |
|        |            |                |                                |                 |                   |                                         |        |                      |           | CONDITIONS STA |                |        | OG.                 |
|        |            |                | CTUATIONS IN T<br>SUREMENTS AR |                 | ROUNDWATER        | IVIAY OC                                | LUK DÜ | E IO O I HER         | FACTOR    | S THAN THOSE P | KESENI AI IHE  | IIIVIE |                     |
|        |            | /              |                                |                 |                   |                                         |        |                      |           |                | BORING N       | No.    | WS-30               |

| We                          | stor           | ı & Sa                        | ampso           | on                | PROJECT<br>478-480 Union Street<br>New Bedford, MA |        |                  |           | SHEET                  | 1            |         | OF 1                 |
|-----------------------------|----------------|-------------------------------|-----------------|-------------------|----------------------------------------------------|--------|------------------|-----------|------------------------|--------------|---------|----------------------|
|                             |                |                               | •               |                   | New                                                | Bedfo  | ord, MA          |           | Project No.<br>CHKD BY |              | 21      | 100451               |
| BORING Co.                  |                | ngland Geo                    | tech            |                   |                                                    |        | NG LOCA          |           |                        | See at       | tached  |                      |
| FOREMAN<br><b>WSE GEOLO</b> | Hayes<br>GIST: | Padraic Ka                    | vanagh          |                   |                                                    | -      | UND SUR<br>START |           |                        | DATE EN      |         | DATUM                |
| SAMPLER:                    | Geopro         | be Truck R                    | ig              |                   |                                                    |        |                  |           | GROUNI                 | DWATER F     | READIN  | NGS                  |
|                             |                |                               | <u> </u>        |                   |                                                    |        | DATE             | TIME      | WATER AT               | CASING       |         | STABILIZATION TIME   |
| CASING:                     |                |                               |                 |                   |                                                    |        |                  |           |                        |              |         |                      |
| CASING SIZE:                | N/A            |                               | Method          | Direct push       | 1                                                  | -      |                  |           |                        |              |         |                      |
| DEPTH CASING                |                | S                             | AMPLE           |                   | PID                                                |        | SA               | MPLE D    | ESCRIPTION             |              | NOTES   | STRATUM DESCRIPTION  |
| (feet) (lb/ft)              | No.            | PEN/REC (in)                  |                 | BLOWS/6"          | (ppm)                                              |        |                  | mister (  | Classification         |              | NOTES   | 31 KATOW DESCRIPTION |
|                             |                | 60/48                         | 0-5             |                   | 0.0                                                |        | Top soil         | arown f   | fine SAND wi           | th como      |         |                      |
|                             |                |                               |                 |                   |                                                    | GRA'   |                  | JIOWITI   | IIIIE SAIND WI         | iii soille   |         |                      |
|                             |                |                               |                 |                   |                                                    |        |                  |           |                        |              |         |                      |
| 5                           |                | 00/00                         | 5.40            |                   | 0.0                                                | 0      | ( -              | · OA      | ND                     |              |         |                      |
|                             |                | 60/36                         | 5-10            |                   | 0.0                                                | Grey   | to brown f       | ine SA    | ND.                    |              |         |                      |
|                             |                |                               |                 |                   |                                                    |        |                  |           |                        |              |         |                      |
|                             |                |                               |                 |                   |                                                    |        |                  |           |                        |              |         |                      |
| 10                          |                | 60/60                         | 10-13           |                   | 0.1                                                | Drow   | o fino to m      | odium     | SAND with s            | omo          |         |                      |
|                             |                | 60/60                         | 10-13           |                   | 0.1                                                | GRA'   |                  | ealum     | SAIND WILL S           | one          |         |                      |
|                             |                |                               |                 |                   |                                                    |        |                  |           |                        |              |         |                      |
| 4=                          |                |                               | 13-15           |                   | 0.1                                                | Light  | brown silty      | / SANI    | <b>)</b> .             |              |         |                      |
| 15                          |                | 60/60                         | 15-20           |                   | 0.1                                                | l iaht | hrown fine       | SANE      | D. Saturated.          |              |         |                      |
|                             |                | 00/00                         | 10 20           |                   | 0.1                                                | Ligiti | DIOWII IIIIC     | , 0, 1112 | o. Oataratoa.          |              |         |                      |
|                             |                |                               |                 |                   |                                                    |        |                  |           |                        |              |         |                      |
| 20                          |                |                               |                 |                   |                                                    |        |                  |           |                        |              |         |                      |
| 20                          |                |                               |                 |                   |                                                    |        |                  |           |                        |              |         |                      |
|                             |                |                               |                 |                   |                                                    |        |                  |           |                        |              |         |                      |
|                             |                |                               |                 |                   |                                                    |        |                  |           |                        |              |         |                      |
| 25                          |                |                               |                 |                   |                                                    |        |                  |           |                        |              |         |                      |
|                             |                |                               |                 |                   |                                                    |        |                  |           |                        |              |         |                      |
|                             |                |                               |                 |                   |                                                    |        |                  |           |                        |              |         |                      |
|                             |                |                               |                 |                   |                                                    |        |                  |           |                        |              |         |                      |
| 30                          |                |                               |                 |                   |                                                    |        |                  |           |                        |              |         |                      |
|                             |                |                               |                 |                   |                                                    |        |                  |           |                        |              |         |                      |
|                             |                |                               |                 |                   |                                                    |        |                  |           |                        |              |         |                      |
|                             |                |                               |                 |                   |                                                    |        |                  |           |                        |              |         |                      |
| 35                          |                |                               |                 |                   |                                                    |        |                  |           |                        |              |         |                      |
|                             | JLAR SO        |                               |                 |                   | REMA                                               | RKS:   |                  |           |                        |              |         |                      |
| BLOWS/FT<br>0-4             |                | LOOSE                         | BLOWS/FT<br>0-2 | V. SOFT           |                                                    |        |                  |           |                        |              |         |                      |
| 4-10                        |                | OOSE                          | 2-4             | SOFT              |                                                    |        |                  |           |                        |              |         |                      |
| 10-30                       |                | DENSE                         | 4-8             | M. STIFF          |                                                    |        |                  |           |                        |              |         |                      |
| 30-50<br>> 50               |                | ENSE<br>DENSE                 | 8-15<br>15-30   | STIFF<br>V. STIFF |                                                    |        |                  |           |                        |              |         |                      |
| > 00                        | V. I           | JLINOL                        | > 30            | V. STIFF<br>HARD  |                                                    |        |                  |           |                        |              |         |                      |
| NOTES:                      | 1) THE S       | TRATIFICATION                 | l e             |                   | ROXIMAT                                            | E BOUN | DARY BETWE       | EN SOIL   | TYPES. TRANSI          | TIONS MAY BE | GRADUA  | AL.                  |
|                             |                |                               |                 |                   |                                                    |        |                  |           | CONDITIONS STA         |              |         | LOG.                 |
|                             |                | TUATIONS IN TI<br>UREMENTS AR |                 | KOUNDWATER        | MAY OC                                             | UUR DU | E TO OTHER       | FACTOR    | S THAN THOSE P         | RESENT AT TH | HE TIME |                      |
|                             | .,,,,,         | zzzi i o Ai                   |                 |                   |                                                    |        |                  |           |                        | BORING       | No.     | WS-31                |

|         | We:      | stol     | n & Sa         | amps       | on              |          | <u>PROJE</u><br>30 Uni | <u>CT</u><br>on Street | REPO     | RT OF BORI<br>SHEET               | NG No.       |        | OF     | /S-32<br>1    |
|---------|----------|----------|----------------|------------|-----------------|----------|------------------------|------------------------|----------|-----------------------------------|--------------|--------|--------|---------------|
|         |          |          |                |            |                 |          |                        | ord, MA                |          | Project No.<br>CHKD BY            |              | 21     | 100451 |               |
| BORIN   | IG Co    | New F    | ngland Geo     | tech       |                 | <u> </u> | BORI                   | NG LOCA                | TION     |                                   | See at       | tached | Inlan  |               |
| FORE    |          | Hayes    |                | tcon       |                 |          | -                      | UND SUR                |          | ELEV.                             | Occ at       |        | DATUM  |               |
|         |          |          | Padraic Ka     | vanagh     |                 |          |                        | START                  |          | 11/2/12                           | DATE END     |        |        | 1/2/12        |
| SAMPI   | _ER:     | Geopr    | obe Truck R    | lia        |                 |          |                        |                        |          | GROUN                             | DWATER R     | EADIN  | NGS    |               |
|         |          |          |                | <u> </u>   |                 |          |                        | DATE                   | TIME     | WATER AT                          | CASING       |        |        | IZATION TIME  |
| CASIN   | G:       |          |                |            |                 |          |                        |                        |          |                                   |              |        |        |               |
| CASING  | G SIZE:  | N/A      |                | Method     | Direct push     | <u> </u> |                        |                        |          |                                   |              |        |        |               |
| DEPTH ( |          |          | S              | AMPLE      |                 | PID      |                        | SA                     | MPLE D   | ESCRIPTION                        |              |        |        |               |
| (feet)  | (lb/ft)  | No.      | PEN/REC (in)   |            | BLOWS/6"        | (ppm)    |                        |                        |          | Classification                    |              | NOTES  | STRATU | M DESCRIPTION |
|         |          |          | 60/24          | 0-5        |                 | 0.0      |                        | Top soil               |          |                                   |              |        |        |               |
|         |          |          |                |            |                 |          | 6"- 5'                 | Brown SA               | ND WI    | th some GRA                       | VEL.         |        |        |               |
|         |          |          |                |            |                 |          |                        |                        |          |                                   |              |        |        |               |
| 5       |          |          |                |            |                 |          |                        |                        |          |                                   |              |        |        |               |
|         |          |          | 60/48          | 5-10       |                 | 0.0      | Light                  | brown fine             | to me    | edium SAND.                       |              |        |        |               |
|         |          |          |                |            |                 |          |                        |                        |          |                                   |              |        |        |               |
|         |          |          |                |            |                 |          |                        |                        |          |                                   |              |        |        |               |
| 10      |          |          | 00/00          | 10.10      |                 | 0.4      | _                      |                        |          |                                   | 241/51       |        |        |               |
|         |          |          | 60/60          | 10-13'     |                 | 0.1      | Grey                   | fine to me             | dium S   | SAND with GF                      | RAVEL.       |        |        |               |
|         |          |          |                | 13-15'     |                 | 0.0      | Grev                   | to brown f             | ine to i | medium SAN                        | D with       |        |        |               |
|         |          |          |                |            |                 |          |                        | /EL. Wet a             |          |                                   |              |        |        |               |
| 15      |          |          |                | 45.00      |                 |          | D - (                  | -1 -1 45 5             |          |                                   |              |        |        |               |
|         |          |          |                | 15-20      |                 |          | Refus                  | sal at 15.5            |          |                                   |              |        |        |               |
|         |          |          |                |            |                 |          |                        |                        |          |                                   |              |        |        |               |
|         |          |          |                |            |                 |          |                        |                        |          |                                   |              |        |        |               |
| 20      |          |          |                |            |                 |          |                        |                        |          |                                   |              |        |        |               |
|         |          |          |                |            |                 |          |                        |                        |          |                                   |              |        |        |               |
|         |          |          |                |            |                 |          |                        |                        |          |                                   |              |        |        |               |
| 0.5     |          |          |                |            |                 |          |                        |                        |          |                                   |              |        |        |               |
| 25      |          |          |                |            |                 |          |                        |                        |          |                                   |              |        |        |               |
|         |          |          |                |            |                 |          |                        |                        |          |                                   |              |        |        |               |
|         |          |          |                |            |                 |          |                        |                        |          |                                   |              |        |        |               |
| 20      |          |          |                |            |                 |          |                        |                        |          |                                   |              |        |        |               |
| 30      |          |          |                |            |                 |          |                        |                        |          |                                   |              |        |        |               |
|         |          |          |                |            |                 |          |                        |                        |          |                                   |              |        |        |               |
|         |          |          |                |            |                 |          |                        |                        |          |                                   |              |        |        |               |
| 35      |          |          |                |            |                 |          |                        |                        |          |                                   |              |        |        |               |
|         | GRANL    | JLAR S   | SOILS          | COHESI     | VE SOILS        | REMA     | RKS:                   |                        |          |                                   |              |        |        |               |
| BLOV    |          |          | DENSITY        | BLOWS/FT   | DENSITY         |          |                        |                        |          |                                   |              |        |        |               |
| _       | -4<br>10 |          | LOOSE<br>LOOSE | 0-2<br>2-4 | V. SOFT<br>SOFT |          |                        |                        |          |                                   |              |        |        |               |
|         | -30      |          | DENSE          | 4-8        | M. STIFF        |          |                        |                        |          |                                   |              |        |        |               |
| 30-     | -50      |          | DENSE          | 8-15       | STIFF           |          |                        |                        |          |                                   |              |        |        |               |
| > :     | 50       | V.       | DENSE          | 15-30      | V. STIFF        |          |                        |                        |          |                                   |              |        |        |               |
| NOTES:  |          | 1) TUE ( | CTDATIFICATION | > 30       | HARD            | DOVINAAT | E BOUN                 |                        | EN CO!!  | TYPES. TRANSI                     | TIONS MAY DE | CDADII | VI.    |               |
| MOTES:  |          |          |                |            |                 |          |                        |                        |          | . TYPES. TRANSI<br>CONDITIONS STA |              |        |        |               |
|         |          |          |                |            |                 |          |                        |                        |          | S THAN THOSE P                    |              |        |        |               |
|         |          | MEA      | SUREMENTS AR   | RE MADE.   |                 |          |                        |                        |          |                                   | B6           |        |        | MC 00         |
|         |          |          |                |            |                 |          |                        |                        |          |                                   | BORING       | NO.    | ,      | WS-32         |

|                 |        |                                 |                 |                  | <u> </u> | PROJ   | <u>ECT</u>             | REPO     | RT OF BORI           | NG No.        |         |              | WS-33           |
|-----------------|--------|---------------------------------|-----------------|------------------|----------|--------|------------------------|----------|----------------------|---------------|---------|--------------|-----------------|
| We              | sto    | n & Sa                          | amps            | on               |          |        | on Street<br>ord, MA   |          | SHEET<br>Project No. | 1             |         | OF<br>100451 | 1               |
|                 |        |                                 |                 |                  | 11011    | Boan   | J. G., 1417 (          |          | CHKD BY              |               |         |              |                 |
| BORING Co.      | New F  | England Geo                     | ntech           |                  |          | BORI   | NG LOCA                | TION     |                      | See a         | ttached | l plan       |                 |
| FOREMAN         | Hayes  |                                 |                 |                  |          | _      | UND SUR                |          | ELEV.                | <b>2</b> 00 a |         | DATUM        | 1               |
| WSE GEOLO       | GIST:  | Padraic Ka                      | ıvanagh         |                  |          | DATE   | START                  |          | 11/2/12              | DATE EN       | D       |              | 11/2/12         |
| SAMPLER:        | Geop   | robe Truck F                    | Rig             |                  |          |        |                        |          | GROUNI               | DWATER I      | READI   | NGS          |                 |
|                 |        |                                 | _               |                  |          | -      | DATE                   | TIME     | WATER AT             | CASING        | AT .    | STAE         | SILIZATION TIME |
| CASING:         |        |                                 |                 |                  |          | -      |                        |          |                      |               |         |              |                 |
| CASING SIZE:    | N/A    |                                 | Method          | Direct push      | 1        | -      |                        |          |                      |               |         |              |                 |
| DEPTH CASING    |        | S                               | SAMPLE          |                  | PID      |        | SA                     | MPLE D   | ESCRIPTION           |               | NOTEO   | OTDAT        | IN DECODIDE     |
| (feet) (lb/ft)  | No.    | PEN/REC (in)                    |                 | BLOWS/6"         | (ppm)    |        |                        |          | Classification       |               | NOTES   | SIRAI        | UM DESCRIPTION  |
|                 |        | 60/36                           | 0-5             |                  | 0.0      | 4      |                        |          | o coarse SAN         |               |         |              |                 |
|                 |        |                                 |                 |                  |          | piece  |                        | , DIICK, | ash and con          | crete         |         |              |                 |
|                 |        |                                 |                 |                  |          | p.000  | <b>.</b> .             |          |                      |               |         |              |                 |
| 5               |        | 00/50                           | 5.40            |                  | 0.0      |        |                        |          |                      | ***           |         |              |                 |
|                 |        | 60/50                           | 5-10            |                  | 0.0      | 4      | n to tan fin<br>GRAVEL |          | edium SAND           | with          |         |              |                 |
|                 |        |                                 |                 |                  |          | 301110 | OKAVLL                 | •        |                      |               |         |              |                 |
|                 |        |                                 |                 |                  |          | 1      |                        |          |                      |               |         |              |                 |
| 10              |        | 60/4F                           | 10.15           |                  | 0.7      | Drow   | n to arou fi           |          | madium CANII         | Duvith        |         |              |                 |
|                 |        | 60/15                           | 10-15           |                  | 8.7      | GRA'   |                        | ne to r  | nedium SAN           | D WITH        |         |              |                 |
|                 |        |                                 |                 |                  |          |        |                        |          |                      |               |         |              |                 |
|                 |        |                                 |                 |                  |          |        |                        |          |                      |               |         |              |                 |
| 15              |        | 60/55                           | 15-20           |                  | 623      | Brow   | n to grov              | fina ta  | medium SAN           | ID            |         |              |                 |
|                 |        | 00/33                           | 13-20           |                  | 023      |        |                        |          | Strong odor.         | ID.           |         |              |                 |
|                 |        |                                 |                 |                  |          | Satur  |                        |          |                      |               |         |              |                 |
| 00              |        |                                 |                 |                  |          |        |                        |          |                      |               |         |              |                 |
| 20              |        |                                 |                 |                  |          |        |                        |          |                      |               |         |              |                 |
|                 |        |                                 |                 |                  |          |        |                        |          |                      |               |         |              |                 |
|                 |        |                                 |                 |                  |          |        |                        |          |                      |               |         |              |                 |
| 25              |        | 1                               |                 |                  |          |        |                        |          |                      |               |         |              |                 |
| 25              |        |                                 |                 |                  |          |        |                        |          |                      |               |         |              |                 |
|                 |        |                                 |                 |                  |          |        |                        |          |                      |               |         |              |                 |
|                 |        |                                 |                 |                  |          |        |                        |          |                      |               |         |              |                 |
| 30              |        |                                 |                 |                  |          |        |                        |          |                      |               |         |              |                 |
|                 |        |                                 |                 |                  |          | j      |                        |          |                      |               |         |              |                 |
|                 |        |                                 |                 |                  |          |        |                        |          |                      |               |         |              |                 |
|                 |        |                                 |                 |                  |          |        |                        |          |                      |               |         |              |                 |
| 35              |        |                                 |                 |                  |          |        |                        |          |                      |               |         |              |                 |
| GRANI           |        |                                 | 1               | VE SOILS         | REMA     | RKS:   |                        |          |                      |               |         |              |                 |
| BLOWS/FT<br>0-4 |        | LOOSE                           | BLOWS/FT<br>0-2 | V. SOFT          |          |        |                        |          |                      |               |         |              |                 |
| 4-10            |        | LOOSE                           | 2-4             | SOFT             |          |        |                        |          |                      |               |         |              |                 |
| 10-30           |        | . DENSE                         | 4-8             | M. STIFF         |          |        |                        |          |                      |               |         |              |                 |
| 30-50           |        | DENSE                           | 8-15            | STIFF            |          |        |                        |          |                      |               |         |              |                 |
| > 50            | V.     | . DENSE                         | 15-30<br>> 30   | V. STIFF<br>HARD |          |        |                        |          |                      |               |         |              |                 |
| NOTES:          | 1) THE | STRATIFICATIO                   |                 |                  | ROXIMAT  | E BOUN | DARY BETWE             | EN SOIL  | TYPES. TRANSI        | TIONS MAY BE  | GRADU   | AL.          |                 |
|                 |        |                                 |                 |                  |          |        |                        |          | CONDITIONS STA       |               |         | LOG.         |                 |
|                 |        | CTUATIONS IN T<br>ASUREMENTS AF |                 | GROUNDWATER      | MAY OC   | CUR DU | E TO OTHER             | FACTOR   | S THAN THOSE P       | RESENT AT T   | HE TIME |              |                 |
|                 | IVIEA  | NOUNEINENTO AF                  | AL WADE.        |                  |          |        |                        |          |                      | BORING        | No.     |              | WS-33           |

|                                |         |                |             |                   | <u> </u>     | PROJE  | <u>ECT</u>  | REPO         | RT OF BORI                       | NG No.       |             | V      | VS-34         |
|--------------------------------|---------|----------------|-------------|-------------------|--------------|--------|-------------|--------------|----------------------------------|--------------|-------------|--------|---------------|
| M/a                            | sto     | n & Sá         | mne         | 0n                | 170 10       | 20 Hni | on Street   |              | SHEET                            | 1            |             | OF     | 1             |
| ,,,                            | 310     | ii & Je        |             | OH                |              |        | ord, MA     |              | Project No.                      |              | 2           | 100451 |               |
|                                |         |                |             |                   |              |        | ,           |              | CHKD BY                          |              |             |        |               |
| BORING Co.                     | Now F   | naland Geo     | toch        |                   |              | BOR    | NG LOCA     | TION         |                                  | Soo          | ttached     | l nlan |               |
| FOREMAN                        | Hayes   |                | tcon        |                   |              |        | UND SUR     |              | ELEV.                            | 0000         | ittaorioc   | DATUM  | <del></del>   |
| WSE GEOLO                      |         |                | vanagh      |                   |              |        | START       |              |                                  | DATE EN      | D           |        | 1/2/12        |
| SAMPLER:                       | Geopr   | obe Truck R    | ia          |                   |              |        |             |              | GROUNI                           | DWATER       | READI       | NGS    |               |
| O/ WIII EEI W.                 | Ооорг   | obo madicin    | 9           |                   |              | -      | DATE        | TIME         | WATER AT                         | CASING       |             |        | LIZATION TIME |
| CASING:                        |         |                |             |                   |              |        |             |              |                                  |              |             |        |               |
| CASING SIZE:                   | NI/A    |                | Method      | Dina at much      |              |        |             |              |                                  |              |             |        |               |
|                                |         |                | -           | Direct push       |              |        |             |              | FOODIDTION                       |              | 1           |        |               |
| DEPTH CASING<br>(feet) (lb/ft) | No.     | PEN/REC (in)   | AMPLE       | BLOWS/6"          | PID<br>(ppm) |        |             |              | ESCRIPTION Classification        |              | NOTES       | STRATU | M DESCRIPTION |
| (leet) (lb/it)                 | INO.    | 60/30          | 0-5         | BLOW5/0           |              | FILL.  |             |              | SAND with 0                      | GRAVEL       |             |        |               |
|                                |         |                |             |                   |              |        |             |              | and concrete                     |              |             |        |               |
|                                |         |                |             |                   |              |        |             |              |                                  |              |             |        |               |
| 5                              |         |                |             |                   |              |        |             |              |                                  |              |             |        |               |
| 3                              |         | 60/48          | 5-10        |                   | 0.0          | Brow   | n to orang  | e fine t     | o medium SA                      | AND with     |             |        |               |
|                                |         |                |             |                   |              |        | GRAVEL      |              |                                  |              |             |        |               |
|                                |         |                |             |                   |              |        |             |              |                                  |              |             |        |               |
| 10                             |         |                |             |                   |              |        |             |              |                                  |              |             |        |               |
| 10                             |         | 60/50          | 10-13       |                   | 0.1          | Fine   | silty SAND  | ) with s     | ome GRAVE                        | 1            |             |        |               |
|                                |         | 00/00          | 10 10       |                   | 0.1          |        | 5ty         | ************ | 01110 0111112                    | · <b>_</b> · |             |        |               |
|                                |         |                | 13-15       |                   | 194          |        |             |              | ome GRAVE                        | L.           |             |        |               |
| 45                             |         |                |             |                   |              | Fine   | o medium    | SAND         | ).                               |              |             |        |               |
| 15                             |         | 60/55          | 15-19       |                   | 941          | Grev   | / hlue fine | to ma        | dium SAND v                      | vith         |             |        |               |
|                                |         | 00/33          | 10-10       |                   | 341          |        | /EL. Stro   |              |                                  | VICII        |             |        |               |
|                                |         |                |             |                   |              |        |             | J            |                                  |              |             |        |               |
|                                |         |                | 19-20       |                   | 6.9          | Brow   | n fine to m | edium        | SAND and G                       | RAVEL.       |             |        |               |
| 20                             |         |                |             |                   |              |        |             |              |                                  |              |             |        |               |
|                                | -       |                |             |                   |              |        |             |              |                                  |              |             |        |               |
|                                |         |                |             |                   |              |        |             |              |                                  |              |             |        |               |
|                                |         |                |             |                   |              |        |             |              |                                  |              |             |        |               |
| 25                             |         |                |             |                   |              |        |             |              |                                  |              |             |        |               |
|                                | -       |                |             |                   |              |        |             |              |                                  |              |             |        |               |
|                                |         |                |             |                   |              |        |             |              |                                  |              |             |        |               |
| 00                             |         |                |             |                   |              |        |             |              |                                  |              |             |        |               |
| 30                             |         |                |             |                   |              |        |             |              |                                  |              |             |        |               |
|                                |         |                |             |                   |              |        |             |              |                                  |              |             |        |               |
|                                |         |                |             |                   |              |        |             |              |                                  |              |             |        |               |
| 25                             |         |                |             |                   |              |        |             |              |                                  |              |             |        |               |
| 35 GRANI                       | II AR S | SOILS          | COHESI      | IVE SOILS         | REMA         | RKS:   |             |              |                                  |              |             |        |               |
| BLOWS/FT                       |         | DENSITY        | BLOWS/FT    |                   |              |        |             |              |                                  |              |             |        |               |
| 0-4                            |         | LOOSE          | 0-2         | V. SOFT           |              |        |             |              |                                  |              |             |        |               |
| 4-10                           |         | LOOSE          | 2-4         | SOFT              |              |        |             |              |                                  |              |             |        |               |
| 10-30<br>30-50                 |         | DENSE<br>DENSE | 4-8<br>8-15 | M. STIFF<br>STIFF |              |        |             |              |                                  |              |             |        |               |
| > 50                           |         | DENSE          | 15-30       | V. STIFF          |              |        |             |              |                                  |              |             |        |               |
| -                              |         |                | > 30        | HARD              |              |        |             |              |                                  |              |             |        |               |
| NOTES:                         |         |                |             |                   |              |        |             |              | TYPES. TRANSI                    |              |             |        |               |
|                                |         |                |             |                   |              |        |             |              | CONDITIONS STA<br>S THAN THOSE P |              |             | LOG.   |               |
|                                |         | SUREMENTS AR   |             | S. COUNDYVALER    |              | JUN DU | LIGOTIER    | OIOR         | S III WY III OOE P               | COLINI AT I  | . AL LINVIE |        |               |
|                                |         |                |             |                   |              |        |             |              |                                  | BORING       | No.         | ,      | WS-34         |

# APPENDIX B

LABORATORY ANALYTICAL REPORTS



November 12, 2012

Sean Healey Weston & Sampson - Foxborough 100 Foxboro Boulevard, Suite 250 Foxborough, MA 02035

Project Location: Union St., New Bedford

Client Job Number: Project Number: [none]

Laboratory Work Order Number: 12K0153

Meghan S. Kelley

Enclosed are results of analyses for samples received by the laboratory on November 5, 2012. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Meghan E. Kelley Project Manager



Weston & Sampson - Foxborough 100 Foxboro Boulevard, Suite 250 Foxborough, MA 02035

ATTN: Sean Healey

PURCHASE ORDER NUMBER:

PROJECT NUMBER: [none]

#### ANALYTICAL SUMMARY

12K0153 WORK ORDER NUMBER:

REPORT DATE: 11/12/2012

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Union St., New Bedford

| FIELD SAMPLE # | LAB ID:    | MATRIX          | SAMPLE DESCRIPTION | TEST             | SUB LAB |
|----------------|------------|-----------------|--------------------|------------------|---------|
| WS-26 (13-15)  | 12K0153-01 | Soil            |                    | MADEP-VPH-04-1.1 |         |
|                |            |                 |                    | SM 2540G         |         |
| WS-30 (13-15)  | 12K0153-02 | Soil            |                    | MADEP-EPH-04-1.1 |         |
|                |            |                 |                    | MADEP-VPH-04-1.1 |         |
|                |            |                 |                    | SM 2540G         |         |
| WS-31 (13-15)  | 12K0153-03 | Soil            |                    | MADEP-EPH-04-1.1 |         |
|                |            |                 |                    | MADEP-VPH-04-1.1 |         |
|                |            |                 |                    | SM 2540G         |         |
| Dup-1          | 12K0153-04 | Soil            |                    | MADEP-EPH-04-1.1 |         |
|                |            |                 |                    | MADEP-VPH-04-1.1 |         |
|                |            |                 |                    | SM 2540G         |         |
| Trip Blank     | 12K0153-05 | Trip Blank Soil |                    | MADEP-VPH-04-1.1 |         |



#### CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

#### MADEP-EPH-04-1.1

#### Qualifications:

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.

Analyte & Samples(s) Qualified:

n-Decane, n-Nonane

B062415-BS1

#### MADEP-VPH-04-1.1

#### **Qualifications:**

Soil/methanol ratio does not meet method specifications. Excess amount of soil. Sample was completely covered with methanol, but with less than the method-specified amount.

Analyte & Samples(s) Qualified:

12K0153-01[WS-26 (13-15)], 12K0153-02[WS-30 (13-15)], 12K0153-03[WS-31 (13-15)], 12K0153-04[Dup-1]

#### MADEP-EPH-04-1.1

SPE cartridge contamination with non-petroleum compounds, if present, is verified by GC/MS in each method blank per extraction batch and excluded from C11-C22 aromatic range fraction in all samples in the batch. No significant modifications were made to the method.

### MADEP-VPH-04-1.1

No significant modifications were made to the method. All VPH samples were received properly in methanol with a soil/methanol ratio of 1:1 +/- 25% completely covered by methanol in the proper containers specified on the chain-of-custody form unless specified in this narrative.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Michael A. Erickson Laboratory Director

Culu



Project Location: Union St., New Bedford Sample Description: Work Order: 12K0153

Date Received: 11/5/2012

Field Sample #: WS-26 (13-15) Sampled: 11/2/2012 12:00

82.1

Sample ID: 12K0153-01
Sample Matrix: Soil

2,5-Dibromotoluene (PID)

| Sample Flags: O-01                     |          | Pet        | roleum Hydrocarbo | ons Analyses - | VPH  |                  |          |              |         |
|----------------------------------------|----------|------------|-------------------|----------------|------|------------------|----------|--------------|---------|
| Soil/Methanol Preservation Ratio: 1.78 | <b>.</b> | D.         | ***               | Dil d          | F71  |                  | Date     | Date/Time    |         |
| Analyte                                | Results  | RL         | Units             | Dilution       | Flag | Method           | Prepared | Analyzed     | Analyst |
| Unadjusted C5-C8 Aliphatics            | ND       | 7.9        | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 0:11 | EEH     |
| C5-C8 Aliphatics                       | ND       | 7.9        | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 0:11 | EEH     |
| Unadjusted C9-C12 Aliphatics           | ND       | 7.9        | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 0:11 | EEH     |
| C9-C12 Aliphatics                      | ND       | 7.9        | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 0:11 | EEH     |
| C9-C10 Aromatics                       | ND       | 7.9        | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 0:11 | EEH     |
| Benzene                                | ND       | 0.039      | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 0:11 | EEH     |
| Ethylbenzene                           | ND       | 0.039      | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 0:11 | EEH     |
| Methyl tert-Butyl Ether (MTBE)         | ND       | 0.039      | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 0:11 | EEH     |
| Naphthalene                            | ND       | 0.20       | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 0:11 | EEH     |
| Toluene                                | ND       | 0.039      | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 0:11 | EEH     |
| m+p Xylene                             | ND       | 0.079      | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 0:11 | EEH     |
| o-Xylene                               | ND       | 0.039      | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 0:11 | EEH     |
| Surrogates                             |          | % Recovery | Recovery Limits   | 3              | Flag |                  |          |              |         |
| 2,5-Dibromotoluene (FID)               |          | 96.8       | 70-130            |                |      |                  |          | 11/9/12 0:11 |         |

70-130

11/9/12 0:11



Project Location: Union St., New Bedford Sample Description: Work Order: 12K0153

Date Received: 11/5/2012

Field Sample #: WS-26 (13-15)

Sampled: 11/2/2012 12:00

Sample ID: 12K0153-01
Sample Matrix: Soil

# Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |    |       |          |      |          | Date     | Date/Time    |         |
|----------|---------|---------|----|-------|----------|------|----------|----------|--------------|---------|
|          | Analyte | Results | RL | Units | Dilution | Flag | Method   | Prepared | Analyzed     | Analyst |
| % Solids |         | 87.3    |    | % Wt  | 1        |      | SM 2540G | 11/6/12  | 11/7/12 8:06 | RH      |



Project Location: Union St., New Bedford Sample Description: Work Order: 12K0153

Date Received: 11/5/2012

Field Sample #: WS-30 (13-15) Sampled: 11/2/2012 13:15

Sample ID: 12K0153-02
Sample Matrix: Soil

# Petroleum Hydrocarbons Analyses - EPH

|                              |         |            | roteum Hydrocurb |          |      |                  |          |                |         |
|------------------------------|---------|------------|------------------|----------|------|------------------|----------|----------------|---------|
|                              |         |            |                  |          |      |                  | Date     | Date/Time      |         |
| Analyte                      | Results | RL         | Units            | Dilution | Flag | Method           | Prepared | Analyzed       | Analyst |
| C9-C18 Aliphatics            | ND      | 23         | mg/Kg dry        | 1        |      | MADEP-EPH-04-1.1 | 11/12/12 | 11/12/12 16:18 | SCS     |
| C19-C36 Aliphatics           | ND      | 23         | mg/Kg dry        | 1        |      | MADEP-EPH-04-1.1 | 11/12/12 | 11/12/12 16:18 | SCS     |
| Unadjusted C11-C22 Aromatics | ND      | 23         | mg/Kg dry        | 1        |      | MADEP-EPH-04-1.1 | 11/12/12 | 11/12/12 16:18 | SCS     |
| C11-C22 Aromatics            | ND      | 23         | mg/Kg dry        | 1        |      | MADEP-EPH-04-1.1 | 11/12/12 | 11/12/12 16:18 | SCS     |
| Acenaphthene                 | ND      | 0.23       | mg/Kg dry        | 1        |      | MADEP-EPH-04-1.1 | 11/12/12 | 11/12/12 16:18 | SCS     |
| Acenaphthylene               | ND      | 0.23       | mg/Kg dry        | 1        |      | MADEP-EPH-04-1.1 | 11/12/12 | 11/12/12 16:18 | SCS     |
| Anthracene                   | ND      | 0.23       | mg/Kg dry        | 1        |      | MADEP-EPH-04-1.1 | 11/12/12 | 11/12/12 16:18 | SCS     |
| Benzo(a)anthracene           | ND      | 0.23       | mg/Kg dry        | 1        |      | MADEP-EPH-04-1.1 | 11/12/12 | 11/12/12 16:18 | SCS     |
| Benzo(a)pyrene               | ND      | 0.23       | mg/Kg dry        | 1        |      | MADEP-EPH-04-1.1 | 11/12/12 | 11/12/12 16:18 | SCS     |
| Benzo(b)fluoranthene         | ND      | 0.23       | mg/Kg dry        | 1        |      | MADEP-EPH-04-1.1 | 11/12/12 | 11/12/12 16:18 | SCS     |
| Benzo(g,h,i)perylene         | ND      | 0.23       | mg/Kg dry        | 1        |      | MADEP-EPH-04-1.1 | 11/12/12 | 11/12/12 16:18 | SCS     |
| Benzo(k)fluoranthene         | ND      | 0.23       | mg/Kg dry        | 1        |      | MADEP-EPH-04-1.1 | 11/12/12 | 11/12/12 16:18 | SCS     |
| Chrysene                     | ND      | 0.23       | mg/Kg dry        | 1        |      | MADEP-EPH-04-1.1 | 11/12/12 | 11/12/12 16:18 | SCS     |
| Dibenz(a,h)anthracene        | ND      | 0.23       | mg/Kg dry        | 1        |      | MADEP-EPH-04-1.1 | 11/12/12 | 11/12/12 16:18 | SCS     |
| Fluoranthene                 | ND      | 0.23       | mg/Kg dry        | 1        |      | MADEP-EPH-04-1.1 | 11/12/12 | 11/12/12 16:18 | SCS     |
| Fluorene                     | ND      | 0.23       | mg/Kg dry        | 1        |      | MADEP-EPH-04-1.1 | 11/12/12 | 11/12/12 16:18 | SCS     |
| Indeno(1,2,3-cd)pyrene       | ND      | 0.23       | mg/Kg dry        | 1        |      | MADEP-EPH-04-1.1 | 11/12/12 | 11/12/12 16:18 | SCS     |
| 2-Methylnaphthalene          | ND      | 0.23       | mg/Kg dry        | 1        |      | MADEP-EPH-04-1.1 | 11/12/12 | 11/12/12 16:18 | SCS     |
| Naphthalene                  | ND      | 0.23       | mg/Kg dry        | 1        |      | MADEP-EPH-04-1.1 | 11/12/12 | 11/12/12 16:18 | SCS     |
| Phenanthrene                 | ND      | 0.23       | mg/Kg dry        | 1        |      | MADEP-EPH-04-1.1 | 11/12/12 | 11/12/12 16:18 | SCS     |
| Pyrene                       | ND      | 0.23       | mg/Kg dry        | 1        |      | MADEP-EPH-04-1.1 | 11/12/12 | 11/12/12 16:18 | SCS     |
| Surrogates                   |         | % Recovery | Recovery Limit   | s        | Flag |                  |          |                |         |
| Chlorooctadecane (COD)       |         | 53.5       | 40-140           |          |      |                  |          | 11/12/12 16:18 |         |
| o-Terphenyl (OTP)            |         | 61.6       | 40-140           |          |      |                  |          | 11/12/12 16:18 |         |
| 2-Bromonaphthalene           |         | 57.3       | 40-140           |          |      |                  |          | 11/12/12 16:18 |         |
| 2-Fluorobiphenyl             |         | 77.8       | 40-140           |          |      |                  |          | 11/12/12 16:18 |         |



Project Location: Union St., New Bedford Sample Description: Work Order: 12K0153

Date Received: 11/5/2012

Field Sample #: WS-30 (13-15) Sampled: 11/2/2012 13:15

98.4

Sample ID: 12K0153-02
Sample Matrix: Soil

2,5-Dibromotoluene (PID)

| Sample Flags: O-01                     |         | Pet        | roleum Hydrocarbo | ons Analyses - | VPH  |                  |          |              |         |
|----------------------------------------|---------|------------|-------------------|----------------|------|------------------|----------|--------------|---------|
| Soil/Methanol Preservation Ratio: 1.63 |         |            |                   |                |      |                  | Date     | Date/Time    |         |
| Analyte                                | Results | RL         | Units             | Dilution       | Flag | Method           | Prepared | Analyzed     | Analyst |
| Unadjusted C5-C8 Aliphatics            | ND      | 9.1        | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 0:47 | EEH     |
| C5-C8 Aliphatics                       | ND      | 9.1        | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 0:47 | EEH     |
| Unadjusted C9-C12 Aliphatics           | ND      | 9.1        | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 0:47 | EEH     |
| C9-C12 Aliphatics                      | ND      | 9.1        | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 0:47 | EEH     |
| C9-C10 Aromatics                       | ND      | 9.1        | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 0:47 | EEH     |
| Benzene                                | ND      | 0.046      | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 0:47 | EEH     |
| Ethylbenzene                           | ND      | 0.046      | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 0:47 | EEH     |
| Methyl tert-Butyl Ether (MTBE)         | ND      | 0.046      | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 0:47 | EEH     |
| Naphthalene                            | ND      | 0.23       | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 0:47 | EEH     |
| Toluene                                | ND      | 0.046      | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 0:47 | EEH     |
| m+p Xylene                             | ND      | 0.091      | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 0:47 | EEH     |
| o-Xylene                               | ND      | 0.046      | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 0:47 | EEH     |
| Surrogates                             |         | % Recovery | Recovery Limits   | i .            | Flag |                  |          |              |         |
| 2,5-Dibromotoluene (FID)               |         | 115        | 70-130            |                |      |                  |          | 11/9/12 0:47 |         |

70-130

11/9/12 0:47



Project Location: Union St., New Bedford Sample Description: Work Order: 12K0153

Date Received: 11/5/2012

Field Sample #: WS-30 (13-15)

Sampled: 11/2/2012 13:15

Sample ID: 12K0153-02
Sample Matrix: Soil

# Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |    |       |          |      |          | Date     | Date/Time    |         |
|----------|---------|---------|----|-------|----------|------|----------|----------|--------------|---------|
|          | Analyte | Results | RL | Units | Dilution | Flag | Method   | Prepared | Analyzed     | Analyst |
| % Solids |         | 84.3    |    | % Wt  | 1        |      | SM 2540G | 11/6/12  | 11/7/12 8:06 | RH      |



Project Location: Union St., New Bedford Sample Description: Work Order: 12K0153

Date Received: 11/5/2012

Field Sample #: WS-31 (13-15) Sampled: 11/2/2012 14:00

Sample ID: 12K0153-03
Sample Matrix: Soil

# Petroleum Hydrocarbons Analyses - EPH

| Analyte                      | Results  | RL         | Units           | Dilution | Flag | Method           | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|------------------------------|----------|------------|-----------------|----------|------|------------------|------------------|-----------------------|---------|
| C9-C18 Aliphatics            | ND       | 12         | mg/Kg dry       | 1        | riag | MADEP-EPH-04-1.1 | 11/8/12          | 11/11/12 17:31        | SCS     |
| C19-C36 Aliphatics           | ND<br>ND | 12         |                 | 1        |      | MADEP-EPH-04-1.1 | 11/8/12          | 11/11/12 17:31        | SCS     |
| Unadjusted C11-C22 Aromatics |          |            | mg/Kg dry       |          |      |                  |                  |                       |         |
| ,                            | ND       | 12         | mg/Kg dry       | 1        |      | MADEP-EPH-04-1.1 | 11/8/12          | 11/11/12 17:31        | SCS     |
| C11-C22 Aromatics            | ND       | 12         | mg/Kg dry       | 1        |      | MADEP-EPH-04-1.1 | 11/8/12          | 11/11/12 17:31        | SCS     |
| Acenaphthene                 | ND       | 0.12       | mg/Kg dry       | 1        |      | MADEP-EPH-04-1.1 | 11/8/12          | 11/11/12 17:31        | SCS     |
| Acenaphthylene               | ND       | 0.12       | mg/Kg dry       | 1        |      | MADEP-EPH-04-1.1 | 11/8/12          | 11/11/12 17:31        | SCS     |
| Anthracene                   | ND       | 0.12       | mg/Kg dry       | 1        |      | MADEP-EPH-04-1.1 | 11/8/12          | 11/11/12 17:31        | SCS     |
| Benzo(a)anthracene           | ND       | 0.12       | mg/Kg dry       | 1        |      | MADEP-EPH-04-1.1 | 11/8/12          | 11/11/12 17:31        | SCS     |
| Benzo(a)pyrene               | ND       | 0.12       | mg/Kg dry       | 1        |      | MADEP-EPH-04-1.1 | 11/8/12          | 11/11/12 17:31        | SCS     |
| Benzo(b)fluoranthene         | ND       | 0.12       | mg/Kg dry       | 1        |      | MADEP-EPH-04-1.1 | 11/8/12          | 11/11/12 17:31        | SCS     |
| Benzo(g,h,i)perylene         | ND       | 0.12       | mg/Kg dry       | 1        |      | MADEP-EPH-04-1.1 | 11/8/12          | 11/11/12 17:31        | SCS     |
| Benzo(k)fluoranthene         | ND       | 0.12       | mg/Kg dry       | 1        |      | MADEP-EPH-04-1.1 | 11/8/12          | 11/11/12 17:31        | SCS     |
| Chrysene                     | ND       | 0.12       | mg/Kg dry       | 1        |      | MADEP-EPH-04-1.1 | 11/8/12          | 11/11/12 17:31        | SCS     |
| Dibenz(a,h)anthracene        | ND       | 0.12       | mg/Kg dry       | 1        |      | MADEP-EPH-04-1.1 | 11/8/12          | 11/11/12 17:31        | SCS     |
| Fluoranthene                 | ND       | 0.12       | mg/Kg dry       | 1        |      | MADEP-EPH-04-1.1 | 11/8/12          | 11/11/12 17:31        | SCS     |
| Fluorene                     | ND       | 0.12       | mg/Kg dry       | 1        |      | MADEP-EPH-04-1.1 | 11/8/12          | 11/11/12 17:31        | SCS     |
| Indeno(1,2,3-cd)pyrene       | ND       | 0.12       | mg/Kg dry       | 1        |      | MADEP-EPH-04-1.1 | 11/8/12          | 11/11/12 17:31        | SCS     |
| 2-Methylnaphthalene          | ND       | 0.12       | mg/Kg dry       | 1        |      | MADEP-EPH-04-1.1 | 11/8/12          | 11/11/12 17:31        | SCS     |
| Naphthalene                  | ND       | 0.12       | mg/Kg dry       | 1        |      | MADEP-EPH-04-1.1 | 11/8/12          | 11/11/12 17:31        | SCS     |
| Phenanthrene                 | ND       | 0.12       | mg/Kg dry       | 1        |      | MADEP-EPH-04-1.1 | 11/8/12          | 11/11/12 17:31        | SCS     |
| Pyrene                       | ND       | 0.12       | mg/Kg dry       | 1        |      | MADEP-EPH-04-1.1 | 11/8/12          | 11/11/12 17:31        | SCS     |
| Surrogates                   |          | % Recovery | Recovery Limits | 3        | Flag |                  |                  |                       |         |
| Chlorooctadecane (COD)       |          | 73.8       | 40-140          |          |      |                  |                  | 11/11/12 17:31        |         |
| o-Terphenyl (OTP)            |          | 79.7       | 40-140          |          |      |                  |                  | 11/11/12 17:31        |         |
| 2-Bromonaphthalene           |          | 82.1       | 40-140          |          |      |                  |                  | 11/11/12 17:31        |         |
| 2-Fluorobiphenyl             |          | 90.5       | 40-140          |          |      |                  |                  | 11/11/12 17:31        |         |



Project Location: Union St., New Bedford Sample Description: Work Order: 12K0153

Date Received: 11/5/2012

Field Sample #: WS-31 (13-15) Sampled: 11/2/2012 14:00

79.4

Sample ID: 12K0153-03
Sample Matrix: Soil

2,5-Dibromotoluene (PID)

| Sample Flags: O-01                     |         | Pet        | roleum Hydrocarbo | ons Analyses - | VPH  |                  |          |              |         |
|----------------------------------------|---------|------------|-------------------|----------------|------|------------------|----------|--------------|---------|
| Soil/Methanol Preservation Ratio: 1.69 |         |            |                   |                |      |                  | Date     | Date/Time    |         |
| Analyte                                | Results | RL         | Units             | Dilution       | Flag | Method           | Prepared | Analyzed     | Analyst |
| Unadjusted C5-C8 Aliphatics            | ND      | 8.6        | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 1:23 | EEH     |
| C5-C8 Aliphatics                       | ND      | 8.6        | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 1:23 | EEH     |
| Unadjusted C9-C12 Aliphatics           | ND      | 8.6        | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 1:23 | EEH     |
| C9-C12 Aliphatics                      | ND      | 8.6        | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 1:23 | EEH     |
| C9-C10 Aromatics                       | ND      | 8.6        | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 1:23 | EEH     |
| Benzene                                | ND      | 0.043      | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 1:23 | EEH     |
| Ethylbenzene                           | ND      | 0.043      | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 1:23 | EEH     |
| Methyl tert-Butyl Ether (MTBE)         | ND      | 0.043      | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 1:23 | EEH     |
| Naphthalene                            | ND      | 0.22       | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 1:23 | EEH     |
| Toluene                                | ND      | 0.043      | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 1:23 | EEH     |
| m+p Xylene                             | ND      | 0.086      | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 1:23 | EEH     |
| o-Xylene                               | ND      | 0.043      | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 1:23 | EEH     |
| Surrogates                             |         | % Recovery | Recovery Limits   | 3              | Flag |                  |          |              |         |
| 2,5-Dibromotoluene (FID)               |         | 91.9       | 70-130            |                |      |                  |          | 11/9/12 1:23 |         |

70-130

11/9/12 1:23



Project Location: Union St., New Bedford Sample Description: Work Order: 12K0153

Date Received: 11/5/2012

Field Sample #: WS-31 (13-15)

Sampled: 11/2/2012 14:00

Sample ID: 12K0153-03
Sample Matrix: Soil

# Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |    |       |          |      |          | Date     | Date/Time    |         |
|----------|---------|---------|----|-------|----------|------|----------|----------|--------------|---------|
|          | Analyte | Results | RL | Units | Dilution | Flag | Method   | Prepared | Analyzed     | Analyst |
| % Solids |         | 85.4    |    | % Wt  | 1        |      | SM 2540G | 11/6/12  | 11/7/12 8:06 | RH      |



Project Location: Union St., New Bedford Sample Description: Work Order: 12K0153

Date Received: 11/5/2012

Field Sample #: Dup-1

Sampled: 11/2/2012 00:00

Sample ID: 12K0153-04
Sample Matrix: Soil

# Petroleum Hydrocarbons Analyses - EPH

|                              |         |            |                |          |      |                  | Date     | Date/Time      |         |
|------------------------------|---------|------------|----------------|----------|------|------------------|----------|----------------|---------|
| Analyte                      | Results | RL         | Units          | Dilution | Flag | Method           | Prepared | Analyzed       | Analyst |
| C9-C18 Aliphatics            | ND      | 12         | mg/Kg dry      | 1        |      | MADEP-EPH-04-1.1 | 11/8/12  | 11/11/12 17:51 | SCS     |
| C19-C36 Aliphatics           | ND      | 12         | mg/Kg dry      | 1        |      | MADEP-EPH-04-1.1 | 11/8/12  | 11/11/12 17:51 | SCS     |
| Unadjusted C11-C22 Aromatics | ND      | 12         | mg/Kg dry      | 1        |      | MADEP-EPH-04-1.1 | 11/8/12  | 11/11/12 17:51 | SCS     |
| C11-C22 Aromatics            | ND      | 12         | mg/Kg dry      | 1        |      | MADEP-EPH-04-1.1 | 11/8/12  | 11/11/12 17:51 | SCS     |
| Acenaphthene                 | ND      | 0.12       | mg/Kg dry      | 1        |      | MADEP-EPH-04-1.1 | 11/8/12  | 11/11/12 17:51 | SCS     |
| Acenaphthylene               | ND      | 0.12       | mg/Kg dry      | 1        |      | MADEP-EPH-04-1.1 | 11/8/12  | 11/11/12 17:51 | SCS     |
| Anthracene                   | ND      | 0.12       | mg/Kg dry      | 1        |      | MADEP-EPH-04-1.1 | 11/8/12  | 11/11/12 17:51 | SCS     |
| Benzo(a)anthracene           | ND      | 0.12       | mg/Kg dry      | 1        |      | MADEP-EPH-04-1.1 | 11/8/12  | 11/11/12 17:51 | SCS     |
| Benzo(a)pyrene               | ND      | 0.12       | mg/Kg dry      | 1        |      | MADEP-EPH-04-1.1 | 11/8/12  | 11/11/12 17:51 | SCS     |
| Benzo(b)fluoranthene         | ND      | 0.12       | mg/Kg dry      | 1        |      | MADEP-EPH-04-1.1 | 11/8/12  | 11/11/12 17:51 | SCS     |
| Benzo(g,h,i)perylene         | ND      | 0.12       | mg/Kg dry      | 1        |      | MADEP-EPH-04-1.1 | 11/8/12  | 11/11/12 17:51 | SCS     |
| Benzo(k)fluoranthene         | ND      | 0.12       | mg/Kg dry      | 1        |      | MADEP-EPH-04-1.1 | 11/8/12  | 11/11/12 17:51 | SCS     |
| Chrysene                     | ND      | 0.12       | mg/Kg dry      | 1        |      | MADEP-EPH-04-1.1 | 11/8/12  | 11/11/12 17:51 | SCS     |
| Dibenz(a,h)anthracene        | ND      | 0.12       | mg/Kg dry      | 1        |      | MADEP-EPH-04-1.1 | 11/8/12  | 11/11/12 17:51 | SCS     |
| Fluoranthene                 | ND      | 0.12       | mg/Kg dry      | 1        |      | MADEP-EPH-04-1.1 | 11/8/12  | 11/11/12 17:51 | SCS     |
| Fluorene                     | ND      | 0.12       | mg/Kg dry      | 1        |      | MADEP-EPH-04-1.1 | 11/8/12  | 11/11/12 17:51 | SCS     |
| Indeno(1,2,3-cd)pyrene       | ND      | 0.12       | mg/Kg dry      | 1        |      | MADEP-EPH-04-1.1 | 11/8/12  | 11/11/12 17:51 | SCS     |
| 2-Methylnaphthalene          | ND      | 0.12       | mg/Kg dry      | 1        |      | MADEP-EPH-04-1.1 | 11/8/12  | 11/11/12 17:51 | SCS     |
| Naphthalene                  | ND      | 0.12       | mg/Kg dry      | 1        |      | MADEP-EPH-04-1.1 | 11/8/12  | 11/11/12 17:51 | SCS     |
| Phenanthrene                 | ND      | 0.12       | mg/Kg dry      | 1        |      | MADEP-EPH-04-1.1 | 11/8/12  | 11/11/12 17:51 | SCS     |
| Pyrene                       | ND      | 0.12       | mg/Kg dry      | 1        |      | MADEP-EPH-04-1.1 | 11/8/12  | 11/11/12 17:51 | SCS     |
| Surrogates                   |         | % Recovery | Recovery Limit | s        | Flag |                  |          |                |         |
| Chlorooctadecane (COD)       |         | 73.1       | 40-140         |          |      |                  |          | 11/11/12 17:51 |         |
| o-Terphenyl (OTP)            |         | 76.8       | 40-140         |          |      |                  |          | 11/11/12 17:51 |         |
| 2-Bromonaphthalene           |         | 80.9       | 40-140         |          |      |                  |          | 11/11/12 17:51 |         |
| 2-Fluorobiphenyl             |         | 89.5       | 40-140         |          |      |                  |          | 11/11/12 17:51 |         |



Project Location: Union St., New Bedford Sample Description: Work Order: 12K0153

Date Received: 11/5/2012

Field Sample #: **Dup-1** Sampled: 11/2/2012 00:00

Sample ID: 12K0153-04
Sample Matrix: Soil

| Sample Flags: O-01                     |         | Pet        | roleum Hydrocarbo | ons Analyses - | VPH  |                  |          |              |         |
|----------------------------------------|---------|------------|-------------------|----------------|------|------------------|----------|--------------|---------|
| Soil/Methanol Preservation Ratio: 1.66 |         |            |                   |                |      |                  | Date     | Date/Time    |         |
| Analyte                                | Results | RL         | Units             | Dilution       | Flag | Method           | Prepared | Analyzed     | Analyst |
| Unadjusted C5-C8 Aliphatics            | ND      | 8.7        | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 2:00 | EEH     |
| C5-C8 Aliphatics                       | ND      | 8.7        | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 2:00 | EEH     |
| Unadjusted C9-C12 Aliphatics           | ND      | 8.7        | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 2:00 | EEH     |
| C9-C12 Aliphatics                      | ND      | 8.7        | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 2:00 | EEH     |
| C9-C10 Aromatics                       | ND      | 8.7        | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 2:00 | EEH     |
| Benzene                                | ND      | 0.044      | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 2:00 | EEH     |
| Ethylbenzene                           | ND      | 0.044      | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 2:00 | EEH     |
| Methyl tert-Butyl Ether (MTBE)         | ND      | 0.044      | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 2:00 | EEH     |
| Naphthalene                            | ND      | 0.22       | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 2:00 | EEH     |
| Toluene                                | ND      | 0.044      | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 2:00 | EEH     |
| m+p Xylene                             | ND      | 0.087      | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 2:00 | EEH     |
| o-Xylene                               | ND      | 0.044      | mg/Kg dry         | 1              |      | MADEP-VPH-04-1.1 | 11/8/12  | 11/9/12 2:00 | EEH     |
| Surrogates                             |         | % Recovery | Recovery Limits   | s              | Flag |                  |          |              |         |
| 2,5-Dibromotoluene (FID)               |         | 116        | 70-130            |                |      |                  |          | 11/9/12 2:00 |         |
| 2,5-Dibromotoluene (PID)               |         | 101        | 70-130            |                |      |                  |          | 11/9/12 2:00 |         |



Project Location: Union St., New Bedford Sample Description: Work Order: 12K0153

Date Received: 11/5/2012
Field Sample #: Dup-1

Sampled: 11/2/2012 00:00

Sample ID: 12K0153-04
Sample Matrix: Soil

#### Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|          |         |         |    |       |          |      |          | Date     | Date/Time    |         |
|----------|---------|---------|----|-------|----------|------|----------|----------|--------------|---------|
|          | Analyte | Results | RL | Units | Dilution | Flag | Method   | Prepared | Analyzed     | Analyst |
| % Solids |         | 85.5    |    | % Wt  | 1        |      | SM 2540G | 11/6/12  | 11/7/12 8:06 | RH      |



Project Location: Union St., New Bedford Sample Description: Work Order: 12K0153

Date Received: 11/5/2012
Field Sample #: Trip Blank

Sampled: 11/2/2012 00:00

Sample ID: 12K0153-05

Sample Matrix: Trip Blank Soil

| Petroleum | Hydrocarbons | Analyses - VPH |
|-----------|--------------|----------------|
|-----------|--------------|----------------|

| Soil/Methanol Preservation Ratio: 1.00  Analyte | Results | RL         | Units           | Dilution | Flag    | Method           | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|-------------------------------------------------|---------|------------|-----------------|----------|---------|------------------|------------------|-----------------------|---------|
| Unadjusted C5-C8 Aliphatics                     | ND      | 10         | mg/Kg wet       | 1        | 1 11119 | MADEP-VPH-04-1.1 | 11/8/12          | 11/8/12 23:35         | EEH     |
| C5-C8 Aliphatics                                | ND      | 10         | mg/Kg wet       | 1        |         | MADEP-VPH-04-1.1 | 11/8/12          | 11/8/12 23:35         | EEH     |
| Unadjusted C9-C12 Aliphatics                    | ND      | 10         | mg/Kg wet       | 1        |         | MADEP-VPH-04-1.1 | 11/8/12          | 11/8/12 23:35         | EEH     |
| C9-C12 Aliphatics                               | ND      | 10         | mg/Kg wet       | 1        |         | MADEP-VPH-04-1.1 | 11/8/12          | 11/8/12 23:35         | EEH     |
| C9-C10 Aromatics                                | ND      | 10         | mg/Kg wet       | 1        |         | MADEP-VPH-04-1.1 | 11/8/12          | 11/8/12 23:35         | EEH     |
| Benzene                                         | ND      | 0.050      | mg/Kg wet       | 1        |         | MADEP-VPH-04-1.1 | 11/8/12          | 11/8/12 23:35         | EEH     |
| Ethylbenzene                                    | ND      | 0.050      | mg/Kg wet       | 1        |         | MADEP-VPH-04-1.1 | 11/8/12          | 11/8/12 23:35         | EEH     |
| Methyl tert-Butyl Ether (MTBE)                  | ND      | 0.050      | mg/Kg wet       | 1        |         | MADEP-VPH-04-1.1 | 11/8/12          | 11/8/12 23:35         | EEH     |
| Naphthalene                                     | ND      | 0.25       | mg/Kg wet       | 1        |         | MADEP-VPH-04-1.1 | 11/8/12          | 11/8/12 23:35         | EEH     |
| Toluene                                         | ND      | 0.050      | mg/Kg wet       | 1        |         | MADEP-VPH-04-1.1 | 11/8/12          | 11/8/12 23:35         | EEH     |
| m+p Xylene                                      | ND      | 0.10       | mg/Kg wet       | 1        |         | MADEP-VPH-04-1.1 | 11/8/12          | 11/8/12 23:35         | EEH     |
| o-Xylene                                        | ND      | 0.050      | mg/Kg wet       | 1        |         | MADEP-VPH-04-1.1 | 11/8/12          | 11/8/12 23:35         | EEH     |
| Surrogates                                      |         | % Recovery | Recovery Limits | 3        | Flag    |                  |                  |                       |         |
| 2,5-Dibromotoluene (FID)                        |         | 115        | 70-130          |          |         |                  |                  | 11/8/12 23:35         |         |
| 2.5-Dibromotoluene (PID)                        |         | 99.3       | 70-130          |          |         |                  |                  | 11/8/12 23:35         |         |



## **Sample Extraction Data**

#### Prep Method: SW-846 3546-MADEP-EPH-04-1.1

| Lab Number [Field ID]      | Batch   | Initial [g] | Final [mL] | Date     |
|----------------------------|---------|-------------|------------|----------|
| 12K0153-03 [WS-31 (13-15)] | B062415 | 20.0        | 2.00       | 11/08/12 |
| 12K0153-04 [Dup-1]         | B062415 | 20.2        | 2.00       | 11/08/12 |

#### Prep Method: SW-846 3546-MADEP-EPH-04-1.1

| Lab Number [Field ID]         | Batch   | Initial [g] | Final [mL] | Date     |
|-------------------------------|---------|-------------|------------|----------|
| 12K0153-02RE1 [WS-30 (13-15)] | B062641 | 10.3        | 2.00       | 11/12/12 |

#### Prep Method: MA VPH-MADEP-VPH-04-1.1

| Lab Number [Field ID]      | Batch   | Initial [g] | Final [mL] | Date     |
|----------------------------|---------|-------------|------------|----------|
| 12K0153-01 [WS-26 (13-15)] | B062464 | 26.7        | 18.4       | 11/08/12 |
| 12K0153-02 [WS-30 (13-15)] | B062464 | 24.4        | 18.8       | 11/08/12 |
| 12K0153-03 [WS-31 (13-15)] | B062464 | 25.4        | 18.7       | 11/08/12 |
| 12K0153-04 [Dup-1]         | B062464 | 24.9        | 18.6       | 11/08/12 |
| 12K0153-05 [Trip Blank]    | B062464 | 15.0        | 15.0       | 11/08/12 |

#### Prep Method: % Solids-SM 2540G

| Lab Number [Field ID]      | Batch   | Date     |
|----------------------------|---------|----------|
| 12K0153-01 [WS-26 (13-15)] | B062270 | 11/06/12 |
| 12K0153-02 [WS-30 (13-15)] | B062270 | 11/06/12 |
| 12K0153-03 [WS-31 (13-15)] | B062270 | 11/06/12 |
| 12K0153-04 [Dup-1]         | B062270 | 11/06/12 |



#### QUALITY CONTROL

## Petroleum Hydrocarbons Analyses - EPH - Quality Control

| Analyte                           | Result       | Reporting<br>Limit | Units                  | Spike<br>Level | Source<br>Result | %REC                  | %REC<br>Limits   | RPD | RPD<br>Limit | Notes |
|-----------------------------------|--------------|--------------------|------------------------|----------------|------------------|-----------------------|------------------|-----|--------------|-------|
| Batch B062415 - SW-846 3546       |              |                    |                        |                |                  |                       |                  |     |              |       |
| Blank (B062415-BLK1)              |              |                    |                        | Prepared: 11   | /08/12 Analy     | yzed: 11/11/1         | 2                |     |              |       |
| C9-C18 Aliphatics                 | ND           | 10                 | mg/Kg wet              |                |                  |                       |                  |     |              |       |
| C19-C36 Aliphatics                | ND           | 10                 | mg/Kg wet              |                |                  |                       |                  |     |              |       |
| Unadjusted C11-C22 Aromatics      | ND           | 10                 | mg/Kg wet              |                |                  |                       |                  |     |              |       |
| C11-C22 Aromatics                 | ND           | 10                 | mg/Kg wet              |                |                  |                       |                  |     |              |       |
| Acenaphthene                      | ND           | 0.10               | mg/Kg wet              |                |                  |                       |                  |     |              |       |
| Acenaphthylene                    | ND           | 0.10               | mg/Kg wet              |                |                  |                       |                  |     |              |       |
| Anthracene                        | ND           | 0.10               | mg/Kg wet              |                |                  |                       |                  |     |              |       |
| Benzo(a)anthracene                | ND           | 0.10               | mg/Kg wet              |                |                  |                       |                  |     |              |       |
| Benzo(a)pyrene                    | ND           | 0.10               | mg/Kg wet              |                |                  |                       |                  |     |              |       |
| Benzo(b)fluoranthene              | ND           | 0.10               | mg/Kg wet              |                |                  |                       |                  |     |              |       |
| Benzo(g,h,i)perylene              | ND           | 0.10               | mg/Kg wet              |                |                  |                       |                  |     |              |       |
| Benzo(k)fluoranthene              | ND           | 0.10               | mg/Kg wet              |                |                  |                       |                  |     |              |       |
| Chrysene<br>Dibenz(a,h)anthracene | ND           | 0.10<br>0.10       | mg/Kg wet<br>mg/Kg wet |                |                  |                       |                  |     |              |       |
| Fluoranthene                      | ND<br>ND     | 0.10               | mg/Kg wet              |                |                  |                       |                  |     |              |       |
| Fluorene                          | ND           | 0.10               | mg/Kg wet              |                |                  |                       |                  |     |              |       |
| ndeno(1,2,3-cd)pyrene             | ND<br>ND     | 0.10               | mg/Kg wet              |                |                  |                       |                  |     |              |       |
| 2-Methylnaphthalene               | ND<br>ND     | 0.10               | mg/Kg wet              |                |                  |                       |                  |     |              |       |
| Naphthalene                       | ND<br>ND     | 0.10               | mg/Kg wet              |                |                  |                       |                  |     |              |       |
| Phenanthrene                      | ND<br>ND     | 0.10               | mg/Kg wet              |                |                  |                       |                  |     |              |       |
| Pyrene                            | ND<br>ND     | 0.10               | mg/Kg wet              |                |                  |                       |                  |     |              |       |
| Surrogate: Chlorooctadecane (COD) | 3.50         |                    | mg/Kg wet              | 4.99           |                  | 70.1                  | 40-140           |     |              |       |
| Surrogate: o-Terphenyl (OTP)      | 3.50         |                    | mg/Kg wet              | 5.00           |                  | 70.0                  | 40-140           |     |              |       |
| Surrogate: 2-Bromonaphthalene     | 3.77         |                    | mg/Kg wet              | 5.00           |                  | 75.4                  | 40-140           |     |              |       |
| Surrogate: 2-Fluorobiphenyl       | 4.06         |                    | mg/Kg wet              | 5.00           |                  | 81.1                  | 40-140           |     |              |       |
| LCS (B062415-BS1)                 |              |                    |                        | Prepared: 11   | /08/12 Analy     | yzed: 11/11/1         | 2                |     |              |       |
| Acenaphthene                      | 3.10         | 0.10               | mg/Kg wet              | 5.00           |                  | 62.0                  | 40-140           |     |              |       |
| Acenaphthylene                    | 3.04         | 0.10               | mg/Kg wet              | 5.00           |                  | 60.8                  | 40-140           |     |              |       |
| Anthracene                        | 3.27         | 0.10               | mg/Kg wet              | 5.00           |                  | 65.5                  | 40-140           |     |              |       |
| Benzo(a)anthracene                | 3.30         | 0.10               | mg/Kg wet              | 5.00           |                  | 66.0                  | 40-140           |     |              |       |
| Benzo(a)pyrene                    | 3.13         | 0.10               | mg/Kg wet              | 5.00           |                  | 62.5                  | 40-140           |     |              |       |
| Benzo(b)fluoranthene              | 3.30         | 0.10               | mg/Kg wet              | 5.00           |                  | 65.9                  | 40-140           |     |              |       |
| Benzo(g,h,i)perylene              | 3.53         | 0.10               | mg/Kg wet              | 5.00           |                  | 70.6                  | 40-140           |     |              |       |
| Benzo(k)fluoranthene              | 3.28         | 0.10               | mg/Kg wet              | 5.00           |                  | 65.6                  | 40-140           |     |              |       |
| Chrysene                          | 3.12         | 0.10               | mg/Kg wet              | 5.00           |                  | 62.3                  | 40-140           |     |              |       |
| Dibenz(a,h)anthracene             | 3.49         | 0.10               | mg/Kg wet              | 5.00           |                  | 69.9                  | 40-140           |     |              |       |
| Fluoranthene                      | 3.25         | 0.10               | mg/Kg wet              | 5.00           |                  | 65.0                  | 40-140           |     |              |       |
| Fluorene                          | 3.20         | 0.10               | mg/Kg wet              | 5.00           |                  | 64.0                  | 40-140           |     |              |       |
| ndeno(1,2,3-cd)pyrene             | 3.48         | 0.10               | mg/Kg wet              | 5.00           |                  | 69.7                  | 40-140           |     |              |       |
| 2-Methylnaphthalene               | 2.90         | 0.10               | mg/Kg wet              | 5.00           |                  | 58.0                  | 40-140           |     |              |       |
| Naphthalene<br>Phenanthrene       | 2.62         | 0.10               | mg/Kg wet<br>mg/Kg wet | 5.00           |                  | 52.5                  | 40-140           |     |              |       |
| onenanthrene<br>Pyrene            | 3.30         | 0.10<br>0.10       | mg/Kg wet<br>mg/Kg wet | 5.00<br>5.00   |                  | 66.0                  | 40-140           |     |              |       |
| a-Decane                          | 3.18         | 0.10               | mg/Kg wet              | 5.00           |                  | 63.5<br><b>38.1</b> * | 40-140<br>40-140 |     |              | L-07  |
| n-Docosane                        | 1.91         | 0.10               | mg/Kg wet              | 5.00           |                  | <b>38.1</b> * 69.2    | 40-140           |     |              | L-U/  |
| n-Dodecane                        | 3.46<br>2.42 | 0.10               | mg/Kg wet              | 5.00           |                  | 48.5                  | 40-140           |     |              |       |
| n-Eicosane                        | 3.46         | 0.10               | mg/Kg wet              | 5.00           |                  | 48.3<br>69.3          | 40-140           |     |              |       |
| n-Hexacosane                      | 3.43         | 0.10               | mg/Kg wet              | 5.00           |                  | 68.5                  | 40-140           |     |              |       |
| n-Hexadecane                      | 3.43         | 0.10               | mg/Kg wet              | 5.00           |                  | 65.3                  | 40-140           |     |              |       |
| n-Hexatriacontane                 | 3.40         | 0.10               | mg/Kg wet              | 5.00           |                  | 67.9                  | 40-140           |     |              |       |
|                                   | 3.40         | 0.10               | mg/Kg wet              | 5.00           |                  | J                     | 40-140           |     |              |       |



#### QUALITY CONTROL

## Petroleum Hydrocarbons Analyses - EPH - Quality Control

| Analyte                              | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
|--------------------------------------|--------|--------------------|-----------|----------------|------------------|--------------|----------------|------|--------------|-------|
| atch B062415 - SW-846 3546           |        |                    |           |                |                  |              |                |      |              |       |
| CS (B062415-BS1)                     |        |                    |           | Prepared: 11   | 1/08/12 Anal     | yzed: 11/11/ | 12             |      |              |       |
| -Nonane                              | 1.34   | 0.10               | mg/Kg wet | 5.00           |                  | 26.7 *       | 30-140         |      |              | L-07  |
| -Octacosane                          | 3.27   | 0.10               | mg/Kg wet | 5.00           |                  | 65.4         | 40-140         |      |              |       |
| -Octadecane                          | 3.43   | 0.10               | mg/Kg wet | 5.00           |                  | 68.6         | 40-140         |      |              |       |
| Tetracosane                          | 3.49   | 0.10               | mg/Kg wet | 5.00           |                  | 69.7         | 40-140         |      |              |       |
| Tetradecane                          | 2.89   | 0.10               | mg/Kg wet | 5.00           |                  | 57.7         | 40-140         |      |              |       |
| Triacontane                          | 3.35   | 0.10               | mg/Kg wet | 5.00           |                  | 67.0         | 40-140         |      |              |       |
| aphthalene-aliphatic fraction        | ND     | 0.10               | mg/Kg wet | 5.00           |                  |              | 0-5            |      |              |       |
| Methylnaphthalene-aliphatic fraction | ND     | 0.10               | mg/Kg wet | 5.00           |                  |              | 0-5            |      |              |       |
| arrogate: Chlorooctadecane (COD)     | 3.43   |                    | mg/Kg wet | 4.99           |                  | 68.7         | 40-140         |      |              |       |
| rrogate: o-Terphenyl (OTP)           | 3.37   |                    | mg/Kg wet | 5.00           |                  | 67.5         | 40-140         |      |              |       |
| nrrogate: 2-Bromonaphthalene         | 3.92   |                    | mg/Kg wet | 5.00           |                  | 78.4         | 40-140         |      |              |       |
| rrogate: 2-Fluorobiphenyl            | 4.24   |                    | mg/Kg wet | 5.00           |                  | 84.7         | 40-140         |      |              |       |
| CS Dup (B062415-BSD1)                |        |                    |           | Prepared: 11   | 1/08/12 Anal     | yzed: 11/11/ | 12             |      |              |       |
| cenaphthene                          | 3.55   | 0.10               | mg/Kg wet | 5.00           |                  | 71.0         | 40-140         | 13.5 | 25           |       |
| cenaphthylene                        | 3.52   | 0.10               | mg/Kg wet | 5.00           |                  | 70.4         | 40-140         | 14.7 | 25           |       |
| nthracene                            | 3.72   | 0.10               | mg/Kg wet | 5.00           |                  | 74.3         | 40-140         | 12.6 | 25           |       |
| enzo(a)anthracene                    | 3.76   | 0.10               | mg/Kg wet | 5.00           |                  | 75.2         | 40-140         | 13.1 | 25           |       |
| enzo(a)pyrene                        | 3.57   | 0.10               | mg/Kg wet | 5.00           |                  | 71.4         | 40-140         | 13.3 | 25           |       |
| enzo(b)fluoranthene                  | 3.74   | 0.10               | mg/Kg wet | 5.00           |                  | 74.7         | 40-140         | 12.5 | 25           |       |
| enzo(g,h,i)perylene                  | 4.02   | 0.10               | mg/Kg wet | 5.00           |                  | 80.3         | 40-140         | 12.9 | 25           |       |
| enzo(k)fluoranthene                  | 3.74   | 0.10               | mg/Kg wet | 5.00           |                  | 74.7         | 40-140         | 13.0 | 25           |       |
| nrysene                              | 3.54   | 0.10               | mg/Kg wet | 5.00           |                  | 70.9         | 40-140         | 12.9 | 25           |       |
| benz(a,h)anthracene                  | 4.06   | 0.10               | mg/Kg wet | 5.00           |                  | 81.1         | 40-140         | 14.9 | 25           |       |
| uoranthene                           | 3.69   | 0.10               | mg/Kg wet | 5.00           |                  | 73.7         | 40-140         | 12.5 | 25           |       |
| uorene                               | 3.67   | 0.10               | mg/Kg wet | 5.00           |                  | 73.4         | 40-140         | 13.7 | 25           |       |
| deno(1,2,3-cd)pyrene                 | 4.00   | 0.10               | mg/Kg wet | 5.00           |                  | 80.0         | 40-140         | 13.8 | 25           |       |
| Methylnaphthalene                    | 3.35   | 0.10               | mg/Kg wet | 5.00           |                  | 66.9         | 40-140         | 14.3 | 25           |       |
| aphthalene                           | 3.01   | 0.10               | mg/Kg wet | 5.00           |                  | 60.1         | 40-140         | 13.6 | 25           |       |
| nenanthrene                          | 3.74   | 0.10               | mg/Kg wet | 5.00           |                  | 74.7         | 40-140         | 12.4 | 25           |       |
| rene                                 | 3.60   | 0.10               | mg/Kg wet | 5.00           |                  | 72.0         | 40-140         | 12.6 | 25           |       |
| Decane                               | 2.37   | 0.10               | mg/Kg wet | 5.00           |                  | 47.4         | 40-140         | 21.7 | 25           |       |
| Docosane                             | 4.06   | 0.10               | mg/Kg wet | 5.00           |                  | 81.2         | 40-140         | 15.9 | 25           |       |
| Dodecane                             | 2.96   | 0.10               | mg/Kg wet | 5.00           |                  | 59.2         | 40-140         | 20.0 | 25           |       |
| Eicosane                             | 4.00   | 0.10               | mg/Kg wet | 5.00           |                  | 80.1         | 40-140         | 14.5 | 25           |       |
| Hexacosane                           | 3.93   | 0.10               | mg/Kg wet | 5.00           |                  | 78.7         | 40-140         | 13.8 | 25           |       |
| Hexadecane                           | 3.85   | 0.10               | mg/Kg wet | 5.00           |                  | 77.0         | 40-140         | 16.5 | 25           |       |
| Hexatriacontane                      | 3.87   | 0.10               | mg/Kg wet | 5.00           |                  | 77.5         | 40-140         | 13.1 | 25           |       |
| Nonadecane                           | 4.04   | 0.10               | mg/Kg wet | 5.00           |                  | 80.8         | 40-140         | 14.7 | 25           |       |
| Nonane                               | 1.70   | 0.10               | mg/Kg wet | 5.00           |                  | 34.1         | 30-140         | 24.1 | 25           |       |
| Octacosane                           | 3.76   | 0.10               | mg/Kg wet | 5.00           |                  | 75.2         | 40-140         | 13.9 | 25           |       |
| Octadecane                           | 4.00   | 0.10               | mg/Kg wet | 5.00           |                  | 80.0         | 40-140         | 15.3 | 25           |       |
| Tetradagana                          | 3.99   | 0.10               | mg/Kg wet | 5.00           |                  | 79.8         | 40-140         | 13.5 | 25           |       |
| Tetradecane                          | 3.50   | 0.10               | mg/Kg wet | 5.00           |                  | 70.1         | 40-140         | 19.4 | 25           |       |
| Triacontane                          | 3.84   | 0.10               | mg/Kg wet | 5.00           |                  | 76.8         | 40-140         | 13.6 | 25           |       |
| aphthalene-aliphatic fraction        | ND     | 0.10               | mg/Kg wet | 5.00           |                  |              | 0-5            |      |              |       |
| Methylnaphthalene-aliphatic fraction | ND     | 0.10               | mg/Kg wet | 5.00           |                  |              | 0-5            |      |              |       |
| arrogate: Chlorooctadecane (COD)     | 3.76   |                    | mg/Kg wet | 4.99           |                  | 75.4         | 40-140         |      |              |       |
| arrogate: o-Terphenyl (OTP)          | 3.59   |                    | mg/Kg wet | 5.00           |                  | 71.8         | 40-140         |      |              |       |
| ırrogate: 2-Bromonaphthalene         | 3.57   |                    | mg/Kg wet | 5.00           |                  | 71.5         | 40-140         |      |              |       |



#### QUALITY CONTROL

Spike

Source

%REC

RPD

# Petroleum Hydrocarbons Analyses - EPH - Quality Control

Reporting

| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result                                                                                               | Limit                                                                                                | Units                                                                                                                                                                                                                       | Level                                                                                                                                | Result       | %REC                                                                                                                         | Limits                                                                                                                                                                                     | RPD | Limit | Notes |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|-------|
| Batch B062641 - SW-846 3546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                      |                                                                                                      |                                                                                                                                                                                                                             |                                                                                                                                      |              |                                                                                                                              |                                                                                                                                                                                            |     |       |       |
| Blank (B062641-BLK1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                      |                                                                                                      |                                                                                                                                                                                                                             | Prepared &                                                                                                                           | Analyzed: 11 | /12/12                                                                                                                       |                                                                                                                                                                                            |     |       |       |
| C9-C18 Aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND                                                                                                   | 10                                                                                                   | mg/Kg wet                                                                                                                                                                                                                   |                                                                                                                                      |              |                                                                                                                              |                                                                                                                                                                                            |     |       |       |
| C19-C36 Aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                                                                   | 10                                                                                                   | mg/Kg wet                                                                                                                                                                                                                   |                                                                                                                                      |              |                                                                                                                              |                                                                                                                                                                                            |     |       |       |
| Jnadjusted C11-C22 Aromatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND                                                                                                   | 10                                                                                                   | mg/Kg wet                                                                                                                                                                                                                   |                                                                                                                                      |              |                                                                                                                              |                                                                                                                                                                                            |     |       |       |
| C11-C22 Aromatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND                                                                                                   | 10                                                                                                   | mg/Kg wet                                                                                                                                                                                                                   |                                                                                                                                      |              |                                                                                                                              |                                                                                                                                                                                            |     |       |       |
| Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND                                                                                                   | 0.10                                                                                                 | mg/Kg wet                                                                                                                                                                                                                   |                                                                                                                                      |              |                                                                                                                              |                                                                                                                                                                                            |     |       |       |
| Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND                                                                                                   | 0.10                                                                                                 | mg/Kg wet                                                                                                                                                                                                                   |                                                                                                                                      |              |                                                                                                                              |                                                                                                                                                                                            |     |       |       |
| Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                   | 0.10                                                                                                 | mg/Kg wet                                                                                                                                                                                                                   |                                                                                                                                      |              |                                                                                                                              |                                                                                                                                                                                            |     |       |       |
| Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                                                                                   | 0.10                                                                                                 | mg/Kg wet                                                                                                                                                                                                                   |                                                                                                                                      |              |                                                                                                                              |                                                                                                                                                                                            |     |       |       |
| Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND                                                                                                   | 0.10                                                                                                 | mg/Kg wet                                                                                                                                                                                                                   |                                                                                                                                      |              |                                                                                                                              |                                                                                                                                                                                            |     |       |       |
| Benzo(b)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                   | 0.10                                                                                                 | mg/Kg wet                                                                                                                                                                                                                   |                                                                                                                                      |              |                                                                                                                              |                                                                                                                                                                                            |     |       |       |
| Benzo(g,h,i)perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                   | 0.10                                                                                                 | mg/Kg wet                                                                                                                                                                                                                   |                                                                                                                                      |              |                                                                                                                              |                                                                                                                                                                                            |     |       |       |
| Benzo(k)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                                                                                   | 0.10                                                                                                 | mg/Kg wet                                                                                                                                                                                                                   |                                                                                                                                      |              |                                                                                                                              |                                                                                                                                                                                            |     |       |       |
| Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                   | 0.10                                                                                                 | mg/Kg wet                                                                                                                                                                                                                   |                                                                                                                                      |              |                                                                                                                              |                                                                                                                                                                                            |     |       |       |
| Dibenz(a,h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                   | 0.10                                                                                                 | mg/Kg wet                                                                                                                                                                                                                   |                                                                                                                                      |              |                                                                                                                              |                                                                                                                                                                                            |     |       |       |
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND                                                                                                   | 0.10                                                                                                 | mg/Kg wet                                                                                                                                                                                                                   |                                                                                                                                      |              |                                                                                                                              |                                                                                                                                                                                            |     |       |       |
| Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                                                                                   | 0.10                                                                                                 | mg/Kg wet                                                                                                                                                                                                                   |                                                                                                                                      |              |                                                                                                                              |                                                                                                                                                                                            |     |       |       |
| ndeno(1,2,3-cd)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                   | 0.10                                                                                                 | mg/Kg wet                                                                                                                                                                                                                   |                                                                                                                                      |              |                                                                                                                              |                                                                                                                                                                                            |     |       |       |
| 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                   | 0.10                                                                                                 | mg/Kg wet<br>mg/Kg wet                                                                                                                                                                                                      |                                                                                                                                      |              |                                                                                                                              |                                                                                                                                                                                            |     |       |       |
| Naphthalene<br>Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                   | 0.10                                                                                                 | mg/Kg wet<br>mg/Kg wet                                                                                                                                                                                                      |                                                                                                                                      |              |                                                                                                                              |                                                                                                                                                                                            |     |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                                                                   | 0.10<br>0.10                                                                                         | mg/Kg wet<br>mg/Kg wet                                                                                                                                                                                                      |                                                                                                                                      |              |                                                                                                                              |                                                                                                                                                                                            |     |       |       |
| Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                   | 0.10                                                                                                 |                                                                                                                                                                                                                             |                                                                                                                                      |              |                                                                                                                              |                                                                                                                                                                                            |     |       |       |
| Surrogate: Chlorooctadecane (COD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.31                                                                                                 |                                                                                                      | mg/Kg wet                                                                                                                                                                                                                   | 4.99                                                                                                                                 |              | 66.4                                                                                                                         | 40-140                                                                                                                                                                                     |     |       |       |
| Surrogate: o-Terphenyl (OTP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.49                                                                                                 |                                                                                                      | mg/Kg wet                                                                                                                                                                                                                   | 5.00                                                                                                                                 |              | 69.7                                                                                                                         | 40-140                                                                                                                                                                                     |     |       |       |
| Surrogate: 2-Bromonaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.92                                                                                                 |                                                                                                      | mg/Kg wet                                                                                                                                                                                                                   | 5.00                                                                                                                                 |              | 78.4                                                                                                                         | 40-140                                                                                                                                                                                     |     |       |       |
| Surrogate: 2-Fluorobiphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.29                                                                                                 |                                                                                                      | mg/Kg wet                                                                                                                                                                                                                   | 5.00                                                                                                                                 |              | 85.9                                                                                                                         | 40-140                                                                                                                                                                                     |     |       |       |
| LCS (B062641-BS1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                      | 0.10                                                                                                 |                                                                                                                                                                                                                             |                                                                                                                                      | Analyzed: 11 |                                                                                                                              | 40.110                                                                                                                                                                                     |     |       |       |
| Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.29                                                                                                 | 0.10                                                                                                 | mg/Kg wet                                                                                                                                                                                                                   | 5.00                                                                                                                                 |              | 65.9                                                                                                                         | 40-140                                                                                                                                                                                     |     |       |       |
| Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.25                                                                                                 | 0.10                                                                                                 | mg/Kg wet<br>mg/Kg wet                                                                                                                                                                                                      | 5.00                                                                                                                                 |              | 65.0                                                                                                                         | 40-140                                                                                                                                                                                     |     |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |                                                                                                      | mark a wet                                                                                                                                                                                                                  |                                                                                                                                      |              |                                                                                                                              |                                                                                                                                                                                            |     |       |       |
| Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.61                                                                                                 | 0.10                                                                                                 |                                                                                                                                                                                                                             | 5.00                                                                                                                                 |              | 72.2                                                                                                                         | 40-140                                                                                                                                                                                     |     |       |       |
| Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.69                                                                                                 | 0.10                                                                                                 | mg/Kg wet                                                                                                                                                                                                                   | 5.00                                                                                                                                 |              | 73.8                                                                                                                         | 40-140                                                                                                                                                                                     |     |       |       |
| Benzo(a)anthracene<br>Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.69<br>3.52                                                                                         | 0.10<br>0.10                                                                                         | mg/Kg wet<br>mg/Kg wet                                                                                                                                                                                                      | 5.00<br>5.00                                                                                                                         |              | 73.8<br>70.4                                                                                                                 | 40-140<br>40-140                                                                                                                                                                           |     |       |       |
| Benzo(a)anthracene<br>Benzo(a)pyrene<br>Benzo(b)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.69<br>3.52<br>3.69                                                                                 | 0.10<br>0.10<br>0.10                                                                                 | mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet                                                                                                                                                                                         | 5.00<br>5.00<br>5.00                                                                                                                 |              | 73.8<br>70.4<br>73.9                                                                                                         | 40-140<br>40-140<br>40-140                                                                                                                                                                 |     |       |       |
| Benzo(a)anthracene<br>Benzo(a)pyrene<br>Benzo(b)fluoranthene<br>Benzo(g,h,i)perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.69<br>3.52<br>3.69<br>3.95                                                                         | 0.10<br>0.10<br>0.10<br>0.10                                                                         | mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet                                                                                                                                                                            | 5.00<br>5.00<br>5.00<br>5.00                                                                                                         |              | 73.8<br>70.4<br>73.9<br>79.0                                                                                                 | 40-140<br>40-140<br>40-140<br>40-140                                                                                                                                                       |     |       |       |
| Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.69<br>3.52<br>3.69<br>3.95<br>3.65                                                                 | 0.10<br>0.10<br>0.10<br>0.10<br>0.10                                                                 | mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet                                                                                                                                                               | 5.00<br>5.00<br>5.00<br>5.00<br>5.00                                                                                                 |              | 73.8<br>70.4<br>73.9<br>79.0<br>72.9                                                                                         | 40-140<br>40-140<br>40-140<br>40-140<br>40-140                                                                                                                                             |     |       |       |
| Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.69<br>3.52<br>3.69<br>3.95<br>3.65<br>3.46                                                         | 0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10                                                         | mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet                                                                                                                                                  | 5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00                                                                                         |              | 73.8<br>70.4<br>73.9<br>79.0<br>72.9<br>69.1                                                                                 | 40-140<br>40-140<br>40-140<br>40-140<br>40-140                                                                                                                                             |     |       |       |
| Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.69<br>3.52<br>3.69<br>3.95<br>3.65<br>3.46<br>3.96                                                 | 0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10                                                         | mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet                                                                                                                                     | 5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00                                                                                 |              | 73.8<br>70.4<br>73.9<br>79.0<br>72.9<br>69.1<br>79.3                                                                         | 40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140                                                                                                                                   |     |       |       |
| Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.69<br>3.52<br>3.69<br>3.95<br>3.65<br>3.46<br>3.96<br>3.60                                         | 0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10                                                 | mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet                                                                                                                        | 5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00                                                                         |              | 73.8<br>70.4<br>73.9<br>79.0<br>72.9<br>69.1<br>79.3<br>72.0                                                                 | 40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140                                                                                                                         |     |       |       |
| Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.69<br>3.52<br>3.69<br>3.95<br>3.65<br>3.46<br>3.96<br>3.60<br>3.45                                 | 0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10                                 | mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet                                                                                                           | 5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00                                                                         |              | 73.8<br>70.4<br>73.9<br>79.0<br>72.9<br>69.1<br>79.3<br>72.0<br>69.0                                                         | 40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140                                                                                                               |     |       |       |
| Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.69<br>3.52<br>3.69<br>3.95<br>3.65<br>3.46<br>3.96<br>3.60<br>3.45                                 | 0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10                         | mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet<br>mg/Kg wet                                                                                              | 5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00                                                                         |              | 73.8<br>70.4<br>73.9<br>79.0<br>72.9<br>69.1<br>79.3<br>72.0<br>69.0<br>78.7                                                 | 40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140                                                                                                     |     |       |       |
| Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.69<br>3.52<br>3.69<br>3.95<br>3.65<br>3.46<br>3.96<br>3.60<br>3.45<br>3.94                         | 0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10                         | mg/Kg wet<br>mg/Kg wet                                                                                 | 5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00                                                                         |              | 73.8<br>70.4<br>73.9<br>79.0<br>72.9<br>69.1<br>79.3<br>72.0<br>69.0<br>78.7<br>61.2                                         | 40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140                                                                                           |     |       |       |
| Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Paphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.69<br>3.52<br>3.69<br>3.95<br>3.65<br>3.46<br>3.96<br>3.60<br>3.45<br>3.94<br>3.06<br>2.75         | 0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10                 | mg/Kg wet<br>mg/Kg wet                                                                    | 5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00                                                                         |              | 73.8<br>70.4<br>73.9<br>79.0<br>72.9<br>69.1<br>79.3<br>72.0<br>69.0<br>78.7<br>61.2<br>55.0                                 | 40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140                                                                                 |     |       |       |
| Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene P-Methylnaphthalene Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.69<br>3.52<br>3.69<br>3.95<br>3.65<br>3.46<br>3.96<br>3.60<br>3.45<br>3.94<br>3.06<br>2.75<br>3.59 | 0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10         | mg/Kg wet<br>mg/Kg wet                                          | 5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00                                                                         |              | 73.8<br>70.4<br>73.9<br>79.0<br>72.9<br>69.1<br>79.3<br>72.0<br>69.0<br>78.7<br>61.2<br>55.0<br>71.7                         | 40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140                                                                       |     |       |       |
| Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene P-Methylnaphthalene Phenanthrene Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.69 3.52 3.69 3.95 3.65 3.46 3.96 3.60 3.45 3.94 3.06 2.75 3.59 3.52                                | 0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10 | mg/Kg wet                                                             | 5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00                                                                         |              | 73.8<br>70.4<br>73.9<br>79.0<br>72.9<br>69.1<br>79.3<br>72.0<br>69.0<br>78.7<br>61.2<br>55.0<br>71.7<br>70.4                 | 40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140                                                             |     |       |       |
| Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene I-Methylnaphthalene Phenanthrene Pyrene I-Decane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.69 3.52 3.69 3.95 3.65 3.46 3.96 3.60 3.45 3.94 3.06 2.75 3.59 3.52 2.34                           | 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10                                                              | mg/Kg wet                                         | 5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00                                                                         |              | 73.8<br>70.4<br>73.9<br>79.0<br>72.9<br>69.1<br>79.3<br>72.0<br>69.0<br>78.7<br>61.2<br>55.0<br>71.7<br>70.4<br>46.9         | 40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140                                                   |     |       |       |
| Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene E-Methylnaphthalene Phenanthrene Pyrene I-Decane I-Decane I-Docosane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.69 3.52 3.69 3.95 3.65 3.46 3.96 3.60 3.45 3.94 3.06 2.75 3.59 3.52 2.34 3.88                      | 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10                                                              | mg/Kg wet                     | 5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00                 |              | 73.8<br>70.4<br>73.9<br>79.0<br>72.9<br>69.1<br>79.3<br>72.0<br>69.0<br>78.7<br>61.2<br>55.0<br>71.7<br>70.4<br>46.9<br>77.6 | 40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140                                         |     |       |       |
| Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Cluoranthene Cluoran | 3.69 3.52 3.69 3.95 3.65 3.46 3.96 3.60 3.45 3.94 3.06 2.75 3.59 3.52 2.34 3.88 2.86                 | 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10                                                              | mg/Kg wet                     | 5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00         |              | 73.8 70.4 73.9 79.0 72.9 69.1 79.3 72.0 69.0 78.7 61.2 55.0 71.7 70.4 46.9 77.6 57.2                                         | 40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140                               |     |       |       |
| Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Cluoranthene Cluoranthene Cluoranthene Cluoranthene Benzo(b)pyrene Benzo( | 3.69 3.52 3.69 3.95 3.65 3.46 3.96 3.60 3.45 3.94 3.06 2.75 3.59 3.52 2.34 3.88 2.86 3.81            | 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10                                                              | mg/Kg wet | 5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00         |              | 73.8 70.4 73.9 79.0 72.9 69.1 79.3 72.0 69.0 78.7 61.2 55.0 71.7 70.4 46.9 77.6 57.2 76.2                                    | 40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140                               |     |       |       |
| Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Paphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.69 3.52 3.69 3.95 3.65 3.46 3.96 3.60 3.45 3.94 3.06 2.75 3.59 3.52 2.34 3.88 2.86 3.81 3.77       | 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10                                                              | mg/Kg wet | 5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00 |              | 73.8 70.4 73.9 79.0 72.9 69.1 79.3 72.0 69.0 78.7 61.2 55.0 71.7 70.4 46.9 77.6 57.2 76.2 75.4                               | 40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140 |     |       |       |
| Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluoranthene Phenanthracene Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.69 3.52 3.69 3.95 3.65 3.46 3.96 3.60 3.45 3.94 3.06 2.75 3.59 3.52 2.34 3.88 2.86 3.81            | 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10                                                              | mg/Kg wet | 5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00         |              | 73.8 70.4 73.9 79.0 72.9 69.1 79.3 72.0 69.0 78.7 61.2 55.0 71.7 70.4 46.9 77.6 57.2 76.2                                    | 40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140<br>40-140                               |     |       |       |



#### QUALITY CONTROL

## Petroleum Hydrocarbons Analyses - EPH - Quality Control

| Analyte                              | Result       | Reporting<br>Limit | Units                  | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits   | RPD          | RPD<br>Limit | Notes |
|--------------------------------------|--------------|--------------------|------------------------|----------------|------------------|--------------|------------------|--------------|--------------|-------|
| Batch B062641 - SW-846 3546          |              |                    |                        |                |                  |              |                  |              |              |       |
| .CS (B062641-BS1)                    |              |                    |                        | Prepared &     | Analyzed: 11/1   | 2/12         |                  |              |              |       |
| -Nonane                              | 1.77         | 0.10               | mg/Kg wet              | 5.00           |                  | 35.4         | 30-140           |              |              |       |
| -Octacosane                          | 3.62         | 0.10               | mg/Kg wet              | 5.00           |                  | 72.3         | 40-140           |              |              |       |
| -Octadecane                          | 3.78         | 0.10               | mg/Kg wet              | 5.00           |                  | 75.5         | 40-140           |              |              |       |
| -Tetracosane                         | 3.83         | 0.10               | mg/Kg wet              | 5.00           |                  | 76.7         | 40-140           |              |              |       |
| -Tetradecane                         | 3.30         | 0.10               | mg/Kg wet              | 5.00           |                  | 65.9         | 40-140           |              |              |       |
| -Triacontane                         | 3.71         | 0.10               | mg/Kg wet              | 5.00           |                  | 74.2         | 40-140           |              |              |       |
| aphthalene-aliphatic fraction        | ND           | 0.10               | mg/Kg wet              | 5.00           |                  |              | 0-5              |              |              |       |
| Methylnaphthalene-aliphatic fraction | ND           | 0.10               | mg/Kg wet              | 5.00           |                  |              | 0-5              |              |              |       |
| urrogate: Chlorooctadecane (COD)     | 3.59         |                    | mg/Kg wet              | 4.99           |                  | 72.0         | 40-140           |              |              |       |
| urrogate: o-Terphenyl (OTP)          | 3.51         |                    | mg/Kg wet              | 5.00           |                  | 70.3         | 40-140           |              |              |       |
| urrogate: 2-Bromonaphthalene         | 3.52         |                    | mg/Kg wet              | 5.00           |                  | 70.5         | 40-140           |              |              |       |
| rrogate: 2-Fluorobiphenyl            | 3.99         |                    | mg/Kg wet              | 5.00           |                  | 79.8         | 40-140           |              |              |       |
| CS Dup (B062641-BSD1)                |              |                    |                        | Prepared &     | Analyzed: 11/1   | 2/12         |                  |              |              |       |
| cenaphthene                          | 3.42         | 0.10               | mg/Kg wet              | 5.00           |                  | 68.5         | 40-140           | 3.86         | 25           |       |
| cenaphthylene                        | 3.37         | 0.10               | mg/Kg wet              | 5.00           |                  | 67.3         | 40-140           | 3.60         | 25           |       |
| nthracene                            | 3.83         | 0.10               | mg/Kg wet              | 5.00           |                  | 76.5         | 40-140           | 5.75         | 25           |       |
| enzo(a)anthracene                    | 3.92         | 0.10               | mg/Kg wet              | 5.00           |                  | 78.5         | 40-140           | 6.07         | 25           |       |
| enzo(a)pyrene                        | 3.73         | 0.10               | mg/Kg wet              | 5.00           |                  | 74.6         | 40-140           | 5.82         | 25           |       |
| enzo(b)fluoranthene                  | 3.91         | 0.10               | mg/Kg wet              | 5.00           |                  | 78.3         | 40-140           | 5.78         | 25           |       |
| enzo(g,h,i)perylene                  | 4.18         | 0.10               | mg/Kg wet              | 5.00           |                  | 83.6         | 40-140           | 5.72         | 25           |       |
| enzo(k)fluoranthene                  | 3.87         | 0.10               | mg/Kg wet              | 5.00           |                  | 77.4         | 40-140           | 5.96         | 25           |       |
| hrysene                              | 3.66         | 0.10               | mg/Kg wet              | 5.00           |                  | 73.3         | 40-140           | 5.80         | 25           |       |
| ibenz(a,h)anthracene                 | 4.23         | 0.10               | mg/Kg wet              | 5.00           |                  | 84.5         | 40-140           | 6.40         | 25           |       |
| uoranthene                           | 3.84         | 0.10               | mg/Kg wet              | 5.00           |                  | 76.8         | 40-140           | 6.54         | 25           |       |
| uorene                               | 3.61         | 0.10               | mg/Kg wet              | 5.00           |                  | 72.2         | 40-140           | 4.52         | 25           |       |
| deno(1,2,3-cd)pyrene                 | 4.18         | 0.10               | mg/Kg wet              | 5.00           |                  | 83.7         | 40-140           | 6.10         | 25           |       |
| Methylnaphthalene                    | 3.19         | 0.10               | mg/Kg wet              | 5.00           |                  | 63.8         | 40-140           | 4.19         | 25           |       |
| aphthalene                           | 2.87         | 0.10               | mg/Kg wet              | 5.00           |                  | 57.4         | 40-140           | 4.31         | 25           |       |
| nenanthrene                          | 3.79         | 0.10               | mg/Kg wet              | 5.00           |                  | 75.7         | 40-140           | 5.39         | 25           |       |
| yrene                                | 3.76         | 0.10               | mg/Kg wet              | 5.00           |                  | 75.1         | 40-140           | 6.48         | 25           |       |
| Decane                               | 2.27         | 0.10               | mg/Kg wet              | 5.00           |                  | 45.5         | 40-140           | 3.10         | 25           |       |
| Docosane                             | 4.00         | 0.10               | mg/Kg wet              | 5.00           |                  | 79.9         | 40-140           | 3.01         | 25           |       |
| Dodecane                             | 2.82         | 0.10               | mg/Kg wet              | 5.00           |                  | 56.3         | 40-140           | 1.57         | 25           |       |
| Eicosane                             | 3.92         | 0.10               | mg/Kg wet              | 5.00           |                  | 78.4         | 40-140           | 2.88         | 25           |       |
| Hexacosane<br>Hexadecane             | 3.89         | 0.10               | mg/Kg wet<br>mg/Kg wet | 5.00           |                  | 77.7         | 40-140           | 3.03         | 25<br>25     |       |
| Hexatriacontane                      | 3.66         | 0.10<br>0.10       | mg/Kg wet<br>mg/Kg wet | 5.00           |                  | 73.2         | 40-140           | 2.18         | 25<br>25     |       |
| Nonadecane                           | 3.88         |                    | mg/Kg wet              | 5.00           |                  | 77.6         | 40-140           | 2.23         | 25<br>25     |       |
| Nonane                               | 3.94         | 0.10<br>0.10       | mg/Kg wet              | 5.00           |                  | 78.9         | 40-140           | 3.17         | 25<br>25     |       |
| Octacosane                           | 1.67         | 0.10               | mg/Kg wet              | 5.00<br>5.00   |                  | 33.4<br>74.3 | 30-140<br>40-140 | 5.73<br>2.70 | 25<br>25     |       |
| Octadecane                           | 3.72         | 0.10               | mg/Kg wet              | 5.00           |                  | 74.3<br>77.5 | 40-140           | 2.70         | 25<br>25     |       |
| Tetracosane                          | 3.88<br>3.94 | 0.10               | mg/Kg wet              | 5.00           |                  | 77.5<br>78.7 | 40-140           | 2.65         | 25<br>25     |       |
| Tetradecane                          | 3.94         | 0.10               | mg/Kg wet              | 5.00           |                  | 65.0         | 40-140           | 1.44         | 25           |       |
| Triacontane                          | 3.80         | 0.10               | mg/Kg wet              | 5.00           |                  | 76.1         | 40-140           | 2.56         | 25           |       |
| aphthalene-aliphatic fraction        | 3.80<br>ND   | 0.10               | mg/Kg wet              | 5.00           |                  | , 0.1        | 0-5              | 2.50         | 23           |       |
| Methylnaphthalene-aliphatic fraction | ND<br>ND     | 0.10               | mg/Kg wet              | 5.00           |                  |              | 0-5              |              |              |       |
| arrogate: Chlorooctadecane (COD)     | 3.65         |                    | mg/Kg wet              | 4.99           |                  | 73.2         | 40-140           |              |              |       |
| urrogate: o-Terphenyl (OTP)          | 3.68         |                    | mg/Kg wet              | 5.00           |                  | 73.6         | 40-140           |              |              |       |
| arrogate: 2-Bromonaphthalene         | 3.42         |                    | mg/Kg wet              | 5.00           |                  | 68.4         | 40-140           |              |              |       |
| urrogate: 2-Fluorobiphenyl           | 3.88         |                    | mg/Kg wet              | 5.00           |                  | 77.6         | 40-140           |              |              |       |



#### QUALITY CONTROL

# Petroleum Hydrocarbons Analyses - VPH - Quality Control

| Analyte                             | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC   | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|-------------------------------------|--------|--------------------|-----------|----------------|------------------|--------|----------------|-------|--------------|-------|
| Batch B062464 - MA VPH              |        |                    |           |                |                  |        |                |       |              |       |
| Blank (B062464-BLK1)                |        |                    |           | Prepared &     | Analyzed: 11     | /08/12 |                |       |              |       |
| Unadjusted C5-C8 Aliphatics         | ND     | 10                 | mg/Kg wet |                |                  |        |                |       |              |       |
| C5-C8 Aliphatics                    | ND     | 10                 | mg/Kg wet |                |                  |        |                |       |              |       |
| Unadjusted C9-C12 Aliphatics        | ND     | 10                 | mg/Kg wet |                |                  |        |                |       |              |       |
| C9-C12 Aliphatics                   | ND     | 10                 | mg/Kg wet |                |                  |        |                |       |              |       |
| C9-C10 Aromatics                    | ND     | 10                 | mg/Kg wet |                |                  |        |                |       |              |       |
| Benzene                             | ND     | 0.050              | mg/Kg wet |                |                  |        |                |       |              |       |
| Ethylbenzene                        | ND     | 0.050              | mg/Kg wet |                |                  |        |                |       |              |       |
| Methyl tert-Butyl Ether (MTBE)      | ND     | 0.050              | mg/Kg wet |                |                  |        |                |       |              |       |
| Naphthalene                         | ND     | 0.25               | mg/Kg wet |                |                  |        |                |       |              |       |
| Toluene                             | ND     | 0.050              | mg/Kg wet |                |                  |        |                |       |              |       |
| n+p Xylene                          | ND     | 0.10               | mg/Kg wet |                |                  |        |                |       |              |       |
| -Xylene                             | ND     | 0.050              | mg/Kg wet |                |                  |        |                |       |              |       |
| Surrogate: 2,5-Dibromotoluene (FID) | 0.0424 |                    | mg/Kg wet | 0.0400         |                  | 106    | 70-130         |       |              |       |
| Surrogate: 2,5-Dibromotoluene (PID) | 0.0366 |                    | mg/Kg wet | 0.0400         |                  | 91.6   | 70-130         |       |              |       |
| .CS (B062464-BS1)                   |        |                    |           | Prepared &     | Analyzed: 11     | /08/12 |                |       |              |       |
| Benzene                             | 0.0849 | 0.0010             | mg/Kg wet | 0.100          |                  | 84.9   | 70-130         |       |              |       |
| Butylcyclohexane                    | 0.0878 | 0.0010             | mg/Kg wet | 0.100          |                  | 87.8   | 70-130         |       |              |       |
| Decane                              | 0.0959 | 0.0010             | mg/Kg wet | 0.100          |                  | 95.9   | 70-130         |       |              |       |
| Ethylbenzene                        | 0.0834 | 0.0010             | mg/Kg wet | 0.100          |                  | 83.4   | 70-130         |       |              |       |
| Methyl tert-Butyl Ether (MTBE)      | 0.0839 | 0.0010             | mg/Kg wet | 0.100          |                  | 83.9   | 70-130         |       |              |       |
| -Methylpentane                      | 0.0969 | 0.0010             | mg/Kg wet | 0.100          |                  | 96.9   | 70-130         |       |              |       |
| Vaphthalene                         | 0.0959 | 0.0050             | mg/Kg wet | 0.100          |                  | 95.9   | 70-130         |       |              |       |
| Vonane                              | 0.0866 | 0.0010             | mg/Kg wet | 0.100          |                  | 86.6   | 30-130         |       |              |       |
| Pentane                             | 0.102  | 0.0010             | mg/Kg wet | 0.100          |                  | 102    | 70-130         |       |              |       |
| Coluene                             | 0.0846 | 0.0010             | mg/Kg wet | 0.100          |                  | 84.6   | 70-130         |       |              |       |
| ,2,4-Trimethylbenzene               | 0.0822 | 0.0010             | mg/Kg wet | 0.100          |                  | 82.2   | 70-130         |       |              |       |
| 2,2,4-Trimethylpentane              | 0.0904 | 0.0010             | mg/Kg wet | 0.100          |                  | 90.4   | 70-130         |       |              |       |
| n+p Xylene                          | 0.166  | 0.0020             | mg/Kg wet | 0.200          |                  | 82.8   | 70-130         |       |              |       |
| -Xylene                             | 0.0835 | 0.0010             | mg/Kg wet | 0.100          |                  | 83.5   | 70-130         |       |              |       |
| Surrogate: 2,5-Dibromotoluene (FID) | 0.0446 |                    | mg/Kg wet | 0.0400         |                  | 112    | 70-130         |       |              |       |
| Surrogate: 2,5-Dibromotoluene (PID) | 0.0365 |                    | mg/Kg wet | 0.0400         |                  | 91.1   | 70-130         |       |              |       |
| .CS Dup (B062464-BSD1)              |        |                    |           | Prepared & A   | Analyzed: 11     | /08/12 |                |       |              |       |
| Benzene                             | 0.0837 | 0.0010             | mg/Kg wet | 0.100          |                  | 83.7   | 70-130         | 1.42  | 25           |       |
| Butylcyclohexane                    | 0.0857 | 0.0010             | mg/Kg wet | 0.100          |                  | 85.7   | 70-130         | 2.44  | 25           |       |
| Decane                              | 0.0951 | 0.0010             | mg/Kg wet | 0.100          |                  | 95.1   | 70-130         | 0.770 | 25           |       |
| Ethylbenzene                        | 0.0826 | 0.0010             | mg/Kg wet | 0.100          |                  | 82.6   | 70-130         | 0.888 | 25           |       |
| Methyl tert-Butyl Ether (MTBE)      | 0.0781 | 0.0010             | mg/Kg wet | 0.100          |                  | 78.1   | 70-130         | 7.22  | 25           |       |
| -Methylpentane                      | 0.0939 | 0.0010             | mg/Kg wet | 0.100          |                  | 93.9   | 70-130         | 3.20  | 25           |       |
| Naphthalene                         | 0.0819 | 0.0050             | mg/Kg wet | 0.100          |                  | 81.9   | 70-130         | 15.8  | 25           |       |
| Jonane                              | 0.0857 | 0.0010             | mg/Kg wet | 0.100          |                  | 85.7   | 30-130         | 1.03  | 25           |       |
| Pentane                             | 0.0993 | 0.0010             | mg/Kg wet | 0.100          |                  | 99.3   | 70-130         | 2.79  | 25           |       |
| Coluene                             | 0.0838 | 0.0010             | mg/Kg wet | 0.100          |                  | 83.8   | 70-130         | 0.931 | 25           |       |
| ,2,4-Trimethylbenzene               | 0.0816 | 0.0010             | mg/Kg wet | 0.100          |                  | 81.6   | 70-130         | 0.689 | 25           |       |
| 2,2,4-Trimethylpentane              | 0.0877 | 0.0010             | mg/Kg wet | 0.100          |                  | 87.7   | 70-130         | 3.00  | 25           |       |
| n+p Xylene                          | 0.165  | 0.0020             | mg/Kg wet | 0.200          |                  | 82.4   | 70-130         | 0.497 | 25           |       |
| o-Xylene                            | 0.0832 | 0.0010             | mg/Kg wet | 0.100          |                  | 83.2   | 70-130         | 0.389 | 25           |       |
| Surrogate: 2,5-Dibromotoluene (FID) | 0.0370 |                    | mg/Kg wet | 0.0400         |                  | 92.5   | 70-130         |       |              |       |
| Surrogate: 2,5-Dibromotoluene (PID) | 0.0319 |                    | mg/Kg wet | 0.0400         |                  | 79.8   | 70-130         |       |              |       |



#### QUALITY CONTROL

#### Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

|         |        | Reporting |       | Spike | Source |      | %REC   |     | RPD   |       |
|---------|--------|-----------|-------|-------|--------|------|--------|-----|-------|-------|
| Analyte | Result | Limit     | Units | Level | Result | %REC | Limits | RPD | Limit | Notes |

Batch B062270 - % Solids

| Duplicate (B062270-DUP1) | Source: 12K0153-0 | 1    | Prepared: 11/06/12 Analyzed: 11/07/12 |       |    |
|--------------------------|-------------------|------|---------------------------------------|-------|----|
| % Solids                 | 87.6              | % Wt | 87.3                                  | 0.343 | 20 |



## FLAG/QUALIFIER SUMMARY

| *    | QC result is outside of established limits.                                                                                                                                                                              |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| †    | Wide recovery limits established for difficult compound.                                                                                                                                                                 |
| ‡    | Wide RPD limits established for difficult compound.                                                                                                                                                                      |
| #    | Data exceeded client recommended or regulatory level                                                                                                                                                                     |
|      | Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.                                                                   |
| L-07 | Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria. |
| O-01 | Soil/methanol ratio does not meet method specifications. Excess amount of soil. Sample was completely covered with methanol, but with less than the method-specified amount                                              |



## CERTIFICATIONS

## Certified Analyses included in this Report

| Analyte                        | Certifications |  |
|--------------------------------|----------------|--|
| MADEP-EPH-04-1.1 in Soil       |                |  |
| C9-C18 Aliphatics              | CT,NC,WA,ME    |  |
| C19-C36 Aliphatics             | CT,NC,WA,ME    |  |
| Unadjusted C11-C22 Aromatics   | CT,NC,WA,ME    |  |
| C11-C22 Aromatics              | CT,NC,WA,ME    |  |
| Acenaphthene                   | CT,NC,WA,ME    |  |
| Acenaphthylene                 | CT,NC,WA,ME    |  |
| Anthracene                     | CT,NC,WA,ME    |  |
| Benzo(a)anthracene             | CT,NC,WA,ME    |  |
| Benzo(a)pyrene                 | CT,NC,WA,ME    |  |
| Benzo(b)fluoranthene           | CT,NC,WA,ME    |  |
| Benzo(g,h,i)perylene           | CT,NC,WA,ME    |  |
| Benzo(k)fluoranthene           | CT,NC,WA,ME    |  |
| Chrysene                       | CT,NC,WA,ME    |  |
| Dibenz(a,h)anthracene          | CT,NC,WA,ME    |  |
| Fluoranthene                   | CT,NC,WA,ME    |  |
| Fluorene                       | CT,NC,WA,ME    |  |
| Indeno(1,2,3-cd)pyrene         | CT,NC,WA,ME    |  |
| 2-Methylnaphthalene            | CT,NC,WA,ME    |  |
| Naphthalene                    | CT,NC,WA,ME    |  |
| Phenanthrene                   | CT,NC,WA,ME    |  |
| Pyrene                         | CT,NC,WA,ME    |  |
| IADEP-VPH-04-1.1 in Soil       |                |  |
| Unadjusted C5-C8 Aliphatics    | CT,NC,WA,ME    |  |
| C5-C8 Aliphatics               | CT,NC,WA,ME    |  |
| Unadjusted C9-C12 Aliphatics   | CT,NC,WA,ME    |  |
| C9-C12 Aliphatics              | CT,NC,WA,ME    |  |
| C9-C10 Aromatics               | CT,NC,WA,ME    |  |
| Benzene                        | CT,NC,WA,ME    |  |
| Ethylbenzene                   | CT,NC,WA,ME    |  |
| Methyl tert-Butyl Ether (MTBE) | CT,NC,WA,ME    |  |
| Naphthalene                    | CT,NC,WA,ME    |  |
| Toluene                        | CT,NC,WA,ME    |  |
| m+p Xylene                     | CT,NC,WA,ME    |  |
| o-Xylene                       | CT,NC,WA,ME    |  |



The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

| Code | Description                                  | Number        | Expires    |
|------|----------------------------------------------|---------------|------------|
| AIHA | AIHA-LAP, LLC                                | 100033        | 02/1/2014  |
| MA   | Massachusetts DEP                            | M-MA100       | 06/30/2013 |
| CT   | Connecticut Department of Publilc Health     | PH-0567       | 09/30/2013 |
| NY   | New York State Department of Health          | 10899 NELAP   | 04/1/2013  |
| NH   | New Hampshire Environmental Lab              | 2516 NELAP    | 02/5/2013  |
| RI   | Rhode Island Department of Health            | LAO00112      | 12/30/2012 |
| NC   | North Carolina Div. of Water Quality         | 652           | 12/31/2012 |
| NJ   | New Jersey DEP                               | MA007 NELAP   | 06/30/2013 |
| FL   | Florida Department of Health                 | E871027 NELAP | 06/30/2013 |
| VT   | Vermont Department of Health Lead Laboratory | LL015036      | 07/30/2013 |
| WA   | State of Washington Department of Ecology    | C2065         | 02/23/2013 |
| ME   | State of Maine                               | 2011028       | 06/9/2013  |
| VA   | Commonwealth of Virginia                     | 1381          | 12/14/2012 |

| Company Name: WECK CL COMP |                     | ANALYTICAL LABORATORY       |                   |                                          |
|----------------------------|---------------------|-----------------------------|-------------------|------------------------------------------|
|                            | www.contestlabs.com | Email: info@contestlabs.com | Fax: 413-525-6405 | — L <sup>®</sup> Phone: 413-525-2332 CHA |
| Telephone: 19 so C a Marie |                     | ~   Raw 04.05(2)            | してこれい             | CHAIN OF CUSTODY                         |
|                            |                     | 1 1                         |                   | RECORL                                   |

| nany Name: WESTON of Sampson | www.contestlabs.com | ANALYTICAL LABORATORY Email: info@ |                                               |
|------------------------------|---------------------|------------------------------------|-----------------------------------------------|
| Telephone:                   | llabs.com           | Email: info@contestlabs.com        |                                               |
| Telephone: 1800 SA MOSON     |                     | Raw 04.05(12)                      | CHAIN OF CUSTODY RECORD                       |
|                              |                     |                                    | RECORD                                        |
|                              |                     |                                    | 39 Spruce Street<br>East longmeadow, MA 01028 |
| ***Container Cod             | ** Preservation     | # of Containers                    | Pageof                                        |

|                            | 4                                                                        | 1           |          |              | l            |                              |               |              |                             |             | ×                              |                                                   |                   |
|----------------------------|--------------------------------------------------------------------------|-------------|----------|--------------|--------------|------------------------------|---------------|--------------|-----------------------------|-------------|--------------------------------|---------------------------------------------------|-------------------|
|                            | RCP Form Required                                                        |             |          |              |              | ĺ                            | Other         | <i>`</i> ,   | / 2                         | 1/2/10      | 2                              | 11 / Can.                                         | 16.00             |
|                            | MCP Form Required                                                        |             |          |              |              |                              | 10-Day        | <u>_</u>     | Date/Time                   | , / /b      |                                | / (Ampanials)                                     | Received by       |
|                            | is your project mich or ner :                                            | 2           |          |              | 82           | Massachusetts:               | 7-Day         |              | 15 11:18                    | /  //       | / ( a / )                      | - Korval                                          | 2 (N/2)           |
| 0 = other                  | The project MCB or BCB 3                                                 | <br>F<br>§  | ents     | guirem       | Limit Re     | Detection Limit Requirements | Turnaround TT | Turnar       | Date/Time:                  | 0           |                                | inquished by; (signature)                         | Relinquished      |
| St = sludge                | H - High; M - Medium; L - Low; C - Clean; U - Unknown                    | Medium; L   | jh; M-   | H-Hg         |              |                              |               |              |                             |             |                                |                                                   |                   |
| S = soil/solid             | be high in concentration in Matrix/Conc. Code Box:                       | in concentr | i migh   | may b        | <u> </u>     |                              |               |              |                             |             |                                |                                                   |                   |
| <b>DW</b> = drinking water | Please use the following codes to let Con-Test know if a specific sample | ing⇔desti   | follow   | ad esu est   | Plea         |                              |               | an from      | त<br>इ                      | SELEC       | 8                              |                                                   | Comments: Plane   |
| <b>WW</b> = wastewater     |                                                                          |             | L        |              |              |                              |               |              |                             |             |                                |                                                   |                   |
| <b>GW</b> = groundwater    |                                                                          | 1           | _        |              | -            |                              |               |              |                             |             |                                |                                                   |                   |
| *Matrix Code:              |                                                                          |             |          |              | **           |                              |               |              |                             |             |                                | **                                                |                   |
|                            |                                                                          |             |          |              |              |                              |               |              |                             |             |                                |                                                   |                   |
| o = Other                  |                                                                          | ‡           | _        |              | +            |                              |               |              |                             |             |                                |                                                   |                   |
| T = Na thiosulfate         |                                                                          |             |          |              |              |                              |               |              | •                           |             |                                | Prince                                            |                   |
| X = Na hvdroxide           |                                                                          |             |          |              |              |                              |               |              |                             |             |                                |                                                   |                   |
| D = Codium highlights      |                                                                          | 1           | 1        |              | 1            |                              |               |              |                             |             |                                |                                                   |                   |
| Sa Sufficie Prid           |                                                                          | <<          |          |              |              |                              |               | `            |                             | プイグラク       | TRIP -                         | <i>Σ</i> \                                        | G                 |
| N = Niethanol              |                                                                          |             | Ŀ        |              |              |                              |               |              |                             |             | Det - 1                        |                                                   |                   |
|                            |                                                                          |             |          |              |              |                              |               |              | ,                           | /           | 7                              |                                                   |                   |
| I = Iced                   |                                                                          |             | [        |              |              |                              | 14:00         | -            | -15)                        | 1 (13-1     | WS-31                          | <u> </u>                                          |                   |
| **Preservation             |                                                                          | ×           | ×        |              |              |                              | 13:15         |              | <u>, (å.)</u>               | 0 (13-1     | W.S- 30                        |                                                   |                   |
|                            |                                                                          | ľ           | Į        |              |              |                              |               | -            | 1                           | Ţ           | 20                             | )                                                 |                   |
| <b>O</b> ≡Uther            |                                                                          | ×           |          |              |              |                              | 7 : 25        | / <br>  <br> | <u>^</u>                    | しているい       | 115-26                         | <u> </u>                                          |                   |
| T=tedlar bag               |                                                                          | V           |          | Canc Cade    | Grab Lade    | Composite (                  | 0             | Date/Time    | scription                   | JIE IU / UE | Client sample ID / Description | L                                                 | (laborato         |
| S=summa can                |                                                                          | Pı-         | P        |              | *Maheir      |                              | 2             | Beginning    |                             | 5           | 762+02                         | Con-Test Lab ID                                   | Con-Te            |
| V= vial                    |                                                                          | <u>+</u>    |          | age"         | Data Pack    | O "Enhanced Data Package"    | Collection    | <u>ම්</u>    |                             |             |                                |                                                   |                   |
| ST=sterile                 |                                                                          | <u></u>     | h        |              |              | Ē                            |               |              |                             | al date     | proposal date                  | to proport a covince                              | O yes             |
| <b>P</b> =plastic          |                                                                          | <u>//</u>   | 1/       | <del>[</del> | CEL OGIS     | OPDF OEXCEL                  | Format        |              |                             | Nifference) | d? (for hilling                | Project Promosal Provided? (for hilling purposes) | Project -         |
| G=glass                    |                                                                          | v           | PA       |              |              |                              | Email:        |              | 4                           | KAVINAGA    | 1                              | By: PADraic                                       | Sampled By:       |
| ***Cont. Code:             | 74.4                                                                     | cr.         | 143      |              |              | :                            | Fax#          |              | NEW SEXENT                  |             | UNION ST                       | 1                                                 | Project Location: |
| 1                          | ***                                                                      |             | <u> </u> |              | BSITE        | CEMAIL OWEBSITE              |               |              |                             |             |                                | Į.                                                |                   |
| O Lab to Filter            |                                                                          |             |          |              | at apply)    | XY (check all th             | Ď             |              |                             | #           | The saw                        |                                                   | Attention:        |
| O Field Filtered 26        |                                                                          |             |          |              |              |                              | Client PO#    |              |                             | MA          | rucu.                          | FoxBoarment                                       |                   |
| Dissolved Metal of         | ANALYSIS REQUESTED                                                       | - ≥         |          |              |              | :                            | Project#      |              |                             | BUD.        | forezono.                      | 100 Fox                                           | Address:          |
| ***Container Cod &         |                                                                          |             |          | 8            | COO SA MPSON | 5 003/                       | Telephone:    |              | X and                       | x Sample x  | WESTON of SAMPSON              |                                                   | Company Name:     |
| ** Preservation R          |                                                                          |             |          |              |              |                              |               | tlabs.com    | www.contestlabs.com         |             |                                | ****                                              |                   |
| # of Containers            |                                                                          | -           | E        | <u>ラ</u> し   | Raw 04.05/12 | 2                            | s.com         | eontestab    | Email: info@contestlabs.com | - 4         | ANALYTICAL LABORATORY          | ANALYT                                            | Į                 |
| ) F87                      |                                                                          |             |          |              |              | ンス                           |               | 5-6405       | Fax: 413-525-6405           |             |                                | 6                                                 |                   |
| Ç,                         | 39 Spruce Street                                                         | RECORD      | D<br>III | YGO          | SUST         | CHAIN OF CUSTODY             | CHA           | 525-2332     | @ Phone: 413-525-2332       |             | )<br>F                         | )<br>)                                            |                   |

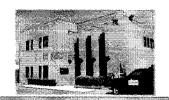
IS INCORRECT, TURNAROUND TIME WILL NOT START UNTIL ALL QUESTIONS ARE ANSWERED BY OUR CLIENT. URNAROUND TIME STARTS AT 9:00 A.M. THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE QUESTIONS ON YOUR CHAIN. IF THIS FORM IS NOT FILLED OUT COMPLETELY OR Require lab approval Other: PLEASE BE CAREFUL NOT TO CONTAMINATE THIS DOCUMENT WBE/DBE Certified

by Asignature) 2, A

Date/Tirke:

O †72-Hr O †4-Day 0 124-Hr O 148-Hr

RUSH


Connecticut:

O MA State DW Form Required PWSID#

NELAC & AIHA-LAP, LLC Accredited

39 Spruce St. East Longmeadow, MA. 01028 P: 413-525-2332 F: 413-525-6405 www.contestlabs.com





Page 27 of 28 CRWPDF87

# Sample Receipt Checklist

| CLIENT NAME: Wagrad                                                                                            | 9 SAM, 181/ RI       | ECEIVED BY: WK            | DATE: 11-6-17             |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------|----------------------|---------------------------|---------------------------|--|--|--|--|
| <ol> <li>Was the chain(s) of custody re</li> <li>Does the chain agree with the<br/>If not, explain:</li> </ol> | •                    | Yes No                    | No CoC Included           |  |  |  |  |
| 3) Are all the samples in good co<br>If not, explain:                                                          | endition?            | Yes No                    |                           |  |  |  |  |
| 4) How were the samples receive                                                                                | ed:                  |                           | <b>1</b>                  |  |  |  |  |
| On Ice Direct from Sa                                                                                          | ampling 🔲 Ar         | nbient In Cooler(s)       |                           |  |  |  |  |
| Were the samples received in Ter                                                                               | mperature Compliance | of (2-6°C)? Yes No        | N/A                       |  |  |  |  |
| Temperature °C by Temp blank                                                                                   |                      | emperature °C by Temp gun | 2.9                       |  |  |  |  |
| 5) Are there Dissolved samples f                                                                               |                      | Yes No                    | ) '                       |  |  |  |  |
| Who was notified                                                                                               |                      |                           | <del>Vill Warns</del> and |  |  |  |  |
| 6) Are there any RUSH or SHORT                                                                                 | -                    |                           | And Address -             |  |  |  |  |
| Who was notified                                                                                               | Date                 |                           |                           |  |  |  |  |
| Permission to subcontract samples? Yes No                                                                      |                      |                           |                           |  |  |  |  |
| 7) Location where samples are store                                                                            | ed:                  | (Walk-in clients only     | ) if not already approved |  |  |  |  |
|                                                                                                                | (9                   | Client Signature:         |                           |  |  |  |  |
| 8) Do all samples have the proper Acid pH: Yes No (N/A)                                                        |                      |                           |                           |  |  |  |  |
| 9) Do all samples have the proper Base pH: Yes No N/A                                                          |                      |                           |                           |  |  |  |  |
| 10) Was the PC notified of any discrepancies with the CoC vs the samples: Yes No N/A                           |                      |                           |                           |  |  |  |  |
| _                                                                                                              | _                    |                           | NO N/A                    |  |  |  |  |
| Containers received at Con-Test                                                                                |                      |                           |                           |  |  |  |  |
|                                                                                                                | # of containers      |                           | # of containers           |  |  |  |  |
| 1 Liter Amber                                                                                                  |                      | 8 oz amber/clear jar      |                           |  |  |  |  |
| 500 mL Amber                                                                                                   |                      | 4 oz amber/clear jar      |                           |  |  |  |  |
| 250 mL Amber (8oz amber)                                                                                       | 7                    | 2 oz amber/clear ar       |                           |  |  |  |  |
| 1 Liter Plastic                                                                                                |                      | Air Cassette              |                           |  |  |  |  |
| 500 mL Plastic                                                                                                 |                      | Hg/Hopcalite Tube         |                           |  |  |  |  |
| 250 mL plastic                                                                                                 |                      | Plastic Bag / Ziploc      |                           |  |  |  |  |
| 40 mL Vial - type listed below                                                                                 | 5                    | PM 2.5 / PM 10            |                           |  |  |  |  |
| Colisure / bacteria bottle                                                                                     |                      | PUF Cartridge             |                           |  |  |  |  |
| Dissolved Oxygen bottle                                                                                        |                      | SOC Kit                   |                           |  |  |  |  |
| Encore                                                                                                         |                      | TO-17 Tubes               |                           |  |  |  |  |
| Flashpoint bottle                                                                                              |                      | Non-ConTest Contain       | er                        |  |  |  |  |
|                                                                                                                |                      |                           |                           |  |  |  |  |
| Perchlorate Kit                                                                                                | 7.000                | Other glass jar           |                           |  |  |  |  |
| Other                                                                                                          |                      |                           |                           |  |  |  |  |
|                                                                                                                |                      | Other glass jar           |                           |  |  |  |  |
| Other                                                                                                          | # Methan             | Other glass jar Other     | Time and Date Frozen:     |  |  |  |  |
| Other<br>Laboratory Comments:                                                                                  |                      | Other glass jar Other     | Time and Date Frozen:     |  |  |  |  |

|                                                                                                                                                                                                     | MADEP MCP Analytical Method Report Certification Form |                              |                                                          |                                           |                                                     |                  |                   |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------|----------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|------------------|-------------------|--|--|
| Labo                                                                                                                                                                                                | ratory Name:                                          | Con-Test Ana                 | llytical Laboratory                                      |                                           | Project #: 12K                                      | 0153             |                   |  |  |
| Proje                                                                                                                                                                                               | ect Location:                                         | Union St., Nev               | w Bedford                                                |                                           | RTN:                                                |                  |                   |  |  |
| This F                                                                                                                                                                                              | orm provides                                          | s certifications for t       | the following data set                                   | : [list Laboratory Sam                    | nple ID Number(s)]                                  |                  |                   |  |  |
| 12K                                                                                                                                                                                                 | (0153-01 thru                                         | 12K0153-05                   |                                                          |                                           |                                                     |                  |                   |  |  |
| Matri                                                                                                                                                                                               | ces:                                                  | Soil                         |                                                          |                                           |                                                     |                  |                   |  |  |
| CA                                                                                                                                                                                                  | AM Protoco                                            | (check all that I            | below)                                                   |                                           |                                                     |                  |                   |  |  |
| 8260<br>CAM                                                                                                                                                                                         | VOC<br>II A ( )                                       | 7470/7471 Hg<br>CAM IIIB ()  | MassDEP VPH<br>CAM IV A (X)                              | 8081 Pesticides<br>CAM V B ( )            | 7196 Hex Cr<br>CAM VI B ( )                         | MassD<br>CAM IX  | EP APH<br>( A ( ) |  |  |
|                                                                                                                                                                                                     | SVOC<br>II B ()                                       | 7010 Metals<br>CAM III C ()  | MassDEP EPH<br>CAM IV A (X)                              | 8151 Herbicides<br>CAM V C ( )            | 8330 Explosives<br>CAM VIII A ( )                   | TO-15<br>CAM IX  |                   |  |  |
|                                                                                                                                                                                                     | Metals<br>III A ()                                    | 6020 Metals<br>CAM III D ( ) | 8082 PCB<br>CAM V A ( )                                  | 9014 Total<br>Cyanide/PAC<br>CAM VI A ( ) | 6860 Perchlorate<br>CAM VIII B ( )                  |                  |                   |  |  |
|                                                                                                                                                                                                     | A                                                     | ffirmative response          | to Questions A throu                                     | ghF is required for "P                    | resumptive Certainty"                               | status           |                   |  |  |
| Α                                                                                                                                                                                                   |                                                       | rved (including temper       | tion consistent with those ature) in the field or labora |                                           |                                                     | ☑ Yes            | □No¹              |  |  |
| В                                                                                                                                                                                                   |                                                       | rtical method(s) and all     | I associated QC requirem                                 | ents specificed in the sele               | ected CAM                                           | ☑ Yes            | □No¹              |  |  |
| С                                                                                                                                                                                                   |                                                       |                              | and analytical response actified performance standard    |                                           | ected CAM                                           | ☑ Yes            | □No¹              |  |  |
| Does the laboratory report comply with all the reporting requirements specified in CAM VII A, Quality Assurance and Quality Control Guidlines for the Acquisition and Reporting of Analytical Data? |                                                       |                              |                                                          |                                           |                                                     | ☑ Yes            | □No¹              |  |  |
| E a VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).                     |                                                       |                              |                                                          |                                           |                                                     | ☑ Yes            | □No¹              |  |  |
| E b APH and TO-15 Methods only: Was the complete analyte list reported for each method?                                                                                                             |                                                       |                              |                                                          |                                           |                                                     | ☐ Yes            | □No¹              |  |  |
| F Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all No responses to Qestions A through E)?            |                                                       |                              |                                                          |                                           |                                                     | ☑ Yes            | □No¹              |  |  |
|                                                                                                                                                                                                     |                                                       |                              | and I below is require                                   |                                           |                                                     |                  |                   |  |  |
| G                                                                                                                                                                                                   | Were the report                                       | ting limits at or below      | all CAM reporting limits sp                              | pecified in the selected Ca               | AM                                                  | ☑ Yes            | □No¹              |  |  |
|                                                                                                                                                                                                     |                                                       |                              | resumptive Certainty"<br>described in 310 CMF            | <u>-</u>                                  | sarily meet the data us                             | sability         |                   |  |  |
| Н                                                                                                                                                                                                   | Were all QC pe                                        | erfomance standards s        | specified in the CAM proto                               | ocol(s) achieved?                         |                                                     | □ <sub>Yes</sub> | $\square_{No^1}$  |  |  |
| I                                                                                                                                                                                                   | Were results re                                       | eported for the complet      | te analyte list specified in                             | the selected CAM protoc                   | ol(s)?                                              | ☑ Yes            | □No¹              |  |  |
| 1 <sub>All</sub>                                                                                                                                                                                    | Negative respo                                        | onses must be addre          | essed in an attached Er                                  | nvironmental Laborator                    | y case narrative.                                   |                  |                   |  |  |
| thos                                                                                                                                                                                                | se responsible                                        |                              | nformation, the mater                                    |                                           | oon my personal inqui<br>nalytical report is, to ti | -                |                   |  |  |
| Sigi                                                                                                                                                                                                | nature:                                               | m                            | 2 Culu                                                   | Position:                                 | Laboratory Director                                 |                  |                   |  |  |
| Prin                                                                                                                                                                                                | ited Name:                                            | Michael A. Erickso           | on                                                       | Date:                                     | 1/12/12                                             |                  |                   |  |  |